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Seiberg-Witten transforms of noncommutative solitons
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We evaluate the Seiberg-Witten map for solitons and instantons in noncommutative gauge theories in
various dimensions. We show that solitons constructed using the projection operators have delta-function
supports when expressed in the commutative variables. This gives a precise identification of the moduli of
these solutions as locations of branes. On the other hand, an instanton solution in four dimensions allows
deformation away from the projection operator construction. We evaluate the Seiberg-Witten transform of the
U(2) instanton and show that it has a finite size determined by the noncommutative scale and by the defor-
mation parameterr. For larger, the profile of the D0-brane density of the instanton agrees surprisingly well
with that of the Belavin-Polyakov-Schwarz-Tyupkin~BPST! instanton on commutative space.
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I. INTRODUCTION

Noncommutative gauge theories can be realized by c
sidering branes in string theory with a constant Nev
Schwarz–Neveu-Schwarz two-form field@1#. It is described
by noncommutative gauge fieldsÂi on a noncommutative
space whose coordinates obey the commutation relation

@ x̂i ,x̂ j #5 iu i j . ~1.1!

One of the remarkable features of these theories is that t
is a universal way to construct a large class of classical
lutions @2–45#. In particular, in two dimensions, all solution
to the noncommutative Yang-Mills equations with gau
groupU(N) are classified in Ref.@15#, and it was shown tha
they take the form

Xi5Ux̂iU†1 (
a51

m

la
i ua&^au ~ i 51,2!, ~1.2!

where

Xi5 x̂i2u i j Â j~ x̂! ~1.3!

are operators acting on the Hilbert spaceH, which is the
Fock space of Eq.~1.1! times CN, $ua&%a51...m is an
m-dimensional subspace ofH, andU is the associated shif
operator obeying

U†U51, UU†512 (
a51

m

ua&^au. ~1.4!
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Thus the solutions are parametrized by the rankm of the
projection operator 12UU†, the rankN of the gauge group,1

and the 2m moduli parametersla
i . These solitons are inter

preted as D0 branes on D2 branes withm andN being the D0
and D2 charges, respectively. There has been evidence
gesting thatla

i correspond to the locations of the D0 bran
@11,15,50#. In this paper we will confirm this interpretatio
using the Seiberg-Witten map. In higher dimensions, a co
plete classification of solutions has not been carried out,
though some special solutions are known, such as insta
solutions in four dimensions, which can be interpreted as
branes on D4 branes@2–5,12,13,44,16#. These higher-
dimensional solutions do not necessarily take the form~1.2!.

In Ref. @51#, it was shown that there are two equivale
descriptions of the theory; one in terms of ordinary gau
fields Ai on a commutative space, and another in terms
noncommutative gauge fieldsÂi on a noncommutative
space. The map betweenAi and Âi is called the Seiberg-
Witten map. In Refs.@46–48#, an explicit expression for the
Seiberg-Witten map was found for theU(1) part of the field
strength, by studying the coupling of the gauge field to
Ramond-Ramond potentials of closed string in the bulk.2 The

1It may not be evident in the expression~1.2! that the rankN of
gauge group is a parameter of the solution invariant under theU(`)
gauge symmetry. To see that there is a gauge invariant definitio
N, we point out the formula derived in@46–48#:

Tr@Pf~@Xi ,Xj # !eik•X#5Nd~k!. ~1.5!

This holds as far as the gauge fieldÂi(x) has a compact suppor
when it is expressed in terms of commutative variables via
Seiberg-Witten map. One may also be able to show thatN is gauge
invariant by using the more precise definition of theU(`) group
recently given in Ref.@49#.

2There has also been an approach@52–55# to express the Seiberg
Witten map using the Kontsevich formal map@56,57#.
©2001 The American Physical Society05-1
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expression was conjectured earlier in Ref.@58#. It was
proven in Ref.@46# that it indeed satisfies the conditions f
the Seiberg-Witten map without relying on the string theo
origin of the expression. In this paper, we evaluate
Seiberg-Witten map for the noncommutative soliton so
tions in the above paragraph and express them in terms o
commutative variables.

In two dimensions, where a solution always takes
form ~1.2!, we find that theU(1) part of the commutative
field strength has a delta-function support atxi5la

i . This
confirms the earlier observation that the modulila

i should be
regarded as positions of D0 branes on the D2 branes.
interesting to note thatla

i are commutative parameters ev
though they are describing the locations of the noncomm
tative solitons. A natural explanation for this is that the c
ordinatesxi of the commutative variablesAi(x) should be
considered as the closed string coordinates, which are c
mutative, since the Seiberg-Witten map we use was der
from the study of the coupling of the gauge theory to t
Ramond-Ramond potentials in the bulk. It is rather surp
ing that, whether the gauge group is Abelian or non-Abeli
all the solutions in two dimensions are singular when
pressed in terms of the commutative variablesAi(x). The
fact that there is no moduli that change the size of the s
tons has been known from the analysis of the mass
modes of the open string connecting D0 branes and
branes, but one may have expected that the soliton h
fixed size set by the noncommutative parameteru i j . This
turned out not to be the case for these solutions. There
various other solutions, describing branes intersecting w
each other with arbitrary angles, which can be expresse
the form ~1.2!, and they all have delta-function singularitie
after the Seiberg-Witten transform.

On the other hand, solutions in higher dimensions are
necessarily of the form~1.2! and therefore can have a finit
size after the Seiberg-Witten transform. We examine in de
the U(2) instanton constructed in Ref.@16#. The solution
contains an extra modulusr, which in the commutative limit
u→0 reduces to the size of the instanton. We evaluate
Seiberg-Witten transform of this solution in the two lim
r!Au andAu!r. Whenr50, the instanton solution is o
the form ~1.2! and has a delta-function singularity when e
pressed in the commutative variables. We find that, as s
as we turn on a small amount ofr, the solution gets a non
zero support of the size;Au. We also see that the delta
function singularity is modified byr. On the other hand, fo
Au!r, we find that the delta-function singularity is com
pletely resolved and that the solution has a smooth pro
which, for the first two terms in the 1/r expansion, precisely
agrees with that of the Belavin-Polyakov-Schwarz-Tyup
~BPST! instanton on commutative space.

