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Abstract

Most acoustic impedance sparse inversion methods include two parts: reflectivity inversion and
extraction of acoustic impedance from reflectivity. This being the case, the acoustic impedance is
easily affected by reflectivity and the value of acoustic impedance at time t=0, thus may
become inaccurate. In this paper, we propose a seismic acoustic impedance inversion method
with multi-parameter regularization. In our method, the acoustic impedance is calculated directly
from objective functions to ensure the stability and accuracy of results. In addition, the total
variation regularization, L1 norm constraint, and initial model constraint are used to make the
inversion results better accordant with a priori geological information. Moreover, we use multi-
trace inversion to reflect the spatial and temporal correlation of the data. Since the objective
function contains several different types of regularization term, we have developed an algorithm
based on split Bregman iteration to calculate it. The inversion results of theoretical model and
field data show that the proposed method has high inversion precision, strong anti-noise ability
and good performance on stratigraphy delineation.

Keywords: L1 norm, total variation, impedance inversion, regularization
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1. Introduction

Seismic acoustic impedance (AI) is a rock property that is inti-
mately related to lithology, porosity, pore fill, and other factors
(Latimer et al 2000). Obtaining AI from seismic data is one of
the central goals of reflection seismology (Walker and
Ulrych 1983, Ghosh 2000). To achieve this goal, scholars have
put forward many AI inversion methods. They are very useful
for quantitative interpretation of seismic data (Mabrouk 2010,
Hao et al 2014). Therefore, AI inversion is always the research
hotspot of exploration seismology. The conventional AI inver-
sion methods, such as Band-limited Inversion (Lindseth 1979),
Generalized Linear Inversion (Cooke and Schneider 1983),
Stochastic Sparse-spike Inversion (Velis 2006, 2008) are based

on an L2 norm optimization approach with Tikhonov-type
regularization. These methods are easily affected by the noise in
seismic data, and this may lead to incorrect inversion results (Liu
et al 2015). In addition, these methods also cause vertical
interfaces to appear too smooth, making it difficult to distinguish
formation boundaries (Zhang et al 2013).

While the seismic inversion methods based on L2 norm
regularization were flourishing, the L1 norm regularization
method was also becoming more and more popular in seismic
inversion. It has been widely used in the fields of seismic
deconvolution (Taylor et al 1979, Levy and Fullagar 1981,
Santosa and Symes 1986), inversion (Oldenburg et al 1983,
Bube and Langan 1997, Loris et al 2007), data reconstruction
(Zwartjes and Gisolf 2007), and multiple removal (Guitton
and Verschuur 2004), etc. In this paper, we focus on its
application in AI inversion. In recent years, the new progress
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in this area has mainly been as follows. Wang (2010) pro-
posed an L1 norm constrained regularization model for AI
inversion, and developed a nonmonotone gradient descent
method to solve the regularization problem. Zhang et al

(2014) proposed a seismic inversion method based on L1
norm misfit function with total variation (TV) regularization.
This method is appropriate to solving the inverse problem
when outliers exist in the seismic data and discontinuities
such as layer interfaces need to be clearly delineated. Liu et al
(2015) proposed an L1 norm regularized inversion method
which has strong anti-noise ability. These L1 norm regular-
ization AI inversion methods are generally implemented by
two sequential inversion steps (called Two-step AI inversion
based on L1 norm regularization): first, the L1 norm is used to
impose the sparse constraint on the reflectivity, by solving the
L1 norm optimization problem to obtain the sparse reflec-
tivity. The second step is to invert the reflectivity for AI using
a recursion formula.

However, there are some defects in these methods. In the
first step, the reflectivity obtained may be inaccurate due to
the band-limit of seismic data and the noise (Berteussen and
Ursin 1983, Cooke and Schneider 1983, Hendrick and
Hearn 1993). In the second step, AI is obtained from

ò h h=
⎡

⎣⎢
⎤

⎦⎥
( ) ( ) ( )t tI I Rexp 2 d

t

t

0
0

(Zhang et al 2014), where

( )tI is the AI at time=t, R is the reflectivity, and ( )tI 0 is the
AI at time t=0. We can find that the result of AI inversion
depends on the AI at time t=0 and the result of the reflec-
tivity obtained from the first step. If ( )tI 0 or R is inaccurate,
the result of the AI will not be accurate. Actually, the AI at the
time t=0 is usually very difficult to find precisely. Fur-
thermore, there is a difference between the reflectivity
obtained from the first step and the true reflectivity. Mean-
while, the AI is obtained from the reflectivity by integrating,
which can result in the error of the reflectivity at the present
time being accumulated to the AI at the subsequent times. The
AI sparse inversion method proposed in this paper can solve
this problem. In our method, the logarithm of AI is the
optimization target, and we have no need to know the AI at
time t=0. Due to the excellent work of Goldstein and Osher
(2009), we can use the split Bregman iteration algorithm to
solve this kind of optimization problem. Using the proposed
method we can obtain the AI and reflectivity simultaneously.

