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Abstract In this paper, a SEIR epidemic model for

the COVID-19 is built according to some general

control strategies, such as hospital, quarantine and

external input. Based on the data of Hubei province,

the particle swarm optimization (PSO) algorithm is

applied to estimate the parameters of the system. We

found that the parameters of the proposed SEIR model

are different for different scenarios. Then, the model is

employed to show the evolution of the epidemic in

Hubei province, which shows that it can be used to

forecast COVID-19 epidemic situation. Moreover, by

introducing the seasonality and stochastic infection

the parameters, nonlinear dynamics including chaos

are found in the system. Finally, we discussed the

control strategies of the COVID-19 based on the

structure and parameters of the proposed model.

Keywords COVID-19 � Coronavirus � SEIR model �
Nonlinear dynamics � Control

1 Introduction

At the end of 2019, a novel coronavirus disease

(COVID-19) was declared as a major health hazard by

World Health Organization (WHO). At present, this

disease is rapidly growing in many countries, and the

global number of COVID-19 cases is increasing at a

rapid rate. This coronavirus is a kind of enveloped,

single stranded and positive sense virus which belongs

to the RNA coronaviridae family [1, 2]. In early

December of 2019, this infectious disease has begun to

outbreak in Wuhan, the capital city of Hubei province,

China. Until now, the epidemic in China is basically

under control, but there are still many infections

around the world. To defeat the epidemic, scientists in

different fields investigated the COVID-19 from

different points of view. Those aspects include

pathology, sociology perspective, the infection mech-

anism and prediction [3–8].

In the history of mankind, there are many other

outbreak and transmission of diseases such as dengue

fever, malaria, influenza, pestilence and HIV/AIDS.

How to built a proper epidemiological model for these

epidemics is a challenging task. Some scientists treat

the disease spread as a complex network for forecast

and modeling [9, 10]. For the COVID-19, Bastian

Prasse et al. [10] designed a network-based model

which is built by the cities and traffic flow to describe

the epidemic in the Hubei province. At present, the SIS

[11, 12], SIR[13] and SEIR [14, 15] models provide
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another way for the simulation of epidemics. Lots of

research works have been reported. It shows that those

SIS, SIR and SEIR models can reflect the dynamics of

different epidemics well. Meanwhile, these models

have been used to model the COVID-19 [16, 17]. For

instance, Tang et al. [17] investigated a general SEIR-

type epidemiological model where quarantine, isola-

tion and treatment are considered. Moreover, there are

also other methods for modeling of the COVID-19

[18, 19]. Wang et al. [19] applied the phase-adjusted

estimation for the number of coronavirus disease 2019

cases inWuhan. Thus in this paper, we try to propose a

SEIR model to simulate the process of COVID-19.

Chaos widely exits in nature and man-made

systems including those biological systems [20–24].

According to the famous Logistic map, it shows that

the natural evolution of the population size could be

chaotic. However, it is not a good thing to find chaos in

the SEIR model. Unfortunately, chaos in the SIR, SIS

and SEIR models has been investigated by many

researchers. Generally, the seasonality and stochastic

infection are introduced to the system for the nonlinear

dynamics. For instance, Kuznetsov and Piccardi [25]

investigated the bifurcations of the periodic solutions

of SEIR and SIR epidemic models with sinusoidally

varying contact rate. Meanwhile, the fractional-order

SEIR epidemic model has aroused research interests

of scientists. He et al. [26] investigated the epidemic

outbreaks using the SIR model, and a hard limited

controller is designed for the control of the system.

However, on the one hand, those SIR and SEIR

models cannot always show the nature of the COVID-

19, and we need to modify the system. On the other

hand, the nonlinear dynamics of the system should be

investigated. Thus, we need to get more information

on the dynamics of the epidemic system.

The rest of this paper is organized as follows. In

Sect. 2, the modified SEIR model is designed and the

descriptions of the system are presented. In Sect. 3, the

SEIR model is applied to the COVID-19 data of Hubei

province where the PSO algorithm is introduced to

estimate the parameters. In Sect. 4, the seasonality and

stochastic infection are introduced to the model and

the dynamics of the system is investigated. In Sect. 5,

the structure, parameters on the dynamics of the

system and how to control the epidemic of the system

are discussed. Section 6 is the summary of the

analysis.

2 SEIR modeling of the COVID-19

The classical SEIR model has four elements which are

S (susceptible), E (exposed), I (infectious) and R

(recovered). Thus, N ¼ Sþ E þ I þ Rmeans the total

number of people. The basic hypothesis of the SEIR

model is that all the individuals in the model will have

the four roles as time goes on. The SEIR model has

some limitations for the real situations, but it provides

a basic model for the research of different kinds of

epidemic.