This paper is organized as follows. In Sec. II, we revie
the construction of the Seiberg-Witten map derived in@46–
48#. In Sec. III, we evaluate Seiberg-Witten transform of t
noncommutative solitons in (211) dimensions, which take
the form~1.2!. Other examples, including intersecting bran
and fluxons, are discussed in Sec. IV. In Sec. V, we study
Seiberg-Witten transform of theU(2) noncommutative in-
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stanton solution and show how the delta-function singula
is resolved. We will close this paper with discussions of o
results in Sec. VI. In the Appendices, we derive some of
formulas used in this paper and give some details of
computation in Sec. V.

II. SEIBERG-WITTEN MAP

In Refs. @46–48#, an exact and explicit form of the
Seiberg-Witten map for theU(1) part of the field strength
was obtained from string theory computation of the coupl
between the noncommutative gauge theory on the branes
the Ramond-Ramond potentials in the bulk. For a gau
theory with 2n noncommutative dimensions, the map fro
the field strength in the noncommutative variablesÂi

F̂ i j 5] i Â j2] j Âi1 iÂ i* Âj2 iÂ j* Âi ~2.1!

to the field strengthFi j 5] iAj2] jAi of the commutative
variablesAi , is given3 in the Fourier transformed form by

Fi j ~k!2u i j
21d~k!

5
1

P f~u!
E dx* H eik•X~u1u f̂ u! i j

n21P

3expF i E
0

1

Âi~ x̂1 lr !l idtG J , ~2.2!

where

~u1u f̂ u! i j
n215

1

2n21~n21!!
e i j i 1i 2¯ i 2n22

3E
0

1

dt1@u1uF̂~ x̂1 l t1!u# i 1i 2
¯

3E
0

1

dtn21@u1uF̂~ x̂

1 l tn21!u# i 2n232 i 2n22. ~2.3!

In particular, forn51 and 2, we have

~u1u f̂ u! i j
n21

5H e i j ~n51!

1

2
e i jkl E

0

1

dt@u1uF̂~ x̂1 l t!u#kl ~n52!.

~2.4!

3In this paper, we choose the sign of the noncommutative par
eteru i j as in Eq.~1.1!. To use the convention in Ref.@46#, one can
simply make the substitutionu i j →2u i j in the following.
5-2
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This expression involves the open Wilson line, which is
basic building block of observables in noncommutat
gauge theory@59,60,50,24#. In order to actually evaluate th
Seiberg-Witten map, it is useful to express it using the va
able Xi defined by Eq.~1.3!. For n51, the Seiberg-Witten
map is given by

F12~k!2u12
21d~k!5Treik•X, ~2.5!
-
i-

k
-

rm

lin

tte

10600
i-

and forn52 by

Fi j ~k!2u i j
21d~k!52

i

2
e i jkl Tr~@Xk,Xl #eik•X!. ~2.6!

When the noncommutative gauge theory is realized
Dp branes, the field strengthFi j (k) of the commutative vari-
ablesAi(x) can be regarded as the D(p22) brane density on
the Dp branes. This was how the expression~2.2! was found
in @46–48#. In the following, we will find it useful to con-
sider lower brane densities also. The D(p22s) brane density
on the Dp branes is given by
Ji 1¯ i p22s
;e i 1¯ i p22sj 1¯ j 2s

E
0

1

dt1E
t1

1

dt2¯E
ts22

1

dts21

3Tr~@Xj 1,Xj 2#ei t1k•X@Xj 3,Xj 4#ei ~t22t1!k•X
¯@Xj 2s21,Xj 2s#ei ~12ts21!k•X!. ~2.7!
ty:

s is

t
n
n,

to
III. SOLITONS IN 2 ¿1 DIMENSIONS

In Ref. @15#, all static classical solutions to the noncom
mutative Yang-Mills theory in (211) dimensions are class
fied. They take the form

Xi5Ux̂iU†1 (
a51

m

la
i ua&^au ~ i 51,2!, ~3.1!

where$ua&%a51¯m is anm-dimensional subspace of the Foc
space of Eq.~1.1! times CN,la

i ’s are arbitrary constant pa
rameters, andU is the associated shift operator obeying

U†U51, UU†512 (
a51

m

ua&^au. ~3.2!

It is straightforward to compute the Seiberg-Witten transfo
of this solution.4

Substituting Eq.~3.1! into the Seiberg-Witten map~2.5!,
we find

tr eik•X5trFUeik• x̂U†1 (
a50

m21

eik1la
i
ua&^auG

5tr eik• x̂1 (
a50

m21

eikila
i
^aua&

5
1

u
d~k!1 (

a50

m21

eikila
i
. ~3.3!

4This is essentially the same as the computation of the Wilson
observables in the soliton background discussed in Refs.@15,50#.
Here we are reinterpreting it as an evaluation of the Seiberg-Wi
map.
Here in the first equality we have used the following identi

eiUk• x̂U†
5Ueik• x̂U†112UU†. ~3.4!

The field strength expressed in the commutative variable
then5

F12~k!5 (
a50

m21

eikila
i
. ~3.5!

By taking the Fourier transform of this, we find

F12~x!5 (
a50

m21

d~x2la!. ~3.6!

We see that the solution has delta-function supports ax
5la ~a50, . . . , m21!. This gives a precise interpretatio
of the modulila as representing the locations of the solito
confirming the observations in Refs.@11,15,50#.

There is an obvious generalization of this construction
higher dimensions. Let us assume thatu12,u34,..., u i 2n21

i 2n

Þ0 and other50 so that we have a direct product ofn Fock
spaces. We can then consider a solution

Xi5UxiU†, ~ i 51,...,2n!. ~3.7!

Here we set all the modulil50 for simplicity, andU is a
shift operator of rankm. The Seiberg-Witten map in 2n di-
mensions ise

n
5Note that, sinceu i j is antisymmetric,u12

21521/u12.
5-3
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Fi j ~k!2u i j
21d~k!52

i n21

2n21~n21!
e i js1¯s2n22

E
0

1

dt1¯E
tn23

1

dtn22

3tr~@Xs1,Xs2#ei t1k•X
•@Xs2n23,Xs2n22#ei ~12tn22!k•X!. ~3.8!
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Using Eq.~3.4! and

@Xi ,Xj #5 iUu i j U†, ~3.9!

one finds that the right-hand side of Eq.~3.8! is 2u i j
21d(k),

and therefore

Fi j ~k!50. ~3.10!

