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Seiberg-Witten transforms of noncommutative solitons
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We evaluate the Seiberg-Witten map for solitons and instantons in noncommutative gauge theories in
various dimensions. We show that solitons constructed using the projection operators have delta-function
supports when expressed in the commutative variables. This gives a precise identification of the moduli of
these solutions as locations of branes. On the other hand, an instanton solution in four dimensions allows
deformation away from the projection operator construction. We evaluate the Seiberg-Witten transform of the
U(2) instanton and show that it has a finite size determined by the noncommutative scale and by the defor-
mation parametep. For largep, the profile of the DO-brane density of the instanton agrees surprisingly well
with that of the Belavin-Polyakov-Schwarz-TyupkiBPST) instanton on commutative space.
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[. INTRODUCTION Thus the solutions are parametrized by the ramlof the
projection operator + UUT, the rankN of the gauge group,
Noncommutative gauge theories can be realized by corand the n moduli parametera’,. These solitons are inter-
Sidering branes in string theory with a constant NeVEU-preted as DO branes on D2 branes witkktndN being the DO
Schwarz—Neveu-Schwarz two-form fielldl]. It is described  and D2 charges, respectively. There has been evidence sug-
by noncommutative gauge fields; on a noncommutative gesting that!, correspond to the locations of the DO branes
space whose coordinates obey the commutation relation 11,15 5Q. In this paper we will confirm this interpretation
. - using the Seiberg-Witten map. In higher dimensions, a com-
[X,%]=i6". (1D plete classification of solutions has not been carried out, al-

o though some special solutions are known, such as instanton
One of the remarkable features of these theories is that theggutions in four dimensions, which can be interpreted as DO

is a universal way to construct a large class of classical Soyranes on D4 brane§2-5,12,13,44,16 These higher-

lutions[2—48). In particular, in two dimensions, all solutions gimensjonal solutions do not necessarily take the fétrd).
to the noncommutative Yang-Mills equations with gauge |, ref [51], it was shown that there are two equivalent
groupU(N) are classified in Ref15], and it was shown that descriptions of the theory; one in terms of ordinary gauge

they take the form fields A; on a commutative space, and another in terms of
m noncommutative gauge fieldd; on a noncommutative
X=uxut+ > Aayal (i=1,2), (1.2)  space. The map betweegk and A, is called the Seiberg-
a=1 Witten map. In Refs[46—48, an explicit expression for the
Seiberg-Witten map was found for tly 1) part of the field
where strength, by studying the coupling of the gauge field to the
- Ramond-Ramond potentials of closed string in the Bulke
X'=%'—6"A;(X) (1.3

are operators acting on the Hilbert spakie which is the ‘It may not be evident in the expressiéh2) that the rankN of
Fock space of Eq.1.1) times CV, {|a)},_; m is an gaugegroup is a parameter of the solution invariant undel (e
mrdimensional subspace @f, andU is the associated shift 9auge symmetry. To see that there is a gauge invariant definition of

operator obeying N, we point out the formqla Qeriyed iM6—48:
T PR X', X1 ]) ek X]=Ns(k). 1.5
m This holds as far as the gauge figl(x) has a compact support
utu=1, UUT=1- 2 la)(al. (1.4 when it is expressed in terms of commutative variables via the
a=1

Seiberg-Witten map. One may also be able to showhiatgauge
invariant by using the more precise definition of td¢«) group
recently given in Ref[49].
*Email address: koji@itp.ucsb.edu 2There has also been an approf6a—53 to express the Seiberg-
TEmail address: ooguri@theory.caltech.edu Witten map using the Kontsevich formal mgg6,57].
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expression was conjectured earlier in REB8]. It was  stanton solution and show how the delta-function singularity
proven in Ref[46] that it indeed satisfies the conditions for is resolved. We will close this paper with discussions of our
the Seiberg-Witten map without relying on the string theoryresults in Sec. VI. In the Appendices, we derive some of the
origin of the expression. In this paper, we evaluate thgormulas used in this paper and give some details of the
Seiberg-Witten map for the noncommutative soliton solu-computation in Sec. V.
tions in the above paragraph and express them in terms of the
commutative variables. Il. SEIBERG-WITTEN MAP
In two dimensions, where a solution always takes the o

form (1.2), we find that theU(1) part of the commutative N Refs. [46-48, an exact and explicit form of the
field strength has a delta-function supportxat . This ~ Seiberg-Witten map for theJ(1) part of the field strength

' . . it was obtained from string theory computation of the coupling
confirms the earlier observation that the moddJishould be :

. between the noncommutative gauge theory on the branes and

regarded as positions of DO branes on the D2 branes. It

, i i . ‘e Ramond-Ramond potentials in the bulk. For a gauge
interesting to note that, are commutative parameters EVeN theory with 1 noncommutative dimensions, the map from

thqugh they are describing the Io_cauons O.f the noncommug, . e|q strength in the noncommutative variables
tative solitons. A natural explanation for this is that the co-

ordinatesx' of the commutative variables;(x) should be . - N e e A

considered as the closed string coordinates, which are com- Fij=0iAj = I AITIAF A —IA*A; 2.7

mutative, since the Seiberg-Witten map we use was derived

from the study of the coupling of the gauge theory to theto the field strengthF;;=a,A;—d;A; of the commutative

