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ABSTRACT

We introduce a digital wavelet-like transform, which is tailored specifically for
representing seismic data. The transform provides a multiscale orthogonal ba-
sis with basis functions aligned along seismic events in the input data. It is
defined with the help of the wavelet lifting scheme combined with local plane-
wave destruction. In the 1-D case, the seislet transform is designed to follow
locally sinusoidal components. In the 2-D case, it is designed to follow local
plane wave components with smoothly variable slopes. If more than one com-
ponent is present, the transform turns into an overcomplete representation or
a tight frame. In these terms, the classic digital wavelet transform is simply a
seislet transform for a zero frequency (in 1-D) or zero slope (in 2-D).
The main objective of the new transform is an effective seismic data compression
for designing efficient data analysis algorithms. Traditional signal processing
tasks such as noise attenuation and trace interpolation become simply defined in
the seislet domain. When applied in the offset direction on common midpoint or
common image point gathers, the seislet transform finds an additional application
in optimal stacking of seismic records.

INTRODUCTION

Wavelet transforms have found many applications in science and engineering (Mallat,
2009), including geophysics (Foster et al., 1994; Dessing, 1997; Wapenaar et al., 2005;
Kazemeini et al., 2009). The power of wavelet transforms, in comparison with the
classic Fourier transform, lies in their ability to represent non-stationary signals. As
a result, wavelets can provide a compact basis for non-stationary data decomposition.
Having a compact basis is useful both for data compression and for designing efficient
numerical algorithms.

A number of wavelet-like transforms that explore directional characteristics of im-
ages have been proposed in the image analysis literature (Welland, 2003). Among
those transforms are bandelets (Pennec and Mallat, 2005), contourlets (Do and Vet-
terli, 2005), curvelets (Starck et al., 2002), directionlets (Velisavljevic, 2005), shear-
lets (Guo and Labate, 2007), etc. Unlike isotropic wavelets, directional transforms
attempt to design basis functions so that they appear elongated anisotropically along
2-D curves or 3-D surfaces, which might be characteristic for an image. Therefore,
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these transforms achieve better accuracy and better data compression in represent-
ing non-stationary images with curved edges. Curvelets are particularly appropriate
for seismic data because they provide a provably optimal decomposition of wave-
propagation operators (Candés and Demanet, 2005). Application of the curvelet
transform to seismic imaging and seismic data analysis has been an area of active
research (Herrmann et al., 2007; Douma and de Hoop, 2007; Chauris and Nguyen,
2008; Herrmann and Hennenfent, 2008).

Although the wavelet theory originated in seismic data analysis (Morlet, 1981),
none of the known wavelet-like transforms were designed specifically for seismic data.
Even though some of the transforms are applicable for representing seismic data, their
original design was motivated by different kinds of data, such as piecewise-smooth
images. In this paper, we investigate the possibility of designing a transform tailored
specifically for seismic data. In analogy with the previous naming games, we call such
a transform the seislet transform (Fomel, 2006).

In seismic data analysis, it is common to represent signals as sums of sinusoids (in
1-D) or plane waves (in 2-D) with the help of the digital Fourier transform (DFT).
Certain methods for seismic data regularization, such as the anti-leakage Fourier
transform (Xu et al., 2005), the Fourier reconstruction method (Zwartjes and Gisolf,
2006, 2007; Zwartjes and Sacchi, 2007), or POCS (Abma and Kabir, 2006) rely on
the ability to represent signals sparsely in the transform domain. The digital wavelet
transform (DWT) is often preferred to the Fourier transform for characterizing digital
images, because of its ability to localize events in both time and frequency domains
(Jensen and la Cour-Harbo, 2001; Mallat, 2009). However, DWT may not be optimal
for describing data that consist of individual sinusoids or plane waves. It is for those
kinds of data that the seislet transform attempts to achieve an optimally compact
representation.

