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ABSTRACT
Seismic interferometry deals with the generation of new seismic responses by cross-
correlating existing ones. One of the main assumptions underlying most interfer-
ometry methods is that the medium is lossless. We develop an ‘interferometry-by-
deconvolution’ approach which circumvents this assumption. The proposed method
applies not only to seismic waves, but to any type of diffusion and/or wave field in
a dissipative medium. This opens the way to applying interferometry to controlled-
source electromagnetic (CSEM) data. Interferometry-by-deconvolution replaces the
overburden by a homogeneous half space, thereby solving the shallow sea problem
for CSEM applications. We demonstrate this at the hand of numerically modeled
CSEM data.

I N T R O D U C T I O N

Seismic interferometry is the branch of science that deals
with the creation of new seismic responses by crosscorrelat-
ing seismic observations at different receiver locations. Since
its introduction around the turn of the century, the litera-
ture on seismic interferometry has grown spectacularly. Inter-
ferometric methods have been developed for random fields
(Larose et al. 2006; Gerstoft et al. 2006; Draganov et al.
2007) as well as for controlled-source data (Schuster and
Zhou 2006; Bakulin and Calvert 2006). The underlying the-
ories range from diffusion theory for enclosures (Weaver and
Lobkis 2001), stationary phase theory (Schuster et al. 2004;
Snieder 2004) to reciprocity theory (Wapenaar et al. 2004;
Weaver and Lobkis 2004; van Manen et al. 2005). All these
theories have in common the underlying assumption that the
medium is lossless and non-moving. The main reason for this
assumption is that the wave equation in lossless non-moving
media is invariant for time-reversal, which facilitates the
derivation.

Until 2005 it was commonly thought that time-reversal in-
variance was a necessary condition for interferometry, but re-
cent research shows that this assumption can be relaxed. Slob,
Draganov and Wapenaar (2006) analyzed the interferometric

method for ground-penetrating radar data (GPR), in which
losses play a prominent role. They showed that losses lead
to amplitude errors as well as to the occurrence of spurious
events. By choosing the recording locations in a specific way,
the spurious events arrive before the first desired arrival and
can thus be identified. Snieder (2006, 2007) followed a differ-
ent approach. He showed that a volume distribution of uncor-
related noise sources, with source strengths proportional to the
dissipation parameters of the medium, precisely compensates
for the energy losses. As a consequence, the responses obtained
by interferometry for this situation are free of spurious events
and their amplitudes decay the way they should in a dissipa-
tive medium. This approach does not only hold for waves in
dissipative media, but also for pure diffusion processes.

Time-reversal invariance as well as source-receiver reci-
procity break down in flowing or rotating media, but with
some minor modifications interferometry also appears to
work for these situations (Wapenaar 2006; Godin 2006;
Ruigrok, Draganov and Wapenaar 2008). Recently we showed
that interferometry, including its extensions for waves and dif-
fusion in dissipative and/or moving media, can be represented
in a unified form (Wapenaar et al. 2006; Snieder, Wapenaar
and Wegler 2007). In turn, from this unified formulation it
follows that the interferometric method can also be used for
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more exotic applications like electroseismic prospecting and
quantum mechanics.

Interferometry in the strict sense makes use of crosscorrela-
tions, but in the following we will extend the definition of in-
terferometry so that it also includes crossconvolution and de-
convolution methods. Slob, Draganov and Wapenaar (2007)
introduce interferometry by crossconvolution and show that it
is valid for arbitrary dissipative media. The crossconvolution
method does not require a volume distribution of sources,
but one restriction is that it only works for transient sig-
nals in specific configurations with receivers at opposite sides
of the source array. The latter restriction does not apply to
‘interferometry-by-deconvolution’, which is the method dis-
cussed in this paper.

I N T E R F E R O M E T RY- B Y- D E C O N V O L U T I O N :
1 D V E R S I O N

‘Interferometry-by-deconvolution’ is a generalization of a 1D
deconvolution method introduced by Riley and Claerbout
(1976). Here we briefly review this 1D method. The 3D ex-
tension is introduced in the next section.

Consider a plane wave experiment in a horizontally layered
medium. At a particular depth level the total wave field is de-
composed into down going and up going waves. Assuming
the actual source is situated above this depth level, the total
down going wave field can be seen as the illuminating wave
field and the total up going wave field as its response. Subse-
quently, the up going wave field is deconvolved by the down
going wave field. The deconvolution result is the reflection im-
pulse response of the 1D medium below the chosen depth level.
In the frequency domain, where deconvolution is replaced by
division, this can be formulated as

R̂+
0 (x3,1, ω) = p̂−(x3,1, ω)/ p̂+(x3,1, ω), (1)

where x3,1 is the x3-coordinate of the depth level at which
the decomposition and division take place (in this paper the
x3-axis points downwards), and p̂+ and p̂− are the down go-
ing and up going wave fields, respectively (the Fourier trans-
form of a time-dependent function f (t) is defined as f̂ (ω) =∫ ∞

−∞ f (t) exp(− jωt)dt, where j is the imaginary unit and ω de-
notes the angular frequency, which is taken as non-negative
throughout this paper). The reflection response R̂+

0 (x3,1, ω) is
the response that would be measured with source and receiver
at x3,1 and a homogeneous half-space above x3,1. This is inde-
pendent of the actual configuration above x3,1. For example,
if x3,1 is chosen just below the sea-bottom, R̂+

0 (x3,1, ω) is the
response of the medium below the sea-bottom, free of multi-

ples related to the sea-bottom as well as to the water surface.
Hence, R̂+

0 (x3,1, ω) obeys different boundary conditions than
p̂+ and p̂−.

Throughout this paper we will loosely use the term ‘de-
convolution’ for division in the frequency domain (as in equa-
tion (1)). When the division is carried out for a sufficient range
of frequencies, the result can be inverse Fourier transformed,
yielding the time domain deconvolution result (e.g. R+

0 (x3,1,
t)).

