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Abstract

We provide a SEIR epidemic model for the spread of COVID-19 using the Caputo

fractional derivative. The feasibility region of the system and equilibrium points are

calculated and the stability of the equilibrium points is investigated. We prove the

existence of a unique solution for the model by using fixed point theory. Using the

fractional Euler method, we get an approximate solution to the model. To predict the

transmission of COVID-19 in Iran and in the world, we provide a numerical simulation

based on real data.
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1 Introduction

Coronaviruses are crown viruses that can cause disease in humans and animals. In hu-

mans, several coronaviruses are known to cause respiratory illnesses such as common

cold and more severe illnesses such as acute Middle East respiratory syndrome (SARS),

severe acute respiratory syndrome (SARS), and a recently discovered disease COVID-19.

A coronavirus (COVID-19) that was first identified in the Chinese city of Wuhan in 2019

is a new strain that has not been previously identified in humans. Snakes or bats have been

suspected as a potential source for the outbreak, though other experts currently consider

this to be unlikely. Fever, cough, shortness of breath, and breathing difficulties are initial

symptoms of this infection. In the next steps, the infection can cause pneumonia, severe

acute respiratory syndrome, kidney failure, and even death.

The study of disease dynamics is a dominating theme for many biologists and mathe-

maticians (see, for example, [1–12]). In recent years, many physical and biological prob-

lems have been modeled by fractional-order derivatives. The main reasons for using a

fractional-order system (FDE) is related to systems with memory, history, or nonlocal ef-

fects which exist in many biological systems that show the realistic biphasic decline be-

havior of infection or diseases but at a slower rate. It has been studied bymany researchers

that fractional extensions of mathematical models of integer order represent the natural

fact in a very systematic way such as in the approach of Etemad et al. [13–15], Hedayati
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et al. [13, 16–19], Baleanu et al. [11, 18, 20, 21], and Mahdy et al. [22, 23]. In recent years,

many papers have been published on the subject of Caputo–Fabrizio fractional derivative

(see, for example, [24–30]). Mathematical models are used to simulate the transmission

of coronavirus (see, for example, [31–37]).

In this paper, we intend to investigate the spread of COVID-19 disease using the SEIR

mathematical model with the Caputo fractional-order derivative. First, we analyze the

model mathematically and then, in the numerical section, we present simulations for the

release of COVID-19 in Iran and around the world. Also, to evaluate the advantage of us-

ing the fraction derivative, we make a comparison between the results of the model with

the fractional- and integer-order derivative with the real data to determine which one pro-

vides a better approximation in this model. By calculating the model results for different

orders of fractional derivative, we investigate the effect of derivative order on the behavior

of the resulting functions and equilibrium points and resulting numerical values.

The structure of the paper is as follows. In Sect. 2 some basic definitions and concepts of

fractional calculus are recalled. The SEIR model of fractional order for COVID-19 trans-

mission is presented in Sect. 3, and the equilibrium points and the reproduction number

are calculated. The stability of the equilibrium points is analyzed in Sect. 4. The existence

and uniqueness of solution for the system is proved in Sect. 5. In Sect. 6, a numerical

method for solving the model is described and a numerical simulation is presented.

2 Preliminary results and definitions

In this section, we recall some of the fundamental concepts of fractional differential cal-

culus, which are found in many books and papers.

Definition 1 ([38]) For an integrable function g , the Caputo derivative of fractional order

ν ∈ (0, 1) is given by

CDνg(t) =
1

Ŵ(m – ν)

∫ t

0

g(m)(υ)

(t – υ)ν–m+1
dυ, m = [ν] + 1.

Also, the corresponding fractional integral of order ν with Re(ν) > 0 is given by

CIνg(t) =
1

Ŵ(ν)

∫ t

0

(t – υ)ν–1g(υ)dυ.

Definition 2 ([24, 39]) For g ∈H1(c,d) and d > c, the Caputo–Fabrizio derivative of frac-

tional order ν ∈ (0, 1) for g is given by

CFDνg(t) =
M(ν)

(1 – ν)

∫ t

c

exp

(

–ν

1 – ν
(t – υ)

)

g ′(υ)dυ,

where t ≥ 0, M(ν) is a normalization function that depends on ν and M(0) =M(1) = 1. If

g /∈ H1(c,d) and 0 < ν < 1, this derivative for g ∈ L1(–∞,d) is given by

CFDνg(t) =
νM(ν)

(1 – ν)

∫ d

–∞

(

g(t) – g(υ)
)

exp

(

–ν

1 – ν
(t – υ)

)

dυ.
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Also, the corresponding CF fractional integral is presented by

CF Iνg(t) =
2(1 – ν)

(2 – ν)M(ν)
g(t) +

2ν

(2 – ν)M(ν)

∫ t

0

g(υ)dυ.

