NBER WORKING PAPER SERIES

SEIGNIORAGE, OPERATING RULES AND THE HIGH INFLATION TRAP

Michael Bruno
Stanley Fischer

Working Paper No. 2413

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138
 October 1987

Support from the Lynde and Harry Bradley Foundation is gratefully acknowledged. The research reported here is part of the NBER's research program in Economic Fluctuations. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

Seigniorage, Operating Rules and the High Inflation Trap

ABSTRACT

```
A given amount of seigniorage revenue can be collected at either a high or a low rate of inflation. Thus there nay be two equilibria when a government finances its deficit by printing money--implying that an economy may be stuck in a high inflation equilibrium when, with the same fiscal policy, it could be at a lower inflation rate.
We show that under rational expectations the hioh inflation equilibrium is stable and the low inflation equilibrium unstable; under adaptive expectations or lagged adjustment of money talances with rational enpectations, it may be the low inflation equilibrium that is stable.
```

```
    Extending the model to allow for bond aE well as money fanancing
```

 Extending the model to allow for bond aE well as money fanancing
 Of deficits, we show that one of the equilibria disappeers if the
Of deficits, we show that one of the equilibria disappeers if the
government sete m nominiml anchor for the ecomomy, for instente ty fiximg
government sete m nominiml anchor for the ecomomy, for instente ty fiximg
the growth rate of money. The dual equilibria and thear stability
the growth rate of money. The dual equilibria and thear stability
characteristits remain if the government fixes the real interest rate.
characteristits remain if the government fixes the real interest rate.
The existence of fual equilibria is thus a result of the operating rules
The existence of fual equilibria is thus a result of the operating rules
the government chooses for monetary and fiscal policy.

```
the government chooses for monetary and fiscal policy.
```

Michael Bruno
Bank of Israel
Jerusalem
ISRAEL

Bank of Israel Jerusalem ISRAEL

Stanley Fischer
Department of Economics MIT
Cambridge, MA 02139

SEIGNIDRAGE, DFERATING RULES AND THE HIGH INFLATION TFAF.

Michaed Eruno and Stanley Fischer. ${ }^{1}$

A given amount of seigniorage revenue can be collected at either a high or a low rate of inflation. Thus as Sargent and wallace (198!, 1987) and Liviatan (1984) have shown, there may be two equilibria when a government finances its deficit by printing money. The dual equilibria--a reflection of the Laffer curve--imply that an economy may be stuck in a high inflation equilibrium when, with the same fiscal policy, it could te at a lower inflation rate. ${ }^{2}$

In this paper we first demonstrate the existence of the dual equilibria in a simple model in which money is the only source of deficit financing. We show that under rational expertations the high inflation equilibrium is stable and the low inflation equilibrium unstable; under adapative expectations it may be the low inflation equilibrium that $i \leq s t a t l e .^{3}$ We then extend the model to allow for the possibility of tond financing of deficits and show that one of the equilibria disappears if the government sets a nominai anchor for the economy, for inEtance by fixing the growth rate of money. The existence of dual equilibria is thus a result of the operating rules the government chooses for monetary and fiscal policy.

[^0]The possibility of dual equilitria under pure money financing of the officit is known from the work cited atove, Auernhejner (1973), Evans and Yarrow (1981), and Escude (1985) have shown that the high inflation equilibrium may be stable if expectations adjust rapidly. The contribution of this paper lies in its exposition of the properties of the dual equilibria-which appear to remain relatively little krown--and in the extension to bond financing.

1. The Money-Only Model.

If this section we introduce the basic money-only model, the properties of which have been examined by Evans and Yarrow (1981) and Sargent and Waldace (1987). Dutput (Y) is at the full employment level, and growing at rate n. The government runs deficit that is a constant proportion of output, d, and finances it entirely by printing highm powered money, It may do this out of choice or because there are no donestic sepital markets and no forejgn sources of finance.

The demand for high-powered money (H) is assumed to be of the semi-logarithmic (Cagan) form with unitary income elasticity: ${ }^{\text {a }}$
(1) $H / P Y=h=\exp \left(-\alpha \pi^{e}\right)$

4 This js an empirically relevant specification: its essential property for this paper is that seigniorage revenue first increases and then decreasea with correctly anticipated infletion.

```
where m" is the expected rate of inflation and f is the price level.
    The financing rule for the budget deficit implies (with in dot
for the time derivativel: =
(2) H/FY = d
Combining (1) and (2) we obtain:
(3) d=H/H. H/FY= Gh=0 exp (-\infty\mp@subsup{N}{}{*})
Here \(\theta\) is the growth rate of high-powered money.
The tudget constraint (3) is shown in figure 1 as the curve GG-a positive (in this case logarithmic) relationship between the expected rate of inflation ( \(\pi^{\infty}\) ) and the growth rate of the monetary base (f)
showing the rate at which the money supply has to be increased to
finance the defjcit at each level of me. The defjejt itsejf is measured
as the intercept of GG on the g-anis. Note that the economy is always
on this sctiedule.
    Differeritiating equation (1) with respect to time, we get
```