The analogy of equation (1) with interferometry is as fol-
lows (see also Snieder, Sheiman and Calvert 2006): the right-
hand side is a ‘deconvolution’ of two received wave fields (in-
stead of a correlation of two wave fields), whereas the left-
hand side is the response of a virtual source at the position of
a receiver (just as in interferometry). Moreover, independent
of the actual source signature (transient or noise), the time do-
main deconvolution result R+

0 (x3,1, t) is an impulse response.
Of course in practice the division in equation (1) should be car-
ried out in a stabilized sense, meaning that the result becomes a
band-limited impulse response. An important difference with
most versions of interferometry is that equation (1) remains
valid even when the medium is dissipative. Another difference
is that the application of equation (1) changes the boundary
conditions, as explained above.

Bakulin and Calvert (2006) proposed a similar 1D de-
convolution to improve their virtual source method. Snieder,
Sheiman and Calvert (2006) employed a variant of this method
(with source and receiver at different depth levels) to derive
the impulse response of a building from earthquake data, and
Mehta, Snieder and Graizer (2007) used a similar approach to
estimate the near-surface properties of a dissipative medium.

I N T E R F E R O M E T RY- B Y- D E C O N V O L U T I O N :
3 D S C A L A R V E R S I O N

The 1D deconvolution approach formulated by equation (1)
has been extended by various authors to a multi-dimensional
deconvolution method as a means for surface related and
sea-bottom related multiple elimination (Wapenaar and
Verschuur 1996; Ziolkowski, Taylor and Johnston 1998;
Amundsen 1999; Wapenaar et al. 2000; Holvik and Amund-
sen 2005). In the following we derive this multi-dimensional
deconvolution method along the same lines as our deriva-
tion for seismic interferometry by crosscorrelation (Wapenaar,
Thorbecke and Draganov 2004). First we consider the situa-
tion for scalar fields; in the next section we generalize the
derivation for vector fields. Note that when we speak of ‘fields’
we mean wave and/or diffusion fields.
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The starting point for our derivation is a reciprocity theorem
of the convolution type for one-way scalar fields, which reads
in the space-frequency domain
∫

∂D1

{ p̂+
A p̂−

B − p̂−
A p̂+

B}d2x =
∫

∂Dm

{ p̂+
A p̂−

B − p̂−
A p̂+

B}d2x, (2)

where x = (x1, x2, x3) is the Cartesian coordinate vector, ∂D1

and ∂Dm are two horizontal boundaries of infinite extent (with
∂Dm below ∂D1), and p̂+ = p̂+(x, ω) and p̂− = p̂−(x, ω) are
flux-normalized down going and up going fields, respectively
(see Appendix A for the derivation). The terms ‘down going’
and ‘up going’ should be interpreted in a broad sense: for
diffusion fields these terms mean ‘decaying in the positive or
negative x3-direction, respectively’. The subscripts A and B re-
fer to two independent states. Equation (2) holds for lossless
as well as dissipative 3D inhomogeneous media. The underly-
ing assumptions for equation (2) are that there are no sources
between ∂D1 and ∂Dm and that in the region enclosed by these
boundaries the medium parameters in states A and B are iden-
tical. Above ∂D1 and below ∂Dm the medium parameters and
boundary conditions in states A and B need not be the same.
The condition that ∂D1 and ∂Dm are horizontal boundaries
can be relaxed. Frijlink 2007 shows that under certain condi-
tions equation (2) also holds when ∂D1 and ∂Dm are smoothly
curved boundaries.

Note that other variants of equation (2) exist, containing
vertical derivatives of the down going and up going fields in
one of the two states. This is the case, for example, when p̂+

and p̂− represent down going and up going acoustic pressure
fields. Since we consider flux-normalized fields these deriva-
tives are absent in equation (2).

In the following, state B will represent the measured re-
sponse of the real Earth, whereas state A will represent the
new response of a redatumed source in an Earth with differ-
ent boundary conditions, obtained by interferometry. Hence,
state B is the actual state whereas state A is the desired state.
First we discuss state B. Consider a dissipative 3D inhomo-
geneous Earth bounded by a free surface ∂D0, see Fig. 1(b).
The source of the actual field at xS, with source spectrum ŝ(ω),
is situated below ∂D0 and above the receivers. The receivers
are located, for example, at the sea-bottom or in a horizontal
borehole. The boundary ∂D1 is chosen an ε-distance below the
receivers (e.g. just below the sea-bottom) and ∂Dm is chosen
below all inhomogeneities. The measured field at the receivers
is represented by a 2 × 1-vector Q̂(x, xS, ω), containing for
example the acoustic pressure and vertical component of the
particle velocity, or the inline electric field and crossline mag-
netic field components. The quantities in this vector are con-

Figure 1. State A: the desired reflection response of the medium below
∂D1, for the situation of a non-reflecting half-space above ∂D1. State
B: the actual response of the real earth, bounded by a free surface at
∂D0. The medium parameters exhibit dissipation, are 3D inhomoge-
neous functions of position, and below ∂D1 they are the same in both
states.

tinuous in the depth direction, hence, at ∂D1 (i.e. just below
the receivers) we have the same Q̂(x, xS, ω). This field vector
is decomposed at ∂D1 into flux-normalized down going and
up going fields, according to

P̂(x, xS, ω) = L̂−1Q̂(x, xS, ω), (3)

where L̂−1 is a decomposition operator containing the medium
parameters at ∂D1, and

P̂(x, xS, ω) =
(

p̂+(x, xS, ω)

p̂−(x, xS, ω)

)

, (4)

see Appendix B for details. Hence, in state B we have

x ∈ ∂D1 :

{
p̂+

B(x, ω) = p̂+(x, xS, ω),

p̂−
B(x, ω) = p̂−(x, xS, ω).