Definition 3 ([40]) Let b > a, g ∈ H1(a,b), and 0 < ν < 1, then the fractional Atangana–

Baleanu derivative in the Caputo sense is defined by

ABCDνg(t) =
B(ν)

(1 – ν)

∫ t

a

g ′(s)Eν

(

–ν

1 – ν
(t – υ)ν

)

dυ,

where B(ν) denotes the normalization function satisfying B(0) = B(1) = 1 and Eν(·) is a

one-parameter Mittag-Leffler function. Also, the Atangana–Baleanu fractional integral is

given as follows:

ABCIνg(t) =
1 – ν

B(ν)
g(t) +

ν

B(ν)Ŵ(ν)

∫ t

a

g(υ)(t – υ)ν–1 dυ.

The Laplace transform is one of the important tools in solving differential equations that

are defined below for two kinds of fractional derivative.

Definition 4 ([38]) The Laplace transform of the Caputo fractional differential operator

of order ν is given by

L
[

CDνg(t)
]

(s) = sνLg(t) –

m–1
∑

i=0

sν–i–1g(i)(0), m – 1 < ν ≤ m ∈N ,

which can also be obtained in the form

L
[

CDνg(t)
]

=
smL[g(t)] – sm–1g(0) – sm–1g ′(0) – · · · – g(m–1)

sm–ν
.

3 Model formulation

In viral epidemic diseases, mathematical models are very important for predicting the

transmission of the virus by considering its behavior in different regions for helping to

manage the disease. Differentmathematical models such as SIR, SEIR, SIRD, SEIRD, SIRS,

SIRC, MSEIR, SEAIHRD, etc. are used to investigate the spread of diseases. According to

the information published about COVID-19 by theWorld Health Organization, there are

two types of people with the disease: one group has no symptoms and the other group

has symptoms. Both groups transmit the disease to healthy people, and the sick people

either recover or die. Of course, during this process, more groups can be considered, such

as people who are hospitalized, but because we do not have accurate information about

these groups for simulation, we decided to use the simple SEIR model. In this model, we

divide people into four groups: susceptible people (S), exposed or asymptomatic infected

people (E), symptomatic infected people (I), and recovered people (R) including improved

people. The diagram for the dynamics of COVID-19 disease model is shown in Fig. 1.
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Figure 1 The diagram for the proposed model of

COVID-19

Based on Fig. 1, we consider the SEIR model for COVID-19 as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dS
dt

= ω – (β1E + β2I)S –μS,

dE
dt

= (β1E + β2I)S – (λ +μ)E,

dI
dt
= λE – (τ +μ + δ)I,

dR
dt

= τ I –μR,

where

ω = n×N , N is the total number of individuals and n is the birth rate

μ: the death rate of people,

β1: the transmission rate of infection from E to S,

β2: the transmission rate of infection from I to S,

λ: the transmission rate of people from E to I ,

δ: the mortality rate due to the disease,

τ : the rate of recovery of infected people,

with the initial conditions S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0.

In this section, we moderate the system by substituting the time derivative with the

Caputo fractional derivative. The ordinary derivative has an inverse second dimension s–1

and the fractional derivative Dν has a dimension of s–ν . To solve this problem, we use an

auxiliary parameter θ that has a second dimension s and is called the cosmic time [41]. By

the parameter, from a physical point of view, we will have [θ ν–1CDν] = [ d
dt
] = s–1.

According to the explanation presented, the COVID-19 fractional model for t > 0 and

ν ∈ (0, 1) is given as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

θ ν–1CDν
t S(t) = ω – (β1E(t) + β2I(t))S(t) –μS(t),

θ ν–1CDν
t E(t) = (β1E(t) + β2I(t))S(t) – (λ +μ)E(t),

θ ν–1CDν
t I(t) = λE(t) – (τ +μ + δ)I(t),

θ ν–1CDν
t R(t) = τ I(t) –μR(t),

(1)

where the initial conditions are S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0.

3.1 Nonnegative solution

Consider ϒ = {(S,E, I,R) ∈ R+
4 : S + E + I + R ≤ ω

μ
}, we show that the closed set ϒ is the

feasibility region of system (1).