Ramond-Ramond potentials in the bulk. It is rather surprisvariablesA;, is giver? in the Fourier transformed form by

ing that, whether the gauge group is Abelian or non-Abelian,

all the solutions in two dimensions are singular when ex- Fij(k)—ai]l&(k)

pressed in terms of the commutative variabfgéx). The

fact that there is no moduli that change the size of the soli-

tons has been known from the analysis of the massless

modes of the open string connecting DO branes and D2

branes, but one may have expected that the soliton has a

fixed size set by the noncommutative parametér This

turned out not to be the case for these solutions. There are

various other solutions, describing branes intersecting WitI;nNhere

each other with arbitrary angles, which can be expressed in

the form(1.2), and they all have delta-function singularities

after the Seiberg-Witten transform. (6+ pF )N 1=
On the other hand, solutions in higher dimensions are not !

necessarily of the forni1.2) and therefore can have a finite 1

size after t.he Seiberg-Witten tran_sform. We examine in detall D% f dry[ 6+ OF (X+17,) 6112 -

the U(2) instanton constructed in Reff16]. The solution 0

contains an extra modulys which in the commutative limit 1

60— 0 reduces to the size of the instanton. We evaluate the xf d7,_ [ 6+ OF (X

Seiberg-Witten transform of this solution in the two limit, 0

p<+/6 and \J6<p. Whenp=0, the instanton solution is of

the form(1.2) and has a delta-function singularity when ex-

pressed in the commutative variables. We find that, as soon )

as we turn on a small amount pf the solution gets a non- N particular, forn=1 and 2, we have

zero support of the size\/d. We also see that the delta-

1 . A
— ik-X n-1
Pf(e)JdX*[e (0+06f0); P

1, .
Xex;{if A(X+Ir)l'dr
0

}, (2.2

1
mfijilizmiZn_2

+17,_1)@]'20-3" 122, (2.3

function singularity is modified by. On the other hand, for (6+ of 0){]-‘1
J6<p, we find that the delta-function singularity is com-
pletely resolved and that the solution has a smooth profile, €ij (n=1)
which, for the first two terms in the glexpansion, precisely ={1 1 . "
agrees with that of the Belavin-Polyakov-Schwarz-Tyupkin 5 €ijk fo dr 6+ 0F(X+17)0] (n=2).
(BPST) instanton on commutative space.

This paper is organized as follows. In Sec. Il, we review (2.9

the construction of the Seiberg-Witten map derived46—

48]. In Sec. lll, we evaluate Seiberg-Witten transform of the

noncommutative solitons in (21) dimensions, which take

the form(1.2). Other examples, including intersecting branes 3|n this paper, we choose the sign of the noncommutative param-
and fluxons, are discussed in Sec. IV. In Sec. V, we study theter¢' as in Eq.(1.1). To use the convention in Re#46], one can
Seiberg-Witten transform of th&/(2) noncommutative in- simply make the substitutiod! — — 8" in the following.
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This expression involves the open Wilson line, which is aand forn=2 by

basic building block of observables in noncommutative i

gauge theory59,60,50,24 In order to actually evaluate the Fij (k) — 0" 8(k) = — EeinTr([Xk,Xl]e'k'X). (2.6)

Seiberg-Witten map, it is useful to express it using the vari-

able X' defined by Eq.1.3). For n=1, the Seiberg-Witten When the noncommutative gauge theory is realized on

map is given by Dp branes, the field strengf; (k) of the commutative vari-
ablesA;(x) can be regarded as the p{ 2) brane density on
the Dp branes. This was how the expressi@m®) was found
in [46—48. In the following, we will find it useful to con-

. X sider lower brane densities also. ThepD{2s) brane density
Fia(K) = 615 6(k)=Tre™ 7, (2.9 on the Dp branes is given by

1 1 1
Jii L€ dry| drp-- dr
g0 (BRSPS PEasd PY 1 2 s—1
P pmes *Jo 1 Ts-2

X Tr([X)1,XI2]e 72k X[ X3 XI4]e! (27 K- X. . [ XI2s-1 X2s]el (1~ 7s- 1)k X)) 2.7
|
[ll. SOLITONS IN 2 +1 DIMENSIONS Here in the first equality we have used the following identity:
In Ref. [15], all static classical solutions to the noncom- A A
mutative Yang-Mills theory in (2 1) dimensions are classi- elUk-XUT_ yeik-xyt 1 _yyt, (3.9
fied. They take the form
m The field strength expressed in the commutative variables is
Xi=UsUT+ D Nayal (i=1,2, (3.1 ther
a=1
m-1 .
where{|a)} ,—1... is anm-dimensional subspace of the Fock Fik)= > elkita, (3.5
a=0

space of Eq(1.1) times CN,)\L’S are arbitrary constant pa-
rameters, andl is the associated shift operator obeying

By taking the Fourier transform of this, we find

m—1

Flz(x)=azo S(X—\y). (3.6)

m
ufu=1, UUT=1—aZl|a><a|. (3.2

It is straightforward to compute the Seiberg-Witten transform
of this solution’ _ _
Substituting Eq(3.1) into the Seiberg-Witten maf2.5, We see that the solution has delta-function supports at

we find =\, (@=0,...,m—=1). This gives a precise interpretation
of the moduli ; as representing the locations of the soliton,
m-1 ' confirming the observations in Refd.1,15,5Q.
tre X=tf uekxut+ > eiklx'a|a><a| There is an obvious generalization of this cons_truction to
a=o higher dimensions. Let us assume ti#at, 6%4,..., g'2n-12"
m—1 _ #0 and othe+ 0 so that we have a direct productrofock
—trelk X4 z eiki)‘la<a|a> spaces. We can then consider a solution
a=0
1 m-1 X'=UxUT, (i=1,.,M). 3.7
=58k + > eikira, (3.3
a=0

Here we set all the modulk =0 for simplicity, andU is a
shift operator of rankn. The Seiberg-Witten map inr2di-
“This is essentially the same as the computation of the Wilson linén€nsions is
observables in the soliton background discussed in R&fs50.
Here we are reinterpreting it as an evaluation of the Seiberg-Witten
map. ®Note that, sinced'! is antisymmetric g, = — 1/6*2.
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. in—l 1 1
Fij(k)—6; 5(k)=—m6ijslmsz”_2fo dTl"'J d7p2
n-3