Most conventional inversion methods are trace-by-trace
operations, and thus do not allow spatial regularization of the
AI map. Trace-by-trace inversion results are easily affected by
noise, leading to a noisy AI section and so masking important
geologic features (Hamid and Pidlisecky 2015). Therefore,
some scholars put forward the multi-trace AI inversion
method. Gholami (2015) proposed nonlinear multichannel AI
inversion based on TV regularization. He first used the robust
and automatic multichannel blind deconvolution algorithm to
extract the reflectivity section from the data. Then he solved
the nonlinear AI problem by inverting the generated reflec-
tivity model to a regularized AI model. Yuan et al (2015)
presented the simultaneous multi-trace AI inversion with
transform-domain sparsity promotion. The authors found that

the proposed method contributes to stabilizing the inversion,
reducing the influence of high-wavenumber noise on the
inverted result, and exploring spatial continuities of struc-
tures. Hamid and Pidlisecky (2015) put forward the multi-
trace AI inversion with lateral constraints. The inversion
results produced well-defined horizontal boundaries, while
suppressing noise.

TV regularization is suitable for extracting discontinuities
or sudden changes in AI, such as strong faults or salt bodies
(Zhang et al 2014). Therefore, Zhang et al applied TV reg-
ularization to AI inversion. Gholami (2015) applied the TV
regularization to nonlinear multichannel AI inversion to
obtain blocky AI structures. In order to outline the abrupt
changes in AI and obtain blocky AI structures, TV regular-
ization is used in our method. Furthermore, considering the
band-limited nature of seismic data, we add an initial model
constraint as a regularization term to ensure the inversion
result contains low frequency information and reduce non-
uniqueness of the inversion.

TV regularization, L1 norm regularization, initial model
constraints and multi-trace inversion have different effects on
the AI inversion. These regularization constraints have been
used in existing AI inversion methods, but there is no method
using all these regularization constraints simultaneously.
There is no doubt that more a priori constraints used in
inverse problems lead to better inversion results. For this
reason, this article presents the multi-trace AI sparse inversion
method with the TV regularization, L1 norm regularization
and initial model constraint. Due to these regularization
constraints, the objective function contains several different
types of regularization term. We adopt the split Bregman
iterative algorithm to decouple it into several simple formulae
for calculation.

The main innovations of this paper are as follows: (1)
The AI is obtained directly from the objective function rather
than the reflectivity. (2) TV regularization, L1 norm reg-
ularization, initial model constraint and multi-trace inversion
are all used in the inversion process to improve the inversion
quality. (3) An algorithm is developed to solve seismic
inversion problems containing several different types of reg-
ularization term.

2. Methodology

2.1. Forward model

A convolution model is often used as the forward model in
the seismic inversion. A single seismic trace can be expressed
as

= Ä +( ) ( ) ( ) ( ) ( )s t w t r t n t 1

where s(t) is the seismic trace, w(t) is a band-limited wavelet
assumed to be stationary, t represents the time series, the
symbol ‘Ä’ indicates the convolution operation, r(t) repre-
sents the reflectivity, and n(t) represents the noise.

In the AI inversion, if the AI i(t) can be expressed as a
continuous function of time t, then the reflectivity r(t) can be
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written as (Russell 1988).

=( )
( )

( )
( )r t

i t

t i t

d

d

1

2
. 2

Equation (2) can be written as

=( )
( ( ))

( )r t
i t

t

1

2

d ln

d
. 3

Yilmaz (2001) pointed out that for a strong reflecting
layer a representative reflectivity is about 0.2. When the
reflectivity is less than 0.3, (3) can be discretized as (Walker
and Ulrych 1983)

-

=

-
-

-
   

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

( )

( )

( )

( ( ))

( ( ))

( ( ))

( )

m m

r

r

r

i

i

i

1

2

1

1

2

1 1
1 1

1 1

ln 1

ln 2

ln

. 4

Let D be the form of equation (5)

=

-
-

-
 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

( )D
1

2

1 1
1 1

1 1

5

then (4) in matrix form as

= ( )r D l 6

where = -[ ]( ) ( ) ( )r r r mr 1 2 1
T and = [ ( ( ))il ln 1

( ( )) ( ( ))]i i mln 2 ln T are the 1D reflectivity and the loga-
rithm of AI respectively. T denotes the transpose. m is the
number of sampling point of AI.