Based on the basic SEIR model, we proposed a new

model which is denoted by

_S ¼ �
S

N
b1I1 þ b2I2 þ vEð Þ þ q1Q� q2Sþ aR

_E ¼
S

N
b1I1 þ b2I2 þ vEð Þ � h1E � h2E

_I1 ¼ h1E � c1I1
_I2 ¼ h2E � c2I2 � uI2 þ k Kþ Qð Þ

_R ¼ c1I1 þ c2I2 þ /H � aR

_H ¼ uI2 � /H

_Q ¼ Kþ q2S� k Kþ Qð Þ � q1Q
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where S, E, I1, I2, R, H and Q are the system variables.

The descriptions of those variables are presented in

Table 1. The description of the system parameters is

illustrated in Table 2, and the relationship between

different variables is shown in Fig. 1. In this model,

the infectious class is divided into two parts, I1 and I2.

Meanwhile, we consider the quarantined class and

hospitalized class in the model according to the real

situation. For example, if one got coronavirus-like

Table 1 Description of the system variables

Variable Description

S Susceptible class

E Exposed

I1 Infectious without intervention

I2 Infectious with intervention

R Recovered

Q Quarantined

H Hospitalized
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symptoms or comes from other place like abroad, he or

she needs to be in quarantine for at least 14 days.

Obviously, as shown in Fig. 1, we consider two

main channels in the proposed model. The first one

goes to S ! E ! I1 ! R, and the second channel

goes to S ! Q ! I2 ! H ! R. The first case shows

the natural process of the epidemic, and it is a typical

SEIRmodel. The second channel considers the control

from the government including the quarantine and

hospital. As a result, the designed model is an

improved version of the SEIR model.

If there is no quarantine (q2 ¼ 0), hospital treat-

ment / ¼ 0 and the recovered is immune to the virus

(a ¼ 0), the model becomes to the classical SEIR

model. However, there are always quarantine and

hospital treatment. Meanwhile, there is no evidence

that the recovered is immune to the COVID-19. Thus,

we need to considered these factors in the model. In

this paper, we have N 6¼ Sþ E þ I1 þ I2 þ Rþ Qþ

H according to Eq. (1) since there is an external input

K. Obviously, N is not a constant and it varies over

time when K 6¼ 0. Since there are a large population

under voluntary home quarantine. Thus, for a chosen

place, N is not the total population of that place, but it

can be estimated by adding the final number of

recoveries and deaths.

3 Estimation of the model parameters

3.1 The PSO algorithm

Particle swarm optimization (PSO) algorithm is a

famous population-based stochastic optimization

algorithm motivated by intelligent collective behav-

ior, such as the foraging process of bird group [27]. In

PSO algorithm, each particle represents a bird, and the

algorithm starts with a random initialization of the

particle locations. For one iteration, each particle

keeps track of its own best position and the popula-

tion’s best position to update its position and velocity.

Considering a one-dimensional optimization problem,

the velocity and the position of the particle i is defined

by

Viðt þ 1Þ ¼ xðtÞViðtÞ þ c1r1½Pb;iðtÞ � XiðtÞ�

þc2r2½PgðtÞ � XiðtÞ�
; ð2Þ

and

Xiðt þ 1Þ ¼ XiðtÞ þ V iðt þ 1Þ; ð3Þ

where ViðtÞ and XiðtÞ are velocity and position of the

particle i at the t-th iteration, respectively. c1 and c2 are

Table 2 Description of the system parameters

Parameters Description

a Temporary immunity rate

b1, b2 The contact and infection rate of transmission per contact from infected class

v Probability of transmission per contact from exposed individuals

h1, h2 Transition rate of exposed individuals to the infected class

c1, c2 Recovery rate of symptomatic infected individuals to recovered

u Rate of infectious with symptoms to hospitalized

/ Recovered rate of quarantined infected individuals

k Rate of the quarantined class to the recovered class

q1, q2 Transition rate of quarantined exposed between the quarantined infected class and the wider community

K External input from the foreign countries

Fig. 1 Flowchart of the proposed SEIR model for COVID-19
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the learning factors. r1 and r2 are random numbers

between 0 and 1. Pb;iðtÞ represents the best position of

the particle i at the t-th iteration, and PgðtÞ represents

the population’s best position at the t-th iteration. x is

called inertia weight, which is very important for the

search process of PSO algorithm. Here, it is defined by

[28]

xðtÞ ¼ ðxmax � xminÞe
�500ðt=TÞ2 þ xmin; ð4Þ

where t and T are the current and maximum iterations

of the PSO algorithm, respectively, and xmin and xmax

are the minimal and maximum value of the inertia

weight, respectively. Suppose that we meet a mini-

mum optimization problem, the implementation steps

of the PSO algorithm are summarized as follows:

Step 1: The position of each particle is randomly

initialized.

Step 2: Calculate the fitness value FðXiðtÞÞ of the

particle i, and find the Pb;iðtÞ and the PgðtÞ.

Step 3: If FðXiðtÞÞ\FðPb;iðtÞÞ, then replace the

Pb;iðtÞ by the XiðtÞ.

Step 4: If FðXiðtÞÞ\FðPgðtÞÞ, then replace the PgðtÞ

by the XiðtÞ.