(4) $H / H-P / P-Y / Y=O-\pi-n=-\alpha \pi^{*}$

[^1]```
In steady state:
(5) 而= = =0-n
```

The steady state rejationship (5) is shown as the $45^{\circ}$ line in Figure 1 , with intercept on the horizontal akis equal to $n$. Two potential steady state equilibria are shown in figure 1 , the low inflation equilibrium at $A$ and the high inflation ( $B$ ) equilibrium. The dual equilibria are a reflection of the Laffer curve; the same amount of inflation revenue may be obtained at either a low or a high inflation rate.

The maximum steady state seigniorage revenue d* is given by:

```
 d* = max 0 Exp(-\alpha(0-n))= \alpha-1 exp(\alphan-1).
```

    ( \(\theta\) )
    The corresponding inflation rate n* is:
(7) $\pi^{*}=1 / \alpha-\pi$.

Depending on the size of the deficit the government wishes to finance, there may be zero, one, or two equilibria. Because the governaent cannot ottain more than d* in steady state, there is no steady state if $d>d *$. For $0<d<d *$ there are two steady states. For $d=d *$, and for $d<0$, there is a unique steady state.
*Similar results are obtajned in Friedman (1971).

The existence of two steady state equiljbria in the case


Suppose that expectations atout the inflestion rate respond only

```
to actual inflation:
```

( 8 ) $\quad \pi^{*}=\beta\left(\pi \sim \pi^{*}\right)$
The aodaptive expectations assumption makes most sense in conditiens in
which there are no reliable data on the government tudget deficit or
money growth, which is not uriusuid in countries with high inijation
rates and pooriy developed statistical systems. Alternatively,
individuads may formexpectations adaptively when the governont s
policy and data announcements command very little ereditidity,
Substituting for $\pi$ in ( 8 ) from (4) we obtain

```
#n}=(1-\alpha\beta\mp@subsup{)}{}{-1}\beta(0-n-\mp@subsup{\pi}{}{*}
```

where $\theta=0$ exp(an*) from (3). We examine the implications of equation (9) using Figure 1.

When expectations adjust sufficiently slowly that $\beta<1 / \alpha$ we get $\pi^{*}>0$ for all points below the $45^{\circ}$ line $\left(\pi^{*}\langle\theta-n)\right.$ and $\pi^{*} \leqslant 0$ for all points above the $45^{\circ}$ line, This implies that $A$ is atable equijibrium and $B$ an unstable equilibrium fsep arrows along $G G$ in figure 1). With the slow adjustment of expectations, the economy will converge to point $A$ from any point to the lett of $B$. The economy moves away from the point $B, i f$ it starts in the vicinity of that point.

If the economy ever finds itself to the right of $B$, it degenerates into hyperinflation. Here the government prints money at an ever-increasing rate, always printing sufficiently faster that expectations never catch up $t$ e actual infletion. Although tie monetary base ultamitely becemes very Emali, the government is pririting money so tast that it is able to finance its deficit.

Consider now the effect of an increase in the defjejt when the economy is in ateady etate at point A. The $G \in$ curve shifts to $G \in$, The increace in the deficit to domplies an inetantancous jumpin the growth rate of money (and of the actual infletion rate) from $A$ to $C$, and a graduid further upward movement of © innd $\pi$ ) from $C$ to $\mathrm{A}^{\prime}$ as inflationary expectations adjust upwardiand the government has to print money more rapidly as the monetary base shrints.?

TTHE adaptive expectations assumption is thit the expected infjation rate does not jumf.

FIGURE 1


Note that as dincreases more and more, there comen a stage at which dexceeds d* and the GG curve shifts beyond the point of tangency (T). Now there is no steady state, and inflation continues increasing indefinitely. This is a second case of hyperinflation, differing from that described above (when the economy moves alorig GG to the right of $B$ ) in that there is no steady state equiditurium. High-Inflation Equilibrium: The stability properties of $A$ and $B$ reverse when the coefficient of adaptation $\beta$ is sufficiently darge that $\beta$ > 1/a: the high-inflation point $B$ becomes the stable equilibrium and $A$ is unstatle.a

This upper stable equilibrium point tios unintuitive comparative steady state properties. An increase in the deficit leads to a reduction in the steady state inflation rate. This can be seen in the move from $B$ to $B$ when the deficit rises, shifting GG to GG'. This unusual result is entirely a result of the Laffer curve property that at B an increase in the steady state inflation rate reduces seigniorage.

The dynamice of the transition from $E$ to $E$ start with a move from $B$ to D at the time the defacit jncreases. With the enpected rete of inflation and therefore real balances given, the growth rate of money increases from $B$ to $D$ at the moment of the charige in the deficit. This increase in money growth is ascompanied by reduction in the inflation rate. The expected inflation rate therefore begins to fall, the demand
${ }^{8}$ Eruno (1980) explores the possitijity of dual stable equilibria.
Interpreting $\beta$ as a measure of the speed of the economy serponse to intlation, $\beta$ is likely to te low when the inflation rate is jow and high when inflation is high. That implies that both the low and high inflation equilibria may be stable.