T,

Xtr([xslixsz]ei’rlkx.[XSZn,g,XSZn,z]ei(l—Tn,z)k-X)_ (38)
|
Using Eq.(3.4) and the Seiberg-Witten transform of the instanton acquires a fi-
1t il gt nite size as soon as we turn on the deformation, and the size
[X,X!]=iU g U", (3.9 s set by the noncommutative scafeand the deformation

parametep. We also show thé&J (1) part of the field strength

one finds that the right-hand side of E§.8) is — Gﬁla(k), becomes nonzero after the deformation.

and therefore

Fii(K)=0. (3.10 IV. INTERSECTING BRANES

Similarly one can show that the soliton does not give a non- Noncommutative soliton solutions representing orthogo-
trivial contribution to the the D@ brane density for alp nally intersecting branes have been constructed in literature

>1. The only nonvanishing one is the DO brane density,[zg’g_q' In th?s section, we generalize these_ cons_truction_s by
which is given by allowing arbitrary angles and evaluate their Seiberg-Witten

transforms.
J(k)=Tr(e™X)
A. D2 branes orthogonally intersecting on a D4 brane

— ik-xp 1 _ T
=Tr(Ue™ U+ 1-UU’) As a warm up, let us consider D2 branes orthogonally

intersecting on a D4 brane world volume. It can be obtained

=——5(k)+m. (3.11) by reinterpreting the tachyon configuration studied in Ref.
Pf(6) [29] as a gauge field configuration on the D4 brane:
The Fourier transform of this gives x2=yustUtel, X34=1VieAT 4.2
_ Here we introduced noncommutativity 8%, 634+0, and so
J(X)= ——+md(Xx). 3.1 ’ ’
() Pf( 0) ) (312 we have a direct product of the two Fock spaces. The opera-

) tor V is the same ab except thal acts on the second Fock
The first term represents the background DO brane charge Eace ofk® andx*:

the presence of the constaBtfield and the second term

corresponds to then DO branes described by the soliton

solution (3.7). This soliton therefore describes DO branes UEEn: In+m)(n|®], VEM};« In+I)(n|. (4.2
without higher brane charges.

One may be puzzled by that fact that the solutf®m) of  The apove solution represents the brane configuration in
the noncommutativeU(1) gauge theory describes DO \yhich m D2 branes localized at the origin of theé —x2
branes, even though the field strengih of this solution IS pjane are intersecting withD2 branes localized at the origin
identically equal to zero. Such a bizarre behavior is not Unys the x3— x4 plane. This geometrical interpretation is con-

expected for solutions with delta-function singularities. Tofjrmed by evaluating the Seiberg-Witten méh6) for four
illustrate the point, let us imagine th&f; has the following  oncommutative dimensions:

configuration:
2 F(X)=ma&(x}) 8(x?), Fay(x)=18(x3)8(x*), other$40é
Fij"’EzeX%_?). (3139 ( : )
It is also interesting to calculate the DO-brane density using
In this case, Eq. (2.7) with p=4, s=2:
o x? J(k)=Tr(e'*¥)
Ellu.laniliz‘ . .Fi2nfli2n~ 672n EXF( —nN ?) . (314)

_ e ol i o2yt
In the limit e—0, the field strength vanishég; —0, butF" =Tr U explikX"+ik,%)U '@V

becomes proportional té(x).

A -1
If we embed the solutiof3.7) to theU(N) gauge theory, 03 i odvrt "
it is possible to deform it away from the forf8.7). In Sec. X explikak®+ ik KV + gfo la)(aleV
V, we study theU(2) instanton solution in four dimensions,
for which an explicit expression is knowi6]. We find that X exp(ikgsC+ik VT + U explik Xt +ik,%2)UT
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-1 m—1 -1

®a20 |a><a|+a§0 |a><a|<>3>a§O la)(al

1 m
= gz 0 (K) + 33 8(ks) (ks)

I
+ 0—12§(k1) S(ky)+ml. (4.4
After the Fourier transformation, we obtain
1 m 1 2 I 3 4
\](X)ZW"F W§(X )5(X )+0—125(X )5(X )
+mls*(x). (4.9

It is interesting to note that, using E.3), this can be
expressed as

1 .
Ix)= g €MF; 00— 6 TFa(x) =~ 6] (4.6

Such a relation between the DO-brane charge derdgity

PHYSICAL REVIEW D 64 106005

m—1 m—1
F14<x>=—a§O Y28a(X), F24<x>=a§0 Y20a(X),
(4.11)
where
82(x)= [ X =103 xH 1 x2 N2 xH]. (4.12

Therefore the D2 branes are located as expected. It is also
useful to point out that Eq4.11) satisfies the Bianchi iden-
tity, d;; Fj i =0. For example,
’9[1,F2,3]:§ (93+ Brdr+ B2d2) S(X =N} 8(x*—\2)
=0, (4.13
consistently with the general proof in R¢#6].
The DO-brane density for this solution is

J(K)=Trl U exp(ik X2 +ik,%%) U@ exp(ik %3+ ik ;%%

and the field strengtlr;; holds in the leading order in the
standarda’ expansion of string theory computation, but it is
expected to receive large corrections in the Seiberg-Witten
limit. In fact, in the more elaborate examples discussed be-

m—1

+ > |a)al@expikoh i +ikoh2+ika%3+ik,&*)
a=0

1

low, such a relation does not hold.