Lemma 5 The closed set ϒ is positively invariant with respect to fractional system (1).
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Proof To obtain the fractional derivative of total population, we add all the relations in

system (1). So

θ ν–1CDν
tN(t) = ω –μN(t) – δI(t)

≤ ω –μN(t),

where N(t) = S(t) + E(t) + I(t) + R(t). Using the Laplace transform and Theorem 7.2 (and

Remark 7.1) in [42], we obtain

N(t)≤ N(0)Eν

(

–μθ1–νtν
)

+

∫ t

0

ωθ1–νην–1Eν,ν

(

–μθ1–νην
)

dη,

where N(0) is the initial population size. With some calculations, we get

N(t)≤ N(0)Eν

(

–μθ1–νtν
)

+

∫ t

0

ωθ1–νην–1

∞
∑

i=0

(–1)iμiθ i(1–ν)ηiν

Ŵ(iν + ν)
dη

=
ωθ1–ν

μθ1–ν
+ Eν

(

–μθ1–νtν
)

(

N(0) –
ωθ1–ν

μθ1–ν

)

=
ω

μ
+ Eν

(

–μθ1–νtν
)

(

N(0) –
ω

μ

)

.

Thus, if N(0) ≤ ω
μ
, then for t > 0, N(t) ≤ ω

μ
. Consequently, the closed set ϒ is positively

invariant with respect to fractional model (1). �

3.2 Equilibrium points

To determine the equilibrium points of fractional-order system (1), we solve the following

equations:

CDνS(t) = CDνE(t) = CDνI(t) = CDνR(t) = 0.

By solving the algebraic equations, we obtain equilibrium points of system (1). The

disease-free equilibrium point is obtained as E0 = (ω
μ
, 0, 0, 0, 0, 0). In addition, if R0 > 1,

then system (1) has a positive endemic equilibrium point E1 = (S∗,E∗, I∗,R∗), so that

S∗ =
(λ +μ)(τ +μ + δ)

β1(τ +μ + δ) + β2λ
,

E∗ =
β1ω(τ +μ + δ) + β2λω –μ(λ +μ)(τ +μ + δ)

(λ +μ)(β1(τ +μ + δ) + β2λ)
,

I∗ =
λ(β1ω(τ +μ + δ) + β2λω –μ(λ +μ)(τ +μ + δ))

(λ +μ)(β1(τ +μ + δ) + β2λ)(τ +μ + δ)
,

R∗ =
τλ(β1ω(τ +μ + δ) + β2λω –μ(λ +μ)(τ +μ + δ))

(λ +μ)(β1(τ +μ + δ) + β2λ)(τ +μ + δ)μ
.

Also, R0 is the basic reproduction number and is obtained using the next generation

method [43]. To find R0, we first consider the system as follows:

CDν(t) = F
(

(t)
)

–V
(

(t)
)

,
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where

F
(

(t)
)

= θ1–ν

[

(β1E(t) + β2I(t))S(t)

0

]

and

V
(

(t)
)

= θ1–ν

[

(λ +μ)E(t)

–λE(t) + (τ +μ + δ)I(t)

]

.

At E0, the Jacobian matrix for F and V is obtained as follows:

JF (E0) = θ1–ν

[

β1
ω
μ

β2
ω
μ

0 0

]

, Jv(E0) = θ1–ν

[

λ +μ 0

–λ τ +μ + δ

]

.

FV–1 is the next generation matrix for system (1) and the basic reproduction number is

obtained from R0 = ρ(FV–1), so we get

R0 =
β1ω(τ +μ + δ) + β2ωλ

μ(λ +μ)(τ +μ + δ)
.

This basic reproduction number R0 is an epidemiologic metric used to describe the con-

tagiousness or transmissibility of infectious agents.

3.3 R0 sensitivity analysis

To check the R0 sensitivity, we calculate its derivatives as follows:

∂R0

∂β1

=
ω

μ(λ +μ)
,

∂R0

∂β2

=
ωλ

μ(λ +μ)(τ +μ + δ)
,

∂R0

∂ω
=

β1(τ +μ + δ) + β2λ

μ(λ +μ)(τ +μ + δ)
,

∂R0

∂λ
=

β2ω(2λ +μ) – β1ω(τ +μ + δ)

μ(λ +μ)2(τ +μ + δ)
,

∂R0

∂τ
=

β1ω(τ +μ + δ)2 – β1ω(τ +μ + δ) + β2ωλ

μ(λ +μ)(τ +μ + δ)2
,

∂R0

∂δ
=

β1ω(τ +μ + δ)2 – β1ω(τ +μ + δ) + β2ωλ

μ(λ +μ)(τ +μ + δ)2
,

∂R0

∂μ
=

β1ωμ – β1ω(τ +μ + δ) – β2ωλ

μ2(λ +μ)(τ +μ + δ)

–
β1ω(τ +μ + δ) + β2ωλ

μ(λ +μ)2(τ +μ + δ)
–

β1ω(τ +μ + δ) + β2ωλ

μ(λ +μ)(τ +μ + δ)2
.