```
for real balances increases, ano the government can print money less
rapidly. The economy moves gradumdly from D to B'.
 There je no very good intujtive explanation for the initial fall
jn the infletian rate. Gjven that the economy is en the wrongejoe of
the Laffer curve, a decline in the inflation rate is needed to generate
more revenue when the defjejt rises. That js why the economy lias to efld
at E.. For it to move in that direction from B, given the erpectations
adjustment equation (9), the inflation rate fias to start fadling. That
is easy to see. Less easy to see though is the process by which the
rapjo adjustment of expectations ensures stable adjustment towards
equidjtrium, We return to thjs issue when we exanjne sojustment under
rational expectations.
Rational Expectations.
 In most respects the case of retional erfoctatiofis, or pertact
foresight can be represented as the limiting ease when p a our
\pi= \pi* adways (djvibe both sjoEs of (8) by \beta and let
dyriamjcs of actual (and evpectedi inflotion wiji then te represented by
(10) \pi= a-1 (\pi+n-\hat{B})
```

    There are now many rationad expectations equiditria. Wjth
    
Usuadly foint $A$ would te jdentified as the rational espectations
equidibriun, on the grounds that the infiation rate would exflode if the
economy started afiywhere adse. But in this case any path starting to
the right of $A$ converges to point $B$. Foint $E$ is thus a stible rationid expectations equilibrium. Without a learning process, or some other means of generaling dynamics, there is no clear principle by which one equilibrium is to be chosen over another."
The one respect in which the rationid expectations equilibrium js not the limiting case of adaptive efpectations is that of the initial condition. The ataptive expectations formulation coes not allow ma to jump, whereas under rational expectations it is assumed that the economy can move discretely from one equilibrium to the next. For instance under rational expectations there is no reason the economy could not move from $A$ to $A$ at once.io Consider in particular the effects of an increase in the budget deficit when expectations are rational and the economy is at the high ifflation equilibriug $E$. In the abaptive expectations case we knew the economy moved to D because $\pi^{*}$ was held constant. But with ratiorial expectations it is not elear where the econony will move. It could poseitiy move to point $D$, with in thas case the actuaj and expested

expectations of next periode price level in a model with a money demond
furiction similar to that of Cagan. (See Defariso (l9?9) for a particularly
ciear example of the use of least squares learningl. They show that the iow
inflation equilibrium is statle for a range of initial expected inflation
rates; for higher initial expected inflation rates there is no equilibrium
with learming, even in conditions where the higher rationel expectatione
equilibrium is stable. The resulte may be interpeted in light of the
property that the least squares predictor of the inflation rate is aimeys
less than the maximum inflation rate observed so far. The generality of
their results is not ciear, for their money demand function unlike cagans
permite real balances and seigniorage revenue to go negative, properties on
which their proots depend.
Whe have tenefitted from reading a Comment on this ano related points ty
Mario Henrique Simonsen.
inflation rates (which are equal, where they are defined) both increasing initially, along with the growth rate of money. Then the economy moves with lower inflation to $\mathrm{E}^{\prime}$. We can say in this case that the reduction in inflation takes place because that is what is needed for consistency with portfolio equilibrium. Eut the economy could as well have moved to some other point on GG'.
The adaptive expectations restriction that $\pi^{*}$ be a state variable is reasonable in situations where the deficit and the rate of money printing are not known. But if there is information on the deficit, and if individuals understand the dink between inflation and the deficit, the expected rate of inflation might change discretely when the deficit changes. Comparative Dynamics.

Returning to the adaptive expectations case, we examjne the effects of changes in several empirically relevant variables. For purposes of the oiscussion, we assume the economy is initially in the low inflation equilibrium.
f fall in the exogenous growth rate, rifor instance due to a productivity siowdown, shows in the figure as a leftward shift of the 45c line. This has the same qualitative effect as a rise ind. A fall in the growth rate of output implies that the government has te accelerate the printing of money if it desires to continue extracting the same relative real resources from seigniorage. ${ }^{1}$

[^2]One interesting aspect of this relationship is that a $1 \%$ change in the growth rate of output implies a greater than $1 \%$ increase in the inflation rate. The result is that

```
dn/dn=-(1-\alpha0)-1
```

Accordingly seemingly small changes in the growth rate of output may be associated with large changes in the inflation rate.

A Eecond type of disturbance is a downard shift in the demand function for base money, for example as a result of the introduction of Hew finantial ascet that is a close money substitute. ${ }^{2}$ Fromequation (3) we see that $\theta=d / h$, and thus a fall in $h$ (for given $\pi^{*}$ ) has the same effect as a rise in d, shifting the GG curve rightward.

Finally, we note that the model can be extended to the case in which output supply is variable. Suppose we have a Lucas-type output supply function: ${ }^{2}$
$\because$

$$
\begin{equation*}
Y=Y_{0} E^{n t}(F / F E) \tag{12}
\end{equation*}
$$