The approach taken in this paper follows the general recipe for digital wavelet
transform construction known as the lifting scheme (Sweldens, 1995). The lifting
scheme provides a convenient and efficient construction for digital wavelet transforms
of different kinds. The key ingredients of this scheme are a prediction operator and an
update operator defined at different digital scales. The goal of the prediction operator
is to predict regular parts of the input data so that they could be subtracted from
the analysis. The goal of the update operator is to carry essential parts of the input
data to the next analysis scale. Conventional wavelet transforms use prediction and
update operators designed for characterizing locally smooth images. In this paper,
we show how designing prediction and update tailored for seismic data can improve
the effectiveness of the transform in seismic applications. In 1-D, our prediction and
update operators focus on predicting sinusoidal signals with chosen frequencies. In
2-D and 3-D, we use predictions along locally dominant event slopes found by the
method of plane-wave destruction (Claerbout, 1992; Fomel, 2002). One can extend
the idea of the seislet transform further by changing the definition of prediction and
update operators in the lifting scheme (Liu and Fomel, 2009).

The seislet transform decomposes a seismic image into an orthogonal basis which
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is analogous to the wavelet basis but aligned along dominant seismic events. In 1-
D, the classic wavelet transform is equivalent to the seislet transform with a zero
frequency. In 2-D, the wavelet transform in the horizontal direction is equivalent
to the seislet transform with a zero slope. When more than one frequency or more
than one slope field are employed for analysis, the seislet transform turns into an
overcomplete representation or a tight frame.

The paper is organized as follows. We start by reviewing the digital wavelet
transform and the lifting scheme. Next, we modify the lifting scheme to define 1-D
and 2-D seislet transforms. Finally, we generalize the transform construction to a
frame. We illustrate applications of both the seislet transform and the seislet frame
with synthetic and field data examples.

LIFTING SCHEME FOR WAVELET TRANSFORMS

In order to define the new transform, we follow the general recipe for digital wavelet
transforms provided by Sweldens and Schröder (1996). In the most general terms,
the lifting scheme (Sweldens, 1995) can be defined as follows:

1. Organize the input data as a sequence of records.

2. Break the data into even and odd components e and o.

3. Find a residual difference r between the odd component and its prediction from
the even component:

r = o−P[e] , (1)

where P is a prediction operator.

4. Find a coarse approximation c of the data by updating the even component

c = e+U[r] , (2)

where U is an update operator.

5. The coarse approximation c becomes the new data, and the sequence of steps
is repeated at the next scale level.

A digital wavelet transform consists of data approximation at the coarsest level and
residuals from all the levels. The key in designing an effective transform is making
sure that the prediction operator P leaves small residuals while the update operatorU
preserves essential features of the original data while promoting them to the next scale
level. For example, one can obtain the classic Haar wavelet by defining the prediction
operator as a simple shift from the nearest sample:

P[e]k = ek , (3)
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with the update operator designed to preserve the DC (zero frequency) compo-
nent of the signal. Alternatively, the (2, 2) Cohen-Daubechies-Feauveau biorthogonal
wavelets (Cohen et al., 1992) are constructed by making the prediction operator a
linear interpolation between two neighboring samples,

P[e]k = (ek−1 + ek) /2 , (4)

and by constructing the update operator to preserve the running average of the signal
(Sweldens and Schröder, 1996), as follows:

U[r]k = (rk−1 + rk) /4 . (5)

The digital wavelet transform is an efficient operation. Assuming that the predic-
tion and update operation take a constant cost per record, the number of operations
at the finest scale is proportional to the total number of records N , the next scale
computation takes O(N/2), etc. so that the total number of operations is propor-
tional to N +N/2+N/4+ . . .+2 = 2 (N − 1), which is smaller than the O(N logN)
cost of the Fast Fourier Transform.

The digital wavelet transform is also easily invertible. Reversing the lifting scheme
operations provides the inverse transform algorithm, as follows:

1. Start with the coarsest scale data representation c and the coarsest scale residual
r.

2. Reconstruct the even component e by reversing the operation in equation 2, as
follows:

e = c−U[r] , (6)

3. Reconstruct the odd component o by reversing the operation in equation 1, as
follows:

o = r+P[e] , (7)

4. Combine the odd and even components to generate the data at the previous
scale level and repeat the sequence of steps.