Because all the parameters are positive, so ∂R0
∂β1

> 0, ∂R0
∂β2

> 0, ∂R0
∂ω

> 0. Thus R0 is increasing

with β1, β2, ω, but we cannot say anything about other parameters here.
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4 Stability of equilibrium points

In this section we investigate the stability of equilibrium points. The Jacobian matrix of

system (1) is obtained as follows:

J = θ1–ν

⎡

⎢

⎢

⎢

⎣

–(β1E + β2I) –μ –β1S –β2S 0

β1E + β2I β1S – (λ +μ) β2S 0

0 λ –(τ +μ + δ) 0

0 0 τ –μ

⎤

⎥

⎥

⎥

⎦

.

So, the Jacobian matrix of system at E0 is

J(E0) = θ1–ν

⎡

⎢

⎢

⎢

⎣

–μ –β1
ω
μ

–β2
ω
μ

0

0 β1
ω
μ
– (λ +μ) β2

ω
μ

0

0 λ –(τ +μ + δ) 0

0 0 τ –μ

⎤

⎥

⎥

⎥

⎦

.

Theorem 6 The equilibrium point E0 of system (1) is locally asymptotically stable if R0 < 1

and E0 is unstable if R0 > 1.

Proof The characteristic equation of the Jacobian matrix at the disease-free equilibrium

point J(E0) is det(J(E0) – kI) = 0. Then we obtain

–θ1–ν(k +μ)2
(

k2 +Ak + B
)

= 0,

where A = – β1ω–μ(λ+μ)–μ(τ+μ+δ)
μ

and B = – β1ω(τ+μ+δ)–μ(λ+μ)(τ+μ+δ)+λβ2ω

μ
. The eigenvalues of

the characteristic equation are k = –μ and the roots of the equation

k2 +Ak + B = 0.

If R0 < 1, since all of the parameters are positive, then

β1ω(τ +μ + δ) + β2ωλ < μ(λ +μ)(τ +μ + δ),

β1ω(τ +μ + δ) + β2ωλ –μ(λ +μ)(τ +μ + δ)

μ
< 0 ⇒ A > 0.

Also, from R0 < 1 we have

β1ω –μ(λ +μ) <
–β2ωλ

τ +μ + δ
< 0 ⇒

β1ω –μ(λ +μ) –μ(τ +μ + δ)

μ
< 0

⇒ B > 0.

Applying the Routh–Hurwitz criterion, E0 is locally asymptotically stable. If R0 > 1, then

B < 0, and there is one positive real root for Eq.(ref2), then E0 will be unstable. �



Rezapour et al. Advances in Difference Equations        ( 2020)  2020:490 Page 8 of 19

The Jacobian matrix of system (1) at the endemic equilibrium point is

J(E1) = θ1–ν

⎡

⎢

⎢

⎢

⎣

–(β1E
∗ + β2I

∗) –μ –β1S
∗ –β2S

∗ 0

β1E
∗ + β2I

∗ β1S
∗ – (λ +μ) β2S

∗ 0

0 λ –(τ +μ + δ) 0

0 0 τ –μ

⎤

⎥

⎥

⎥

⎦

.

The characteristic equation of matrix J(E1) is obtained as follows:

θ1–ν(k +μ)
(

k + (μ + δ + τ )
)(

k2 –A1k + B1

)

= 0,

where

A1 = β1S
∗ – λ – 2μ +

β2S
∗λ

μ + τ + δ
,

B1 =
(

μ + β1E
∗ + β2I

∗
)

(λ +μ) +

(

(β1S
∗ – λ –μ)(μ + τ + δ) + β2S

∗λ

μ + τ + δ

)

.

The eigenvalues of the characteristic equation are k1 = –μ, k2 = –(μ+ δ + τ ) and the roots

of the equation

k2 –A1k + B1 = 0. (2)

Since k1, k2 are negative, so E1 is locally asymptotically stable when two roots of Eq. (2)

are negative, so it is enough to have B1 > 0 and A1 < 0.