(5)

Since we chose ∂Dm below all inhomogeneities, there are only
down going fields at ∂Dm, hence

x ∈ ∂Dm :

{
p̂+

B(x, ω) = p̂+(x, xS, ω),

p̂−
B(x, ω) = 0.

(6)

Note that the decomposition at ∂D1, as formulated by equa-
tion (3), requires that the field components in Q̂(x, xS, ω) are
properly sampled and that the (laterally varying) medium pa-
rameters at ∂D1 are known. When, in case of sea-bottom mea-
surements, there is a very thin layer of soft sediment on top
of a hard rock sea floor, then the parameters of the hard rock
should be used in L̂−1. Schalkwijk, Wapenaar and Verschuur
(2003) and Muijs, Robertsson and Holliger (2004) discuss
adaptive decomposition schemes for sea-bottom seismic data,
which estimate the sea-bottom parameters directly from the
data by optimizing the decomposition result.

For the desired state A we replace the medium above
∂D1 by a non-reflecting half-space, see Fig. 1(a), which is
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accomplished by choosing the medium parameters continu-
ous across ∂D1 and independent of x3 above ∂D1. We choose
a point source for a down going field at xA just above ∂D1; the
receivers are chosen at x ∈ ∂D1. We define R̂+

0 (x, xA, ω) as the
reflection response of the medium below ∂D1 with a source
for a down going field at xA and a receiver for an up going
field at x ∈ ∂D1. The subscript ‘0’ denotes that no multiples
related to reflectors above ∂D1 are included; the superscript
‘+’ denotes that this is the response of a down going source
field. For the down going and up going fields in state A we
thus have

x ∈ ∂D1 :

{
p̂+

A(x, ω) = δ(xH − xH,A)ŝ A(ω),

p̂−
A(x, ω) = R̂+

0 (x, xA, ω)ŝ A(ω),
(7)

where ŝ A(ω) denotes the spectrum of the source at xA. We
used the subscript H to denote the horizontal coordinates,
hence xH = (x1, x2) and xH,A = (x1,A, x2,A) (the latter denoting
the horizontal coordinates of xA). At ∂Dm we have again only
down going fields, hence

x ∈ ∂Dm :

{
p̂+

A(x, ω) = T̂+
0 (x, xA, ω)ŝ A(ω),

p̂−
A(x, ω) = 0,

(8)

where T̂+
0 (x, xA, ω) is the transmission response of the medium

between ∂D1 and ∂Dm with a source at xA and a receiver at x ∈
∂Dm. Substitution of equations (5)–(8) into equation (2), using
source-receiver reciprocity [i.e., R̂+

0 (x, xA, ω) = R̂+
0 (xA, x, ω)]

and dividing the result by ŝ A(ω) gives

p̂−(xA, xS, ω) =
∫

∂D1

R̂+
0 (xA, x, ω) p̂+(x, xS, ω)d2x. (9)

This is an integral equation of the first kind for R̂+
0 (xA, x, ω).

Note that R̂+
0 is the Fourier transform of an impulse re-

sponse, whereas p̂+ and p̂− are proportional to the source
spectrum ŝ(ω) of the source at xS. For laterally invariant me-
dia equation (9) can easily be solved via a scalar division in
the wavenumber-frequency domain. For 3D inhomogeneous
media it can only be solved when the down going and up
going fields p̂+(x, xS, ω) and p̂−(xA, xS, ω) are available for
a sufficient range of source positions xS. In matrix notation
(Berkhout 1982), equation (9) can be written as

P̂
− = R̂

+
0 P̂

+
. (10)

For example, the columns of matrix P̂
+

contain p̂+(x, xS, ω)
for fixed xS and variable x at ∂D1, whereas the rows of this
matrix contain p̂+(x, xS, ω) for fixed x and variable xS at ∂DS ,
where ∂DS represents the depth level of the sources. Inversion
of equation (10) involves matrix inversion, according to

R̂
+
0 = P̂

−
(P̂

+
)−1 (11)

(Wapenaar and Verschuur 1996). Note that equation (11) is
the 3D equivalent of equation (1). The matrix inversion in
equation (11) can be stabilized by least-squares inversion, ac-
cording to

R̂
+
0 = P̂

−
(P̂

+
)†[(P̂

+
)(P̂

+
)† + ε2I]−1, (12)

where the superscript † denotes transposition and complex
conjugation, I is the identity matrix and ε is a small constant.
Berkhout and Verschuur (2003) used a similar inversion for
transforming surface-related multiples into primaries.

Equations (11) and (12) describe 3D interferometry-by-
deconvolution. Schuster and Zhou (2006) derived an expres-
sion equivalent with equation (12) and called this least-squares
redatuming. In the next section we generalize equations (9)–
(12) for general vector fields.

Note that, due to the matrix inversion, 3D interferometry-
by-deconvolution is by definition a multi-channel process. Un-
like interferometry-by-correlation, it cannot be simplified to
a single deconvolution for the situation of uncorrelated noise
sources.