Figure 1 shows a classic benchmark image from the image analysis literature and
its digital wavelet transform using 2-D biorthogonal wavelets. Thanks to the general
smoothness of the “Lena” image, the residual differences from equation 2 (stored as
wavelet coefficients at different scales) have a small dynamic range, which enables an
effective compression of the image in the transform domain. Wavelet compression
algorithms are widely used in practice for compression of natural images. As for
compression of seismic data, the classic DWT may not be optimal, because it does not
take into account the specific nature of seismic data patterns. In the next section, we
turn the wavelet transform into the seislet transform, which is tailored for representing
seismic data.
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(a)

(b)

Figure 1: Benchmark “Lena” image from image analysis literature (a) and its 2-D
digital wavelet transform using bi-orthogonal wavelets (b).
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FROM WAVELETS TO SEISLETS

We adopt the general idea of the lifting scheme to transforming seismic data. The
key idea of the seislet transform (Fomel, 2006) is recognizing that

• seismic data can be organized as collections of traces or records;

• prediction of one seismic trace or record from the other and update of records
on the next scale should follow features characteristic for seismic data.

1-D seislet transform

The prediction and update operators employed in the lifting scheme can be under-
stood as digital filters. In the Z-transform notation, the Haar prediction filter from
equation 3 is

P (Z) = Z (8)

(shifting each sample by one), and the linear interpolation filter from equation 4 is

P (Z) = 1/2 (1/Z + Z) . (9)

These predictions are appropriate for smooth signals but may not be optimal for a
sinusoidal signal. In comparison, the prediction

P (Z) = Z/Z0 , (10)

where Z0 = ei ω0∆t, perfectly characterizes a sinusoid with ω0 circular frequency sam-
pled on a ∆t grid. In other words, if a constant signal (ω0 = 0) is perfectly predicted
by shifting each trace to its neighbor, a sinusoidal signal (ω0 6= 0) requires the shift
to be modulated by an appropriate frequency. Likewise, the linear interpolation in
equation 9 needs to be replaced by a filter tuned to a particular frequency in order
to predict a sinusoidal signal with that frequency perfectly:

P (Z) = 1/2 (Z0/Z + Z/Z0) . (11)

The analysis easily extends to higher-order filters.

2-D seislet transform

If we view seismic data as collections of traces, we can predict one trace from the other
by following local slopes of seismic events. Such a prediction is a key operation in the
method of plane-wave destruction (Fomel, 2002). In fact, it is the minimization of
prediction error that provides a criterion for estimating local slopes (Claerbout, 1992).
For completeness, we include a review of plane-wave destruction in the appendix.
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The prediction and update operators for a simple seislet transform are defined by
modifying the biorthogonal wavelet construction in equations 4-5 as follows:

P[e]k =
(
S
(+)
k [ek−1] + S

(−)
k [ek]

)
/2 (12)

U[r]k =
(
S
(+)
k [rk−1] + S

(−)
k [rk]

)
/4 , (13)

where S
(+)
k and S

(−)
k are operators that predict a trace from its left and right neigh-

bors correspondingly by shifting seismic events according to their local slopes. The
predictions need to operate at different scales, which, in this case, mean different
separation distances between the traces. Equations 12-13, in combination with the
forward and inverse lifting schemes 1-2 and 6-7, provide a complete definition of the
2-D seislet transform.

Figure 2(a) shows a synthetic seismic image from Claerbout (2008). After estimat-
ing local slopes from the image by plane-wave destruction (Figure 2(b)), we applied
the 2-D seislet transform described above. The transform is shown in Figure 3(b)
and should be compared with the corresponding wavelet transform in Figure 3(a).
Apart from the fault and unconformity regions, where the image is not predictable
by continuous local slopes, the 2-D seislet transform coefficients are small, which en-
ables an effective compression. In contrast, the wavelet transform has small residual
coefficients at fine scales but develops large coefficients at coarser scales. Figure 4
shows a comparison between the decay of coefficients (sorted from large to small)
between the wavelet transform and the seislet transform. A significantly faster decay
of the seislet coefficients is evident.

Effectively, the wavelet transform in this case is equivalent to the 2-D seislet trans-
form with the erroneous zero slope. Figure 5 shows example basis functions for the
wavelet and 2-D seislet transform used in this example. If using only a small number
of the most significant coefficients, the wavelet transform fails to reconstruct the most
important features of the original image, while the 2-D seislet transform achieves an
excellent reconstruction (Figure 6). We use the method of soft thresholding (Donoho,
1995) for selecting the most significant coefficients.

Example applications of 2-D seislet transform

In this section, we discuss some example applications of the 2-D seislet transform.