The 2D seismic convolution model can be expressed as

*= + ( )S W R N 7

where S is the 2D seismic section, W is the wavelet matrix, R
is the 2D reflectivity matrix, the symbol ‘*’ indicates matrix
multiplication, and N represents the 2D noise matrix. If the
length of wavelet and reflectivity are p and q respectively,
then W can be written as

*

=

+ -

 
 

 

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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( )

( )

w
w w

w

w w

w w

w

W . 8p

p

p
p q q

1

2 1

2

1

2

1

If we extend the reflectivity and AI in (6) to the 2D case,
by (6) and (7), the relation between the 2D seismic section
and the AI can be written as

= + = + ( )S WR N WDL N 9

where L represents the 2D logarithm of AI section. We can
find that the reflectivity is the link between the seismic record
and the AI.

2.2. The proposed method

In order to overcome the shortcomings of the two-step AI
inversion based on L1 norm regularization, we propose an AI
sparse inversion method. In our objective function, the
logarithm of AI is used as the parameter that needs to be
inverted. Considering that the reflectivity is sparse in the time
domain, the L1 norm regularization is imposed on it. We use
multi-trace inversion to reflect the spatial and temporal corre-
lation of the data. In this case, the seismic data, reflectivity and
the logarithm of AI are reorganized as column vectors. Con-
sidering the L1 norm regularization and multi-trace inversion,
the objective function can be given by

m
= - + =   ( ˜ ) ˜ ˜ ˆ ˜ ( )

˜
J GL R L S R R DL, min

2
s.t. 10

L
2
2

1

where =˜ ( ( ( )))tL Ivec ln and =˜ ( )S Svec are column vectors,
L̃ is obtained by aligning the logarithm of AI section, S̃ is
generated by arranging seismic section, =ˆ ( )D E Dkron , is a
block diagonal matrix which is the Kronecker product of
identity matrix E and the matrix D defined in (5), R represents
the reflectivity which is a column vector, μ is the regularization
parameter of the fidelity term, = ( )G E WDkron , is a block
diagonal matrix which is the Kronecker product of identity
matrix E and WD. WD is the product of matrix W and D

defined in (8) and (5).
A penalty function is used to convert (10) to be an

unconstrained optimization problem for simplification. Then,
(10) is changed to be (11) with a regularization parameter

m g
= - + + -     ( ˜ ) ˜ ˜ ˆ ˜

( )

˜
J L R GL S R R DL, min

2 2
11

L
2
2

1 2
2

In order to outline the abrupt part of the AI clearly and
obtain blocky AI structures, a TV regularization term is added
to the objective function, that is

å

m g
= - + + -

+  + 

     ( ˜ ) ˜ ˜ ˆ ˜

( ˜ ) ( ˜ )

( )

˜
J L R GL S R R DL

L L

, min
2 2

12i j

x i j y i j

L
2
2

1 2
2

,

,
2

,
2

where å  + ( ˜ ) ( ˜ )L L

i j

x i j y i j

,

,
2

,
2 is the TV of L̃. For con-

venience, we use the short-hand notation

å=  +  ( ) ( ˜ ) ( ˜ ) ( )d d L L, 13x y

i j

x i j y i j2

,

,
2

,
2

where =  ˜d L,x x =  ˜d Ly y are the difference of L̃ in x and y

directions respectively. Then, (12) can be written as the
constrained optimization problem

m

g

= - +

+ - +

=  = 

   

   

( ˜ ) ˜ ˜

ˆ ˜ ( )

˜ ˜ ( )

˜
J

d d

s t d d

L R GL S R

R DL

L L

, min
2

2
,

. . , . 14

x y

x x y y

L
2
2

1

2
2

2
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We can convert (14) to be an unconstrained optimization
problem by the Lagrangian method

m

g l

l

= - + +

+ - + - 

+ - 

     

   

 

( ˜ ) ˜ ˜ ( )

ˆ ˜ ˜

˜ ( )

˜
J d d

d

d

L R GL S R

R DL L

L

, min
2

,

2 2

2
15

x y

x x

y y

L
2
2

1 2

2
2

2
2

2
2

where γ is a regularization parameter.