B. Intersection with arbitrary angles

We can introduce an arbitrary angle to the solutidrl)
by deforming it as follows:

m—1

XL2=ustUtel+ Y, |a)aleatidsdxh), (4.7
a=0

X34=10%%4, (4.8

where\'s are functions ofx® and X*. Here we have set

1 L1 2
— ikgag+ikpay
“pig) 00T g

X 8(kyBa+KoBa+Kks) S(kyyatkovatks). (4.14

After performing the Fourier transformation, we obtain
1 m—1
J(X)ZW‘F;@;O 5a(X). (415)

As before, the first term shows the uniform distribution of
the DO branes in the D4 brane. The second term indicates the
DO branes bound in the D2 branes located at the place where

=0 so that the configuration does not include localized DOhe delta functions specify. There is no localized DO brane in

braneg see the last term in E¢4.5)]. Substituting this into
the equation of motion,

(X, [XI,XI]) =0, 4.9
we find that\’s have to be linear functions,
Na(53, %) = agpt B+ 7X (4.10

wherea, B, andy are constant parameters, anell1,2.

We can regard\;’'s as representing the configurations of
the D2 branes. To confirm this interpretation, we evaluate the

Seiberg-Witten map2.6):

m—1 m—1

FifX)= go 8a(X), Fagx)= ago (Bva— Bava) 8a(X),

m—1 m—1

Fig(X)=— go B264(X), Fagx)= go Bida(X),

this case.

We have shown that it is possible to introduce moduli to
the intersecting brane solutions as in E@k7) and(4.8) to
describe configurations of branes with arbitrary angles. We
can generalize this further by introducing additional moduli
as

m—1

XL2=ustUtel+ D> |a)(al@arixe,%%)
a=0

+§ {xflay(al®|b)(b], (4.16
|-1
X34=10 Vs + bZO A4 52 @ |a)(al
+§ Zonlay(al®|b)(b]. (4.17)
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The Seiberg-Witten map gives Trexpik X +ik,X2+ike®)
m—1 1 . 1, . 2
Fi()= 2, X —N10GxH18[x2 = N2(x3,xH ] :0—125(k1)5(k2)+§ exp{|k1>\a+|k2)\a
a=0
-1 1
3 (B B A ) e, @22
b=0

where note that we have introduced a transverse momentum

4_ 4,1 2
XX A0, (4.18 kg coupled tod. The Fourier transform of this expression is

and similar expressions for the other components of the L
gauge field strength. Note that the number of the DO branes J(x)=f dk,dkydkge kx —Tkx"=ike® g k)
is ml, whereas the number of the D2 branemis |. The DO
brane density is given by

m—1

=20 ®)+ S 0N 5022

1 1
- .= 1_3\1/y3 o4 2 32,03 oa
0= By 5 2y X NCHIAE ALY X [0 — (xa— L)/ 6°2]. 423
-1 s i3 1.2 4 412 The first term shows the D1 branes uniformly distributed on
+ QTE O X7 = N3(x7,x%) J O X" = N 3(x,x7) ] the D3 brane as a result of the background B-fild. The

second term shows the D1 branes intersecting with the D3
4 D brane. We note that the intersection angle depends, @3

+§) 21 6(X = Lap).- (419 expected for the BPS solution. The intersection point is lo-
' cated at §2,\2,,) on the world volume of the D3 brane.

The last term shows the localized DO branes scattered in the 't1S €asy to generalize this solution to various other cases,
D4 brane. e.g., infinite number of D1 branes piercing REE8], intro-

It is straightforward to include the scalar field in this con- ducing another transverse scalar field in such a way that the
struction and allow the D2 branes and the DO branes to movB1 brane is completely apart from the D3 brdig], and

away from the D4 brane, as discussed in R&t]. non-BPS deformation by changing the tilt of the D1 brane
' [15]. The Seiberg-Witten transforms of these solutions con-

firm the known interpretations of these solitons and their
moduli.

The solutions discussed so far are all non-BPS and un-
stable. One of the interesting BPS noncommutative solutions v, INSTANTONS AND RESOLUTION OF THE DELTA

C. D1 branes intersecting with the D3 brane

is the fluxon solution studied if8,15,17,18. If we turn on EUNCTION SINGULARITIES
the noncommutativity only along the"—x? plane, the solu- _ _ o
tion representing D1 branes piercing a D3 brane is We have found that solutions constructed using projection
operators have delta-function singularities. In this section,
_ _ m-1 _ we will study how these singularities are resolved in the case
X' =UK'UT+ an la)(a|Ay, of the U(2) instanton solution on the four dimensional non-

commutative space with a single scale modylus
For definiteness, we assume that the noncommutative pa-

m—1 L
rameterd" is anti-self-dual and set

“ 1
As=0, d=_p 2 (X~ La)la)al.
a=0 34_ _ pl2_
(4.20 0°*=— 0= 6>0, other=0. (5.

Given this, there is a distinction between self-dual and anti-
neelf-dual solutions, constructed in Rdf2,4] and in Ref[16]
respectively. In this section, we examine the anti-self-dual
solution of Ref.[16] since it can be regarded as a deforma-
A —j tion of a solution of the form1.2) embedded in th&J(2)
— 930 =B;= W([xl,xz]—ialz), theory, as we will see explicitly in Eq$5.6) and(5.7).
Let us review the construction of the anti-self-dual solu-
. A . A tion in Ref.[16]. To simplify the computations in the follow-
i[X1,d]/6%=B,, —i[X?d]/6**=B,. (4.21)  ing, we rescale the coordinat&s so that the noncommuta-
tive scale is set a8=1. Whenever necessary, we can restore
The last two equations are trivially satisfied since both side® by a simple dimensional analysis. It is useful to combine
of the two equations vanish. the coordinates into the form of the creation and annihilation
The D1-brane current density of this solution is operators