5 Existence and uniqueness of solution

In this section we show that the system has a unique solution. First, we write system (1)

as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

θ ν–1CDν
t S(t) =Q1(t,S(t)),

θ ν–1CDν
t E(t) =Q2(t,E(t)),

θ ν–1CDν
t I(t) =Q3(t, I(t)),

θ ν–1CDν
t R(t) =Q4(t,R(t)).

By taking integral form on both sides of the above equations, we get

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S(t) – S(0) = θ1–ν

Ŵ(ν)

∫ t

0
Q1(τ ,S)(t – τ )ν–1 dτ ,

E(t) – E(0) = θ1–ν

Ŵ(ν)

∫ t

0
Q2(τ ,E)(t – τ )ν–1 dτ ,

I(t) – I(0) = θ1–ν

Ŵ(ν)

∫ t

0
Q3(τ , I)(t – τ )ν–1 dτ ,

A(t) –A(0) = θ1–ν

Ŵ(ν)

∫ t

0
Q4(τ ,A)(t – τ )ν–1 dτ .

(3)

We show that the kernels Qi, i = 1, 2, 3, 4, satisfy the Lipschitz condition and contraction.

Theorem 7 The kernel Q1 satisfies the Lipschitz condition and contraction if the following

inequality holds:

0≤ β1d2 + β2d3 +μ < 1.
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Proof For S and S1 we have

∥

∥Q1(t,S) –Q1(t,S1)
∥

∥ =
∥

∥–
(

β1E(t) + β2I(t)
)(

S(t) – S1(t)
)

–μ
(

S(t) – S1(t)
)
∥

∥

≤
∥

∥β1E(t) + β2I(t)
∥

∥

∥

∥S(t) – S1(t)
∥

∥ +μ
∥

∥S(t) – S1(t)
∥

∥

≤
(

β1

∥

∥E(t)
∥

∥ + β2‖I(t)
)

‖ +μ)
∥

∥S(t) – S1(t)
∥

∥

≤ (β1d2 + β2d3 +μ)
∥

∥S(t) – S1(t)
∥

∥.

Suppose that h1 = β1d2 + β2d3 +μ, where ‖E(t)‖ ≤ d2, ‖I(t)‖ ≤ d3 are bounded functions.

So

∥

∥Q1(t,S) –Q1(t,S1)
∥

∥ ≤ h1
∥

∥

(

S(t) – S1(t)
)
∥

∥. (4)

Thus, for Q1 the Lipschitz condition is obtained, and if 0≤ β1d2 +β2d3 +μ < 1, then Q1 is

a contraction. �

In the sameway,we can prove thatQj, j = 2, 3, 4, satisfy the Lipschitz condition as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖Q2(t,E) –Q2(t,E1)‖ ≤ h2‖(E(t) – E1(t))‖,

‖Q3(t, I) –Q3(t, I1)‖ ≤ h3‖(I(t) – I1(t))‖,

‖Q4(t,R) –Q4(t,R1)‖ ≤ h4‖(R(t) – R1(t))‖,

where ‖S(t)‖ ≤ d1, and h2 = β1d1 + λ +μ, h3 = τ +μ + δ, h4 = μ are bounded functions. If

for j = 2, 3, 4 we have 0 ≤ hj < 1, thenQj are contractions for j = 2, 3, 4. According to system

(3), consider the following recursive forms:

ψ1n(t) = Sn(t) – Sn–1(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

Q1(τ ,Sn–1) –Q1(τ ,Sn–2)
)

(t – τ )ν–1 dτ ,

ψ2n(t) = En(t) – En–1(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

Q2(τ ,En–1) –Q2(τ ,En–2)
)

(t – τ )ν–1 dτ ,

ψ3n(t) = In(t) – In–1(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

Q3(τ , In–1) –Q3(τ , In–2)
)

(t – τ )ν–1 dτ ,

ψ4n(t) = Rn(t) – Rn–1(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

Q4(τ ,Rn–1) –Q4(τ ,Rn–2)
)

(t – τ )ν–1 dτ ,

with the initial conditions S0(t) = S(0), E0(t) = E(0), I0(t) = I(0), and R0(t) = R(0). We take

the norm of the first equation in the above system, then

∥

∥ψ1n(t)
∥

∥ =
∥

∥Sn(t) – Sn–1(t)
∥

∥

=

∥

∥

∥

∥

θ1–ν

Ŵ(ν)

∫ t

0

(

Q1(τ ,Sn–1) –Q1(τ ,Sn–2)
)

(t – τ )ν–1 dτ

∥

∥

∥

∥

≤
θ1–ν

Ŵ(ν)