Step 5: Calculate the inertia weight by Eq. (4).

Step 6: Update velocity and position of the particle

i according to Eqs. (2) and (3), respectively.

Step 7: Repeat the Steps 3–6 until the termination

criterion is satisfied.

3.2 Parameter estimation

In this section, through the actual COVID-19 data

from Hubei province, the PSO algorithm is utilized to

estimate the parameters of the proposed SEIR model

to fit the real situation. The COVID-19 data come from

the official website of the Wuhan Municipal Health

Commission (http://wjw.wh.gov.cn/), and some actual

data are listed in Table 3.

In the face of the pressure of epidemic prevention

and control, Wuhan government announced to seal off

the city from all outside contact on January 23rd, 2020.

Then, other cities in Hubei province also took the

‘‘closure city’’ measure. The COVID-19 epidemic

situation of Hubei is relatively stable after January

23rd, 2020, so we chose to study the data between

January 24th and April 12th.

The initial values setting of SEIR model is

presented in Table 4, where N is the total population

of Hubei affected by the COVID-19 epidemic in

January 24th, 2020, and E is calculated based on the

number of confirmed patients. I1 is an estimated value

Table 3 Actual COVID-19 data from Hubei (January 24th to February 8th)

Date Cumulative infected cases Cumulative deaths Cumulative recovered cases Current quarantined

2020/1/24 729 39 32 4711

2020/1/25 1052 52 42 6904

2020/1/26 1423 76 44 9103

2020/1/27 2714 100 47 15,559

2020/1/28 3554 125 80 20,366

2020/1/29 4586 162 90 26,632

2020/1/30 5806 204 116 32,340

2020/1/31 7153 249 166 36,838

2020/2/1 9074 294 215 43,121

2020/2/2 11,177 350 295 48,171

2020/2/3 13,522 414 396 58,544

2020/2/4 16,678 479 520 66,764

2020/2/5 19,665 549 633 64,127

2020/2/6 22,112 618 817 64,057

2020/2/7 24,953 699 1115 67,802

2020/2/8 27,100 780 1439 70,438

......
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based on I2, and the other initial values are originated

from the actual data.

The system parameters of SEIR model are calcu-

lated by the actual data, as shown in Table 5.

However, there is no accurate statistics of the rate of

infectious to hospitalized u and the recovered rate of

quarantined infected individuals /. Here, the two

parameters are estimated by the PSO algorithm with

the actual data of R and H. The settings of PSO

algorithm are set as: population of particle swarm

NP ¼ 40, learning factors c1 ¼ c2 ¼ 2, maximal iter-

ation T ¼ 100 and the search spaces u;/ 2 ð0; 0:1�.

The COVID-19 epidemic situation in Hubei is

divided into two stages: the outbreak stage (the first 19

days) and the inhibition stage (the 20th day to the end).

In the outbreak stage, according to the actual data of

R and H, the u and the / are estimated to u ¼ 0:2910,
/ ¼ 0:0107, respectively. The error convergence

curve of PSO is shown in Fig. 2. After the outbreak

stage, due to the continuous assistance from other

provinces and other countries, the epidemic in Hubei

began to enter the inhibition stage. In this stage, the

error convergence curve of PSO is given in Fig. 3, and

the estimated u and / changed to

u ¼ 0:0973;/ ¼ 0:0416, respectively.

The estimated and actual trajectories in the two

stages are shown in Fig. 4. In the first stage, although

there are some errors between the estimated number

and the actual number, it shows that the estimated

values match well with the real situation. However, the

accuracy is not satisfying in the second stage which

shows that the real data are smaller than the estimated

values, but the trend is basically the same.

There are two reasons for the deviation. One is that

only two parameters, namely the rate of infectious to

hospitalized u and the recovered rate of quarantined

infected individuals /, are estimated, while the rest of

the parameters are set as a matter of experience.

Moreover, the control measures for containing the

Table 4 Initial values of the SEIR model

Parameter N E I1 I2 H R Q K

Value 6:5563� 104 5077 I2 � 0:01 729 658 32 4711 10

Table 5 System

parameters of SEIR model
Parameter Values

b1 1:0538� 10�1

b2 1:0538� 10�1

v 1:6221� 10�1

q1 2:8133� 10�3

q2 1:2668� 10�1

h1 9:5000� 10�4

h2 3:5412� 10�2

c1 8:5000� 10�3

c2 1:0037� 10�3

k 9:4522� 10�2

a 1:2048� 10�4
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Fig. 2 The error convergence curve of PSO algorithm in the

outbreak stage
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Fig. 3 The error convergence curve of PSO algorithm in the

inhibition stage
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outbreak are more andmore powerful; thus, the system

parameter should be time varying variables. For

instance, compared with the outbreak stage, the

hospitalization rate decreased a lot, and the cure rate

increased nearly four times, which means that the

number of confirmed infected cases is declining a lot

and the number of patients recovering is increasing

rapidly.