Note thati=1,2 and there is no noncommutativity aloxg
The above solution satisfies the BPS equations in nonco
mutative Yang-Mills theory on the D3 brane,
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+
1 1 [ai,a)]= 4, (5.3
a= — (P+igY), a,=—(X*—i%d), (5.2 R
V2 V2 and acting on the Fock spag&n,m)|n,m=0,e Z}. Using
this notation, théJ(2) anti-self-dual instanton solutiok is
satisfying the standard commutation relation, expressed as
. ) L[ [2(N+2)+p?] " V2RH[2(N+2) + p?] 0
M= LMD — MU + .
X PIkAp =U 'x*U P 0 (2N+p2)_1/25(M(2N+p2)_1/2 ) (5 4)
|
where Therefore thidJ, can be regarded as a shift operator, and the

Seiberg-Witten transform can be evaluated in the same way
as in the previous sections. For example, the DO brane den-

p sity is given by
0 1
v=(vDv?), vO=| 4 | —s,
2 | V2(N+2)+p J(k)=Tr e *=25(k)+1 5.8
or in thex space by
0
vy P _ J(x)= 2, 8(x) (5.9
1/23.1 /2N+p2, 62 . .
v2a,
(Here we have restore@) The first term is for the uniform
and thus distribution of the DO branes on the parallel two D4 branes,
and the second term gives the localized additional DO brane
/ : charge.
u=( N2 2\l a; ey 5 Now we consider the resolution of this singularity by
=|N+2+ 2 _aI a,) (5.9 turning on the modulug. In the following, we distinguish

the three types of traces: 1rf) is over theU(2) group in-
dices, Trf--) is over the Fock space, and the combined trace

Here N is the number operatdeEaIaﬁ— aZaZ andpisa .
ds expressed asr =trTr.

parameter of the solution, which is related to the size of th
solution as we will see below. In the following, when we
restore, we assign the dimension of length to the parameter A. Small p expansion

p- o ) Let us first turn on a small value ¢f and see what hap-
_In the limit of p—0, the solution(5.4) becomes the zero nens. The solutior5.4) can be expanded in powers pfas
size instanton of the forr(B8.1), as discussed in Rgf16]. To

see this, we note that the second term in &) disappears 5

in this limit, and the solution becomes W SW = A+ %(B+C)+ %(D+E+F+G)+(’)(p3),
Xt= Ul U, (5.6 (5.10
o where
where the operatod ,=U|,_, satisfie§
A=Ulk-%U,, (5.11)
U.ut 1 O utu 1 0
050710 1)r T°% 1o 1-]0,0¢0,0) 0 o
(5.7 B=k-%|0,0(0,0® )
0 1
Note that, compared with the construction in the previous sec-
. + . . 0
tions, the roles otJ, andU are exchanged. In this section, we are C= |0 0(0 QK~ X® ) (5.12
following the notations of Ref16]. ' ’ 1)’
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1 ‘ 1 0 0)
D= X ® ,
VNo VN4 10 1
E ! k- X ! ! ) (5.13
= - X X s .
JN+2 JN+2 \0 O
F= 1uT ! k-xU
= 2 YoNrr o
1 . .1
Gz—zuok X N+1U° (5.14

PHYSICAL REVIEW D64 106005

Tr[DeA]=Tr[U,DU ek ]

=Tr L(a k-%al+a k~>‘<aT)Le”";‘
N1 70 70 T2 TEIN
T 1 kAN+2 ik-%
“INFTONF®
1T ! kp+ikq)al
+‘72 N7y Lk tikoa

1 .
+(ks—ikz)ag] x|,

me (5.20}

The operator M., is defined in the projected Fock space where we have used the relati¢B.4). Similarly we can
{(1-10,0(0,0))|n,m)}. Let us examine the DO-brane den- evaluate the other terms as

sity of the solution expanding again in powersf

J(K)=Tr[exp(ivTk-3¥)]

4 2 (1 .
=Tr(e'A)—%jodrTr(Ce”AB)

2
+ S TL(D+E+F+G)eA]+0(p").
(5.15

Here we used relations

AC=BA=B?=C?=0. (5.16

iA7_ o ik-X
Tr[EE™]=Tr N+1k xN+1e
! T L ko +iky)al
v rN+1[( 2t+iky)ay
; 1L ks
+(k4—|k3)a2]me ) (5.21
A7 _ A7 _ Coalk-X
Tr[FEN=Tr[Ge?=—Tr N+1k xe" X,
(5.22

As expected, the first term in the right-hand side of Eq.Combining these together, we find that the third term is ac-

(5.15 reproduces Eq5.8):

Tr(e®)=258(k)+1. (5.17

tually zero:

Tr[(D+E+F+G)eA]=0. (5.23

Now we are going to evaluate the second term of the combining Egs(5.17), (5.19, and (5.23, the DO-brane

right-hand side in Eq(5.195. Using the relation(3.4), we

obtain

Tr[Ce™*B]

K- % 0 0 T A7k X 0 0 K-S
=1tr(0,0k- X 0 1 Uge' ™ *Uq 0 1 -X|0,0)
k2 .
:?<0'qelrk-x|o’0>
2
:k?e—fzkzml (5.18

Therefore the second term in EG.15 can be written as

2 M ) 1 1
—p—f dTTr(Ce'TAB)Z——kzpzf dre= 7K
2 0 4 0
(5.19

density is given by

+0(p").
(5.24

1 1 k2
J(k)=254(k)+1——p2k2J' dTeX[{——Tz
4 0 4

Written in thex representation by the Fourier transformation,
the DO-brane density is

] —2+54 . 9? 4w2p2f1d 1 |2
CO=gz + 000 F Gaax —g7 o 4T R T 2

+0

4
%). (5.25

Here we have restoreflusing the dimensional analysis and
the convention that the parameterhas the dimension of
length.