∫ t

0

∥

∥Q1(τ ,Sn–1) –Q1(τ ,Sn–2))(t – τ )ν–1
∥

∥dτ ,
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with Lipschitz condition (4), we have

∥

∥ψ1n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
h1

∫ t

0

∥

∥ψ1(n–1)(τ )
∥

∥dτ . (5)

In a similar way, we obtain

∥

∥ψ2n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
h2

∫ t

0

∥

∥ψ2(n–1)(τ )
∥

∥dτ ,

∥

∥ψ3n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
h3

∫ t

0

∥

∥ψ3(n–1)(τ )
∥

∥dτ ,

∥

∥ψ4n(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
h4

∫ t

0

∥

∥ψ4(n–1)(τ )
∥

∥dτ . (6)

Thus, we can write that

Sn(t) =

n
∑

i=1

ψ1i(t),En(t) =

n
∑

i=1

ψ2i(t), In(t) =

n
∑

i=1

ψ3i(t),Rn(t) =

n
∑

i=1

ψ4i(t).

In the next theorem, we prove the existence of a solution.

Theorem 8 A system of solutions given by the fractional COVID-19 SEIR model (1) exists

if there exists t1 such that

θ1–ν

Ŵ(ν)
t1hj < 1.

Proof From the recursive technique and Eq. (5) and Eq. (6) we conclude that

∥

∥ψ1n(t)
∥

∥ ≤
∥

∥Sn(0)
∥

∥

[

θ1–ν

Ŵ(ν)
h1t

]n

,

∥

∥ψ2n(t)
∥

∥ ≤
∥

∥En(0)
∥

∥

[

θ1–ν

Ŵ(ν)
h2t

]n

,

∥

∥ψ3n(t)
∥

∥ ≤
∥

∥In(0)
∥

∥

[

θ1–ν

Ŵ(ν)
h3t

]n

,

∥

∥ψ4n(t)
∥

∥ ≤
∥

∥Rn(0)
∥

∥

[

θ1–ν

Ŵ(ν)
h4t

]n

.

Thus, the system has a solution and also it is continuous. Now we show that the above

functions construct solution for model (3). We assume that

S(t) – S(0) = Sn(t) – B1n(t),

E(t) – E(0) = En(t) – B2n(t),

I(t) – I(0) = In(t) – B3n(t),

R(t) – R(0) = Rn(t) – B4n(t).
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So

∥

∥B1n(t)
∥

∥ =

∥

∥

∥

∥

θ1–ν

Ŵ(ν)

∫ t

0

(

Q1(τ ,S) –Q1(τ ,Sn–1)
)

dτ

∥

∥

∥

∥

≤
θ1–ν

Ŵ(ν)

∫ t

0

∥

∥Q1(τ ,S) –Q1(τ ,Sn–1)
∥

∥dτ

≤
θ1–ν

Ŵ(ν)
h1‖S – Sn–1‖t.

By repeating the method, we obtain

∥

∥B1n(t)
∥

∥ ≤

[

θ1–ν

Ŵ(ν)
t

]n+1

hn+11 k.

At t1, we get

∥

∥B1n(t)
∥

∥ ≤

[

θ1–ν

Ŵ(ν)
t1

]n+1

hn+11 k.

Taking limit on the recent equation as n approaches ∞, we obtain ‖B1n(t)‖ → 0. In the

same way, we can show that ‖Bjn(t)‖ → 0, j = 2, 3, 4. This completes the proof. �

To show the uniqueness of the solution, we suppose that the system has another solution

such as S1(t), E1(t), I1(t), and R1(t), then we have

S(t) – S1(t) =
θ1–ν

Ŵ(ν)

∫ t

0

(

Q1(τ ,S) –Q1(τ ,S1)
)

dτ .

We take norm from this equation

∥

∥S(t) – S1(t)
∥

∥ =
θ1–ν

Ŵ(ν)

∫ t

0

∥

∥Q1(τ ,S) –Q1(τ ,S1)
∥

∥dτ .

It follows from Lipschitz condition (4) that

∥

∥S(t) – S1(t)
∥

∥ ≤
θ1–ν

Ŵ(ν)
h1t

∥

∥S(t) – S1(t)
∥

∥.

Thus

∥

∥S(t) – S1(t)
∥

∥

(

1 –
θ1–ν

Ŵ(ν)
h1t

)

≤ 0. (7)

Theorem 9 The solution of COVID-19 SEIR model (1) is unique if the following condition

holds:

1 –
θ1–ν

Ŵ(ν)
h1t > 0.
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Proof Suppose that condition (7) holds

∥

∥S(t) – S1(t)
∥

∥

(

1 –
θ1–ν

Ŵ(ν)
h1t

)

≤ 0.

