Seifert circles and knot polynomials

By H. R. MORTON
Department of Pure Mathematics, University of Liverpool

(Received 24 April 1985)
In this paper I shall show how certain bounds on the possible diagrams presenting a given oriented knot or link K can be found from its two-variable polynomial P_{K} defined in [3]. The inequalities regarding exponent sum and braid index of possible representations of K by a closed braid which are proved in [5] and [2] follow as a special case.

Notation. In a diagram D for an oriented knot, write $c^{+}(D)$ and $c^{-}(D)$ for the number of positive and negative crossings, where
 is a positive crossing.

The crossing number, $c(D)$, and the algebraic crossing number, $\tilde{c}(D)$, are defined by

$$
\begin{aligned}
& c(D)=c^{+}(D)+c^{-}(D) \\
& \tilde{c}(D)=c^{+}(D)-c^{-}(D)
\end{aligned}
$$

By cutting out each crossing, respecting the orientation, the diagram D is converted to a number of oriented simple closed curves in the plane, called the Seifert circles of D. Write $s(D)$ for the number of Seifert circles of D.

The two-variable polynomial, $P_{K}(v, z)$, of the oriented link K will be defined, as in [5], so that

$$
\begin{equation*}
\frac{1}{v} P_{K^{+}}-v P_{K^{-}}=z P_{K^{0}} \tag{*}
\end{equation*}
$$

where K^{+}, K^{-}and K^{0} have diagrams differing only by the change

near one crossing.
Write $P_{K}(v, z)=\sum_{k=e}^{k=E} a_{k}(z) v^{k}$, with $a_{e}(z) \neq 0 \neq a_{E}(z)$, as a Laurent polynomial in v, to define its range, $[e, E]$, in v. Write also $P_{K}(v, z)=\sum_{r=m}^{r=M} b_{r}(v) z^{r}$, with $b_{m}(v) \neq 0 \neq b_{M}(v)$, to define its range in z.

Lickorish and Millett[4] show that $m=1-|K|$, where $|K|=$ number of components of K.

I shall show here that:
Theorem 1. For any diagram D of K,

$$
\tilde{c}(D)-(8(D)-1) \leqslant e \leqslant E \leqslant \tilde{c}(D)+(s(D)-1) .
$$

H. R. Morton

Theorem 2. For any diagram D of K,

$$
M \leqslant c(D)-(s(D)-1)
$$

Corollary 1 [5], [2]. If K is presented as the closure of a braid (β, n) on n strings, then $\tilde{c}(\beta)-(n-1) \leqslant e \leqslant E \leqslant \tilde{c}(\beta)+(n-1)$, where $\tilde{c}(\beta)$ is the exponent sum of β.

Corollary 2. Under the same conditions $M \leqslant$ length $(\beta)-(n-1)$.
Proof. The diagram presenting K as the closure of β has n Seifert circles following the braid strings.

An extension of the braid index bound for K to give a lower bound for $s(D)$ in terms of the 'spread' of v in P_{K} follows:

Corollary 3. For any diagram D of $K, s(D) \geqslant \frac{1}{2}(E-e)+1$.
Corollary 4 (Compare Bennequin [1]). For any diagram D of the unknot, or any amphicheiral knot, we must have $|\tilde{c}(D)|<s(D)$.

Proof. In the case of the unknot $e=E=0$. For an amphicheiral knot $e=-E$, so that $e \leqslant 0 \leqslant E$.

Remarks 1 . It is conceivable that $e \leqslant 1-\chi$ where χ is the Euler characteristic of a minimal genus spanning surface for K. This would give a sharp form of Bennequin's inequality for braid presentations of K.
2. The bound $c-(s-1)$ for M in Theorem 2 is just $1-\chi(D)$, where $\chi(D)$ is the Euler characteristic of the spanning surface for K constructed from D using the Seifert circles. It is worth noting that in general M is not bounded above by $1-\chi$ for the minimal genus spanning surface for K. For example, in the case of the untwisted double of a trefoil $M=6$ while $1-\chi=2$. This illustrates quite sharply the possible difference between M and the highest degree in z in $P_{K}(1, z)$, the Conway polynomial, a variant of the Alexander polynomial, which is well-known to be bounded above by the minimal $1-\chi$.

Proof of Theorem 1. It will be enough to prove the inequality $\tilde{c}(D)-(s(D)-1) \leqslant e$. For if the diagram is reflected to give a diagram \bar{D} of the mirror image knot \bar{K} then $s(\bar{D})=s(D), \tilde{c}(\bar{D})=-\tilde{c}(D)$, and it is known that $P_{\bar{K}}(v, z)=P_{K}\left(-v^{-1}, z\right)$, so that $E_{\boldsymbol{K}}=-e_{\bar{K}}$. The inequality above, for \bar{K}, gives $-\tilde{c}(D)-(s(D)-1) \leqslant e_{\bar{K}}$, and so $\boldsymbol{E}_{\boldsymbol{K}} \leqslant \tilde{c}(D)+(s(D)-1)$.

Write $\phi(D)=\tilde{c}(D)-(s(D)-1)$ for a knot diagram D. The theorem will then follow by showing that $v^{-\phi(D)} P_{K}(v, z)$ is a polynomial in v (i.e. has no negative powers of v) for every diagram D of K.

