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Predicting disease transmission on complex networks has attracted considerable recent attention in the epidemiology community.
In this paper, we develop a low-dimensional system of nonlinear ordinary differential equations to model the susceptible-exposed-
infectious-recovered (SEIR) epidemics on random network with arbitrary degree distributions. Both the final size of epidemics and
the time-dependent behaviors are derived within our simple framework. The underlying network is represented by the configuration
model, which appropriately accounts for the heterogeneity and finiteness of the degree observed in a variety of real contact networks.

Moreover, a generalized model where the infectious state of individual can be skipped is treated in brief.

1. Introduction

Infectious diseases spread over networks of contacts between
susceptible and infectious individuals. Typical mathematical
representation of an epidemic assumes that the host popu-
lations are fully mixed (mass-action approximation) [1, 2],
that is, every individual has an equal opportunity to infect
others and the underlying network topology is modelled as a
tully connected graph. However, in the real world, the contact
patterns are characterized by high levels of heterogeneity and
each individual only has contact with a small fraction of the
population [3-5].

In recent years, a number of researches have addressed
the contact patterns among individuals as random networks
[6-14], which allow for more realistic and accurate capture
of heterogeneities in the number of contacts compared with
classical fully mixed models. Network epidemic models make
use of network topology of potential contacts instead of
assuming that contact is possible with the total population.
Some quantities of interest such as epidemic probability
and mean final size of epidemics have been precisely solved
in random networks with specified degree distributions
(configuration models) using ideas drawn from percolation
theory [9, 10, 15].

The heterogeneity introduced in the network framework,
nevertheless, makes it rather difficult to analytically describe
the time-dependent properties and the dynamical course

of an epidemic. Some researchers made it by using high-
dimensional pair-approximation methods (or moment clo-
sure methods) [4, 16, 17], which typically neglect the corre-
lations between the states of nodes some steps away from
each other, while others adopted approximate approaches
that assume all nodes of the same degree having the same
infection probability at any given time [3, 18, 19]. In addition,
a good deal of effort has been devoted to simulation-based
studies of epidemic dynamics [20-22].

Recently, Volz [23] and Miller [24] manage to introduce
a low-dimensional system of nonlinear ordinary differen-
tial equations to model susceptible-infected-recovered (SIR)
epidemics on random networks assuming infection and
recovery occur at constant rates. A variant SIR model is also
developed in [25]. Their calculations account for the effects
induced by heterogeneous connectivity and finiteness of
degree that are missed in standard well-mixed SIR equations.
In contrast to the prior moment closure methods, the number
of equations in the resulting system does not grow with the
number of different degrees.

In the present paper, we move a further step beyond
this framework by considering more complex susceptible-
exposed-infectious-recovered (SEIR) epidemics in random
networks, where an exposed period exists during which the
individual has been infected but cannot transmit infection.
We show that it is possible to analyze the dynamics of
SEIR epidemics spread on configuration models [11] using a



coupled system of only three ordinary differential equations.
The epidemic growth at any given time as well as its final
size are investigated in this relatively simple framework,
which is less computationally demanding and amenable to
the analytical derivations. We also consider a situation where
ahost can be recovered directly after it is exposed. If a disease,
for example, is detected and treated in the exposed status,
no secondary infection will occur. Still, we will see that three
differential equations suffice in this scenario.

The rest of the paper is organized as follows. In Section 2,
we develop the theoretical framework and present some
preliminaries. The network SEIR dynamics and its generation
are then developed in Sections 3 and 4, respectively. Finally,
we discuss the applicability and limitations in Section 5 with
several open problems.

2. Definitions and Notations

Let the population of interest consist of n individuals rep-
resented by a network with n nodes. The population is
modeled by the configuration model [11], in which the
degree distribution is specified, but the graph is in other
respects random. To define a configuration model network,
one specifies the degree distribution by giving the properly
normalized probability p; that a randomly chosen node has
degree k. To each node v assign an i.i.d. degree d,, drawn from
the distribution pj. If the sum of degrees is odd, all degrees
are reassigned until the sum is even. Then generate a set X
of half-edges with d,, copies of node v for all nodes. A pair
of these stubs v,, v, is then chosen uniformly at random and
connected together to form a complete edge while X is not
empty. This procedure generates a uniform choice from the
set of all networks with the specified degree distribution. The
resulting network has negligible loops and multiple edges in
the limit of large network size n for degree distributions with
finite mean [11].