Denoising and trace interpolation

Figure 7(a) shows a common-midpoint gather from a North Sea dataset. Plane-wave
destruction estimates local slopes shown in Figure 7(b) and enables the 2-D seislet
transform shown in Figure 8(a). Small dynamic range of seislet coefficients implies a
good compression ratio. Figure 8(b) shows data reconstruction using only 5% of the
significant seislet coefficients.
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(a)

(b)

Figure 2: Synthetic seismic image (a) and local slopes estimated by plane-wave de-
struction (b).
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(a)

(b)

Figure 3: Wavelet transform (a) and seislet transform (b) of the synthetic image from
Figure 2.
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Figure 4: Transform coefficients sorted from large to small, normalized, and plotted
on a decibel scale. Solid line: seislet transform. Dashed line: wavelet transform.
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(a)

(b)

Figure 5: Randomly selected representative basis functions for wavelet transform (a)
and seislet transform (b).
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(a)

(b)

Figure 6: Synthetic image reconstruction using only 1% of significant coefficients
(a) by inverse wavelet transform (b) by inverse seislet transform. Compare with
Figure 2(a).
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If we choose the significant coefficients at the coarse scale and zero out difference
coefficients at the finer scales, the inverse transform will effectively remove incoherent
noise from the gather (Figure 8). Thus, denoising is a naturally defined operation in
the 2-D seislet domain (Figure 9).

If we extend the seislet transform domain and interpolate the smooth local slope
to a finer grid, the inverse seislet transform will accomplish trace interpolation of the
input gather (Figure 10). We extend not simply with zeros but with small random
noise to account for the fact that realistic noise is unpredictable and therefore exists
on different scale levels. In this example, the number of traces is increased by four.
Thus, trace interpolation also turns out to be a natural operation when viewed from
the 2-D seislet domain.

Seislet stack

The seislet transform acquires a special meaning when applied in the offset direc-
tion on common midpoint or common image point gathers. According to the lifting
construction, the zero-order seislet coefficient is nothing more than seismic stack com-
puted in a recursive manner by successive partial stacking of neighboring traces. As
a consequence, seislet stack avoids the problem of “NMO stretch” associated with
usual stacking (Haldorsen and Farmer, 1989) as well as the problem of nonhyperbolic
moveouts Fomel and Grechka (2001). All other gather attributes including multiple
reflections and amplitude variation with offset appear in the higher order seislet co-
efficients. Figure 11 shows a comparison between the conventional normal moveout
stack and the seislet stack. The higher resolution of the seislet stack is clearly visible.
Figure 12 compares the common-midpoint gather after conventional normal move-
out correction and an effective seislet moveout computed by separating contributions
from individual traces to the seislet stack.

FROM TRANSFORM TO FRAME

The 1-D and 2-D transforms, defined in the previous sections, are appropriate for
analyzing signals, which have a single dominant sinusoid or plane-wave component.
In practice, it is common to analyze signals composed of multiple sinusoids (in 1-D)
or plane waves (in 2-D). If a range of frequencies or plane-wave slopes is chosen, and
the appropriate transform is constructed for each of them, all the transform domains
taken together will constitute an overcomplete representation or a frame (Mallat,
2009).

Mathematically, if Fn is the orthonormal seislet transform for n-th frequency or
plane wave, then, for any data vector d,

N∑

n=1

‖Fn d‖
2 =

N∑

n=1

dT FT
n Fn d =

N∑

n=1

‖d‖2 = N ‖d‖2 , (14)
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(a)

(b)

Figure 7: Common-midpoint gather (a) and local slopes estimated by plane-wave
destruction (b).
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(a)

(b)

Figure 8: Seislet transform of the input gather (a) and (a) and data reconstruction
using only 5% of significant seislet coefficients (b).
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(a)

(b)

Figure 9: Zeroing seislet difference coefficients at fine scales (a) enables effective
denoising of the reconstructed data (b).
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(a)

(b)

Figure 10: Extending seislet transform with random noise (a) enables trace interpo-
lation in the reconstructed data. The interpolated section (b) has 4 times more traces
than the original shown in Figure 7(a).
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Figure 11: Left: conventional normal-moveout stack. Right: seislet stack.
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(a)

(b)

Figure 12: Input gather after normal moveout correction (a) and effective seislet
moveout (b).
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which means that all transforms taken together constitute a tight frame with constant
N .