```
2 Fhere again the lsraelj case of the introduction of dollar linked liquid
bank deposits (fatam) after 1977 may serve as a good example, Another, but
probably less relevant, historical case is Hungary after World War II
(Eomberger and Makinen, 1983).
I3This can be obtajned from an ordinary stiort-run supply function
Y=Y(W/F,K), translated into rates of change, and writing the change in the
nominal wage as a furction of expected inflation. The supply function can
also be ertended te include raw material inputs.
```

```
where F is the actual and fo the expected price level. Then,
djfferentiatjng with respect to time, we obtajn
(13)
 Y/Y=n+V(\pi-\pi*)
Substituting (13) into (4), and using (8):
(9). }\mp@subsup{\pi}{}{*}=(1+\gamma-\alpha\beta\mp@subsup{)}{}{-1}\beta[0-n-\mp@subsup{\pi}{}{*}
```

The fact that output supply is positively affected by a rise in
unanticipated inflation $\left(\pi \pi^{2}\right)$ has a stabiljzing effect on them model,
enhancing the dikelihood that $A$ is a stable equilibriua, with the
stability condjtion now requiring $(1+\gamma-\alpha \beta)>0$. The stabjlizing
influence arises from the fact that an increase in the inflation rate
Calls forth an increase in the demand for money as the jeyel of output
「おEEE.
Lagged AdjuEtment of Feal Balances.
An alternative source of dynamics js lagged adjustacnt uf real
balances. Specifically, assume that real balances are adjusted
aceording to:
(14)
$(H / P Y)=P((H / P Y) *-(H / F Y))$
where $(H / P Y) *$ indicates desired read balances, given by the deftand
function (1).14

[^3]```
    Assuming rational expectations, and imposing the government
budget constraint (2), we obtain
(15)
    d=\rho exp(-0,n)+(\pi+n-\varphi)h
The relationship Detween the inflation rate and real balances implied by
(15) is:
(16)
    d\pi/dh= - [h(1-\alpha\varphi) ]-1(n+\pi-\varphi)
    The demano for money function (1) and the budget constrijat (15)
are plotted in figures 2 and }3\mathrm{ , as the LL and GG loci respectively.
Several types of intersection are possible, depending un the values of
the adjustment parameters. In both figures we assume o < d* and thus
show two possible steady states, at A and B. This implies that the
inflation rate at the upper equilibrium (B) exceeds the revenue
maxigizijig rate, (1/a)-n.
    In Figure 2, we assume that 1 >\alpha, so that the oenonjnator of
(1b) is positive, This is elearly analagous to the assumption 1 > ap in
the adaptive expectations model, with the assumption being that
adjustment of real balances is relatively slow. The second inequality
is determined by the inflation rate n* at which the numerator of (16) is
equal to zero.
```


FIGURE 2
(2a)

In figure $2(a)$ we assume that π^{\sim} is below the inflation rate π_{A} at the low inflation equilibrium. In this case A is atable equilibrium and B unstable. In Figure $2(b)$ f" is between the inflation rates at the high and low equilibria. ${ }^{s}$ Once again the low inflation equilibrium is stable, and the high inflation equilibrium unstable.

Consider now an increase in the deficit. The low inflation equilibrium moves from A to A^{\prime}. On impact, with real balances the state variable, the economy moves in each figure to point C. In figure $2(a)$ the inflation rate jumps, and then gradually rises to its new higher steady state level, with real balances falling in the process. In Figure $2(b)$ the increase in the deficit raises the inflation rate initially, but it then falls as the economy moves to the new equilibrium.

Figure 3 stiows the adjustment pattern when $1<\alpha$, and

```
\pi"< \pi
inflation equjlitrium stable. We thus find agajn that a very high
adjugtment speed makes the high inflation equilibrium statie--but this
time with the difference that expectations are rational. '>
Summary: Both the comparative steady state and oynamic behavior of the
economies examined in this section are sometimes unusual. The
ajlt is not possidie, given 1 > af, for \pi
*We omit the figure for the case 1 < of and \pi" ; \pi
properties are the same as those in Fiqure 3, but the adjustment path is not
identical.
27To avoid cluttering the figures we show maindy locad dymanics in figures 2
and 3. The budget constraint becomes vertical at points on the locus [h =
\alpha( exp(-an)j, which in Figure 2 lies to the left of LL and in Figure 3 to
the right of LL.
```

FIGURE 3

Abstract

comparative steady state results around the high inflation equilibrium are a result of the economy bejng on the wrong side of the Laffer curve. The dynamic results typically make sense when adjustment-of ejther expectations or money balances, or indeed other nominal variables--js slow, and seem counterintuitive when adiustment is fast. This is because jntujtion reatece to goods market behavior: an increase in the growth rate of money increases demand and therefore inflation. Eut there is always in monetary models another source of dymamis most Elearly seen in the no adjustment lag, rational expectatione model: that is the dynamics needed if there is to be portfoljo equilioriufi. An initial increase in the growth rate of money may reduce the nominal interest rate through the portfolio effect: tovadioute the implied reduction in expected inflation, the inflation rate has then to fall-as it does around the high inflation equilitorium. This second source of dynamjes is typically to blame for apparentiy unusuad adjustment patterns.