The probability generating function [26] of the degree
distribution p; is defined as

G(x) = ) pex’, M

k=0

where the dummy variable x serves as a placeholder. The
mean degree of the network is then given by (k) = G'(1).

Nodes in the network fall into one of four exclusive states:
susceptible, exposed, infectious, or recovered. In many infec-
tious diseases, there is a period of time after the transmission
of infection from susceptibles to potentially infective mem-
bers but before these potential infectives develop symptoms
and become infectious. This latent period is usually called
exposed one [27]. We denote the fraction of the population
in each state at time t by S = S(¢), E = E(t), I = I(t), and
R = R(t), respectively.

The dynamics of the disease propagation can be described
as follows. An infectious node transmit infection to each of its
neighbors independently at a constant rate 3. A susceptible
node becomes infected and hence assigned to the exposed
state, at rate k3 where k is the number of infectious neighbors
it has. Exposed nodes become infectious at a constant rate

ISRN Epidemiology

B o B o U o D

FIGURE 1: Flow chart for the SEIR model.

a. Once infectious, a node recovers (becomes immune) at a
constant rate y, whereupon it will never infect any neighbors.
By definition, we have S+ E+ I+ R = 1. A flow chart is shown
in Figure 1.

Similarly, as in [23-25], we define an “infectious contact”
from an infected node u to its neighbor v to be a contact
that would cause infection of v if v were susceptible. Now,
we choose a node v in the network uniformly at random and
modify the spread of the disease by disallowing infectious
contacts from v to its neighbors. Denote a neighbor of v by
u. Let 6 = O(t) be the probability that there has not been
infectious contact from u to v at time t. It is noteworthy
that, by doing so, disease transmission along different edges
to node v is independent. Moreover, disallowing infection
originated from v does not modify the probability that v has
become infected (more precisely, exposed), although it does
influence the dynamics after v is infected (more precisely,
infectious). Hence, if v has k neighbors (i.e., d, = k), then
the probability that v is still susceptible at time ¢ is G(t)k [24].
In what follows, we refer to u as a base node while v as a target
node. 0 will be a critical quantity in our latter derivation.

3. Network SEIR Dynamics

In the limit as population size n goes to infinity, the epidemic
spread can be viewed effectively as a deterministic behavior in
terms of expected fractions (S, I, . ..) of the entire population
size [10]. In this section, we aim to derive a low-dimensional
system of ordinary differential equations to characterize
exactly the epidemic dynamics.

The fraction of the population that has not yet been
exposed (i.e., still susceptible) at time ¢ is S(t), which can be
calculated as

St =Y pb® =GO @), )
k=0

by using (1) and the comments in the Section 2.

To derive the dynamics of 6, we need to introduce two
augmented variables. Let ¢ = ¢(t) be the probability that the
base node u of an edge from u to v is exposed, and the edge
has not transmitted an infectious contact at time ¢. Similarly,
let = y(t) be the probability that the base node of an edge
is infectious, but the edge has not transmitted an infectious
contact at time t. Note that those edges which satisfy the
definitions for ¢ or y are subsets of those which satisfy the
definition for 6.

Since the rate of change in the probability, a random edge
that has not transmitted infection is equal to the rate at which
infection crosses edges, we have

6 = —By. 3)
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An edge from u to v begins to satisfy the definition of ¢ if the
base node u becomes exposed. The rate at which neighbors
of target node v become exposed matches the rate at which
neighbors stop being susceptible. On the other hand, an edge
no longer satisfies the definition for ¢ when infection crosses
the edge or when the base node u becomes infectious. Set
f = f(t) to be the probability that a neighbor u is susceptible.
Hence, we obtain

¢=-ap—po-f. )

Likewise, an edge from u to v begins to satisfy the definition
of y if the base node u becomes infectious. An edge no longer
satisfies the definition for y when infection crosses the edge
or when the base node u recovers. Recall that only infectious
state can transmit disease. Then we have

v=-yy-po-f. ®)

Now we need to calculate f. The probability that a

neighbor u reached following a randomly chosen edge has

degree k is expressed by the excess degree distribution kpy / (k)

[15]. By our assumption, the neighbor u can only be infected

by an edge other than the one starting from the target node
v. Therefore,

Yokpd G (6)

- = 6
£ © s (6)
by virtue of Definition (1). Thus, we obtain
f= G 66 _ _G (0)[31//’ 7
G' (1) G' (1)
using (3). Substituting (7) into (4) and (5), we have
L GH (9) /3
b=-(@+p)p+ by, ®
- G" (G)ﬁ )

Finally, we can calculate the fraction of susceptible nodes
S(t) = G(6(t)) directly by solving the coupled system of (3),
(8), and (9). Furthermore, the values of E, I, and R can be
derived in light of

R=1yI, (10)

E = BSI - aE, 1

and the appropriate normalization I = 1 — S — R — E. The
complete system of equations is summarized in Table 1.