We conclude this section by comparing 3D interferometry-
by-deconvolution with the virtual source method of Bakulin
and Calvert (2006). We start by ignoring the inverse matrix in
equation (12), according to

R̂
+
0 ≈ P̂

−
(P̂

+
)†. (13)

If we rewrite this equation again in integral form we obtain

R̂+
0 (xA, x, ω) ≈

∫

∂DS

p̂−(xA, xS, ω){ p̂+(x, xS, ω)}∗d2xS, (14)

where the superscript ∗ denotes complex conjugation. Note
that R̂+

0 is now proportional to the power spectrum |ŝ(ω)|2 of
the sources at ∂DS . Transforming equation (14) to the time
domain yields

R+
0 (xA, x, t) ≈

∫

∂DS

p−(xA, xS, t) ∗ p+(x, xS, −t) d2xS, (15)

where ∗ denotes temporal convolution. The latter equation
corresponds to the virtual source method of Bakulin and
Calvert (2006). The integrand on the right-hand side repre-
sents the convolution of the up going field at xA due to a source
at xS and the time-reversed down going field at x due to the
same source. The integral is carried out along all sources at
xS ∈ ∂DS . The left-hand side is the response at xA of a virtual
source at x. Bakulin and Calvert (2006) actually use a time-
windowed version of p+(x, xS, t), containing the first arrival
(which is possible for wave fields but not for diffusion fields).
The main effect of their method is the suppression of propaga-
tion distortions of the overburden. For comparison, inversion
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of equation (9) not only removes the propagation distortions
of the overburden, but also eliminates all multiple reflections
related to all reflectors above ∂D1, including the free surface
∂D0.

I N T E R F E R O M E T RY- B Y- D E C O N V O L U T I O N :
3 D V E C T O R V E R S I O N

We generalize the approach discussed in the previous section.
We replace the one-way scalar fields by general one-way vec-
tor fields (waves and/or diffusion fields) and we derive an
‘interferometry-by-deconvolution’ approach for these vector
fields.

The vectorial extension of equation (2) for a dissipative 3D
inhomogeneous medium reads
∫

∂D1

{(P̂+
A)tP̂−

B − (P̂−
A)tP̂+

B} d2x =
∫

∂Dm

{(P̂+
A)tP̂−

B − (P̂−
A)tP̂+

B} d2x,

(16)

where the superscript t denotes transposition and where vec-
tors P̂+ = P̂+(x, ω) and P̂− = P̂−(x, ω) are flux-normalized
down going and up going fields, respectively (see again Ap-
pendix A for the derivation). Following a similar derivation
as in the previous section, using {R̂+

0 (x, xA, ω)}t = R̂+
0 (xA, x, ω)

(Wapenaar, Thorbecke and Draganov 2004), we obtain for the
configuration of Fig. 1

P̂−(xA, xS, ω) =
∫

∂D1

R̂+
0 (xA, x, ω)P̂+(x, xS, ω)d2x. (17)

A similar expression was derived for electromagnetic fields
by Amundsen and Holvik (2004, Processing electromagnetic
data, Patent GB2415511) and for elastodynamic wave fields
by Holvik and Amundsen (2005). In equation (17) P̂+(x, xS, ω)
and P̂−(xA, xS, ω) are obtained from a field vector Q̂(x, xS, ω)
at ∂D1 by decomposition, see Appendix C for details. Vec-
tor Q̂(x, xS, ω) contains, for example, an elastodynamic or
electromagnetic field, measured by multicomponent receivers.
The multicomponent sources for these fields are located at
xS ∈ ∂DS . R̂+

0 (xA, x, ω) is a matrix containing the reflection
responses of the medium below ∂D1 with multicomponent
sources for down going fields at x ∈ ∂D1 and multicomponent
receivers for up going fields at xA. For example, for the situ-
ation of elastodynamic waves, vectors P̂+ and P̂− in equation
(17) are defined as

P̂+ =





%̂+

&̂+

ϒ̂+



 and P̂− =





%̂−

&̂−

ϒ̂−



 , (18)

where %̂±, &̂± and ϒ̂± represent flux-normalized down going
and up going P, S1 and S2 waves, respectively. Moreover, for
this situation matrix R̂+

0 (xA, x, ω) is written as

R̂+
0 (xA, x, ω) =





R̂+
φ,φ R̂+

φ,ψ R̂+
φ,υ

R̂+
ψ,φ R̂+

ψ,ψ R̂+
ψ,υ

R̂+
υ,φ R̂+

υ,ψ R̂+
υ,υ



 (xA, x, ω), (19)

(no summation convention) where R̂+
p,q(xA, x, ω) denotes the

reflection response of the medium below ∂D1 in terms of a
down going q-type wave field at x and a reflected p-type wave
field at xA.

Equation (17) is an integral equation of the first kind for
R̂+

0 (xA, x, ω). For 3D inhomogeneous media it can only be
solved when the down going and up going fields P̂+(x, xS, ω)
and P̂−(xA, xS, ω) are available for a sufficient range of source
positions xS and for a sufficient number of independent source
components at each source position. To be more specific, since
P̂+ and P̂− are K

2 × 1 vectors (see Appendix A), K
2 indepen-

dent source components are needed to solve equation (17)
uniquely. For example, when for the elastodynamic situation
three orthogonal forces are employed at each source position,
equation (17) can be solved (Holvik and Amundsen 2005).
The least-squares solution procedure for the general K

2 × K
2

reflection response matrix is similar to that described in the
previous section, in particular by equations (10)–(12).

N U M E R I C A L E X A M P L E O F C S E M
I N T E R F E R O M E T RY

We illustrate interferometry-by-deconvolution with a numer-
ical example. We choose to apply it to simulated controlled-
source electromagnetic (CSEM) data because this best demon-
strates the ability of the proposed method to deal with dissi-
pation. Although the spatial resolution of CSEM data is much
lower than that of seismic data, the main advantage of CSEM
prospecting is its power to detect a hydrocarbon accumulation
in a reservoir due to its high conductivity contrast (Ellingsrud
et al. 2002; Moser et al. 2006). Amundsen et al. (2006) showed
that decomposition of CSEM data into down going and up
going fields improves the detectability of hydrocarbon reser-
voirs. Below we show that the combination of decomposition
and interferometry-by-deconvolution not only improves the
detectability but also results in improved quantitative infor-
mation about the reservoir parameters.