Let us interpret this result. The first term in E§.25 is

Let us proceed to the third term of the right-hand side offor the uniformly bounded DO brane in the D4 brane, and the

Eq. (5.195. First, we note

delta function in the second term represents the DO brane of

106005-8
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zero size. Turning op deforms this delta-function singular- p. One can imagine, for example, that £§.27) represents
ity. Whenx< /6, we can evaluate theintegral in the third the first two terms in th@ expansion of the smooth function
term as

32 1

P AmPp? (11 |x|? (5.28
MTL dTFeX“( - Te) XX (|x|+p? 6>
2775/2 2 1 where we neglected numerical coefficients. We will see in
=p W V] W+O(l)' (5.26  the next section that, for large the DO brane densitJ(x)
indeed has a smooth profile.
Therefore, foix| </, the DO brane density of the noncom- _ On the other hand, fofx|> V6, the 7 integral in Eq.
mutative instanton is (5.295 can also be evaluated and the DO-brane density is
given by
2 5/2 0-,2 1
- = 2 ... 2 .2 2 2
J(x) 72 ' () +p Jo XX |X|3+ J(X)—EZ 2wpc 9 iex _ﬁ N
6° 6 ox'ox'||x|? 0 ’
(IX|>0). (5.29

-1 & (1 2%
272 oxiax | [x[Z P Jolx3 ’
Thus the asymptotic behavior of the DO brane charge distri-
(Ix|< ). (5.27)  bution is Gaussian with the width /6.
The U(1) part of the field strength, i.e., the D2 brane
Thus the delta-function singularity in the=0 solution is  density, can be evaluated in a similar fashion. Using the ex-
modified, suggesting that the singularity is resolved for finitepansion

1

— 0
2| (N+1)(N+2)
[Wa, W, wialw]=Uluy+ % +0(p%), (5.30
0 - -
00409 F N+2)
we have
1
- 0
T T4t ik X i) alkeXq 2 (N+1)(N+2) iA 4
Tr([V'a, W, ¥'a; Ve 1=Tr[UgUee™ "]+ p=Tr e [ +0(p?).
0 - -
09000 NN+
(5.31)
|
The first term in the right-hand side is evaluated in the same p? LokE g,
fashion, and the result is =5%k)+ > fo dr Teﬂl !
1 1 |k|2 212|112
e r_r Y o e 4
TrIUIUe X +j0d7' T jodf 5 € +O(p™).
2 (5.32

=5+ | - fldTTr[Ce”AB]
0

The second term in Ed5.32) turns out to be simple,

1 1 o 2
+J dT'T’f d7TI[CEe ™™ AB] |+ O(p*) %(1_e—\k\2/4)_ (5.33
0 0
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Summing up all the contributions and noting that the secondlominates in the opposite limp=0. It is clear that the
integral in Eq.(5.32 is arranged to cancel with the error Seiberg-Witten map gives zero gauge field and vanishing DO
function coming from the first integral, we found that the brane density. This is consistent with the expectation that, in

result vanishes: the largep limit, the instanton spreads over and the structure
of the soliton disappears.
Tr[(Wla, ¥, wialw)ek X = 6%k)+ 0+ O(p%. Now let us evaluate the subleading terms in the ex-
! (5.34 pansion,
Therefore, the Seiberg-Witten transform of tdé1) part of o 2 4 8 8
the field strength vanishes Wik X =k-x+ 7 P+ ?QJF ;6R+ O(1/p®),
(5.40
tr Fa(x)=0+0O(ph. (5.39
where
Similarly one can show that all other components vanish to
this order,
5 1k (1 0 )+ 0 P2a;—P1a;
=-k-X® ,
trFy;(x)=0+0(p*). (5.36 2 0 -1/ l(pya;—piay)’ 0
(5.4
In fact one can show that, iff; is smooth and decays
sufficiently fast at infinity, it vanishes identically, _3 1 1
Qz?k-f(@)]b(z— EP(N‘l‘l)— E(N‘l‘l)P,
To see this, we note that the anti-self-dual equation,
3
trRzz(Nk->“(+k->“<N+2k->‘<). (5.43

S 1
[X'yxj]:_zéijm[xkaxl]a (5.39

In Eqg. (5.41), we used the complex combination of the mo-

implies, via the Seiberg-Witten map, thaFy is also anti- mentumk defined as

self-dual. Since &;; obeys the Bianchi identity as shown in

Ref. [46], we can write tFj; =(9[i,aj] for someU(1) gauge 1 1

field a; . It is well-known that there is no nontrivial solution p1=—(ky+iky), po=—(ks—iky). (5.49

to the anti-self-dual equation in thé(1) gauge theory. Thus V2 V2

it should vanish identically for any, assuming it is smooth

and vanishes sufficiently fast for largeOne can also argue e did not write down the explicit form oR since only its
that the BPS instanton solution considered here should nqg(z) trace, tR, is going to be necessary in the following.

carry any local D2 brane charges. The computation at large, evaluateQ and trR, we have used the relation
p, in the next section, also shows tha jrvanishes. ’

B. Large p expansion [N,[N,k-X] J=k-%. (5.49
Before going into a detailed calculation of the large Let us compute the DO-brane density
expansion, let us take a look at the limit=c. There we
have
J(K)=Tr[expi¥Tk-x¥)]. (5.46
X/’“:j\(lﬂlzle (539

It turns out that theO(p~2) term vanishes since B=0.
Note that the nonzero contribution is coming from the sec-Thus we have to start with th@(p~*) terms.