The initial model constraint is added to the objective
function to incorporate the corresponding low frequency
content to the AI and reduce the non-uniqueness of inversion.
Finally, the objective function is written as:

m

g l

l a

= - + +

+ - + - 

+ -  + - ¢

     

   

   

( ˜ ) ˜ ˜ ( )

ˆ ˜ ˜

˜ ˜ ( )

˜
J d d

d

d

L R GL S R

R DL L

L L L

, min
2

,

2 2

2 2
16

x y

x x

y y

L
2
2

1 2

2
2

2
2

2
2

2
2

where α is the regularization parameter of the initial model
constraint term, ¢L is a column vector obtained by rearranging
the logarithm of the initial AI model section or volume.

It can be seen that multiple regularization constraints are
added to the objective function, which becomes a complicated
formula with L1 norm, TV norm and L2 norm. According to
the work of Goldstein and Osher (2009), we can use the split
Bregman iteration algorithm to solve this kind of multi-reg-
ularized optimization problem (Kong and Peng 2015). Using
the split Bregman iteration algorithm, an objective function
with different regularization constraints can be ‘decoupled’
into several simpler sub-problems.

In order to illustrate the solving process of the multi-
regularized optimization problem proposed in this paper, the
key step of the split Bregman iteration algorithm will be
introduced briefly. For an unconstrained optimization pro-
blem (17), F( )u and ( )H u are convex functions, ∣ ∣• represents
the L1 norm and λ is the regularization parameter of the
fidelity term

l
+ + - F ∣ ∣ ( ) ( ) ( )d H u d umin

2
. 17

d u,
2
2

To solve (17), the auxiliary variable b is taken to
decouple the L2 norm regularization term by split Bregman
iteration. Then, (17) is split to (18), (19), where k represents
the kth iteration

l
= + + - F -+ +  ( ) ∣ ∣ ( ) ( )

( )

u d d H u d u b, min
2

18

k k

u d

k1 1

,
2
2

= + F -+ + +( ( ) ) ( )b b u d . 19k k k k1 1 1

Equation (18) can be further split into (20) and (21),
which are the optimization problems about u and d, respec-
tively

l
= + - F -+  ( ) ( ) ( )u H u d u bmin

2
20k

u

k k1
2
2

l
= + - F -+  ∣ ∣ ( ) ( )d d d u bmin

2
. 21k

d

k1
2
2

In our method, the objective function contains multiple
regularization terms. To solve it, the auxiliary variables bx, by
and bR are taken to the objective function. According to the
split Bregman iteration algorithm, (16) can be written as the
following form

m

g

l

l a

= - +

+ + - -

+ -  -

+ -  - + - ¢

   

   

 

   

( ˜ ) ˜ ˜

( ) ˆ ˜

˜

˜ ˜

( )

˜
J

d d b

d b

d b

L R GL S R

R DL

L

L L L

, min
2

,
2

2

2 2
.

22

x y R

x x x

y y y

L
2
2

1

2 2
2

2
2

2
2

2
2

The objective function (22) can be decoupled into the
simpler sub-problems (23)–(25) to solve (Goldstein and
Osher 2009)

m g

l l

a

= - + - -

+ -  - + -  -

+ - ¢

+    

   

 

˜ ˜ ˜ ˆ ˜

˜ ˜

˜

( )

˜
b

d b d b

L GL S R DL

L L

L L

min
2 2

2 2

2
23

k k
R
k

x
k

x x
k

y
k

y y
k

L

1
2
2

2
2

2
2

2
2

2
2

l

l

= + -  -

+ -  -

+ +    

 