The model consists of a plane layered Earth. The 2D TM-
mode (see Table B1) is modeled as a two-dimensional approx-
imation of the CSEM method as applied in Seabed Logging
applications. The model is shown in Fig. 2, where the seawater
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hw w=3 S/m

50 m 3=20 mS/m

250 m =1 S/m

hw- 25 m xS

900 m 2=0.5 S/m

∂D1

2=0.5 S/m

Figure 2 The configuration with a reservoir-type layer at 1150 m be-
low the sea bottom and a water layer with variable thickness: hw =
50 m or hw = 500 m. The source is 25 m above the sea bottom and
the receiver array is located at the sea bottom.

layer contains an inline electric current source at 25 m above
the sea bottom. The receivers are located at the sea bottom
with a total extent of 40 km. The water layer is modeled with
variable thickness and we take the values of 50 m as a model
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Figure 3 The electromagnetic field, at f = 0.25 Hz, at the sea bottom. (a) The electric and (b) the magnetic field amplitudes for a water depth
hw = 50 m. (c) The electric and (d) magnetic field amplitudes for a water depth of hw = 500 m. The red and blue curves represent the situation
with and without the reservoir layer.

for a shallow sea and of 500 m as a model of a deep sea. The
seawater has a conductivity of σ w = 3 S/m. Below the sea bot-
tom there is a layer with a conductivity of σ 1 = 1 S/m with a
thickness of 250 m. This is followed by a half-space with σ 2 =
0.5 S/m, which is intersected after 900 m by a reservoir-type
layer with a thickness of 50 m and a conductivity of σ 3 =
20 mS/m. Note that the top of this reservoir layer is located at
1150 m below the sea bottom.

For the modeling, a unit strength AC current with an os-
cillation frequency of 0.25 Hz, a receiver separation of 40 m
and a total offset range of 40 km have been used. The array
measures both the horizontal electric and magnetic field com-
ponents (Ê1 and Ĥ2) as depicted in Fig. 3 for the two water
depths of 50 m and 500 m for the situation with and without
the reservoir layer. It can be observed that for small offsets, the
in-line electric field component shows more decay as a func-
tion of offset than the cross-line magnetic field component.
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Figure 4 Decomposition of 2D TM field at f = 0.25 Hz just below the sea bottom. (a) Down going field and (b) up going field for a water depth
hw = 50 m. (c) Down going field and (d) up going field for a water depth hw = 500 m. The red and blue curves represent the situation with and
without the reservoir layer, respectively. In (a) and (c) the blue curves are hidden by the red curves.

For large offset the situation is reversed. For the deep sea the
difference between the presence and absence of the reservoir
layer is more pronounced than in the shallow sea situation.
We can decompose the measured fields into flux-normalized
down going and up going fields (equation 3). The decomposi-
tion is carried out using the parameters of the first layer below
the sea bottom. Hence, the resulting down going and up going
fields correspond to the fields just below the sea bottom. Both
are shown in Fig. 4 for the two water depths of 50 m and 500
m for the situation with and without the reservoir layer. The
effect of the reservoir response is clearly visible in the up going
fields for offsets larger than 2 km in the shallow sea and for
offsets larger than 1 km in the deep sea. It is almost not visible
in the down going field (except at offsets larger than 4 km,
indicating that its multiple interaction with the water layer is
very small). The sharp minima that occur in the up going fields
correspond to sign changes in the real and imaginary parts. By
comparing Fig. 4b with 4d it can be seen that the shallow wa-
ter layer has a strong effect on the amplitude and shape of the
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Figure 5 The reflection response R̂+
0 (xA, x, ω) at f = 0.25 Hz just

below the sea bottom, obtained by interferometry-by-deconvolution.
The result is independent of the water depth. The red and blue curves
represent the situation with and without the reservoir layer, respec-
tively.
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m w=3 S/m

h1 =1 S/m

2=0.5 S/m

25 m xS

950 m

h2 2=0.5 S/m
∂D1

50 m 3=20 mS/m

Figure 6 The configuration with a reservoir-type layer at 1150 m
below the sea bottom and a water layer with a fixed thickness of
50 m. The source is 25 m above the sea bottom and the receiver ar-
ray is located in a horizontal borehole 950 m below the sea bottom
and 200 m above the top of the reservoir layer. The Earth layers have
variable thicknesses: h1 = 250 m and h2 = 900 m, or h1 = 900 m and
h2 = 250m.
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Figure 7 Electric and magnetic field amplitudes, at f = 0.25 Hz, in a horizontal borehole 200 m above the top of the reservoir layer. (a) The
electric field and (b) the magnetic field for h1 = 250 m and h2 = 900 m. (c) The electric field and (d) the magnetic field for h1 = 900 m and h2 =
250 m. The red and blue curves represent the situation with and without the reservoir layer.

up going field, which makes quantitative analysis of the reser-
voir parameters very difficult. This effect can be eliminated by
performing interferometry-by-deconvolution, that is, by solv-
ing equation (9) for R̂+

0 (xA, x, ω). Since in this example the
medium is horizontally layered, we solve equation (9) by ap-
plying a division in the wavenumber-frequency domain and
transforming the result back to the space-frequency domain.
The result is shown in Fig. 5 for the situation with and with-
out the reservoir layer. After this step the effect of the water
layer has been completely removed and therefore this result is
independent of the water depth in the original model. It is as
if the upper most Earth layer now extends upward to infinity.
Moreover, note that in R̂+

0 (xA, x, ω) the original source has
been replaced by a source at the receiver level, while only the
reflection response of the medium below the sea bottom is re-
tained. Hence, the strong direct field has also been eliminated.
In theory, this procedure solves the shallow sea problem of the
seabed logging method. It should be noted that we considered
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Figure 8 Decomposition of 2D TM field at f = 0.25 Hz in a horizontal borehole 200 m above the top of the reservoir layer. (a) Down going
field and (b) up going field for h1 = 250 m and h2 = 900 m. (c) Down going field and (d) up going field for h1 = 900 m and h2 = 250 m. The
red and blue curves represent the situation with and without the reservoir layer, respectively. In (a) and (c) the blue curves are hidden by the red
curves. In (b) and (d) there are only red curves since in the situation without reservoir layer there are no up going fields.

an ideal situation of well sampled data, measured with high
precision and no noise added.