4 Nonlinear dynamics of the model

4.1 SEIR model with seasonality and stochastic

infection

The 0–1 test algorithm is employed to verify the

existence of chaos in the model. If a set of discrete time

series xðnÞðn ¼ 1; 2; 3; . . .Þ represents a one-dimen-

sional observable data set obtained from the modified

SEIR system, then the following two real-valued

sequences are defined as [30]

p nð Þ ¼
Pn

j¼1 x jð Þ cos h jð Þð Þ

s nð Þ ¼
Pn

j¼1 x jð Þ sin h jð Þð Þ

(

; ð5Þ

where h jð Þ ¼ jgþ
P

j

i¼1

x ið Þ, and g 2 p
5
; 4p
5

� �

. By plot-

ting the trajectories in the (p, s)-plane, the state of the

system can be identified. Usually, the bounded trajec-

tories in the (p, s)-plane imply the dynamics of the

time series is regular, while Brownian-like (un-

bounded) trajectories imply chaos.

The seasonality is widely found in the epidemic

models [26, 29], and it can make the system more

complex. Indeed, there is no report showing that the

effect of seasonality for COVID-19 spread since this

epidemic outbreaks only about half year until now.

But we try to introduce the seasonality to the system

and analyze chaos in the system from an academic

point of view. Meanwhile, there are individual differ-

ences and many unpredictable factors in the epidemic

infection. Thus, the noise is an important factor

considered in our analysis. Here, three cases are

analyzed to show how the system parameter a,

seasonality and stochastic infection affect the dynam-

ics of the system.

Case 1: The parameter b1 contains seasonality and

stochastic infection, and the three contact and infec-

tion rate parameters are defined as

b2 ¼ 30:03; v ¼ 30:40

b1 tð Þ ¼ b0 1þ e1 sin 2ptð Þ þ e2n tð Þð Þ

�

; ð6Þ

where b0 ¼ 2� b1 ¼ 60, e1 and e2 are degree of the

seasonality and stochastic infection, respectively.

n tð Þh i is the white Gaussian independent noises, and

it has the properties of n tð Þh i ¼ 0 and

n tð Þ; n sð Þh i ¼ d t � sð Þ.

The analysis results of the system with different

parameters are shown in Fig. 5. In Fig. 5a, b, we set

e1 ¼ 0, e2 ¼ 0 and a ¼ 0:08. It shows that the system

is convergent to a limited region. Thus, the system is

not chaotic without the seasonality and stochastic

infection. When e1 ¼ 0:8 and e2 ¼ 0, the system has

seasonality but no stochastic infection. It shows that

Fig. 4 Actual and estimated

trajectories for the epidemic

situation in Hubei province

123

1672 S. He et al.



the system now is chaotic according to the p� s plot.

As shown in Fig. 5c that the attractor looks like a

limited circle. However, there are many lines in the

‘‘circle’’ as it is illustrated in Fig. 5d. If e1 ¼ 0:8 and

e2 ¼ 0:2, there are both seasonality and stochastic

infection in the system. At this time, the complex

dynamics is observed in the system, as shown in

Fig. 5f–h.

Case 2: The parameter b2 contains seasonality and

stochastic infection, while the other two infection rate

parameters are constants. Thus, the parameters are

defined as

b1 ¼ 30; v ¼ 30:40

b2 tð Þ ¼ b0 1þ e1 sin 2ptð Þ þ e2n tð Þð Þ

�

; ð7Þ

where b0 ¼ 2� b2 ¼ 60, e1 and e2 are the degree of

the seasonality and stochastic infection, respectively.

Firstly, we let e1 ¼ 0:8 and e2 ¼ 0. If a ¼ 0:02,

a ¼ 0:03, a ¼ 0:04747 and a ¼ 0:08, different kinds
of chaotic attractors are shown in Fig. 6a–d, respec-

tively. Meanwhile, we let e1 ¼ 0:8 and e2 ¼ 0:2, the

chaotic attractors with different values of a are shown

in Fig. 6e–h. The p� s plots of attractors of Fig. 6b–d

are shown in Fig. 6i–k, respectively. It verifies the

existence of chaos in the model.

Case 3: The parameter v1 contains seasonality and

stochastic infection, and b1 and b2 are contacts. As a

results, the parameters in this case are given by

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 5 Dynamics analysis results of case 1 with different

parameters. Phase diagram a and time series b of the system

with e1 ¼ 0, e2 ¼ 0 and a ¼ 0:08; phase diagram c, its partial

enlarged drawing d and p� s plot e with e1 ¼ 0:8, e2 ¼ 0 and

a ¼ 0:08; phase diagram f, its partial enlarged drawing g and

p� s plot h with e1 ¼ 0:8, e2 ¼ 0:2 and a ¼ 0:08
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b1 ¼ 30; b2 tð Þ ¼ 30

v ¼ v0 1þ e1 sin 2ptð Þ þ e2n tð Þð Þ

�

ð8Þ

where b0 ¼ 2v ¼ 60:8, e1 and e2 are the degree of the

seasonality and stochastic infection, respectively. Let

e1 ¼ 0:8, e2 ¼ 0 and a ¼ 0:0133, the phase diagram is

shown in Fig. 7a. It shows in Fig. 7b that the attractor

is chaotic. If we set e2 ¼ 0:2, the phase diagram is

illustrated in Fig. 7c, where a much wider range in the

phase space when the system has stochastic infection.