ond term of the solutiori5.4), not from the first term, which Using the cyclic property of the track, we find
l ] N (e
79K =Tr[iQe* ]+ Tr > X [(ik-R)iP(ik-)MiP(ik-%)" 27"
ordex 1/p%) n=0 I,m=0
=Tr[iQe* ¥+ Tr[(iP)%e %], (5.47)

106005-10
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where we used the fact thBtandk-X commute. To evaluate The fact that the noncommutative instanton becomes the
the traces, we employ the following formulas proven in Ap-commutative one in the limip—0 does not by itself guar-

pendix A: antee this agreement. For example, there could have been a
correction of the forme™*/¢ multiplying p~4, which van-
a ek k= —i(i— 1 P )eik-i etc (5.48 ishes in the commutative limit. Such a correction is absent
py 2 C since the structure of the expansion given by H&§s41)—

o (5.43 suggests that the coefficients of the gkpansion are
wherep,,p, are the complex combination of the momentum polynomials inx. By a simple dimensional analysis, one can

(5.44). The result is show that, under this condition, nddependent term is al-
lowed in the 0p~#) order. Therefore the agreement of the
1 Jd d Jd d : : . )
Z (k) =85%K)+| |py|? — — +|p,y)? — — number 24 gives a nice consistency check of our computa
4 order 154 P2 Ip2 dpy dpy tion.
We have gone further and carried out thép~°) compu-
= i i_— i i (k) tation of the DO brane density. The detail is given in Appen-
PiP2n p, ~ P2P1 ap; ap, ' dix B. The result is even more surprising:
A4
(5.49 %,
This is further simplified by I order 1p8= — 5 |X[2. (5.56
p1 %#(kh —8%k), (5.50 This term perfectly agrees with the corresponding term in
1

Eqg. (5.55. Thus, even to this order, there are no corrections
to the DO brane distribution due to the noncommutativity. We
should point out that, to this order, there could have been a

24 term of the form@/ p®, but the coefficient in front of it turned
J(K) [order 1p4= —7 5*(K). (5.5  out to be zero.

P We have also computed th&(1) part of the field
strength, i.e., the D2-brane density. The leading term is of the
orderO(p~2), but it turned out to be zero, in agreement with
expectation that the BPS instanton does not carry any D2-

24 brane charge.

J(X)|order 1p4= ? (5.52

and finally we obtain

Therefore, in terms of the commutativecoordinates, the
O(p~* term in the DO-brane density is

. . . VI. CONCLUSION
Remarkably, this agrees with thepléxpansion of the BPST

instanton in the commutative gauge theory: In this paper, we have evaluated the Seiberg-Witten map
for various solitons and instantons in noncommutative gauge

4p? theory. When the gauge theory is defined by the low energy

Fuvzmzuw (553 Jimit of string theory, the Seiberg-Witten map describes how

these solutions couple to the Ramond-Ramond potentials of
whereX , = 7' o with the Pauli matrixo;(i=1,2,3) and closed string theonf46-48. Therefore, by studying the
the 't Hooft symbol 7. Substituting this into the DO-brane Seiberg-Witten map, we can read off various information
density about Ramond-Ramond charge distributions of these solu-
tions.
ki 1 4 We find that the Ramond-Ramond charge distributions of
8 tre™ (Fij= 6 ) (Fia= ™) (5.54 solutions, constructed using projection operators, have delta-
function supports. They include solutions in two-dimensional
and expanding it in powers of 4/we find Yang-Mills theory (3.1), pure DO brane in various dimen-
sions(3.7), intersecting D2 brane&!.1), (4.7), (4.9), (4.16),
ik ., . (4.17), and D1 branes intersecting with D3 brai@e20).
—glre (Fij= 0 "D (Fiu—=6,y71) On the other hand, instantons in higher dimensions allow
deformation away from the projection operator construction
B ki and therefore their Seiberg-Witten transforms can have finite
i + 8 tre™FijFu sizes. We studied in detail the case of h€2) anti-self-dual
instanton given by Eq€5.4) and(5.5). The solution has the
deformation parametes. In the limit p— 0, the solution re-
(5.59 duces to the one for the pure DO bra(®7). Turning on a
small amount ofp, the DO-brane density is deformed as in
The O(p~*) term exactly agrees with the above calculationEq. (5.25. We see that the DO-brane charge is now distrib-
(5.52. uted over the region of size- V6. In addition, the delta-

24 96| |2+(9(1
—— 5
p* p° p?

¢
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function singularity of the DO-brane charge distribution is so that the following relation holds:
modified as

, k-%=pyaj+pas+paab+paa;. (A2)
5 -1 ¢ 1 -1 0 [ 1 L 2n”
(0= 572 5xiox X2 2m2 axiaxt | [x[2 P Jalx3) To show Eq.(5.48 is easy, by acting a derivative @t *
6.1 &

For largep, we can evaluate the Seiberg-Witten map of R
the instanton in the p/expansion. We find that the DO-brane d kS (i)" S (k-%)"ay (k- %)L
density of the noncommutative instanton agrees surprisinglﬁ T &l & (k-X)"ay(k-%)
well with that of the commutative instanton. The agreement
in the leading terms, Eq$5.52 and(5.55), is expected and
gives a nice consistency check of our computation. The ("
agreement of the subleading term, E@s56 and(5.59), is =2 "
surprising and we do not have an explanation for this phe- 5
nomenon.