When a horizontal borehole is available at depth we can
perform these steps again, thereby removing the direct field
and all overburden effects, leaving only the reservoir response.
The model is the same as in Fig. 2, but now the water depth is
maintained constant at 50 m, while the first two Earth layers
have in the first example thicknesses of h1 = 250 m and h2 =
900 m, and in the second example h1 = 900 m and h2 = 250 m
(keeping the total thickness fixed). The receiver array is located
in a horizontal borehole at 950 m below the sea bottom, 200
m above the top of the reservoir, as indicated in Fig. 6. Again
we assume that Ê1 and Ĥ2 are available so that decomposition
is possible. The fields are modelled with a receiver separation
of 160 m and the results are shown in Fig. 7 for the situation
with a water depth of 50 m, with and without reservoir layer
and with a first layer of 250 m and a second layer of 900 m
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Figure 9 The reflection response R̂+
0 (xA, x, ω) at f=0.25 Hz in a hor-

izontal borehole 200 m above the top of the reservoir layer, obtained
by interferometry-by-deconvolution. The result is independent of the
overburden.
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as well as the reversed situation. The decomposition result is
shown in Fig. 8, where the up going fields in 8b and 8d clearly
demonstrate the detectability of the reservoir layer. Note that
these up going fields have similar shapes, but their field ampli-
tudes differ by a factor of 4. This can be understood from the
fact that the interaction between the reservoir and the inter-
face above the reservoir plays a more prominent role in the up
going field in the second example (Fig. 8d) where the interface
is located 250 m above the top of the reservoir and only 50 m
above the receivers. Figure 9 shows R̂+

0 (xA, x, ω), obtained by
interferometry-by-deconvolution. Sources as well as receivers
are now in the horizontal borehole, 200 m above the top of the
reservoir layer. This result is independent of the overburden in
the original model. In theory it is the exact reflection response
of the reservoir layer as if it were embedded in a homogeneous
medium with a conductivity of σ 2 = 0.5 S/m.

C O N C L U S I O N S

One of the main assumptions in most seismic interferometry
schemes is that the medium is lossless. We have shown that
this assumption can be circumvented when the crosscorrela-
tion procedure (the central step in seismic interferometry) is
replaced by a multi-dimensional deconvolution procedure. We
derived an algorithm for ‘interferometry-by-deconvolution’
for the situation of sources at or below the Earth’s surface and
multicomponent receivers at depth, for example at the sea-
bottom or in a horizontal borehole. The proposed algorithm
not only moves the source to the receiver depth level (‘source
redatuming’), but also changes the boundary conditions in
such a way that the overburden becomes non-reflecting. The
result is a reflection response observed relatively close to the
target, without the disturbing effects of the overburden. As in
all interferometry approaches, no knowledge of the medium
is required, except at the depth level of the receivers, where
a decomposition into down going and up going fields takes
place.

An important application of ‘interferometry-by-
deconvolution’ is removing the air/sea interface and the
direct field in CSEM data. The two main factors that com-
plicate standard CSEM data processing are the presence of
the direct field and, for shallow seas, the presence of the field
reflected at the sea surface (effect of the air wave). Both effects
interfere with the subsurface response in the measurements.
Due to the diffuse character of the EM fields the direct field
and the effect of the air wave cannot be separated in the mea-
surement by time windowing. The method we propose here
removes both effects, thereby in theory solving the shallow

sea problem of CSEM applications. For deep receivers, the
method removes the direct field and all overburden effects.
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A P P E N D I X A : O N E - WAY R E C I P R O C I T Y
T H E O R E M S F O R 3 D I N H O M O G E N E O U S
D I S S I PAT I V E M E D I A

We derive the convolution-type reciprocity theorems for one-
way scalar and vector fields (equations 2 and 16). There are
two approaches for deriving these theorems. The first ap-
proach starts with decomposing the equation for the total field
into one-way equations, followed by deriving reciprocity the-
orems for the one-way fields. The advantage of this approach
is that it leads to relatively simple expressions, even when the
medium parameters in both states are different and sources are
present in the considered domain (e.g. Wapenaar, Dillen and
Fokkema 2001). The disadvantage is that for the situation of
a 3D inhomogeneous medium (dissipative or lossless), exact
derivations exist only for scalar fields, whereas in the deriva-
tions for vector fields approximations are made throughout
the domain of the application.In the second approach the or-
der of steps is reversed, hence, it starts with deriving a reci-
procity theorem for the total field, followed by decomposition
of the fields in this reciprocity theorem into one-way fields.
The first step in this approach is exact for scalar as well as vec-
tor fields in 3D inhomogeneous media (dissipative or lossless).
For the special situation that the medium parameters in both
states are identical and the considered domain is source-free,
this reciprocity theorem reduces to an integral over the bound-
ary of the domain. Hence, for the subsequent decomposition
step, approximations only need to be made at this boundary.
When the medium is laterally invariant at the boundary of the
domain, no approximations need to be made at all. Since in
this paper we consider the situation of a source-free domain
with identical medium parameters in both states (i.e. the do-
main between ∂D1 and ∂Dm in Fig. 1), we follow the second
approach.

Figure 10 Configuration for the reciprocity theorems.