When e1 ¼ 0:8, e2 ¼ 0 and a ¼ 0:08, the phase

diagram is shown in Fig. 7d, while the time series

are shown in Fig. 7e.

The proposed system is an improved SEIR system

with quarantined class and hospitalized class. As with

other SIR and SEIR models, this model can also

generate chaos with given parameters. And the

existence chaos is verified by the 0–1 test method.

In this section, we consider the dynamics of the

proposed SEIR model. In Refs. [26, 29], the param-

eters of the SEIRmodel are set where the infection rate

b is set as quite large values. For instance, in Ref. [29],

b ¼ 108 for the proposed SEIR Dengue fever model.

To investigate chaos in the proposed model, the

parameters are set as b1 ¼ 30, b2 ¼ 30:0300,

v ¼ 30:40, q1 ¼ 1=14, q2 ¼ 0:002, h1 ¼ 20:054,

h2 ¼ 20:12, u ¼ 0:00009, / ¼ 0:8, k ¼ 0:4 and

N ¼ 106. The initial conditions of the model are given

by ½S;E; I1; I2;R;H;Q� ¼ ½94;076; 4007; 262; 524; 31;

100; 1000�.

4.2 Bifurcation analysis of case 2

To further analyze dynamics of the system, we choose

case 2 as an example to show the bifurcations of the

proposed system. The parameters are set as b1 ¼ 30,

b2 ¼ 30:0300, v ¼ 30:40, q1 ¼ 1=14, q2 ¼ 0:002,
h1 ¼ 20:054, h2 ¼ 20:12, u ¼ 0:00009, / ¼ 0:8, k ¼

0:4 and N ¼ 106. The initial conditions of the model

are given by ½S;E; I1; I2;R;H;Q�=[94076, 4007, 262,
524,31, 100, 1000].

Firstly, let e1 ¼ 0:8, e2 ¼ 0, and the parameter a

varies from 0.02 to 0.08 with step size of 0.00024. The

bifurcation diagram is shown in Fig. 8a. Meanwhile, if

e2 ¼ 0:2, the corresponding bifurcation diagram is

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 6 Dynamics analysis results of case 2. Phase diagrams

with e1 ¼ 0:8, e2 ¼ 0 and a ¼ 0:02 a, a ¼ 0:03 b, a ¼ 0:04747 c
and a ¼ 0:08 d; phase diagrams with e1 ¼ 0:8, e2 ¼ 0:2 and

a ¼ 0:02 e, a ¼ 0:03 f, a ¼ 0:04747 g and a ¼ 0:08 h; p� s

plots of e1 ¼ 0:8, e2 ¼ 0 and a ¼ 0:03 i, a ¼ 0:04747 j and

a ¼ 0:08 k
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shown in Fig. 8b. Obviously, the bifurcation diagram

of Fig. 8a has no noise, while that in Fig. 8b does. It

shows that the stochastic infection makes the system

fluctuate more volatile.

Secondly, let a ¼ 0:08, e2 ¼ 0, and the parameter

e1 ¼ 0:8 varies from 0.02 to 0.08 with step size of

0.004. The bifurcation diagrams with e1 are shown in

Fig. 9. It shows that when there exists stochastic

infection, the bifurcation diagram shows more com-

plex behaviors of the system.

As shown in Figs. 8 and 9, it shows that the system

has rich dynamics with both parameters a and e1.

When the system has stochastic infection, the system

will become more complex. We hold the opinion that

chaos is also the nature of the system, and the

seasonality and the temporary immunity rate can

change the dynamics of the system.

4.3 Complexity of the case 2

In this section, the spectral entropy (SE) algorithm

[31] is employed to analyze complexity of the

proposed SEIR system, and steps are presented as

follows.

For a given time series {x(n), n=0, 1, 2, � � �, L-1}

with a length of L, let xðnÞ ¼ xðnÞ � x, where x is the

mean value of time series. Its corresponding discrete

Fourier transform (DFT) is defined by

XðkÞ ¼
X

L�1

n¼0

xðnÞe�j2pnk=L; ð9Þ

where k ¼ 0; 1; � � � ; L� 1 and j is the imaginary unit.