We also find that th&J (1) part of the Seiberg-Witten map . .
vanishes for both smalp and largep. Since there is no Iiale'k'x+§ple'k'x- (A3)
nontrivial anti-self-dual solution in the(1) gauge theory in
commutative space, we expect thd;frvanishes for any. - L
It is consistent with the expectationFthat the BPS instanton;rhlli \éﬁgf;iﬁolivc?éSAﬁé shall derive a useful formula that is

should not carry any local D2-brane charges. necessary in evaluating thepf/contribution in the DO-brane

o o el " GenSiY in Appendi B For simpicty we consider two -
P mensional noncommutative space and evaluate

6. This is in contrast to our case where we use the exact
Seiberg-Witten map of46—-4§ in the Seiberg-Witten limit )
(a’—0) and with finiteé. It will be interesting to extend this Tr[ne*x]. (A4)
analysis to include the case studied in R¢6d.—65.

In this paper, we have evaluated the Seiberg-Witten mafraking the derivative twice, we easily obtain
for the U(1) part of the field strength. It is desirable to find
an explicit expression for the non-Abelian part of the

n—1

nal(k-?)“’“rgo (—pp)(k-%)"2

n:

Seiberg-Witten map since it would carry more information Tr[afaeik-;]z_i(i__ Ep)[—i i+ EF) 52(k)}
on these solutions. Progress in this direction has been made mp 2 ap 2 '
in Refs.[66], [67]. (For our purpose, we need an inverse of (A5)

the map studied in these papérs.
Here note the order of the differentiation. Taking care of the
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APPENDIX A: USEFUL FORMULAS s Jd 0 J 0
TN = -1- — —— — —=]8%k). (A8
In this appendix we derive the formul&.48 and other [ ] ( dpy dp1  Ip2 é’pz) (K. (A8)

useful formulas used in the evaluation of the lapgexpan-
sion in Sec. V B. We find it useful to introduce the complex

. -6
combinations of the momentukias APPENDIX B: EVALUATION OF ORDER p~° TERMS

IN THE U(2) INSTANTON

1 1 In this appendix, we derive the subleading res&166).
p1=— (Ko+iKy), Pr=— (Ks—iks) (A1) The contribution of this orde®©(1/p®) in the DO-brane
%) ’ %) ' current density eXp¥’ k-x¥] is
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>

my,my,m3=0

>

my,my=0

ir'l
825
+

Tr(k-%)™P(k-%)™Q(k-X)" 2~ M~

+ EO Tr(k-)™R(k-%)"" 1M

Using the cyclic property of the trace under that these sum-
mation overn can be expressed in terms of the compact

operatore’® X, and we can rewrite this &s

8Tr[(iP)%e* *+(iQ)(iP)e* *+iRe*¥].  (B3)

Let us evaluate each term in the trace, respectively.
The first term turns out to be vanishing. This is because

tr P3]= %(k-)‘()kz (B4)

and thus

Tr(iP)3ek¥]=— %kZ Tiik- e *]=k25%k)=0.
(BY)

The second term in EqB3) is calculated in the follow-
ing. First, taking theJ(2) trace, we have

e 1 1 _
Tr[QPEXX]=—Tr 5 (k- %)%+ Sk +2(pza]

(N+1)

eik-§< (BG)

_ma;)( P2a;—P1ay)

Using the formula(A 8), the first term of this expression is
evaluated as

1 I
Tr (N+1) 5 (k- %)%’

l( J )2 i 7k - X
E E‘ T (N+1)e ]

=1

"For example, the last term in E@B1) is rearranged without
using the cyclicity as
JIdTTr[eifk»iRé(l+—T)k-§(]. (BZ)
0

However, concerning the first term in BE®1), it is not necessary to
use the cyclic property becauBeis commutative withk- X.

PHYSICAL REVIEW D 64 106005

Tr(k-%)™P(k-%)M2P(k-%)MP(k-X)" "3~ M~m2=Ms

>

mq,my=0

ma Tr(k-)™MQ(k-%)M2P (k- %)" "2~ MM

(B1)
[
__E<i)2 (_LL
- 2\or d(7py) d(7Py)
Jd Jd
9 @)) ol
Jd d Jd d
(B7)

We calculate the second term in the similar way and obtain

TrB(NH)kzeik-* =—25%Kk). (B8)

The third term is slightly complicated; however, using the
formulas (5.48 and (A8) the straightforward calculation
shows

Tr{(N+1)[ (P22 —Pra})(pra. —piay) Je'* %}

= g 1 Jd 1
=~ Pa1P1 a_ﬁz_fpz a_|02+§p2
_ J 1 g 1_
P2p2 &—31 zpl &_pl §D1
_ g 1 d +1_
P2pP1 (95_§p2 07_p1 5P1
g 1 g 1_
P1P2 &—Fl—zpl 3—p2+§ 2
Jd d Jd d
( Jdp1 dp1 P2 (9p2) (k)
Jd d Jd d
( dpy dp1 P2 (9p2) ) (B9)
Therefore, summarizing them, we have
e Jd Jd 0
Tr(iQ)(iP)e'k'X=1 19_[)1(9_51—’_(9_{)2(9_32)64('()
(B10)

The third term in Eq(B3) is rather easily evaluated by

using Eq.(A8), and the result is
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Tr(iR)e‘k'*—g( A
dp1 dp1 P2 9Pz

Summing up all the contribution®5), (B10), and(B11),
we obtain the order pP result as

) 5% (k). (B1Y)

192( d 4 . J 9 )5ﬁk) (B12
p® | dpy dpy 9P, P, '

Restoring thed dependence and noting the relations

PHYSICAL REVIEW D64 106005

we obtain

g 9 1 5 . 32 B13
Ip; dp; 2| dkyoky  dKoks|’ (B13)
(92
J(K) order 63/p6) = 8 Fkiok: 84 (k). (B14)

Performing the Fourier transformation, we obtain the result

(5.56.
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