For example, in the 1-D case, one can find appropriate frequencies by autoregres-
sive spectral analysis (Burg, 1975; Marple, 1987). We define the algorithm for the
1-D seislet frame as follows:

1. Select a range of coefficients Z1, Z2, . . . , Zk. When using autoregressive spectral
analysis, these coefficients are simply the roots of the prediction-error filter.
Alternatively, they can be defined from an appropriate range of frequencies
ω1, ω2, . . . , ωk.

2. For each of the coefficients, perform the 1-D seislet transform.

Because of its over-completeness, a frame representation for a given signal is not
unique. In order to assure that different frequency components do not leak into other
parts of the frame, it is advantageous to employ sparseness-promoting inversion. We
adopt a nonlinear shaping regularization scheme (Fomel, 2008), analogous to the
sparse inversion method of Daubechies et al. (2004), and define sparse decomposition
as an iterative process

f̂k+1 = S[Fd+ (I− FF′) f̂k] , (15)

fk+1 = fk + Fd− FF′f̂k+1 , (16)

where fk is the seislet frame at k-th iteration, f̂k is an auxiliary quantity, d is input
data, I is the identity operator, F and F′ are frame construction and deconstruction
operators

F ≡
[
F1 F2 · · · Fk

]T
,

F′ ≡
[
F−1

1 F−1
2 · · · F−1

k

]
,

where Fj is the seislet transform for an individual frequency, and S is a nonlinear
shaping operator, such as soft thresholding (Donoho, 1995). The iteration 15-16 starts
with f0 = 0 and f̂0 = Fd and is related to the linearized Bregman iteration (Osher
et al., 2005; Yin et al., 2008). We find that a small number of iterations is usually
sufficient for convergence and achieving both model sparseness and data recovery.

1-D data analysis with 1-D seislet frame

We use a simple synthetic test to verify the compression effectiveness of 1-D seislet
frame. A test signal mixing two sinusoids with different frequencies and some random
noise is displayed in Figure 13(a). We use a prediction-error filter to detect the signal
frequencies and to design the corresponding seislet frame. The result is shown in Fig-
ure 13(b). The 1-D seislet frame algorithm with shaping regularization compresses
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the sinusoidal signal into two nearly perfect impulses with some dispersive random
noise. For comparison, we also apply DFT and DWT to transform the signal (Fig-
ures 13(d) and 13(c)). In the Fourier transform domain, the signal appears as two
impulses corresponding to the chosen frequency components. The resolution is not
perfect because of spectral leakage caused by non-periodic input data. In the wavelet
domain, the transform coefficients are not compressed well. For further comparison,
we plot the coefficients in the three different transform domains, sorted from large to
small, on a decibel scale (Figure 14). The significantly faster rate of coefficient decay
shows the superiority of the 1-D seislet frame in compressing sinusoidal signals.

(a) (b)

(c) (d)

Figure 13: Mixed sinusoidal signal (a), 1-D seislet frame (b), 1-D wavelet transform
(c), and 1-D Fourier transform (d).

2-D data analysis with 1-D seislet frame

To analyze 2-D data, one can apply 1-D seislet frame in the distance direction after the
Fourier transform in time (the F -X domain). In this case, different frame frequencies
correspond to different plane-wave slopes (Canales, 1984). We use a simple plane-
wave synthetic model to verify this observation (Figure 15(a)). The F -X plane is
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Figure 14: Compression comparison between digital Fourier transform, digital wavelet
transform, and 1-D seislet frame. Transform coefficients are sorted from large to small,
normalized, and plotted on a decibel scale.
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shown in Figure 15(b). We find a prediction-error-filter (PEF) in each frequency slice
and detect its roots to select appropriate spatial frequencies. We use Burg’s algorithm
for PEF estimation (Burg, 1975; Claerbout, 1976) and an eigenvalue-based algorithm
for root finding (Edelman and Murakami, 1995). The seislet coefficients and the
corresponding recovered plane-wave components are shown in Figure 16. Similarly to
the 1-D example, information from different plane-waves gets strongly compressed in
the transform domain.

2-D data analysis with 2-D seislet frame

To show an example of 2-D data analysis with 2-D seislet frames, we use the CMP
gather from Figure 7(a). We try two different choices for selecting a set of dip fields
for the frame construction.