Similarly one can show that the soliton does not give a n
trivial contribution to the the D2p brane density for allp
>1. The only nonvanishing one is the D0 brane dens
which is given by

J~k!5Tr~eik•X!

5Tr~Ueik• x̂U†112UU†!

5
1

Pf~u!
d~k!1m. ~3.11!

The Fourier transform of this gives

J~x!5
1

Pf~u!
1md~x!. ~3.12!

The first term represents the background D0 brane charg
the presence of the constantB field and the second term
corresponds to them D0 branes described by the solito
solution ~3.7!. This soliton therefore describesm D0 branes
without higher brane charges.

One may be puzzled by that fact that the solution~3.7! of
the noncommutativeU(1) gauge theory describes D
branes, even though the field strengthFi j of this solution is
identically equal to zero. Such a bizarre behavior is not
expected for solutions with delta-function singularities.
illustrate the point, let us imagine thatFi j has the following
configuration:

Fi j ;e22 expS 2
x2

e2D . ~3.13!

In this case,

e i 1¯ i 2nFi 1i 2
¯Fi 2n21i 2n

;e22n expS 2n
x2

e2D . ~3.14!

In the limit e→0, the field strength vanishesFi j →0, butFn

becomes proportional tod(x).
If we embed the solution~3.7! to theU(N) gauge theory,

it is possible to deform it away from the form~3.7!. In Sec.
V, we study theU(2) instanton solution in four dimensions
for which an explicit expression is known@16#. We find that
10600
-

,

in

-

the Seiberg-Witten transform of the instanton acquires a
nite size as soon as we turn on the deformation, and the
is set by the noncommutative scaleu and the deformation
parameterr. We also show theU(1) part of the field strength
becomes nonzero after the deformation.

IV. INTERSECTING BRANES

Noncommutative soliton solutions representing orthog
nally intersecting branes have been constructed in litera
@29,30#. In this section, we generalize these constructions
allowing arbitrary angles and evaluate their Seiberg-Wit
transforms.

A. D2 branes orthogonally intersecting on a D4 brane

As a warm up, let us consider D2 branes orthogona
intersecting on a D4 brane world volume. It can be obtain
by reinterpreting the tachyon configuration studied in R
@29# as a gauge field configuration on the D4 brane:

X1,25Ux̂1,2U†
^ 1, X3,451^ Vx̂3,4V†. ~4.1!

Here we introduced noncommutativity asu12,u34Þ0, and so
we have a direct product of the two Fock spaces. The op
tor V is the same asU except thatV acts on the second Foc
space ofx̂3 and x̂4:

U[(
n

un1m&^nu ^ 1, V[1^ (
n

un1 l &^nu. ~4.2!

The above solution represents the brane configuration
which m D2 branes localized at the origin of thex12x2

plane are intersecting withl D2 branes localized at the origi
of the x32x4 plane. This geometrical interpretation is co
firmed by evaluating the Seiberg-Witten map~2.6! for four
noncommutative dimensions:

F12~x!5md~x1!d~x2!, F34~x!5 ld~x3!d~x4!, others50.
~4.3!

It is also interesting to calculate the D0-brane density us
Eq. ~2.7! with p54, s52:

J~k!5Tr~eik•X!

5TrFU exp~ ik1x̂11 ik2x̂2!U†
^ V

3exp~ ik3x̂31 ik4x̂4!V†1 (
a50

m21

ua&^au ^ V

3exp~ ik3x̂31 ik4x̂4!V†1U exp~ ik1x̂11 ik2x̂2!U†
5-4
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^ (
a50

l 21

ua&^au1 (
a50

m21

ua&^au ^ (
a50

l 21

ua&^auG
5

1

u12u34d4~k!1
m

u34d~k3!d~k4!

1
l

u12d~k1!d~k2!1ml. ~4.4!

After the Fourier transformation, we obtain

J~x!5
1

u12u341
m

u34d~x1!d~x2!1
l

u12d~x3!d~x4!

1mld4~x!. ~4.5!

It is interesting to note that, using Eq.~4.3!, this can be
expressed as

J~x!5
1

8
e i jkl @Fi j ~x!2u i j

21#@Fkl~x!2ukl
21#. ~4.6!

Such a relation between the D0-brane charge densityJ(x)
and the field strengthFi j holds in the leading order in th
standarda8 expansion of string theory computation, but it
expected to receive large corrections in the Seiberg-Wi
limit. In fact, in the more elaborate examples discussed
low, such a relation does not hold.

B. Intersection with arbitrary angles

We can introduce an arbitrary angle to the solution~4.1!
by deforming it as follows:

X1,25Ux̂1,2U†
^ 11 (

a50

m21

ua&^au ^ la
1,2~ x̂3,x̂4!, ~4.7!

X3,451^ x̂3,4, ~4.8!

where l’s are functions ofx̂3 and x̂4. Here we have setl
50 so that the configuration does not include localized
branes@see the last term in Eq.~4.5!#. Substituting this into
the equation of motion,

~Xi ,@Xi ,Xj # !50, ~4.9!

we find thatl’s have to be linear functions,

la
i ~ x̂3,x̂4!5aa

i 1ba
i x̂31ga

i x̂4, ~4.10!

wherea, b, andg are constant parameters, andi 51,2.
We can regardla’s as representing the configurations

the D2 branes. To confirm this interpretation, we evaluate
Seiberg-Witten map~2.6!:

F12~x!5 (
a50

m21

da~x!, F34~x!5 (
a50

m21

~ba
1ga

22ba
2ga

1!da~x!,

F13~x!52 (
a50

m21

ba
2da~x!, F23~x!5 (

a50

m21

ba
1da~x!,
10600
n
e-

0

e

F14~x!52 (
a50

m21

ga
2da~x!, F24~x!5 (

a50

m21

ga
1da~x!,

~4.11!

where

da~x![d@x12la
1~x3,x4!#d@x22la

2~x3,x4!#. ~4.12!

Therefore the D2 branes are located as expected. It is
useful to point out that Eq.~4.11! satisfies the Bianchi iden
tity, ]@ i ,F j ,k]50. For example,

]@1,F2,3]5(
a

~]31ba
1]11ba

2]2!d~x12la
1!d~x22la

2!

50, ~4.13!

consistently with the general proof in Ref.@46#.
The D0-brane density for this solution is

J~k!5TrFU exp~ ik1x̂11 ik2x̂2!U†
^ exp~ ik3x̂31 ik4x̂4!