JJ. Bond and Money Financino_oi Deficits.


``` borrowing from the central bank (increasing H, as before) or by the sale of porids to the putide eit real interest rater. We thus assume that the government fimances iteelf through indened rather than nominal bofis; this assumption is of no corisequence when expectations are ritional, but may affect the stability analysis when expectations are adaptive. The government budget constraint accordingly tecomes
```

```
H/P+E-r昌=G-T=dY
```

Here G is government furchases, T is taxes, and B is the stock of indexed bonds. We assume that the primary (non-interest) deficit is a constant proportion, d, of output.

Denoting dy $b=B / Y$ the ratio of bonds to output, and by $v=V / Y$ the ratio of wealth to income, the wealth constraint is ab $v=b+h$

The demand function for real balances is assumed to be:
(19) $\quad h=v \cdot \exp \left(-a\left(\pi^{*}+r\right)\right)$

With the demand function for bonds implied by (18) and (19).
Assuming exogenous output and no investment, gooes market
equilibrium obtains when

$$
\begin{equation*}
Y=c(r) V-c_{1} T+E \tag{20}
\end{equation*}
$$

```
where consumption is assumed to be an increasing function of marketatle
wealth (V), a decreasing function of the interest rate (c'(r)< 0), and
a decreasing function of taxes.'9
```

```
1abe assume that government bonds are regarded as net wealth, and omit the
```

1abe assume that government bonds are regarded as net wealth, and omit the
analysis of the Ricardian equivalence case.
analysis of the Ricardian equivalence case.
19The assumption c'(r) : O is conejetent with the resulte that woulo be
19The assumption c'(r) : O is conejetent with the resulte that woulo be
obtained if consumption were explicitly a functien of permanent income
obtained if consumption were explicitly a functien of permanent income
which; with income exogenous, is a declining function of the real interest
which; with income exogenous, is a declining function of the real interest
rate.

```
rate.
```

Goods market equilibrium therefore implies the value of wealth

```
v=(1+c,t-g)/c(r)=v(r,g,t)
```

 + - +
 Here t and 9 are ratios of upper case letters to output. Wealth in (21) is determined by the requirement of goods market equilibrium at an exogenous level of output: for instance, because an jncrease in r
reduces demand, wealth has to increase to restore equilibrium. 20 We
specialize (21) by assuming ${ }^{21}$
γ

```
(21).
```

The government budget constraint can be rewritten as?
(17) $\quad e n+b+n t=d+r b$
 constraint is thus

```
zoThe simplifying assumption in (21) is that the value of wealth that elears
the goods market is independent of the inflation rate. if, for instance,
there is a Lucas supply curve, then goods market equilibrium will be
affected by both the actual and expected inflation rates and the dynamie
amalysis that follows would be affected.
z:The constant elasticity form of c(r) is genersily convenient, but does
imply that wealth would te zero at a zero real ifiterest rate.
zalf bonds were nominial instead of indexed, the difference between the
artuml and ergected rates of inflation would appear in the govermment tudget
constraint.
```

(17)" $(\pi+r) h=d+\left(r-r_{1}\right) v$

The steady state budget constraint is plotted as DD in Figure 4, in (r, π) space, The slope of the steady etete locus is

$$
\begin{equation*}
d r / \Delta \pi=[b+\alpha i h-\{d . \gamma / r)]^{-1}\{h(1-a(\pi+r)\} \tag{22}
\end{equation*}
$$

```
Here i is the nominal interest rate. The numerator of (22) is positive
up to the ififlation rate m+= (I/a-r), and then becomes negative: up to
\pi+, increases in the steady state inflation rate increase seigniorage.
The sign of the denominator depends on the magnitude of y, the wealth
elasticity of consumption demand. If (is large, an inerease in the
interest rate may increase wealth by so much that the deficit can te
finamced with a lower inflation rate.
    The sign of the numerator of (22), which depends on the strength
Of the interest elasticity of saving, is crucial in determining patterns
ef dynamic abjustment. In Figure 4 we show the steady state budge:
constraint D0 under the more plausiole assumotion that the numerator is
positive, i,e. when the interest edastacity of saving is small, implying
that an insrease in the interest rate requires increased offsetting
inflation revenue. With that assumption, the DD locus in figure 4 first
rises and then beyono \mp@subsup{\pi}{}{+}}\mathrm{ has a negative slope. Figure s mhows the DD
locus when ( is large: in that case the DD locus is U-shaped, 23
z3While DD unamDiguously has the indicated shape when y is small, we have
not been able to tie down the shape of DD in Figure S. We assume in the
remainder of this section that arourod equilibria, DD in the case where : is
high, has the shape shown in Figure S.
```


FIGURE 4

Steady States and the Nominal Anchor.

Using Figures 4 and 5 we examine the steady state results of three possible deficit financing policies. Suppose first thot the government fixes the real interest rate, at r*. This corresponds to a policy in which monetary policy is used to maintain the real interest rate, Operationally, the Treasury sells whatever amount of bonds it can at interest rate r and leaves residual financing to the central bank. As in Section I, there are dual--low- and high-inflation--equilibria, at A and 8.