First, we define dip fields by scanning different constant dips (Figure 17(a)). In
this case, the zero-scale coefficients out of the 2-D seislet frame correspond to the
slant-stack (Radon transform) gather (Figure 18(a)). Figure 19(a) shows randomly
selected example frame functions for the 2-D seislet frame using constant dips

Our second choice is a set of dip fields defined by the hyperbolic shape of seismic
events on the CMP gather:

t(x) =

√

t20 +
x2

v2
, (17)

where t(x) is traveltime for reflection at offset x, t0 is the zero-offset traveltime, and
v is the root-mean-square velocity. For a range of constant velocities, the direct
relationship between dip and velocity is given by

p =
dt

dx
=

x

v2t
. (18)

The dip field p(x, t, v) is shown in Figure 17(b). Analogously to the case of constant
dips, the frame coefficients at the zero scale correspond to the hyperbolic Radon
transform (Thorson and Claerbout, 1985), with the primary and multiple reflections
distributed in different velocity ranges (Figure 18(b)). Figure 19(b) shows randomly
selected frame functions for the 2-D seislet frame with varying dip fields defined by a
range of constant velocities.

DISCUSSION

How efficient are the proposed algorithms? The CPU times, in our implementation,
are shown in Table 1. They confirm that, while the seislet transform and frame
can be more expensive than FFT or DWT, they are still comfortably efficient in
practice. In applications of the 2-D seislet transform, the main cost may not be in
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(a)

(b)

Figure 15: Synthetic plane-wave data (a) and corresponding Fourier transform along
the time direction (b).

Data size 1-D FFT 1-D DWT 1-D seislet 2-D seislet
1024× 1024 0.06 0.03 0.17 1.03
512× 512 0.02 0.01 0.04 0.22

Table 1: CPU times (in seconds) for different transforms.
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(a)

(b)

(c)

Figure 16: Seislet coefficients (left) and corresponding recovered plane-wave compo-
nents (right) for three different parts of the 1-D seislet frame in the F -X domain.
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(a)

(b)

Figure 17: Constant dip field (a) and time and space varying dip field (b).
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(a)

(b)

Figure 18: 2-D seislet frame coefficients with constant dip field (a) and with varying
dip field (b).
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(a)

(b)

Figure 19: Randomly selected representative frame functions for 2-D seislet frame
with constant dip field (a) and varying dip field (b).
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the transform itself but in iterative estimation of the slope fields. In practical large-
scale applications, it is advantageous to break the input data in parts and process
them in parallel.

How effective are the seislet transform and frame in compressing seismic data? In
the case of the 2-D seislet transform that requires a slope field, it appears that one
would need to store this field in addition to the compressed data. However, since
we force the estimated slopes to be smooth, the slope field can be easily compressed
with one of the classic compression algorithms. Consider the example in Figure 2.
Suppose that we apply lossy compression and require 99% of the energy to be pre-
served. The seislet transform compression ratio in this case is less that 1% while
the corresponding wavelet transform ratio is 26%. Applied to the smooth slope field
from Figure 2(b), the wavelet transform compresses it to about 0.1%. This example
shows that compressing seismic data with the seislet transform and the corresponding
slope field with the wavelet transform can be significantly more effective that trying
to compress seismic data with the wavelet transform.

CONCLUSIONS

We have introduced a new digital transform named seislet transform because of its
ability to characterize and compress seismic data in the manner similar to that of
digital wavelet transforms. We define the seislet transform by combining the wavelet
lifting scheme with local plane-wave destruction. In 1-D, the seislet transform follows
sinusoidal components. In 2-D, it follows locally plane events. When more than one
sinusoid or more than one local slope are applied for the analysis, the transform
turns into an overcomplete representation or a frame. The seislet transform and
seislet frame can achieve a better compression ratio than either the digital Fourier
transform (DFT) or the digital wavelet transform (DWT).

The seislet transform provides a convenient orthogonal basis with the basis func-
tions spanning different scales analogously to those of the digital wavelet transform
but aligned along the dominant seismic events. Traditional signal analysis operations
such as denoising and trace interpolation become simply defined in the seislet domain
and allow for efficient algorithms. Seismic stacking also has a simple meaning of the
zeroth-order seislet coefficient computed in an optimally efficient manner by recur-
sive partial stacking and thus avoiding the usual problems with wavelet stretch and
nonhyperbolic moveouts.
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APPENDIX A

REVIEW OF PLANE-WAVE DESTRUCTION

This appendix reviews the basic theory of plane-wave destruction (Fomel, 2002).