The Seifert circles arising from any three related diagrams D^{+}, D^{-}and D^{0} are the same, so that $\phi\left(D^{+}\right)=\phi\left(D^{0}\right)+1, \phi\left(D^{-}\right)=\phi\left(D^{0}\right)-1$, and the recurrence relation (${ }^{*}$) then gives

$$
v^{-\phi\left(D^{+}\right)} P_{K^{+}}-v^{-\phi\left(D^{-}\right)} P_{K^{-}}=z v^{-\phi\left(D^{0}\right)} P_{K^{0}}
$$

So if $v^{-\phi(D)} P_{K}$ is a polynomial in v for two of D^{+}, D^{-}and D^{0} then it is also for the third.

Proceed by induction on $c(D)$, the number of crossings in D. The result is true when D has no crossings, since then K is the unlink with s components, and

$$
P_{K}=\left(\left(v^{-1}-v\right) / z\right)^{s-1} .
$$

Otherwise we can find a sequence of crossing changes on D which lead, as in [4], to an ascending diagram D^{\prime} for an unlink. It is then enough to prove the result for D^{\prime}, since, for each crossing change in the sequence, the third diagram, D^{0}, in the recurrence formula given by cutting out the crossing has $v^{-\phi\left(D^{0}\right)} P_{K^{0}}$ a polynomial in v, by induction.

For an ascending diagram D^{\prime} of the unlink with k components, say, we have $P=\left(\left(v^{-1}-v\right) / z\right)^{k-1}$, so we must prove that $-\phi\left(D^{\prime}\right) \geqslant k-1$.

In each component of an ascending diagram D^{\prime} there is a base point; the component rises monotonically, relative to the direction of projection, until it lies vertically above the base point, when it returns to base by a vertical segment. Different components are stacked above each other in disjoint projection levels.

Case 1. Suppose first that one component of D^{\prime} has a self-crossing point. We may then find the lowest self-crossing, p, in this component, i.e. the first one reached on starting from the base point. Because D^{\prime} is ascending, the link whose diagram $D^{\prime \prime}$ is given by cutting out the crossing at p will be the unlink with $k+1$ components, for the component containing p will become a 2 -component unlink lying between the levels of the other unchanged $k-1$ components. (In fact $D^{\prime \prime}$ will again be ascending, for the ascending arc from the undercrossing to the overcrossing at p will become a component lying entirely beneath the other arc of the component which is cut in two at p.) Now $\phi\left(D^{\prime \prime}\right)=\phi\left(D^{\prime}\right) \pm 1$ depending on the sign of the crossing at p. By induction, $-\phi\left(D^{\prime \prime}\right) \geqslant k$, giving $-\phi\left(D^{\prime}\right) \geqslant k \pm 1 \geqslant k-1$ as required.
Case 2. If no components of D^{\prime} have self-crossings we may suppose that each lies in a single level. By changing the levels of two components with no crossings, if necessary, we can find two components in adjacent levels which cross each other. We can select a negative crossing of one with the other, since their algebraic crossing number is zero, and cut it out as before to get a new diagram $D^{\prime \prime}$. This time $D^{\prime \prime}$ (again an ascending diagram) represents the unlink with $k-1$ components. We have $\phi\left(D^{\prime \prime}\right)=\phi\left(D^{\prime}\right)+1$, and, by induction, $-\phi\left(D^{\prime \prime}\right) \geqslant k-2$, so that $-\phi\left(D^{\prime}\right) \geqslant k-1$, finishing the proof.

Proof of Theorem 2. Write $\psi(D)=c(D)-(s(D)-1)$ for a diagram D of K, and show, by a similar induction on c, that $z^{-\psi(D)} P_{K}(v, z)$ is a polynomial in z^{-1}. In this case $\psi\left(D^{+}\right)=\psi\left(D^{-}\right)=\psi\left(D^{0}\right)+1$. The recurrence relation $\left(^{*}\right)$ then gives

$$
v^{-1} z^{-\psi(D+)} P_{K^{+}}-v z^{-\psi\left(D^{-}\right)} P_{K^{-}}=z^{-\psi\left(D^{0}\right)} P_{K^{0}}
$$

If any two are polynomials in z^{-1} then the third will be, so it is enough, as in the proof of Theorem 1, to prove for an ascending diagram D^{\prime} of an unlink. If D^{\prime} has k components then $P=\left(\left(v^{-1}-v\right) / z\right)^{k-1}$, so we must prove that $-\psi\left(D^{\prime}\right) \leqslant k-1$.

Select a new diagram $D^{\prime \prime}$ as before, with one fewer crossing, representing the unlink with either $k+1$ or $k-1$ components. In each case $\psi\left(D^{\prime \prime}\right)=\psi\left(D^{\prime}\right)-1$. By induction we have either $-\psi\left(D^{\prime \prime}\right) \leqslant k$ or $-\psi\left(D^{\prime \prime}\right) \leqslant k-2$. This ensures that $-\psi\left(D^{\prime \prime}\right) \leqslant k$, so that $-\psi\left(D^{\prime}\right) \leqslant k-1$, as required.

REFERENCES

[1] D. Bennequin. Entrelacements et équations de Pfaff. Astérisque 107-8 (1983), 87-161.
[2] J. Franks and R. F. Williams. Braids and the Jones polynomial. (Preprint 1985).
[3] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. C. Milett and A. Ocneanu. A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239-246.
[4] W. B. R. Lickorish and K. C. Millett. A polynomial invariant of oriented links. (Preprint 1985.)
[5] H. R. Morton. Closed braid representatives for a link, and its 2 -variable polynomial. (Preprint, Liverpool 1985.)