If the power of a discrete power spectrum with the kth

frequency is jXðkÞj2, then the ‘‘probability’’ of this

frequency is defined as

Pk ¼
jXðkÞj2

PL=2�1

k¼0 jXðkÞj2
: ð10Þ

When the DFT is employed, the summation runs from

k ¼ 0 to k ¼ N=2� 1. The normalization entropy is

denoted by [31]

SE xL
� �

¼
1

ln N=2ð Þ

X

N=2�1

k¼0

Pk ln Pkð Þ; ð11Þ

where lnðN=2Þ is the entropy of a completely random

signal. Obviously, the more balanced the probability

(a) (b) (c)

(d) (e)

Fig. 7 Dynamics analysis results of case 3. Phase diagram a and p� s plot b with e1 ¼ 0:8, e2 ¼ 0 and a ¼ 0:0133; phase diagram c

with e1 ¼ 0:8, e2 ¼ 0:2 and a ¼ 0:0133; phase diagram d and time series e with e1 ¼ 0:8, e2 ¼ 0:2 and a ¼ 0:08
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distribution is, the higher complexity (the larger

entropy) the time series is. The larger measuring value

means higher complexity, and vice versa.

Based on the above complexity algorithms, multi-

scale complexity algorithm is designed. For a one-

dimensional discrete time series

fxðnÞ : n ¼ 0; 1; . . .;N � 1g, the consecutive coarse-

grained time series are constructed by [32]

ysðjÞ ¼
1

s

X

js�1

ðj�1Þs

xðjÞ; ð12Þ

where 1� j� ½N=s�, s is the scale factor which

represents the length of the non-overlapping window,

and ½�� denotes the floor function. Obviously, when

s ¼ 1, the sequence ys is the original sequence

fxðnÞ; n ¼ 0; 2; 3; � � � ; L� 1g. Thus, the complexity

of y1 is the complexity of the original sequence. In this

paper, the multiscale complexity is defined as [31]

MSE ¼
1

smax

X

smax

s¼1

SEðysÞ: ð13Þ

In this paper, we set smax ¼ 20.

Fix e1 ¼ 0:8 and vary the parameter a from 0.02 to

0.08 with step size of 0.00024. MSE complexity

analysis results are shown in Fig. 10a, b, where

Fig. 10a for e2 ¼ 0 and Fig. 10b for e2 ¼ 0:2. Fix a ¼
0:08 and the parameter e1 varies from 0.1 to 1 with step

size of 0.0036. The complexity analysis results with e1
are shown in Fig. 10c, d. Here, e2 ¼ 0 is employed in

Fig. 10c, while e2 ¼ 0:2 is used in Fig. 10d. The

complexity analysis results with parameters show that

the stochastic infection does not affect the complexity

of the system. The system has higher complexity when

a takes values between 0.03 and 0.06, and e1 takes

those values which are larger than 0.6.

Fix e2 ¼ 0, vary a from 0.02 to 0.08 with step size

of 0.0006 and e1 varies from 0.1 to 1 with step size of

0.009. The complexity analysis result in the a� e1
plane is shown in Fig. 11. Obviously, the higher

complexity region is located in the right side of the

parameter plane, where a 2 ½0:4; 1� and

e1 2 ½0:025; 0:055�.

Since the complexity measure results are obtained

based on the generated time series, MSE provides an

effective way for the dynamics analysis of the system.

When there is higher complexity, the behavior of the

model is more complex, vice versa. For a epidemic

system, high complexity means outbreak. Thus, we

can use the complexity measure algorithm to monitor

the dynamics of the proposed SEIR system.

5 Discussion

In this paper, the parameters of the system are mainly

chosen by two means including the references and the

PSO algorithm. Usually, the parameters can be set

according to the existing work. For instance, the

contact and infection rate parameters are defined

according to Refs. [26, 29]. Also, there are some other

references which show some parameters of the system.

Moreover, since there is actual COVID-19 data from

Hubei province, we use the PSO algorithm to estimate

the parameters of the system. As shown above, the

system has rich dynamics with the given parameters,

especially when the parameters b1, b2 and v have

seasonality and stochastic infection. The existence of

chaos is verified by the 0–1 test, and complexity of the

generated time series is measured. Here, different sets

of parameters are summarized in Table 6. It should

noted that, when the parameters are set as the set A,

they seem ‘‘large.’’ However, those parameters should

be multiplied by S/N. Thus, they are reasonable for the

proposed model. According to our analysis, it shows

that chaos are found in the system with those ‘‘large

parameters.’’ In fact, we want to explore the nonlinear

0.02 0.03 0.04 0.05 0.06 0.07 0.08

2.5

3

3.5

4
10
5

(b)

S
m
a
x

0.02 0.03 0.04 0.05 0.06 0.07 0.08
3.2

3.4

3.6

3.8

S
m
a
x

10
5

(a)

Fig. 8 Bifurcation diagrams of the system with the variation of

parameter a a e1 ¼ 0:8, e2 ¼ 0; b e1 ¼ 0:8, e2 ¼ 0:2

(a) (b)

Fig. 9 Bifurcation diagrams of the system with the variation of

parameter e1 a a ¼ 0:08, e2 ¼ 0; b a ¼ 0:8, e2 ¼ 0:2
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dynamics of the proposed system and to study how

does chaos occur in the system.