1 (
a50

m21

ua&^au ^ exp~ ik1la
11 ik2la

21 ik3x̂31 ik4x̂4!G
5

1

Pf~u!
d4~k!1

1

u34(
a

eikaaa
1
1 ik2aa

2

3d~k1ba
11k2ba

21k3!d~k1ga
11k2ga

21k4!. ~4.14!

After performing the Fourier transformation, we obtain

J~x!5
1

Pf~u!
1

1

u34 (
a50

m21

da~x!. ~4.15!

As before, the first term shows the uniform distribution
the D0 branes in the D4 brane. The second term indicates
D0 branes bound in the D2 branes located at the place w
the delta functions specify. There is no localized D0 brane
this case.

We have shown that it is possible to introduce moduli
the intersecting brane solutions as in Eqs.~4.7! and ~4.8! to
describe configurations of branes with arbitrary angles.
can generalize this further by introducing additional mod
as

X1,25Ux̂1,2U†
^ 11 (

a50

m21

ua&^au ^ la
1,2~ x̂3,x̂4!

1(
a,b

zab
1,2ua&^au ^ ub&^bu, ~4.16!

X3,451^ Vx̂3,4V†1 (
b50

l 21

lb
3,4~ x̂1,x̂2! ^ ua&^au

1(
a,b

zab
3,4ua&^au ^ ub&^bu. ~4.17!
5-5
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The Seiberg-Witten map gives

F12~x!5 (
a50

m21

d@x12la
1~x3,x4!#d@x22la

2~x3,x4!#

1 (
b50

l 21

~bb
3gb

42bb
4gb

3!d@x32la
3~x1,x2!#

3d@x42la
4~x1,x2!#, ~4.18!

and similar expressions for the other components of
gauge field strength. Note that the number of the D0 bra
is ml, whereas the number of the D2 branes ism1 l . The D0
brane density is given by

J~x!5
1

Pf~u!
1

1

u (
a50

m21

d@x12la
1~x3,x4!#d@x22la

2~x3,x4!#

1
1

u12 (
b50

l 21

d@x32la
3~x1,x2!#d@x42la

4~x1,x2!#

1(
a,b

P i 51
4 d~xi2zab

i !. ~4.19!

The last term shows the localized D0 branes scattered in
D4 brane.

It is straightforward to include the scalar field in this co
struction and allow the D2 branes and the D0 branes to m
away from the D4 brane, as discussed in Ref.@11#.

C. D1 branes intersecting with the D3 brane

The solutions discussed so far are all non-BPS and
stable. One of the interesting BPS noncommutative soluti
is the fluxon solution studied in@8,15,17,18#. If we turn on
the noncommutativity only along thex12x2 plane, the solu-
tion representing D1 branes piercing a D3 brane is

Xi5Ux̂iU†1 (
a50

m21

ua&^aula
i ,

A350, F̂5
1

u12 (
a50

m21

~x32za!ua&^au.

~4.20!

Note thati 51,2 and there is no noncommutativity alongx3.
The above solution satisfies the BPS equations in nonc
mutative Yang-Mills theory on the D3 brane,

2]3F̂5B3[
2 i

~u12!2 ~@X1,X2#2 iu12!,

i @X1,F̂#/u125B̂2 , 2 i @X2,F̂#/u125B̂1 . ~4.21!

The last two equations are trivially satisfied since both si
of the two equations vanish.

The D1-brane current density of this solution is
10600
e
es

he

ve

n-
s

-

s

Tr exp~ ik1X11 ik2X21 ikFF!

5
1

u12d~k1!d~k2!1(
a

expF ik1la
11 ik2la

2

1 ikF

1

u12~x32za!G , ~4.22!

where note that we have introduced a transverse momen
kF coupled toF. The Fourier transform of this expression

J~x!5E dk1dk2dkFe2 ik1x12 ik2x22 ikFFJ~k!

5
1

u12d~F!1(
a

d~x12la
1!d~x22la

2!

3d@F2~x32za!/u12#. ~4.23!

The first term shows the D1 branes uniformly distributed
the D3 brane as a result of the background B-fieldB12. The
second term shows the D1 branes intersecting with the
brane. We note that the intersection angle depends onu, as
expected for the BPS solution. The intersection point is
cated at (la

1,la
2,za) on the world volume of the D3 brane.

It is easy to generalize this solution to various other cas
e.g., infinite number of D1 branes piercing Ref.@18#, intro-
ducing another transverse scalar field in such a way that
D1 brane is completely apart from the D3 brane@17#, and
non-BPS deformation by changing the tilt of the D1 bra
@15#. The Seiberg-Witten transforms of these solutions c
firm the known interpretations of these solitons and th
moduli.

V. INSTANTONS AND RESOLUTION OF THE DELTA
FUNCTION SINGULARITIES

We have found that solutions constructed using project
operators have delta-function singularities. In this secti
we will study how these singularities are resolved in the c
of the U(2) instanton solution on the four dimensional no
commutative space with a single scale modulusr.

For definiteness, we assume that the noncommutative
rameteru i j is anti-self-dual and set

u3452u125u.0, other50. ~5.1!

Given this, there is a distinction between self-dual and a
self-dual solutions, constructed in Refs.@2,4# and in Ref.@16#
respectively. In this section, we examine the anti-self-d
solution of Ref.@16# since it can be regarded as a deform
tion of a solution of the form~1.2! embedded in theU(2)
theory, as we will see explicitly in Eqs.~5.6! and ~5.7!.

Let us review the construction of the anti-self-dual so
tion in Ref.@16#. To simplify the computations in the follow
ing, we rescale the coordinatesx̂i so that the noncommuta
tive scale is set asu51. Whenever necessary, we can resto
u by a simple dimensional analysis. It is useful to combi
the coordinates into the form of the creation and annihilat
operators
5-6
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a1[
1

&
~ x̂21 i x̂1!, a2[

1

&
~ x̂42 i x̂3!, ~5.2!

satisfying the standard commutation relation,
th
e
te

ec
re

10600
@ai ,aj
†#5d i j , ~5.3!

and acting on the Fock space$un,m&un,m>0,PZ%. Using
this notation, theU(2) anti-self-dual instanton solutionXm is
expressed as
Xm5C†x̂mC5U†x̂mU1r2S @2~N12!1r2#21/2x̂m@2~N12!1r2#21/2 0

0 ~2N1r2!21/2x̂m~2N1r2!21/2D , ~5.4!
the
way
en-

es,
ane

y

ce

-

where

C5~C~1!,C~2!!, C~1!5S r
0
&a2

†

2&a1
†
D 1

A2~N12!1r2
,

C~2!5S 0
r
&a1

&a2

D 1

A2N1r2
,

and thus

U[S N121
r2

2 D 21/2S a2
† a1

2a1
† a2

D . ~5.5!