( ) ( ) ˜

˜

( )

d d d d d b

d b

L

L

, min ,
2

2
24

x
k

y
k

d d
x y x

k
x x

k

y
k

y y
k

1 1

,
2 2

2

2
2

x y

g
= ++ +⎛

⎝
⎜

⎞

⎠
⎟ˆ ˜ ( )bR DLshrink ,

1
. 25k k

R
k1 1

The function shrink( ) in (25) is a shrinkage operator defined
as

*g g= -( )
∣ ∣

(∣ ∣ ) ( )x
x

x
xshrink , max , 0 26

Equation (24) can be further split into (27) and (28)

l
= -

 ++ +
+

+
⎜ ⎟
⎛

⎝

⎞

⎠

˜
( )d h

b

h

L
max

1
, 0 27x

k k x
k

x
k

k

1 1

1

1

l
= -

 ++ +
+

+
⎜ ⎟
⎛

⎝

⎞

⎠

˜
( )d h

b

h

L
max

1
, 0 28y

k k y
k

y
k

k

1 1

1

1

where

=  + +  ++ + +
∣ ˜ ∣ ∣ ˜ ∣ ( )h b bL L . 29k

x
k

x
k

y
k

y
k1 1 2 1 2
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For more details about the split Bregman iteration algorithm,
the reader can refer to the work of Goldstein and Osher (2009).

There are several regularization parameters in the objective
function (22). Although it is unrealistic to give a set of para-
meters that can be applied to any conditions, fully understanding
the meaning of each parameter can help us to determine the
values of these parameters, and obtain good inversion results.
The parameter μ is the weight of the fidelity term. It determines
the fitting between the synthetic traces obtained from the
inversion result and the original seismic traces. The higher the
quality of seismic data is, the greater the value of μ can be set.
However, the value of the fidelity term is usually much larger
than other terms. Only when μ is a small value can the other
regularization terms be effective. Moreover, noise often exists in
seismic data, and we do not need a perfect fit. Therefore, we
should set μ to be a small value. The parameter γ determines the
fitting of the reflectivity R and ˆ ˜DL in (23). The greater γ is, the
better R and ˆ ˜DL will fit. The fitting between the difference of L
in x/y directions and dx/dy depends on λ. The larger λ is, the
better they will fit. The parameter α is the weight of the initial
model constraint. It determines the fitting degree of the inversion
result and initial model. When the noise in the seismic data is
larger, α is increased; otherwise, it is decreased. If α is too large,
the inversion result will be biased towards the initial model, and
other regularization parameters will not work. Conversely, when
α is too small, the initial model constraint does not work. To
choose a set of parameters, we can do quality control at a
theoretical model or at the well locations. The specific process is
to adjust the regularization parameters and select a set of para-
meters which make the inversion result fit the true model data or
true well log data best.

Algorithm 1 illustrates the technical details of the method
proposed in this paper.

Algorithm 1. AI inversion with multi-parameter regularization

Input: m, g, l, a, tol
1. Initialize:k=0, = = = = = =d d b b b R 0,x y x y R

0 0 0 0 0 0 ¢L
2. While - >-   ˜ ˜ ˜ tolL L L

k k k1
2 2

m g

l l

a

= - + - -

+ -  - + -  -

+ - ¢

+    

   

 

˜ ˜ ˜ ˆ ˜

˜ ˜

˜
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G b

d b d b
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L L

L L
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2 2

2 2

2

k k
R
k

x
k

x x
k

y
k

y y
k

L

1
2
2

2
2

2
2

2
2

2
2
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⎜ ⎟
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1
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x
k

k
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1
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⎝

⎞

⎠

˜
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b

h

L
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1
, 0y

k k y
k

y
k

k

1 1

1

1

7.
g

= ++ +⎛

⎝
⎜

⎞

⎠
⎟ˆ ˜shrink bR DL ,

1k k
R
k1 1

8. = +  -+ + +( ˜ )b b dLx
k

x
k

x
k

x
k1 1 1

9. = +  -+ + +( ˜ )b b dLy
k

y
k

y
k

y
k1 1 1

10. = + -+ + +( ˆ ˜ )b b DL RR
k

R
k k k1 1 1

11 = +k k 1

12.End
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In algorithm 1, step 3 is the process of calculating the
logarithm of the AI, to find the optimal value of L̃. Note that
(23) is the sum of the L2 norm terms, Setting the derivative of
equation (23) with respect to L̃ to 0 gives rise to the following
equation
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where E is an identity matrix; let:
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Equation (30) can be written as =˜AL B, which can be solved
efficiently by the conjugate gradient method.

Steps 5 and 6 are the generalized shrinkage formula used
to obtain the optimal value of dx and dy, respectively. Step 7 is
the standard shrinkage formula to get the optimal value of R.
When the relative change of the L2 norm of L̃ is less than the
threshold tol, the ‘while’ loop will be stopped, and then the
optimal value of L̃ is obtained. Step 13 calculates the expo-
nent of L̃ firstly, and then through the process of reshape() L̃
is converted to an AI section or volume.