Our starting point is the following equation

∂Q̂
∂x3

= ÂQ̂, (A1)

where Q̂ = Q̂(x, ω) is a K × 1 field vector and Â = Â(x, ω)
a K × K operator matrix containing a particular combination
of the medium parameters and the horizontal differentiation
operators ∂/∂xα for α = 1, 2. This equation holds for acoustic
wave fields in fluids (K = 2), electromagnetic wave and/or
diffusion fields in matter (K = 4, Reid 1972), elastodynamic
fields in solids (K = 6, Woodhouse 1974), poroelastic waves
in porous solids (K = 8) and seismoelectric waves in porous
solids (K = 12, Pride and Haartsen 1996; Haartsen and Pride
1997). Vector Q̂ and operator matrix Â are specified for some
of these cases in Appendices B and C.

We consider a dissipative 3D inhomogeneous medium in a
domain D enclosed by two horizontal boundaries ∂D1 and
∂Dm, with outward pointing normal vector n = (0, 0, −1)
on ∂D1 and n = (0, 0, +1) on ∂Dm, and a cylindrical bound-
ary ∂Dcyl with a vertical axis and normal vector n = (n1, n2,
0), see Fig. 10. In the following we assume that the horizontal
boundaries ∂D1 and ∂Dm are of infinite extent (which implies
that the radius of the cylindrical boundary ∂Dcyl is also in-
finite), the domain D between boundaries ∂D1 and ∂Dm is
source-free and the medium parameters in states A and B are
identical in this domain.

For an arbitrary operator matrix Û containing ∂/∂xα for
α = 1, 2, we introduce the transposed Û t via
∫

R2
(Û f)tg d2xH =

∫

R2
f t(Û tg) d2xH, (A2)

where f = f (xH) and g = g (xH) are arbitrary square-integrable
K × 1 vector functions. According to this equation, Û t is
a transposed matrix, containing transposed operators (with
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(∂/∂xα)t = −∂/∂ \ xα, which follows from the rules for partial
integration). The operator matrix Â is organized such that it
obeys the following symmetry relation

ÂtN = −NÂ, (A3)

with

N =
(

O I

−I O

)

, (A4)

where I and O are K
2 × K

2 identity and null matrices (note that
K = 2 for scalar fields, hence I = 1 and O = 0).

We define an interaction quantity ∂
∂x3

{Q̂t
ANQ̂B}, where sub-

scripts A and B denote two independent states. Applying the
product rule for differentiation and substituting equation (A1)
we obtain
∂

∂x3

{
Q̂t

ANQ̂B

}
= (ÂQ̂A)tNQ̂B + Q̂t

ANÂQ̂B. (A5)

Integrating over xH and using equation (A2) gives
∫

R2

∂

∂x3
{Q̂t

ANQ̂B}d2xH =
∫

R2
Q̂t

A(ÂtN + NÂ)Q̂Bd2xH.

(A6)

From equation (A3) it follows that the right-hand side is equal
to zero. Integrating the left-hand side over x3 from x3,1 to x3,m

(which are the depth levels of boundaries ∂D1 and ∂Dm) we
obtain
∫

∂D1

Q̂t
ANQ̂B d2x =

∫

∂Dm

Q̂t
ANQ̂B d2x. (A7)

At the boundaries ∂D1 and ∂Dm we decompose operator ma-
trix Â as follows

Â = L̂ĤL̂−1 (A8)

(Corones et al. 1983, 1992; Fishman et al. 1987; de Hoop
1992, 1996; Fishman 1993; Haines and de Hoop 1996; Wape-
naar et al. 2001). Examples of this decomposition are given in
Appendices B and C. We scale the operator L̂ in such a way
that

L̂tNL̂ = −N or L̂−1 = −N−1L̂tN (A9)

(de Hoop 1992; Wapenaar, Dillen and Fokkema 2001). Using
this specific scaling, we introduce the K × 1 flux-normalized
decomposed field vector P̂ = P̂(x, ω) via

Q̂ = L̂P̂ and P̂ = L̂−1Q̂, (A10)

with

P̂ =
(

P̂+

P̂−

)

, (A11)

where K
2 × 1 vectors P̂+ = P̂+(x, ω) and P̂− = P̂−(x, ω) repre-

sent down going and up going fields, respectively (for scalar
fields we have P̂+ = p̂+ and P̂− = p̂−). Here ‘down going’ and
‘up going’ should be interpreted in a broad sense: for diffusion
fields these terms mean ‘decaying in the positive or negative
x3-direction, respectively’. Substitution of Q̂ = L̂P̂ into equa-
tion (A7) gives, using equation (A2),
∫

∂D1

P̂t
AL̂tNL̂P̂B d2x =

∫

∂Dm

P̂t
AL̂tNL̂P̂B d2x, (A12)

or, using L̂tNL̂ = −N,
∫

∂D1

P̂t
ANP̂B d2x =

∫

∂Dm

P̂t
ANP̂B d2x. (A13)

Substitution of equations (A4) and (A11) into equation (A13)
yields equation (2) (for K = 2) or equation (16) (for all other
cases).

A P P E N D I X B : D E C O M P O S I T I O N
O P E R AT O R S F O R S C A L A R F I E L D S

We discuss the field vectors and operators introduced in Ap-
pendix A for scalar fields (K = 2). For an acoustic wave field
in a dissipative 3D inhomogeneous fluid we have (de Hoop
1992; Wapenaar et al. 2001)

Q̂ =
(

p̂

v̂3

)

, Â =




0 − jωρ̂

1

jωρ̂
1
2

(Ĥ2ρ̂
− 1

2 ·) 0



 , (B1)

where p̂ = p̂(x, ω) is the acoustic pressure, v̂3 = v̂3(x, ω) the
vertical component of the particle velocity and ρ̂ = ρ̂(x, ω) the
complex-valued mass density of the dissipative medium. Ĥ2 is
the Helmholtz operator, defined as

Ĥ2 = ω2

ĉ2
+ ∂

∂xα

∂

∂xα

. (B2)