Figure 12 shows the evolution of the system with

different parameters. The parameters used the Set D,

and different colors lines in the figure including

magenta color lines (M), blue color lines (B), red color

lines (R) and green color lines (G) are obtained using

the following parameters:

M k ¼ 0:0004, u ¼ 0:009, a ¼ 0:0,
B k ¼ 0:04, u ¼ 0:009, a ¼ 0:0,

R k ¼ 0:0004, u ¼ 0:8, a ¼ 0:0,

G k ¼ 0:04, u ¼ 0:8, a ¼ 0:5.

It shows that the number of infected class (I1, I2) and

hospitalized class (H) is different with different

parameters. When u ¼ 0:0009, there is a peak value

for I2. It means that if the hospital reception capacity is

limited, the infected class (I2) will increase dramati-

cally. However, when u ¼ 0:8, the infected class (I2)

keeps a relative low level; thus, the infection can be

controlled well. As shown in Fig. 12, when a ¼ 0:5, it

is quite difficulty for the system to become conver-

gent. The reason is obvious because those recovered

can be infected again, and a closed loop system is

observed. Because no reports show that the recovered

class is immune to the COVID-19, we need to be

(a) (b)

(c) (d)

Fig. 10 MSE analysis results of the system with the variation of parameters a and e1 a e1 ¼ 0:8, e2 ¼ 0 and a varying; b e1 ¼ 0:8,
e2 ¼ 0:2 and a varying; c a ¼ 0:08, e2 ¼ 0 and e1 varying; d a ¼ 0:08, e2 ¼ 0:2 and e1 varying

Fig. 11 MSE analysis results of the system with the variation of

both parameters a and e1
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aware of those recovered to be infected again. Here,

the evolution of the system with parameters of set E is

shown in Fig. 13, which shows how all the classes of

the system affect the dynamics. Generally, all the

classes except the recovered class R will converge to

zero. However, Fig. 13 is simulated with external

input K ¼ 100 and a ¼ 0:5. Since there is no evidence

that the recovered class is immune to the virus, this

makes the system hard to converge. Thus, it shows in

Fig. 13 that these variables converge to zero slowly.

In the early stage of the COVID-19 epidemic, the

epidemic situation in Hubei province presents an

uncontrollable trend. However, due to the low popu-

lation contact rate, high hospitalization rate and high

cure rate, the epidemic was quickly controlled after 20

days. Therefore, the government’s attention, people’s

(a) (b) (c)

(d) (e) (f)

Fig. 12 Evolution of the system with different parameters. a I1 with K ¼ 10; b I2 with K ¼ 10; c HwithK ¼ 10; d I1 withK ¼ 100; e

I2 with K ¼ 100; f H with K ¼ 100

Table 6 Values of the

parameters for different

cases

Parameters Set A (Chaos) Set B (Stage 1) Set C (Stage 2) Set D (Test)

a 0.08 1:2048� 10�4 1:2048� 10�4 0 or 0.5

b1, 30 1:0538� 10�1 1:0538� 10�1 0.01

b2 30.03 1:0538� 10�1 1:0538� 10�1 0.3

v 30.40 1:6221� 10�1 1:6221� 10�1 0.4

h1, 20.054 9:5000� 10�4 9:5000� 10�4 0.01

h2 20.12 3:5412� 10�2 3:5412� 10�2 0.02

c1, 26, 8:5000� 10�3 8:5000� 10�3 5� 10�2

c2 26, 1:0037� 10�3 1:0037� 10�3 6� 10�2

u 0.00009 0.2910 0.0973 0.009

/ 0.8 0.0107 0.0416 0.008

k 0.4 9:4522� 10�2 9:4522� 10�2 4� 10�4

q1, 1/14, 2:8133� 10�3 2:8133� 10�3 1/14

q2 0.002, 1:2668� 10�1 1:2668� 10�1 0.002

K 10 10 10 10 or 100
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self-awareness and sufficient medical resources are the

key to eliminate the threat of COVID-19.

To get better estimation results, we need to built a

proper model and also need to set proper parameters

for the systems. To the knowledge of authors, the

parameters of the system change as time since the

control from the government is different along with

time. Thus, we can also treat the parameters as

functions of time. If the values of b1, b2 and v are

large, the system can even become chaotic. When q2
takes larger values, it means that there are more people

which have like COVID-19-symptoms. In fact, the

government should take stronger and harsher mea-

sures to increase isolation, especially there are many

potential infections. Meanwhile, if the quarantine is

done well, the values of b1, b2 and v will be also much

smaller; thus, it is helpful to control the spread of the

epidemic disease.

6 Conclusion

In this paper, a SEIR model is proposed for the

COVID-19. Parameters of the system are estimated by

the PSO algorithm, and dynamics of the system is

investigated. Finally, how the parameters affect the

dynamics of the system is discussed and the control

strategies are presented. The conclusions of this paper

are given as follows.