Following the physical model of local plane waves, we define the mathematical
basis of plane-wave destruction filters via the local plane differential equation (Claer-
bout, 1992)

∂P

∂x
+ σ

∂P

∂t
= 0 , (A-1)

where P (t, x) is the wave field, and σ is the local slope, which may also depend on t
and x. In the case of a constant slope, equation A-1 has the simple general solution

P (t, x) = f(t− σx) , (A-2)

where f(t) is an arbitrary waveform. Equation A-2 is nothing more than a mathe-
matical description of a plane wave.

If we assume that the slope σ does not depend on t, we can transform equation A-1
to the frequency domain, where it takes the form of the ordinary differential equation

dP̂

dx
+ iω σ P̂ = 0 (A-3)

and has the general solution

P̂ (x) = P̂ (0) eiω σx , (A-4)

where P̂ is the Fourier transform of P . The complex exponential term in equation A-4
simply represents a shift of a t-trace according to the slope σ and the trace separation
x.

In the frequency domain, the operator for transforming the trace x − 1 to the
neighboring trace x is a multiplication by eiω σ. In other words, a plane wave can be
perfectly predicted by a two-term prediction-error filter in the F -X domain:

a0 P̂ (x) + a1 P̂ (x− 1) = 0 , (A-5)

where a0 = 1 and a1 = −eiω σ. The goal of predicting several plane waves can be
accomplished by cascading several two-term filters. In fact, any F -X prediction-error
filter represented in the Z-transform notation as

A(Zx) = 1 + a1Zx + a2Z
2
x + · · ·+ aNZ

N
x (A-6)

can be factored into a product of two-term filters:

A(Zx) =
(
1−

Zx

Z1

)(
1−

Zx

Z2

)
· · ·

(
1−

Zx

ZN

)
, (A-7)
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where Z1, Z2, . . . , ZN are the zeroes of polynomial A-6. According to equation A-5,
the phase of each zero corresponds to the slope of a local plane wave multiplied by
the frequency. Zeroes that are not on the unit circle carry an additional amplitude
gain not included in equation A-3.

In order to incorporate time-varying slopes, we need to return to the time domain
and look for an appropriate analog of the phase-shift operator A-4 and the plane-
prediction filter A-5. An important property of plane-wave propagation across differ-
ent traces is that the total energy of the propagating wave stays invariant throughout
the process: the energy of the wave at one trace is completely transmitted to the next
trace. This property is assured in the frequency-domain solution A-4 by the fact that
the spectrum of the complex exponential eiω σ is equal to one. In the time domain, we
can reach an equivalent effect by using an all-pass digital filter. In the Z-transform
notation, convolution with an all-pass filter takes the form

P̂x+1(Zt) = P̂x(Zt)
B(Zt)

B(1/Zt)
, (A-8)

where P̂x(Zt) denotes the Z-transform of the corresponding trace, and the ratio
B(Zt)/B(1/Zt) is an all-pass digital filter approximating the time-shift operator eiωσ.
In finite-difference terms, equation A-8 represents an implicit finite-difference scheme
for solving equation A-1 with the initial conditions at a constant x. The coefficients of
filter B(Zt) can be determined, for example, by fitting the filter frequency response at
low frequencies to the response of the phase-shift operator. This leads to a version of
Thiran’s maximally-flat all-pass fractional-delay filters (Thiran, 1971; Välimäki and
Laakso, 2001).

Taking both dimensions into consideration, equation A-8 transforms to the pre-
diction equation analogous to A-5 with the 2-D prediction filter

A(Zt, Zx) = 1− Zx

B(Zt)

B(1/Zt)
. (A-9)

In order to characterize several plane waves, we can cascade several filters of the
form A-9 in a manner similar to that of equation A-7. A modified version of the filter
A(Zt, Zx), namely the filter

C(Zt, Zx) = A(Zt, Zx)B(1/Zt) = B(1/Zt)− ZxB(Zt) , (A-10)

avoids the need for polynomial division. In case of a 3-point filter B(Zt), the 2-D
filter A-10 has exactly six coefficients. It consists of two columns, each column having
three coefficients and the second column being a reversed copy of the first one.
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