Alternatively, the central tank can fix the growth rate of money and leave the Treasury to finance the remainder of the deficit by bond sales. fixing the growth rate at of results in anique equilibrium at C, with inflation rate equal to $\theta *-n, 24$ This is a situation in which there is strict control over the nominal amount of credit the central bank provides the Treasury, which has to borrow to finance any ertra needs.

Finally, the central bank could kep the nomanal interest pate constant, zs thus steady states lie along the line with slope of -450 on which ($\pi+r$) is constant, In Figure 4, there is ondy one possible equilibrium with a constant nominal interest rate, at point E. That result certainly holds for $\gamma=0,26$ i.e. when wealth is censtant, and
z4'As in the money-only model, the deficit may te too large to be finameed at
all.
zsin this model, in which the demand for money is proportional to wealth,
that policy requires the ratio h/b to be constant.
zawith i fixed at $i *$, the steady state gevernment tudget conetraint is

constant v. The possibility of mudtiple equiliturie ever with fixed i arjses
frofi the property $v^{\prime}(r) \geqslant 0$.

FIGURE 5

continues to hold for small values of γ. As figure sehows, with aigh interest elastigity of saving, there may te two equiljbria witha constant riominal interest rate, at E and Z.

Figures 4 and 5 illustrate the importance of a nominel anchor. With a constant real interestrate, the steady state inflation rate may take two values. With a constant growth rate of money, there is only one possible steady state inflation rate. The constant nominal interest rate policy js intermedjate, allowjrig only one equiditurium when \quad is small but two equilibria otherwise.

Comparative Steady States: Consjoer now the steady state effects of an jnerease jn the defjejt. In the goods market, as of a given interest rate, wealth deciines. with lower wealth, and a higher deficit, more inflation revenue is needed to balance the budget at a giveri interest rate, In Figure 4 , the $D D$ curve would shift oown (not shown). With a constant rate of money growth and hence inflation, the real interest rate falls. The fall is a resuit of the requirement of budget finanejng, tut the dyrianje adjustment around the equadjbrammis not necessarjly stable as we see below, hi constant real interest rate, the jnflation rate rises around A and fadls around B. Wjth constant noninal interest rate, the inflation raterises.

In Figure 5 we show the effects of an increase in the defjeat when the joterest effect on saving is strong. In that case the od curve is U-Ehaped, and an increase in the ofefjeit shifts the U up to DD'. As of a given inflation rate, the real interest raterises. As of a given read or nominal interest rate, the dow jnflatjon raterjses and the tijgh rate falls.

```
    An increase in the nominal interest rate increases the ratio of
money to bonds, This rajses the low equidibrium inflation rate in
Figure 4, but reduces it in Figure 5. Figure 4 thus confirms the now
common result thet bond financing of deficits is inflationary; the
Figure 5 result is an exception to this rule.
There remains the question of the dynamic statility of the economy under the alternative policy choices. Relative to the money only model, the model with bonds includes an extra source of potential instability through the effects of rising interest payments associated with bond finamee It contains a potential stabilizing force in the effects of the interest rate on saving. Dynamics.
```

```
    We shall in each case examine dynamic tehiavior under the
```

 We shall in each case examine dynamic tehiavior under the
 assumptions of rational and adaptive expectations. We etart with the
assumptions of rational and adaptive expectations. We etart with the
constant real interest rate rule.
constant real interest rate rule.
Constant Real Interest Rate: Under rational expectations there can be
Constant Real Interest Rate: Under rational expectations there can be
no dynamies if the real interest rate js pegged. Given the level of
no dynamies if the real interest rate js pegged. Given the level of
wealth--determined ty the real interest rate--there are only two
wealth--determined ty the real interest rate--there are only two
inflation rates consistent with the government budget deficit, a> The
inflation rates consistent with the government budget deficit, a> The
reason this case differs from the rational expectations money only model
reason this case differs from the rational expectations money only model
is that there was in that case no offsetting change in bends when real
is that there was in that case no offsetting change in bends when real
balances change.
balances change.
z>Under the assumption of constant wealth, the budget constraint becomes
z>Under the assumption of constant wealth, the budget constraint becomes
(\pi+r)exp(-a(\pi+r)=d + (r-n)v, which is satisfied by at most two inflation
(\pi+r)exp(-a(\pi+r)=d + (r-n)v, which is satisfied by at most two inflation
rates.

```
rates.
```

Under adaptive expectations, dynamics are again quite simple. Figure 6 illustrates. With constant wealth the budget constraint is the same as the steady state constraint (17)" except that π and π^{*} may differ. Thus

```
(17)"' (\pi+r) ekp(-a,m")v=d+(r-n)v
```

The GG curve in (п, $\boldsymbol{\pi}^{*}$) space thus intersects the 450 dine as ghown, with at most two equilibria (as is inplied also in Figures. 4 and 5), with the lower inflation equilibrium stable and the upper equilibrium unstable, An increase in the deficit reduces wealth (from (21)). Under the assumptions represented in Figure 4 the higher deficit moves the $G G$ curve down, shifting the two equilitria from A to A^{\prime} and B to B^{\prime} respectively. A policy decision to increase the real interest rate has a similar effect. But recall the assumption that an increase in the interest rate on balance requires an increase in inflation revenue to gaintain pudget talance. If saving is highly interestelastic, it is possible that an insrease in the real interest rate could shift the $G G$ curve up, reducing the equilibrium low inflation rate, ${ }^{2 \theta}$

An increase in the deficit results in an immediate increase in the inflation rate as the rate of money growth rises, and then in a continuing riee in both actual and expected inflation.