(1) The proposed model has considered the quar-

antine and treatment, so it is more suitable for

the dynamics of the epidemic of COVID-19.

(2) The PSO algorithm provides a good way for

parameter estimation of the SEIR model. And

according to the application to the data of Hubei

province, the accuracy is acceptable. The main

trends of the epidemic evolution are illustrated.

(3) Nonlinear dynamics of the system is investi-

gated by means of bifurcation diagram, MSE

algorithm and 0–1 test algorithm. It shows that,

for the given parameters, if there exists season-

ality and stochastic infection, the system can

generate chaos.

(4) Some control suggestions are suggested based

on the proposed model. Meanwhile, we found

that the dynamics of the system is different with

different sets of parameters.
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12. Liu, J., Paré, P.E., Du, E., Sun, Z.: A networked sis disease

dynamics model with a waterborne pathogen. 2019 Amer-

ican Control Conference (ACC), pp. 2735–2740 (2019)

13. Cai, Y., Kang, Y., Wang, W.: A stochastic sirs epidemic

model with nonlinear incidence rate. Appl. Math. Comput.

305, 221–240 (2017)

14. Al-Rahman El-Nor Osman, M., Adu, I.K., Yang, C.: A

simple seir mathematical model of malaria transmission.

Asian Res. J. Math. 7, 1–22 (2017)

15. Almeida, R.: Analysis of a fractional seir model with

treatment. Appl. Math. Lett. 84, 56–62 (2018)

16. Chen, Y., Lu, P., Chang, C.: A time-dependent sir model for

COVID-19. (2020)

17. Tang, B., Wang, X., Li, Q., et al.: Estimation of the trans-

mission risk of the 2019-ncov and its implication for public

health interventions. J. Clin. Med. 9, 462 (2020)

18. Wu, J.T., Leung, K., Leung, G.M.: Nowcasting and fore-

casting the potential domestic and international spread of

the 2019-ncov outbreak originating in wuhan, china: a

modelling study. Lancet (Lond. Engl.) 395, 689–697 (2020)

19. Wang, H., Wang, Z., Dong, Y., et al.: Phase-adjusted esti-

mation of the number of coronavirus disease 2019 cases in

wuhan, china. Cell Discov. 6, 462 (2020)

20. Salarieh, H.: Chaos analysis in attitude dynamics of a

flexible satellite. Nonlinear Dyn. 93(3), 1421–1438 (2018)

21. Krysko, V.A.: Chaotic vibrations of flexible shallow axially

symmetric shells. Nonlinear Dyn. 91(4), 2271–2291 (2018)

22. Aihara, K., Suzuki, H.: Theory of hybrid dynamical systems

and its applications to biological and medical systems.

Philosoph. Trans. R. Soc. A Math. Phys. Eng. Sci. 368,

4893–4914 (2010)

23. Zhang, Q., Liu, C., Zhang, X.: Complexity, analysis and

control of singular biological systems (2012)

24. He, S., Fataf, N.A.A., Banerjee, S., et al.: Complexity in the

muscular blood vessel model with variable fractional

derivative and external disturbances. Physica A 526,

120904 (2019)

25. Kuznetsov, Y., Piccardi, C.: Bifurcation analysis of periodic

seir and sir epidemic models. J. Math. Biol. 32, 109–121

(1994)

26. He, S., Banerjee, S.: Epidemic outbreaks and its control

using a fractional order model with seasonality and

stochastic infection. Physica A 501, 408-407 (2018)

27. Wang, D., Tan, D., Liu, L.: Particle swarm optimization

algorithm: an overview. Soft Comput. 22, 387–408 (2018)

28. Peng, Y., Sun, K., He, S., Peng, D.: Parameter identification

of fractional-order discrete chaotic systems. Entropy 21, 27

(2019)

29. Aguiar, M.S., Kooi, B.W., Stollenwerk, N.: Epidemiology

of dengue fever: A model with temporary cross-immunity

and possible secondary infection shows bifurcations and

chaotic behaviour in wide parameter regions. Math. Model.

Natural Phenomena (2008)

30. Sun, K., Liu, X., Zhu, C.: The 0–1 test algorithm for chaos

and its applications. Chin. Phys. B 19(11), 110510 (2010)

31. He, S., Sun, K., Wang, H.: Complexity analysis and dsp

implementation of the fractional-order lorenz hyperchaotic

system. Entropy 17, 8299–8311 (2015)

32. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy

analysis of complex physiologic time series. Phys. Rev.

Lett. 6, 068102 (2002)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

1680 S. He et al.

https://arxiv.org/abs/2002.04482

	SEIR modeling of the COVID-19 and its dynamics
	Abstract
	Introduction
	SEIR modeling of the COVID-19
	Estimation of the model parameters
	The PSO algorithm
	Parameter estimation

	Nonlinear dynamics of the model
	SEIR model with seasonality and stochastic infection
	Bifurcation analysis of case 2
	Complexity of the case 2

	Discussion
	Conclusion
	Acknowledgements
	References