Here N is the number operatorN[a1
†a11a2

†a2 and r is a
parameter of the solution, which is related to the size of
solution as we will see below. In the following, when w
restoreu, we assign the dimension of length to the parame
r.

In the limit of r→0, the solution~5.4! becomes the zero
size instanton of the form~3.1!, as discussed in Ref.@16#. To
see this, we note that the second term in Eq.~5.4! disappears
in this limit, and the solution becomes

Xm5U0
†x̂mU0 , ~5.6!

where the operatorU0[Uur50 satisfies6

U0U0
†5S 1 0

0 1 D , U0
†U05S 1 0

0 12u0,0&^0,0u D .

~5.7!

6Note that, compared with the construction in the previous s
tions, the roles ofU0 andU0

† are exchanged. In this section, we a
following the notations of Ref.@16#.
e

r

Therefore thisU0 can be regarded as a shift operator, and
Seiberg-Witten transform can be evaluated in the same
as in the previous sections. For example, the D0 brane d
sity is given by

J~k!5Tr eik•X52d~k!11, ~5.8!

or in thex space by

J~x!5
2

u2 1d~x!. ~5.9!

~Here we have restoredu.! The first term is for the uniform
distribution of the D0 branes on the parallel two D4 bran
and the second term gives the localized additional D0 br
charge.

Now we consider the resolution of this singularity b
turning on the modulusr. In the following, we distinguish
the three types of traces: tr(̄) is over theU(2) group in-
dices, Tr(̄ ) is over the Fock space, and the combined tra
is expressed asTr 5trTr.

A. Small r expansion

Let us first turn on a small value ofr and see what hap
pens. The solution~5.4! can be expanded in powers ofr as

C†k• x̂C5A1
r

&
~B1C!1

r2

2
~D1E1F1G!1O~r3!,

~5.10!

where

A[U0
†k• x̂U0 , ~5.11!

B[k• x̂u0,0&^0,0u ^ S 0 0

0 1D ,

C[u0,0&^0,0uk• x̂^ S 0 0

0 1D , ~5.12!

-

5-7
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D[
1

ANÞ0

k• x̂
1

ANÞ0

^ S 0 0

0 1D ,

E[
1

AN12
k• x̂

1

AN12
^ S 1 0

0 0D , ~5.13!

F[2
1

2
U0

† 1

N11
k• x̂U0 ,

G[2
1

2
U0

†k• x̂
1

N11
U0 . ~5.14!

The operator 1/NÞ0 is defined in the projected Fock spa
$(12u0,0&^0,0u)un,m&%. Let us examine the D0-brane de
sity of the solution expanding again in powers ofr,

J~k![Tr @exp~ iC†k• x̂C!#

5Tr ~eiA!2
r2

2 E
0

1

dt Tr ~Cei tAB!

1
r2

2
i Tr @~D1E1F1G!eiA#1O~r4!.

~5.15!

Here we used relations

AC5BA5B25C250. ~5.16!

As expected, the first term in the right-hand side of E
~5.15! reproduces Eq.~5.8!:

Tr ~eiA!52d~k!11. ~5.17!

Now we are going to evaluate the second term of
right-hand side in Eq.~5.15!. Using the relation~3.4!, we
obtain

Tr @Cei tk• x̂B#

5tr^0,0uk• x̂S 0 0

0 1DU0
†ei tk• x̂U0S 0 0

0 1D k• x̂u0,0&

5
k2

2
^0,0uei tk• x̂u0,0&

5
k2

2
e2t2k2/4. ~5.18!

Therefore the second term in Eq.~5.15! can be written as

2
r2

2 E
0

1

dt Tr ~Cei tAB!52
1

4
k2r2E

0

1

dte2t2k2/4.

~5.19!

Let us proceed to the third term of the right-hand side
Eq. ~5.15!. First, we note
10600
.

e

f

Tr @DeiA#5Tr @U0DU0
†eik• x̂#

5TrF 1

N11
~a1k• x̂a1

†1a2k• x̂a2
†!

1

N11
eik• x̂G

5TrF 1

N11
k• x̂

N12

N11
eik• x̂G

1
1

&
TrF 1

N11
@~k21 ik1!a1

†

1~k42 ik3!a2
†#

1

N11
eik• x̂G , ~5.20!

where we have used the relation~3.4!. Similarly we can
evaluate the other terms as

Tr @EeiA#5TrF N

N11
k• x̂

1

N11
eik• x̂G

2
1

&
TrF 1

N11
@~k21 ik1!a1

†

1~k42 ik3!a2
†#

1

N11
eik• x̂G , ~5.21!

Tr @FeiA#5Tr @GeiA#52TrF 1

N11
k• x̂eik• x̂G .

~5.22!

Combining these together, we find that the third term is
tually zero:

Tr @~D1E1F1G!eiA#50. ~5.23!

Combining Eqs.~5.17!, ~5.19!, and ~5.23!, the D0-brane
density is given by

J~k!52d4~k!112
1

4
r2k2E

0

1

dt expS 2
k2

4
t2D1O~r4!.

~5.24!

Written in thex representation by the Fourier transformatio
the D0-brane density is

J~x!5
2

u2 1d4~x!1
]2

]xi]xi

4p2r2

u2 E
0

1

dt
1

r 4 expS 2
uxu2

t2u D
1OS r4

u2D . ~5.25!

Here we have restoredu using the dimensional analysis an
the convention that the parameterr has the dimension o
length.

Let us interpret this result. The first term in Eq.~5.25! is
for the uniformly bounded D0 brane in the D4 brane, and
delta function in the second term represents the D0 bran
5-8



-

-

it

n

in

is

tri-

e
ex-

SEIBERG-WITTEN TRANSFORMS OF NONCOMMUTATIVE . . . PHYSICAL REVIEW D 64 106005
zero size. Turning onr deforms this delta-function singular
ity. Whenx!Au, we can evaluate thet integral in the third
term as

]2

]xi]xi

4p2r2

u2 E
0

1

dt
1

t4 expS 2
uxu2

t2u D
5r2

p5/2

Au

]2

]xi]xi

1

uxu3 1O~1!. ~5.26!