2eIn this case the DD curve is u-shaped as in figures.

FIGURE 6

A downward shift in the demand for money function will in this case result in a higher inflation rate around the low inflation equiliturium. Given wealth, the shift from money is also ahift into bonds, thereby implying an increase in the interest bill faced by the government, and thus relative to the money-only model, a larger increase in the inflation rate.

Constant Money Growth: With constant money growth and rational expectations, oynamics are totally unstable unless interest rate effects on saving and thus wealth are large. We now write the budget constraint in the form
(23) $d+\{r-n \mid b=0 h+v-i$

```
    To see the role of interest rate effects on wealth, corisider
first setting y = 0, so that wealth is determined in the goods market
and is independent of the interest rate. Then setting v = 0 in (23),
and using the definstion of ti, the tuoget constraint te=onej
(24) d + (r-n)v = (\pi+r) exp{-\alpha(\pi+r)).v
```

```
The DD surve retains the shape seen in Figure 4, and adl dynamics tabe
```

The DD surve retains the shape seen in Figure 4, and adl dynamics tabe
place on that curve. The steady state occurs at a given inflation rate,
place on that curve. The steady state occurs at a given inflation rate,
and motion around that steady state is unstable. Thus with rational
and motion around that steady state is unstable. Thus with rational
expectations and no wealth effects the economy either goes immediately
expectations and no wealth effects the economy either goes immediately
to its steady state with constant rate of inflation, determined by the
to its steady state with constant rate of inflation, determined by the
rate of money growth, or faile to reach a steady state.

```
rate of money growth, or faile to reach a steady state.
```

When interest rate effects on saving are included, v in (2J) is no longer zero, Instead, with rational expectations, dynamics in the model are described by two equations:

```
\gammar/r = (\sigma/v) + (r-n)-(\pi+r) exp(-\alpha(\pi+r))
(26) }\alpha\pi=\pi+n-0+((Y/r)-\alpha)
```

Examining local stabiljty conditions, the trace of the characteristic matrix is positiveso. The characteristic determinant is given by

```
Det. = (ayv) - 1[rb+\alpharih-ǒd]
```

This is negative if the $D D$ curve is U shaped as in figure 5, in which case there can be a saddle pojnt epproach to equilibrium. Otherwise the equilibrium is an unstable focus.

Adaptive Expectations: In the presence of benos, the stability condjtions under adaptjve expectations and constent money growth are quite $\dot{\text { qifierent from these in the money only model. With eypectations }}$ abjusting according to (4), and from the budget constraint (23) and differentiating the gemand for money function, we obtan the two dynamie equations:


```
zoIt is eque] to [(r-n) + (b/\alphav) + (r/\gamma)].
```

```
where D=(1-\alpha\beta)+(\alpha-(\gamma/r))(rh/zv)
    r/r = (\gamma\veeD)-1 {(1-\alpha\beta)[d+(r-n)v-rh] - h[0-п-\alpha\beta\pi-]}
```

 We present the local stability conditions around the unique
 steady state. The trace and determinant of the characieristic matrix
are

Det. $=\frac{-(\alpha h i+b)+\gamma d / r}{-\alpha r h+\gamma(b-\alpha \beta v)}$
Consider first the case in which $\gamma=0$, i.e. saving is not
interest-responsive and equilibrium wealth is therefore determined by
the condition of goods market equijibrium. Then the determinarit is
unambiguously negative, indicatirg the roots are of opposite sign, and
therefore that the equijibriufi is a saddle point, Thus the iritroouctaon
of adaptive expectations alone does not affect the stability of the
systemi. 30
For ap small, and r>n, increases in y, the interest elasticity
of saving, move the economy towards stability. For y sufficiently
large, the trace becomes negative and the determinant positive, thus
30indeed, for $\gamma=0$, the coefficient β does not appear in the expression for
the determinant.
ensuring local stability of the equilibrium. Note that it takes both adaptive expectations and a positive interest elasticity of saving for stability of equilibrium when the growth rate of money is held constant.

The money and borids model under both constant real interest rate and constant growth rate of money assumptions produces different results from the money only model. Stability is far more problematic, the sped of adjustment of expectations is less significant, and the role of the interest elasticity of saving becomes more central. Dynamics under the constant nominal interest rate policy can be shown to be quite similar to those with a constant real interest rate.