Then ‖S(t)–S1(t)‖ = 0. So, we obtain S(t) = S1(t). Similarly, we can show the same equality

for E, I , R. �

6 Numerical results

Using the fractional Eulermethod forCaputo derivative, we present approximate solutions

for the fractional-orderCOVID-19 SEIRmodel [44].We present simulations to predict the

COVID-19 transmission in the world.

6.1 Numerical method

We consider system (1) in a compact form as follows:

θ ν–1CDν
tw(t) = g

(

t,w(t)
)

, w(0) = w0, 0 ≤ t ≤ T < ∞, (8)

where w = (S,E, I,R) ∈ R4
+, w0 = (S0,E0, I0,R0) is the initial vector, and g(t) ∈ R is a contin-

uous vector function satisfying Lipschitz condition

∥

∥g
(

w1(t)
)

– g
(

w2(t)
)
∥

∥ ≤ k
∥

∥w1(t) –w2(t)
∥

∥, k > 0.

Applying a fractional integral operator corresponding to theCaputo derivative to equation

(8), we obtain

w(t) = θ1–ν
[

w0 + Iνg
(

w(t)
)]

, 0 ≤ t ≤ T < ∞.

Set h = T–0
N

and tn = nh, where t ∈ [0,T] and N is a natural number and n = 0, 1, 2, . . . ,N .

Let wn be the approximation of w(t) at t = tn. Using the fractional Euler method [44], we

get

wn+1 = θ1–ν

[

w0 +
hν

Ŵ(ν + 1)

n
∑

j=0

un+1,jg(tj,wj)

]

, j = 0, 1, 2, . . . ,N – 1,

where

un+1,j = (n + 1 – j)ν – (n – j)ν , j = 0, 1, 2, . . . ,n.

The stability analysis of the obtained scheme has been proved in Theorem (3.1) in [44].

Thus, the solution of system (1) is written as follows:

Sn+1 = θ1–ν

[

S0 +
hν

Ŵ(ν + 1)

n
∑

j=0

un+1,jf1(tj,wj)

]

,

En+1 = θ1–ν

[

E0 +
hν

Ŵ(ν + 1)

n
∑

j=0

un+1,jf2(tj,wj)

]

,
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In+1 = θ1–ν

[

I0 +
hν

Ŵ(ν + 1)

n
∑

j=0

un+1,jf3(tj,wj)

]

,

Rn+1 = θ1–ν

[

R0 +
hν

Ŵ(ν + 1)

n
∑

j=0

un+1,jf4(tj,wj)

]

,

where un+1,j = (n+1– j)ν – (n– i)ν , f1(t,w(t)) = ω– (β1E(t) +β2I(t))S(t) –μS(t), f2(t,w(t)) =

(β1E(t)+β2I(t))S(t)–(λ+μ)E(t), f3(t,w(t)) = λE(t)–(τ +μ+δ)I(t), f4(t,w(t)) = τ I(t)–μR(t).

6.2 Simulation

Case I: The world

To provide a numerical simulation, we must first determine the value of the parameters.

The current birth rate for the world in 2020 is 18.077 births per 1000 people, and the

death rate is 7.612 per 1000 people [45]. The world’s population on 4 February was N =

7610105452, so ω = n×N
365

= 391347.066 and μ = 7.612
365×1000

= 2.08547× 10–5, and we choose

θ = 0.99. Since N(0) = S(0) + E(0) + I(0) + R(0) and on 4 February we have I(0) = 24545,

R(0) = 907 [46], then we assume E(0) = 80000 and S(0) = 7610026000. Also, according to

the WHO report, the COVID-19 mortality rate is δ = 3.4 × 10–2 [46]. To estimate other

parameters, we use the fitting curve technique with the real data reported for COVID-19.

The fitted curve and the reported cumulative number of COVID-19 in the world from

4 February to 12 May 2020 are plotted in Fig. 2, so that every part is a week. Using this

method, we obtain the parameters as follows: β1 = 2 × 10–11, β2 = 2.2 × 10–9, λ = 2.35 ×

10–5, τ = 0.03.

Table 1 compares the absolute and relative errors for I(t) concerning the fractional- and

integer-ordermodelswith respect to the reported cases of infected people. From this table,

you can observe that the Caputo model with ν = 0.97 provides more realistic results than

the classic model with integer-order derivatives.