Note that we can reproduce the network SIR dynamics by
letting o go to infinity. In fact, by definition |¢ — | tends to
0 as « approaches infinity. Hence, (8) breaks down while (9)
asymptotically becomes

: G"(©
v=-py+ ( G,((l))ﬁ - Y) 12 (12)

which is equivalent to the dynamics describe by [24, equation
(3)] for the SIR model.

TABLE 1: System of equations for network SEIR epidemics.
e - _ﬁll/ " U
b=+ fp+(G O BIG Dy
¥ =-Pp—yy+(G OP/G )y

S=G(9)
R:yl
E = BSI - aE
w/prob. p
EESENE

w/prob. 1-p

F1GURE 2: Flow chart for the generalized SEIR model.

3.1. Final Epidemic Size. The expected final size of network
SEIR epidemics in the limit of infinite networks can be

derived easily within our framework. By letting R = 0, or
equivalently I = 0, we arrive at 1 = S + R + E. It follows from

(11) that E = —«E, which yields E(co) = 0. Consequently, the
final size of an epidemic is simply given by

R(00) =1-8(0c0) =1-G(0(c0)). (13)

3.2. Initial Conditions. In order to solve our equations, we
need to find initial conditions. The initial conditions for the
model can be chosen in many ways, but the most typical is to
assume that a single node or a small fraction ¢, of nodes in
the network are selected at random and initially infected.

The quantity 0 can be viewed as the fraction of nodes
remaining susceptible. We then have 6(0) = 1 — & with
& < 1. The initial values of ¢ and y can be set to ¢(0) = &,
and y(0) = &, respectively, with €,,&; < 1 in the limit of
large population size n — oo.

4. A Generalization

In this section, we consider a generalization of the SEIR
model discussed above. A disease may not become infectious
if treated in time once an individual is exposed. Hence, we
denote by p a probability that an exposed node will become
infectious (at a rate ). With probability 1 — p, an exposed
node will recover (at a rate y). The corresponding flow chart
can be shown as Figure 2.

Although most of the derivation in Section 3 still applies,
we need to make some modifications to incorporate the new
situation. Equation (4) should be replaced by

¢ = —app— o - f, (14)



since only a fraction p of exposed nodes will develop to
infectious period. Similarly, (10) and (11) will be reformulated
as

R=yI+(1-p)Ey,

E = BSI — apE — (1 - p) YR,

(15)

respectively. It is clear that the system reproduces the SEIR
model when p = 1.

5. Discussion

In this paper, we proposed a low-dimensional system of
nonlinear ordinary equations to model SEIR epidemics in
random networks. The calculations for the dynamic time-
dependent behavior as well as the final size of the epidemic
are placed in a common framework extending the prior work
[23-25] on SIR epidemic models. A modification of the SEIR
model where the state I may be skipped is also addressed.

The network used in the present study is a static con-
figuration model. It would be highly desirable to extend
the static random networks to dynamic ones [28]. Future
research could be enhanced by invoking time-varying rates
of infection and recovery, and more elaborated (realistic)
models of epidemics may be considered. For example, epi-
demic spreading on random clustered networks are explored
in [29]. Optimal strategies for various applications such as
cyber security [30] and vaccination [31] are also valuable.
Validation in a real-world setting is needed to establish the
statistical models so that it can be in fact used to predict
disease transmission.

Immunization strategies may also be taken into account.
In [32], the authors proposed a distributive immunization
where a recovered node can create an immunization agent
with some given probabilities. The agent then spreads to
all neighbors and immunizes the susceptible ones among
them. Therefore, its dynamics can be viewed as a competition
between two types of diffusion processes on a network:
one transmits disease while the other transmits immune.
It is hoped that the methodology described in the paper
can be helpful in capturing this distributive immunization
mechanism.
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