II. Concluding Comments.

The possibility of dual equilibria in inflationary economies raises the possibility that an economy may find itself stuck at a high inflation equilibrium when, with the same fiscal policy, a low inflation equilibrium is attainatie. Su:h dual equilibria are a result of the fajlure to adopt a nominal anchor for the economy, and thus san te prevented by a change in policy operating rules.
ln the simplest money ondy model, the high inflation equilitrium is stable under rational expectations, despite its unattractive comparative steady state properties. This stability carries over when expectations are adaptive but adjust very fast, or when real balances are adjusted with a short lag. It is possitie that these high iriflation traps disappear for more detailed specifications of the informetion structure, but that remajis to be seen.

```
When the asset menu is expanded to include real bonds, the nature of the equilibria and dynamic properties of the moded are seen to depend strongly on the government's policy choices. If the real interest rate is held fixed, dual equilibria remain, and dynamic adjustanent is steble under slow adaptive expectations around the low inflation equilibrium. The similarity with the results of the money only model extend to the stability of the upper equilibrium under rational expectations and rapidly adaptive expectations.
The dual equidibrium problem can be avoided by a policy that fikes the growth rate of money. In that case, stability of the equilibrium becomes more problematic than it is with alternative policies, and depends on the interest elasticity of saving as well as the speed of adjustment of expectations.
The model can also be extended to the open economy, Assume that the cole sources of budget deficit finance are motey printing and foreign borrowing. The fundamental dual equilibrium result rematis if the government attempts to fax the real exthangerete, anj disappears if the growth rate of money or nomanal rate of cepreaiation are hele faped by monetary poljey. in such cases, the rational expectations equilibrium is sabtle point stable, while the inflationary process is stable under fixed nominal rate of eychange depreciation with slow adaptive expectations. Similar results obtain when as a matter of policy the nominal exchange rate is adjusted adaptively to the ififlation rate.
```

```
    The results of this paper reinforce the view that avoidance of
unbalanced budgets can play major role in maintaining macroeconomic
stability.
```


REFERENCES.

Auernheimer, Leonardo (1973). "Essays in the Theory of Inflation", Fh. D. dissertation, University of Chicago.

Bomberger, William A. and Gail E. Makinen (198j). "The Huligarian Hyperinflation and Stabilization of 1945-1946", journal of Folitical Economy, 91, 5 (Oct), B01-824.

Brune, Michaed (1986). "Econometrics and the Design of Economic Reform", Econometric Society Presidential address, to be published.

DeCanio, Steptien J. (1979). "Kational Expectations and Learning from Experience", Quarterly Journal of Economics, 93, 1 (Feb), 47-58.

Evans, J.L. and G.K. Yarrow (1981). "Some Implications of Alternative Expectations Hypotheses in the Monetary Analysis of Hyperinflations", Oxford Economic Fapers, 33, 1 (March), 61-80.

Escude, Guillermo (1985), "Dinamica de la Inflacion y de la Hiperinflacion en un Modelo de Equilibrio de Cartera con Ingresos Fiscales Endogenos", mimeo, University of Euenos Aires (fugust).

Friedman, Milton (1971). ""Government Revenue from Inflation", Journal of Folitical Economy, 79, 4 (July/Aug), B46-856.

Liviatan, Nissan (1983). "Inflation and the Composition of Deficit Finance", in F.E. Adams (editor), Global Econometrics. Cambridge, MA: MIT Fress.

Marcet, Albert and Thomas J. Sargent (1987). "Least Equares Learning and the Dynamics of Hyperinflation", mimeo, Hoover institution (June).

Melnick, Kafi and Meir Sokoler (1984). ""The Government's Revenue from Money Creation and the Inflationary Effects of a Decline in the fiate of Growth of G.N.F.", Journal of Monetary Economics, 13,2 Marchi, 225-236.

Sargent, Thomas J, and Neil Wallace (19E:). "Some Uneleasant Monetarist Arithmetic", Federal Reserve Bank of Minneapolis Quarterly Review, Fall.
--------- (1987). "Inflation and the Government Budget Constraint", in $A, R a z i n$ and E. Sadka (eds), Economic Policy in Theory and Practice. London: Macmillan Press.
</ref_section>

[^0]: ${ }^{1}$ Bank $u f$ Israbl (on leave from the Hebrew University) and NBER; and MIT and NBER. He gratefully acknowiedge helpful discussions with Rudi jornbusch and financial assistance from the National Science Foundation and the U.S.Israel Binational Science Fouriation.
 aby the same fiscal pelicy we mean the same budget deficit as a percertage of output.
 3These results are contained in an unpublished note of ours "Expectiatidns and the High Infaation Trap" which has been in circulation in mimeo form since 1984.

[^1]: ${ }^{5}$ We inflicitly asbume (2) that the deficit is invariant to the inflation rate, thereby omitting the well-known Olivera-Tanzi effect whereby higher inflation increases the deficit. The basic results are unafferted by the inclusion of this effect.

[^2]: ${ }^{12}$ See Melnict: and Sotioler (1984) for an analysis along these difies in the Israeli context after 1973.

[^3]: a Note that this form of adjustment function jmplicitly assumps that nominal balances adjust one-for-one with the price level and output, but adjust only partiadly in response to differences between the desired and actuad ratios of read talances to output.