Therefore, foruxu!Au, the D0 brane density of the noncom
mutative instanton is

J~x!2
2

u2 5d4~x!1r2
p5/2

Au

]2

]xi]xi

1

uxu3 1¯

5
21

2p2

]2

]xi]xi S 1

uxu2
2r2

2p9/2

Auuxu3
D 1¯ ,

~ uxu!Au!. ~5.27!

Thus the delta-function singularity in ther50 solution is
modified, suggesting that the singularity is resolved for fin
m

10600
e

r. One can imagine, for example, that Eq.~5.27! represents
the first two terms in ther expansion of the smooth functio

]2

]xi]xi

1

~ uxu1r2/Au!2
, ~5.28!

where we neglected numerical coefficients. We will see
the next section that, for larger, the D0 brane densityJ(x)
indeed has a smooth profile.

On the other hand, foruxu@Au, the t integral in Eq.
~5.25! can also be evaluated and the D0-brane density
given by

J~x!2
2

u2 5
2p2r2

u

]2

]xi]xi F 1

uxu2 expS 2
uxu2

u D G1¯ ,

~ uxu@Au!. ~5.29!

Thus the asymptotic behavior of the D0 brane charge dis
bution is Gaussian with the width;Au.

The U(1) part of the field strength, i.e., the D2 bran
density, can be evaluated in a similar fashion. Using the
pansion
@C†a1C,C†a1
†C#5U0

†U01
r2

2 S 1

~N11!~N12!
0

0 u0,0&^0,0u2
1

NÞ0~N12!

D 1O~r4!, ~5.30!

we have

Tr @@C†a1C,C†a1
†C#eik•X#5Tr @U0

†U0eik•X#1r2TrF S 1

~N11!~N12!
0

0 u0,0&^0,0u2
1

NÞ0~N11!

D eiAG1O~r4!.

~5.31!
The first term in the right-hand side is evaluated in the sa
fashion, and the result is

Tr @U0
†U0eik•X#

5d4~k!1
r2

2 F2E
0

1

dt Tr@Cei tAB#

1E
0

1

dt8t8E
0

1

dtTr@Cei tt8AB#G1O~r4!
e
5d4~k!1

r2

2 F2E
0

1

dt
uku2

2
e2t2uku2/4

1E
0

1

dt8t8E
0

1

dt
uku2

2
e2t2t82uku2/4G1O~r4!.

~5.32!

The second term in Eq.~5.32! turns out to be simple,

r2

2
~12e2uku2/4!. ~5.33!
5-9
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Summing up all the contributions and noting that the sec
integral in Eq.~5.32! is arranged to cancel with the erro
function coming from the first integral, we found that th
result vanishes:

Tr @~C†a1C,C†a1
†C!eik•X#5d4~k!101O~r4!.

~5.34!

Therefore, the Seiberg-Witten transform of theU(1) part of
the field strength vanishes

tr F34~x!501O~r4!. ~5.35!

Similarly one can show that all other components vanish
this order,

tr Fi j ~x!501O~r4!. ~5.36!

In fact one can show that, if trFi j is smooth and decay
sufficiently fast at infinity, it vanishes identically,

tr Fi j 50. ~5.37!

To see this, we note that the anti-self-dual equation,

@Xi ,Xj #52
1

2
e i jkl @Xk,Xl #, ~5.38!

implies, via the Seiberg-Witten map, that trFi j is also anti-
self-dual. Since trFi j obeys the Bianchi identity as shown
Ref. @46#, we can write trFi j 5]@ i ,aj #

for someU(1) gauge

field ai . It is well-known that there is no nontrivial solutio
to the anti-self-dual equation in theU(1) gauge theory. Thus
it should vanish identically for anyr, assuming it is smooth
and vanishes sufficiently fast for largex. One can also argue
that the BPS instanton solution considered here should
carry any local D2 brane charges. The computation at la
r, in the next section, also shows that trFi j vanishes.

B. Large r expansion

Before going into a detailed calculation of the larger
expansion, let us take a look at the limitr5`. There we
have

Xm5 x̂m1232 . ~5.39!

Note that the nonzero contribution is coming from the s
ond term of the solution~5.4!, not from the first term, which
10600
d

o

ot
e

-

dominates in the opposite limitr50. It is clear that the
Seiberg-Witten map gives zero gauge field and vanishing
brane density. This is consistent with the expectation that
the larger limit, the instanton spreads over and the structu
of the soliton disappears.

Now let us evaluate the subleading terms in the 1/r ex-
pansion,

C†k• x̂C5k• x̂1
2

r2 P1
4

r4 Q1
8

r6 R1O~1/r8!,

~5.40!

where

P[
1

2
k• x̂^ S 1 0

0 21D 1S 0 p2a12p1a2

~p2a12p1a2!† 0 D ,

~5.41!

Q[
23

8
k• x̂^ 12322

1

2
P~N11!2

1

2
~N11!P,

~5.42!

tr R5
3

4
~Nk• x̂1k• x̂N12k• x̂!. ~5.43!

In Eq. ~5.41!, we used the complex combination of the m
mentumk defined as

p15
1

&
~k21 ik1!, p25

1

&
~k42 ik3!. ~5.44!

We did not write down the explicit form ofR since only its
U(2) trace, trR, is going to be necessary in the following
To evaluateQ and trR, we have used the relation

@N,@N,k• x̂# #5k• x̂. ~5.45!

Let us compute the D0-brane density

J~k![Tr @exp~ iC†k• x̂C!#. ~5.46!

It turns out that theO(r22) term vanishes since trP50.
Thus we have to start with theO(r24) terms.

Using the cyclic property of the traceTr , we find
1

4
J~k!U

order~1/r4!