A comparison between the noninteger-order model with ν = 0.97 and the integer-order

one with ν = 1 and the real data for the infected cases of the COVID-19 from 4 February to

Figure 2 The fitted curve and the reported total cases of COVID-19 in the world from 4 February to 12 May
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Table 1 The absolute and relative errors for I(t)

Model ν Absolute error Relative error

Fractional 0.97 7.23451 0.0312

Integer – 9.04562 0.0394

Figure 3 Comparison between the results of the integer-order derivative ν = 1 and the fractional-order

derivative ν = 0.97 with real data

Figure 4 Dynamics of S(t) and E(t) for different values of ν = 0.95, 0.9, 0.85, 0.8

12 May is also given in Fig. 3. The obtained results show that the answer of the fractional-

order model corresponds well with the real data and together with the results of Table 1

shows the advantage of using the fractional-order derivative instead of the correct order

one.

In Figs. 4 and 5, we have plotted the results of model (1) for different values of ν . In this

simulation, the equilibrium point is

E1 =
(

S∗,E∗, I∗,R∗
)

=
(

2.5× 106, 7.52× 109, 2.76× 106, 2.9× 109
)

.
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Figure 5 Dynamics of I(t) and R(t) for different values of ν = 0.95, 0.9, 0.85, 0.8

Figure 6 The fitted curve and the reported cases of COVID-19 in the Iran from 18 February to 12 April 2020

Figures 4 and 5 show that the results of the model converge to their equilibrium point for

different orders of derivation, and the results of all orders are stable at the equilibrium

points. These figures show that the obtained plots for different values of ν are different in

quantity but they have the same behavior. Also, Fig. 5 shows that approximately 50 days

after 4 February 2020 the number of active cases ceases to increase and becomes stable in

2.76× 106.

Case II: Iran

In the second case, we provide a numerical simulation using real data for the trans-

mission model of COVID-19 in Iran. According to the WHO report, the total popula-

tion of Iran on 18 February 2020 was N = 83392425, the birth rate for Iran in 2019 was

18.547 births per 1000 people, and the death rate was 4.866 per 1000 people. Thus, for

every day, we have ω = n×N
365

= 4237.477 and μ = 0.004866
365

= 0.0000133315. Similarly, we as-

sumed the mortality rate due to the disease in Iran is δ = 3.4 × 10–2 and θ = 0.99. Since



Rezapour et al. Advances in Difference Equations        ( 2020)  2020:490 Page 16 of 19

Figure 7 Plots of S(t) and E(t) for different values of ν = 0.95, 0.9, 0.85, 0.8

Figure 8 Plots of I(t) and A(t) for different values of ν = 0.95, 0.9, 0.85, 0.8

N(0) = S(0)+E(0)+ I(0)+R(0) and on 18 February we have I(0) = 61, R(0) = 12, then we as-

sume E(0) = 3000 and S(0) = 83,389,352. For the fitting, we use the information provided

by theWorld Health Organization for COVID-19. The fitted curve and the reported cases

of COVID-19 in Iran from 18 February to 12 April 2020 are plotted in Fig. 6, so that every

part is three days. Using this method, we obtain the parameters as follows: β1 = 1.1×10–4,

β2 = 3.3× 10–6, λ = 1.02× 10–3, τ = 0.03. In Figs. 7 and 8, we plotted the results of the sys-

tem of COVID-19 transmission (1). As you can see in Figs. 7 and 8, the variables have

different results in different amounts of ν but exhibit the same behavior. Figure 7 shows

that two months after the virus is released almost the entire population is at risk for the

disease. Figure 8 shows that the number of people with COVID-19 increases until 200

days and then stabilizes. Also, the forecast is that the number of infected people could rise

to 280,000. Also, Fig. 8 shows that the number of people who have recovered or died also

increases over time.
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7 Conclusion

In this work, the SEIR epidemic model for the transmission of COVID-19 using the Ca-

puto fractional derivative has been presented. The feasibility region of the system and

equilibrium points have been calculated, and the stability of the equilibrium points has

been investigated. The existence of a unique solution for the model by using fixed point

theory has been proved. Using the fractional Euler method, an approximate answer to the

model has been calculated. To predict the transmission of COVID-19 in the world and in

Iran, the numerical simulations based on real data have been provided. Also in the nu-

merical section, we have examined the advantage of using the fractional-order derivative

instead of the integer-order one, and in Table 1 and Fig. 3, we have compared the results of

the model with the fractional- and integer-order derivative and the real data. The results

show that the fractional-order model has a better result in this modeling.
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