3. Numerical examples

We will now test the efficiency of the proposed method using
Marmousi2 model data (Martin et al 2006) and field data. We
also compare the inversion result with those obtained from
another two methods. The first such method is based on L1
norm regularization, multi-trace inversion and initial model
constraint (it is denoted as method 1 and does not include TV
regularization). The second method is based on TV regular-
ization, multi-trace inversion and initial model constraint (it is
denoted as method 2 and does not include L1 norm
regularization).

3.1. Marmousi2 model

In this article, we take part of the Marmousi2 model for testing
of our method, method 1 and method 2. The true AI model data
is a 1140×1940 AI section (there are 1140 sampling points in
the depth direction and 1940 traces in the distance direction),
which is shown in figure 1(a). Sampling interval in the depth
direction is 2.5 m, and in the distance direction is 3.75m. The
parameters are set as follows: μ=1×10−4, γ=10,
λ=100, α=1 and tol=1×10−5. Since method 1 does not
have TV regularization, it does not use the parameter λ.
Similarly, method 2 does not use the parameter γ.

Before the AI model inversion experiment, we have to
produce synthetic seismic data, which can be obtained by
equation (1). Firstly, we use equation (4) to calculate the
reflectivity of the true AI model, which is shown in figure 1(b)
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(we change the color scale to [−0.1 0.1] to better emphasize
details). Secondly, through calculating the convolution of a
Ricker wavelet with dominant frequency 40 Hz and the
reflectivity, a synthetic seismic section without noise is
obtained, which is shown in figure 1(c). Figure 1(d) shows
part of seismic data taken from figure 1(c). Finally, 20%
Gaussian random noise (the energy ratio of noise to signal is
20%) is added to the noise-free synthetic seismic section to
generate a noisy synthetic seismic section, which is shown in
figure 2(a). The noisy synthetic seismic section is used as the
original seismic record. Figure 2(b) shows the initial AI
model, which is obtained from the true AI model by Gauss
low-pass filtering.

Because of the large area of the seismic section, we
divide it into several blocks to speed up the calculation speed.
The size of each block is 140×140. Each time we invert one
of the blocks. Then the inversion result of each block is
spliced into the final result. We do some experiments on the
Marmousi2 model by using method 1, method 2 and our
method. Figures 3(a)–(c) show the inversion results of
method 1, method 2 and our method respectively. It can be
seen that, compared with method 1, our method and method 2

describe the formation structure more clearly. In figure 1, the
position of the arrow is a gas reservoir, which is circled by an
ellipse. Our method and method 2 reveal the gas reservoir
more clearly than method 1. Furthermore, the inversion error
of our method and method 2 is also less than method 1.
Comparing to figure 1, we can find that there is a serious error
in figure 3(a). However, inversion results in figures 3(b) and
(c) are much closer to the ground truth, and the error is
smaller.

In order to compare the inversion results in detail,
figure 3(d) shows the inversion result of a part of the data
from trace 1200. Trace 1200 is a seismic trace through the gas
reservoir. Because there are too many sampling points in each
trace, in order to compare the inversion results of these three
kinds of method clearly, we take out the inversion results and
true AI model between 2525 m and 3275 m. The red solid
line, blue dashed line, black dash-dotted line and black solid
line represent, respectively, the true AI model, inversion
result of method 1, inversion result of method 2 and inversion
result of our method. It can be found that the inversion result
of our method is the closest to the true model, method 2 take
the second place, and method 1 has the largest deviation.

Figure 1. (a) True AI model, (b) reflectivity section of true AI model, (c) synthetic seismic data and (d) part of seismic data taken from
synthetic seismic data.
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To display the inversion error quantitatively, we calculate
the root mean square error (RMSE) of these methods, which
is shown in table 1. It can be seen that the RMSE of our
method is the smallest. The RMSE of method 2 is slightly

larger than that of our method, and the RMSE of method 1 is
much larger than that of the other two methods.

In order to compare the inversion error of these three
methods more clearly, we calculate the absolute error of the

Figure 2. (a) Noisy synthetic seismic section and (b) initial AI model.

Figure 3. (a) Inversion result of method 1, (b) inversion result of method 2, (c) inversion result of our method and (d) inversion result of a part
of the data from trace 1200.
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inversion results for these three methods. Then, a binarization
processing is performed on the absolute error graph. When
the absolute error is greater than or equal to a threshold, its
gray value in the error graph is set to 0. Conversely, if the
absolute error is less than a threshold, its gray value in the
error graph is set to 255. Since the RMSE of the initial AI
model in our experiment is 723.40, we simply set the
threshold to be 700 (the maximum absolute error of our
method is 2517), and the absolute error graphs after binar-
ization processing are shown in figures 4(a)–(c).