5Tr @ iQeik• x̂#1Tr (
n50

`

(
l ,m>0

@~ ik• x̂! l iP~ ik• x̂!miP~ ik• x̂!n222 l 2m#

5Tr @ iQeik• x̂#1Tr @~ iP !2eik• x̂#, ~5.47!
5-10
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where we used the fact thatP andk• x̂ commute. To evaluate
the traces, we employ the following formulas proven in A
pendix A:

a1eik• x̂52 i S ]

] p̄1
2

1

2
p1Deik• x̂, etc, ~5.48!

wherep1 ,p2 are the complex combination of the momentu
~5.44!. The result is

1

4
J~k!U

order 1/r4

58d4~k!1S up1u2
]

]p2

]

] p̄2
1up2u2

]

]p1

]

] p̄1

2 p̄1p2

]

]p2

]

] p̄1
2 p̄2p1

]

]p1

]

] p̄2
D d4~k!.

~5.49!

This is further simplified by

p1

]

]p1
d4~k!52d4~k!, ~5.50!

and finally we obtain

J~k!uorder 1/r45
24

r4 d4~k!. ~5.51!

Therefore, in terms of the commutativex coordinates, the
O(r24) term in the D0-brane density is

J~x!uorder 1/r45
24

r4 . ~5.52!

Remarkably, this agrees with the 1/r expansion of the BPST
instanton in the commutative gauge theory:

Fmn5
4r2

~ uxu21r2!2 Smn , ~5.53!

whereSmn[h imns i with the Pauli matrixs i( i 51,2,3) and
the ’t Hooft symbolh. Substituting this into the D0-bran
density

1

8
tr e i jkl ~Fi j 2u i j

21!~Fkl2ukl
21! ~5.54!

and expanding it in powers of 1/r, we find

2
1

8
tr e i jkl ~Fi j 2u i j

211 !~Fkl2ukl
211 !

5
2

u2 1
1

8
tr e i jkl Fi j Fkl

5
2

u2 1
24

r42
96

r6 uxu21OS 1

r8D . ~5.55!

The O(r24) term exactly agrees with the above calculati
~5.52!.
10600
-
The fact that the noncommutative instanton becomes

commutative one in the limitu→0 does not by itself guar-
antee this agreement. For example, there could have be
correction of the forme2x2/u multiplying r24, which van-
ishes in the commutative limit. Such a correction is abs
since the structure of the expansion given by Eqs.~5.41!–
~5.43! suggests that the coefficients of the 1/r expansion are
polynomials inx. By a simple dimensional analysis, one c
show that, under this condition, nou dependent term is al
lowed in the 0(r24) order. Therefore the agreement of th
number 24 gives a nice consistency check of our comp
tion.

We have gone further and carried out theO(r26) compu-
tation of the D0 brane density. The detail is given in Appe
dix B. The result is even more surprising:

J~x!uorder 1/r652
96

r6 uxu2. ~5.56!

This term perfectly agrees with the corresponding term
Eq. ~5.55!. Thus, even to this order, there are no correctio
to the D0 brane distribution due to the noncommutativity. W
should point out that, to this order, there could have bee
term of the formu/r6, but the coefficient in front of it turned
out to be zero.

We have also computed theU(1) part of the field
strength, i.e., the D2-brane density. The leading term is of
orderO(r22), but it turned out to be zero, in agreement wi
expectation that the BPS instanton does not carry any
brane charge.

VI. CONCLUSION

In this paper, we have evaluated the Seiberg-Witten m
for various solitons and instantons in noncommutative ga
theory. When the gauge theory is defined by the low ene
limit of string theory, the Seiberg-Witten map describes h
these solutions couple to the Ramond-Ramond potential
closed string theory@46–48#. Therefore, by studying the
Seiberg-Witten map, we can read off various informati
about Ramond-Ramond charge distributions of these s
tions.

We find that the Ramond-Ramond charge distributions
solutions, constructed using projection operators, have de
function supports. They include solutions in two-dimension
Yang-Mills theory ~3.1!, pure D0 brane in various dimen
sions~3.7!, intersecting D2 branes~4.1!, ~4.7!, ~4.8!, ~4.16!,
~4.17!, and D1 branes intersecting with D3 brane~4.20!.

On the other hand, instantons in higher dimensions al
deformation away from the projection operator construct
and therefore their Seiberg-Witten transforms can have fi
sizes. We studied in detail the case of theU(2) anti-self-dual
instanton given by Eqs.~5.4! and~5.5!. The solution has the
deformation parameterr. In the limit r→0, the solution re-
duces to the one for the pure D0 brane~3.7!. Turning on a
small amount ofr, the D0-brane density is deformed as
Eq. ~5.25!. We see that the D0-brane charge is now distr
uted over the region of size;Au. In addition, the delta-
5-11
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function singularity of the D0-brane charge distribution
modified as

d~x!5
21

2p2

]2

]xi]xi

1

uxu2
→ 21

2p2

]2

]xi]xi S 1

uxu2
2r2

2p9/2

Auuxu3
D .

~6.1!

For larger, we can evaluate the Seiberg-Witten map
the instanton in the 1/r expansion. We find that the D0-bran
density of the noncommutative instanton agrees surprisin
well with that of the commutative instanton. The agreem
in the leading terms, Eqs.~5.52! and ~5.55!, is expected and
gives a nice consistency check of our computation. T
agreement of the subleading term, Eqs.~5.56! and ~5.55!, is
surprising and we do not have an explanation for this p
nomenon.

We also find that theU(1) part of the Seiberg-Witten ma
vanishes for both smallr and larger. Since there is no
nontrivial anti-self-dual solution in theU(1) gauge theory in
commutative space, we expect that trFi j vanishes for anyr.
It is consistent with the expectation that the BPS instan
should not carry any local D2-brane charges.

In Refs. @61–65# the Seiberg-Witten transform of non
commutative monopoles are studied with fixeda8 and small
u. This is in contrast to our case where we use the ex
Seiberg-Witten map of@46–48# in the Seiberg-Witten limit
(a8→0) and with finiteu. It will be interesting to extend this
analysis to include the case studied in Refs.@61–65#.

In this paper, we have evaluated the Seiberg-Witten m
for the U(1) part of the field strength. It is desirable to fin
an explicit expression for the non-Abelian part of t
Seiberg-Witten map since it would carry more informati
on these solutions. Progress in this direction has been m
in Refs.@66#, @67#. ~For our purpose, we need an inverse
the map studied in these papers.!
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APPENDIX A: USEFUL FORMULAS

In this appendix we derive the formula~5.48! and other
useful formulas used in the evaluation of the larger expan-
sion in Sec. V B. We find it useful to introduce the compl
combinations of the momentumk as

p15
1

&
~k21 ik1!, p25

1

&
~k42 ik3!, ~A1!
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so that the following relation holds:

k• x̂5p1a1
†1 p̄a11p2a2

†1 p̄2a2 . ~A2!