From figures 4(a)–(c), we can find that the error of
method 1 is distributed in a larger area than that of the other
two methods. The error of method 2 and our method are
mainly distributed in some blocky areas. Figure 4(b) and (c)

are very similar except for the number of black points in
figure 4(c) are slightly smaller than that in figure 4(b).
Figure 4(d) shows the histogram lines of the inversion error.
The red dashed line, blue dash-dotted line and black solid line
represent the histogram lines of method 1, method 2 and our
method respectively. It can be found that the area surrounded
by the red dashed line and the horizontal axis is larger than
that of the other two lines, and the red dashed line covers the
widest range. This also means the error of method 1 is the
largest, and is distributed in a larger area than the other two
methods. The histogram lines of our method and method 2 are
very similar. If we take a close look at these two lines, we will
find that the area surrounded by the histogram line of our
method and the horizontal axis is slightly smaller than that of

Table 1. RMSE of the inversion result of three kinds of method.

Method Method 1 Method 2 Our method Initial AI model

RMSE 405.52 318.56 306.37 723.40
Percentage of the RMSE reduction 43.94% 55.96% 57.65% /

Figure 4.Absolute error graph of the inversion result using method 1 (a), method 2 (b) and our method (c) after binarization processing. (The
black point means where absolute error is greater than or equal to 700, otherwise, it is less than 700.) (d) Error distribution of inversion
results.
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the other one. It shows that the error of our method is slightly
smaller than that of method 2.

We can see from the above experimental results that
since the initial model constrain and multi-trace inversion are
used in all these methods, they can all obtain the general
situation of the true AI model. Since the L1 norm regular-
ization is used in method 1, the AI inversion result of method
1 has the shape of stair-steps. Because of the influence of
noise and lack of TV regularization, the inversion result of
method 1 has many errors compared with the other two
methods. Moreover, it cannot clearly outline the target
reservoir (see figure 3(a)). The inversion results of method 2
and our method are very similar. Both of them have a blocky
structure, their errors are relatively small, and they both reveal
the target reservoir clearly. Compared with method 1, the
advantages of method 2 and our method come mainly from
the use of TV regularization. If we take a closer look at the
results of method 2 and our method, we find that our method
has a slightly smaller error than method 2 (see table 1 and
figures 4(b)–(d)). This means that under the condition of TV
regularization, adding L1 regularization cannot greatly
improve the inversion results. This is due to the fact that TV
regularization also has a certain sparsity constraint effect on
the inversion result.

Figure 5(a) shows part of the original noisy synthetic
seismic section. Figure 5(b) shows part of the inverted seismic
section obtained using our method. Comparing it with
figure 1(d), we find that they are very similar. The residual
error section is the difference between the inverted seismic
section and the noise-free synthetic section, which is shown in
figure 5(b). It can be seen that the residual error of our method
is small.

Figure 6 shows the relationship between the value of
each term in objective function (equation (22)) and the
iteration number. Note that since each time we invert a block
(the size is 140×140) of the seismic section, figure 6 is
generated by inverting one of the blocks. For convenience,
the first to seventh terms in objective function are denoted by
Fidelity term, L1 of reflectivity, TV term, Gamma term,

Lambda term1, Lambda term2 and Model constraint term,
respectively. Their value vs. the iteration number are shown
in figures 6(a)–(g). The value of the objective function vs. the
iteration number is shown in figure 6(h).

We can find that the values of the Fidelity term and
Objective function have a rapid descent as the iteration
number increases, and converge to their optimum value. The
initial value of Gamma term, Lambda term1 and Lambda
term2 are not equal to 0. With the increase of the iteration
number, the value of these three terms increases fast and then
rapidly converges to a small value. The initial value of
reflectivity R is 0, thus L1 of reflectivity’s value is 0 in the
first iteration. Model constraint term’s initial value is 0, this is
due to the fact that AI’s initial value is the initial model’s
value. Since the initial value of dx and dy in algorithm 1 are 0,
TV term’s initial value is 0. With the increase of the iteration
number, the value of L1 of reflectivity, Model constraint term
and TV term increase first and then converge to their optimum
solution. It can be seen from figure 6 that the execution of
algorithm 1 is normal.

3.2. Field data

We apply method 1, method 2 and our method to a 2D field
data, which is from an oil field in China. The seismic section
is shown in figure 7(a), which consists of 200 traces. The
sampling interval in time direction is 2 ms. Figure 7(b) shows
the initial AI model. The parameters are set as follows:
μ=1×10−8, γ=5, λ=50, α=5 and tol=1×10−5.
Note that method 1 does not use the parameter λ, and method
2 does not use the parameter γ.

The inversion results of method 1, method 2 and our
method are shown in figure 8. As can be seen from
figures 8(a)–(c), the results obtained by these three methods
are similar. However, if we look closely, we will find the
result of method 1 has obvious noise and discontinuity.
Compared with method 1, method 2 and our method have
better lateral continuity and anti-noise ability. Moreover,
method 2 and our method have got blocky AI structures.

Figure 5. (a) Part of the original noisy synthetic seismic section, (b) part of the seismic section inverted by using our method and (c) the
residual error section (obtained by figures 5(b)–1(d)).
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There is a well in figure 7, located at CDP166. Figure 8(d)
shows the inversion result of method 1, method 2 and our
method at CDP166. The red dash-dotted line, black dashed
line, blue dashed line, blue solid line and black solid line
represent, respectively, the well AI filtered by a Gauss low-pass
filter, initial AI model, inversion result of method 1, inversion
result of method 2 and inversion result of our method. It can be
seen from figure 8(d) that, although all these methods can
obtain the general situation of the well AI, our method has less
inversion error than the other two methods.

As can be seen from figure 8, by using TV regularization
the AI inversion method can have better anti-noise perfor-
mance and lateral continuity than L1 norm regularization.
Using TV regularization and L1 norm regularization, the AI
inversion method can obtain a slightly smaller error than
using TV regularization alone.

Figure 9 shows part of the field seismic section, inverted
seismic section obtained by using our method and residual

error section. The residual error section is the difference
between the inverted seismic section and the field seismic
section. It can be seen that the inverted section is similar to
the field section, and the residual error is acceptable.

In order to observe the convergence performance of our
method. We show the value of each term in the objective
function and the objective function itself vs. the iteration
number in figure 10. The meanings of the lines in figure 10
are described in detail in figure 6; we will not repeat them
here. Similarly to that shown in figure 6, we can find from
figure 10 that the execution of our method is normal in the
field data.

4. Conclusions

In this paper, we have analyzed a two-step AI inversion
method based on L1 norm regularization. This approach is

Figure 6. The value of each term in the objective function and the objective function itself versus the iteration number.

Figure 7. (a) Field seismic data and (b) initial AI model.
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closely related to the AI at time t=0 and the result of
reflectivity inversion. If the AI at time t=0 or reflectivity is
inaccurate, the inversion result will deviate from the true

value. To overcome this problem, we propose an AI inversion
method to get AI directly, based on L1 norm regularization,
TV regularization, initial model constraint and multi-trace

Figure 8. (a) Inversion result obtained by using method 1, (b) inversion result obtained by using method 2, (c) inversion result obtained by
using our method and (d) inversion result of the seismic trace at well location (CDP166).

Figure 9. (a) Part of the field seismic section, (b) inverted seismic section obtained by using our method and (c) residual section (obtained by
(b)–(a)).
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inversion. Although these constraints have been separately
used in existing AI inversion methods, there is no one method
using them together. In our method, the logarithm of AI is the
optimization target of the objective function, and the L1 norm
sparse constraint is imposed on the reflectivity. To obtain an
AI inversion result that better accords with the a priori

information, we apply all these regularization constraints to
our method. However, the multi-regularized method is diffi-
cult to calculate. An algorithm based on the split Bregman
iteration is developed to solve this problem. We have tested
our method and another two methods with Marmous2 model
and field data, and compared the results of these three
methods. The first method is based on L1 norm regulariza-
tion, multi-trace inversion and initial model constraint. The
second method is based on TV regularization, multi-trace
inversion and initial model constraint.

Our experimental results show that compared with L1
norm regularization, the inversion result obtained by using TV
regularization has less error and better lateral continuity. The
joint use of TV regularization and L1 norm regularization can
obtain a slightly smaller error than using only TV regulariza-
tion. However, the more regularization terms used, the more
regularization parameters are needed. How to effectively set the
regularization parameters when using a variety of regulariza-
tion constraints will be the subject of our future work.
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