To show Eq.~5.48! is easy, by acting a derivative oneik• x̂

as

]

] p̄1
eik• x̂5(

n

~ i !n

n! (
m50

n21

~k• x̂!ma1~k• x̂!n212m

5(
n

~ i !n

n! S na1~k• x̂!n211 (
m50

n21

~2p1!~k• x̂!n22D
5 ia1eik• x̂1

1

2
p1eik• x̂. ~A3!

This verifies Eq.~5.48!.
In the following, we shall derive a useful formula that

necessary in evaluating the 1/r6 contribution in the D0-brane
density in Appendix B. For simplicity we consider two d
mensional noncommutative space and evaluate

Tr@neik• x̂#. ~A4!

Taking the derivative twice, we easily obtain

Tr@a†aeik• x̂#52 i S ]

] p̄
2

1

2
pD F2 i S ]

]p
1

1

2
p̄D d2~k!G .

~A5!

Here note the order of the differentiation. Taking care of t
formula

x]xd~x!52d~x!, ~A6!

we obtain

Tr@a†aeik• x̂#5S 2
1

2
2

]

]p

]

] p̄D d2~k!. ~A7!

Therefore, forN[a1
†a11a2

†a2 , we obtain

Tr@Neik• x̂#5S 212
]

]p1

]

] p̄1
2

]

]p2

]

] p̄2
D d4~k!. ~A8!

APPENDIX B: EVALUATION OF ORDER rÀ6 TERMS
IN THE U„2… INSTANTON

In this appendix, we derive the subleading result~5.56!.
The contribution of this orderO(1/r6) in the D0-brane

current density exp@iC† k•x̂C# is
5-12
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8(
n

i n

n! S (
m1 ,m2 ,m3>0

Tr ~k• x̂!m1P~k• x̂!m2P~k• x̂!m3P~k• x̂!n232m12m22m3

1 (
m1 ,m2>0

Tr ~k• x̂!m1P~k• x̂!m2Q~k• x̂!n222m12m21 (
m1 ,m2>0

Tr ~k• x̂!m1Q~k• x̂!m2P~k• x̂!n222m12m2

1 (
m>0

Tr ~k• !mR~k• x̂!n212mD . ~B1!
m
ac

se

s

ain

he

y

Using the cyclic property of the trace under that these su
mation overn can be expressed in terms of the comp
operatoreik• x̂, and we can rewrite this as7

8Tr @~ iP !3eik• x̂1~ iQ !~ iP !eik• x̂1 iReik• x̂#. ~B3!

Let us evaluate each term in the trace, respectively.
The first term turns out to be vanishing. This is becau

tr@P3#5
1

4
~k• x̂!k2 ~B4!

and thus

Tr @~ iP !3eik• x̂#52
1

4
k2 Tr@ ik• x̂eik• x̂#5k2d4~k!50.

~B5!

The second term in Eq.~B3! is calculated in the follow-
ing. First, taking theU(2) trace, we have

Tr @QPeik• x̂#52TrF ~N11!S 1

2
~k• x̂!21

1

2
k212~ p̄2a1

†

2 p̄1a2
†!~p2a12p1a2! Deik• x̂G . ~B6!

Using the formula~A 8!, the first term of this expression i
evaluated as

TrF ~N11!
1

2
~k• x̂!2eik• x̂G

52
1

2 S ]

]t D 2

Tr@~N11!ei tk• x̂#U
t51

7For example, the last term in Eq.~B1! is rearranged without
using the cyclicity as

E
0

1

dt Tr @ei tk• x̂Rei~112t!k•x̂#. ~B2!

However, concerning the first term in Eq.~B1!, it is not necessary to
use the cyclic property becauseP is commutative withk• x̂.
10600
-
t 52

1

2 S ]

]t D 2F S 2
]

]~tp1!

]

]~t p̄1!

2
]

]~tp2!

]

]~t p̄2! D d4~tk!GU
t51

521S ]

]p1

]

] p̄1
1

]

]p2

]

] p̄2
D d4~k!.

~B7!

We calculate the second term in the similar way and obt

TrF1

2
~N11!k2eik• x̂G522d4~k!. ~B8!

The third term is slightly complicated; however, using t
formulas ~5.48! and ~A8! the straightforward calculation
shows

Tr$~N11!@~ p̄2a1
†2 p̄1a2

†!~p2a12p1a2!#eik• x̂%

5F2 p̄1p1S ]

] p̄2
2

1

2
p2D S ]

]p2
1

1

2
p̄2D

2 p̄2p2S ]

] p̄1
2

1

2
p1D S ]

]p1
1

1

2
p̄1D

1 p̄2p1S ]

] p̄2
2

1

2
p2D S ]

]p1
1

1

2
p̄1D

1 p̄1p2S ]

] p̄1
2

1

2
p1D S ]

]p2
1

1

2
p̄2D G

3S 2
]

]p1

]

] p̄1
2

]

]p2

]

] p̄2
D d4~k!

5S 123
]

]p1

]

] p̄1
23

]

]p2

]

] p̄2
D d4~k!. ~B9!

Therefore, summarizing them, we have

Tr ~ iQ !~ iP !eik• x̂515S ]

]p1

]

] p̄1
1

]

]p2

]

] p̄2
D d4~k!.

~B10!

The third term in Eq.~B3! is rather easily evaluated b
using Eq.~A8!, and the result is
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Tr ~ iR!eik• x̂59S ]

]p1

]

] p̄1
1

]

]p2

]

] p̄2
D d4~k!. ~B11!

Summing up all the contributions~B5!, ~B10!, and~B11!,
we obtain the order 1/r6 result as

192

r6 S ]

]p1

]

] p̄1
1

]

]p2

]

] p̄2
D d4~k!. ~B12!

Restoring theu dependence and noting the relations
rg

-

er

,’’

et

on

10600
]

]p1

]

] p̄1
5

1

2 F ]2

]k1]k1
1

]2

]k2]k2
G , ~B13!

we obtain

J~k!uorder~u3/r6!5
96

r6

]2

]ki]ki
d4~k!. ~B14!

Performing the Fourier transformation, we obtain the res
~5.56!.
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