The summation convention applies for repeated subscripts;
Greek subscripts take on the values 1 and 2. In equation (B2),
ĉ = ĉ(x, ω) is the complex-valued propagation velocity, obey-
ing the Klein-Gordon dispersion relation known from rela-
tivistic quantum mechanics (Messiah 1962; Anno, Cohen and
Bleistein 1992), according to

ω2

ĉ2
= ω2κ̂ ρ̂ − 3

4ρ̂2

∂ρ̂

∂xα

∂ρ̂

∂xα

+ 1
2ρ̂

∂

∂xα

∂ρ̂

∂xα

, (B3)

with κ̂ = κ̂(x, ω) the complex-valued compressibility of the
dissipative medium. Note that Ĥ2 = Ĥt

2, hence, symmetry re-
lation (A3) is fulfilled. The decomposition of Â is given by
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Table B1 Overview of field quantities and medium parameters in
equations (B1)–(B7).

field quantities medium parameters
in Q̂ in Â, Ĥ, L̂ and L̂−1

3D Acoustic p̂ v̂3 κ̂ ρ̂

3D Diffusion Ŷ Ĵ 3 ρ 1/jωρD

2D SH v̂2 −τ̂23 ρ̂ 1/µ̂

2D TE Ê2 −Ĥ1 ε̂ + σ̂ /jω µ̂ + 1̂/jω

2D TM Ĥ2 Ê1 µ̂ + 1̂/jω ε̂ + σ̂ /jω

equation (A8), where

Ĥ =
(

− jĤ1 0

0 jĤ1

)

, Ĥ1 = Ĥ
1
2
2 , (B4)

with Ĥ1 = Ĥt
1 (Wapenaar, Dillen and Fokkema 2001), and

L̂ =
(
L̂1 L̂1

L̂2 −L̂2

)

, L̂−1 = 1
2

(
L̂−1

1 L̂−1
2

L̂−1
1 −L̂−1

2

)

, (B5)

with

L̂1 =
(

ωρ̂

2

) 1
2

Ĥ− 1
2

1 ,
1
2
L̂−1

1 = L̂t
2 = Ĥ

1
2
1

(
1

2ωρ̂

) 1
2

, (B6)

L̂2 =
(

1
2ωρ̂

) 1
2

Ĥ
1
2
1 ,

1
2
L̂−1

2 = L̂t
1 = Ĥ− 1

2
1

(
ωρ̂

2

) 1
2

, (B7)

with Ĥ
1
2
1 = (Ĥ

1
2
1 )t and Ĥ− 1

2
1 = (Ĥ− 1

2
1 )t. Note that symmetry re-

lation (A9) is fulfilled as well.The field quantities and medium
parameters involved in acoustic decomposition are summa-
rized in the first row of Table B1. In a dissipative fluid the
imaginary parts of ρ̂ and κ̂ are negative (for positive ω). The
imaginary part of the eigenvalue spectrum of the square-root
operator Ĥ1 is chosen negative as well (Wapenaar et al. 2001).

The same applies for the spectrum of Ĥ
1
2
1 , i.e., the square-root

of the square-root operator. For mass diffusion of a species
through a mixture, Q̂ is given by

Q̂ =
(

Ŷ

Ĵ 3

)

, (B8)

where Ŷ = Ŷ(x, ω) is the mass fraction of the species and
Ĵ 3 = Ĵ 3(x, ω) the vertical component of the mass flux rela-
tive to the mixture. In equations (B1)–(B7) we replace the
quantities in the first row of Table B1 by those in the sec-
ond row (where D is the diffusion coefficient). We thus obtain

the decomposition operators for mass diffusion. Note that the
term 1/jωρD is purely negative imaginary (for positive ω). The

imaginary parts of the spectra of Ĥ1 and Ĥ
1
2
1 are again chosen

as negative as well.
The last three rows in Table B1 show the field quantities and

medium parameters for three other applications of equations
(B1)–(B7), but this time for the 2D situation (i.e. assuming
that the field quantities and medium parameters are indepen-
dent of the x2-coordinate). ‘SH’ stands for horizontally polar-
ized shear waves. In this row τ̂23 is the shear stress and µ̂ the
shear modulus of the medium. ‘TE’ and ‘TM’ stand for trans-
verse electric and transverse magnetic fields, respectively. Ê1,2

and Ĥ1,2 are the electric and magnetic field components, ε̂ is
the permittivity, µ̂ the permeability, σ̂ the conductivity and 1̂

the magnetic hysteresis loss term. Note that depending on the
choices of the medium parameters, the TE and TM fields can
be wave or diffusion fields, or a combination of the two. In

all cases the imaginary parts of the spectra of Ĥ1 and Ĥ
1
2
1 are

chosen negative.

A P P E N D I X C : D E C O M P O S I T I O N
O P E R AT O R S F O R V E C T O R F I E L D S

For 3D electromagnetic diffusion and/or wave propagation in
a dissipative 3D inhomogeneous medium we have (Reid 1972)

Q̂ =





Ê1

Ê2

Ĥ2

−Ĥ1




, Â =

(
O Â12

Â21 O

)

, (C1)

where

Â12 =


− jωM̂ + 1

jω
∂

∂x1

(
1
Ê

∂
∂x1

·
)

1
jω

∂
∂x1

(
1
Ê

∂
∂x2

·
)

1
jω

∂
∂x2

(
1
Ê

∂
∂x1

·
)

− jωM̂ + 1
jω

∂
∂x2

(
1
Ê

∂
∂x2

·
)



 ,

(C2)

Â21 =


− jωÊ + 1

jω
∂

∂x2

(
1
M̂

∂
∂x2

·
)

− 1
jω

∂
∂x2

(
1
M̂

∂
∂x1

·
)

− 1
jω

∂
∂x1

(
1
M̂

∂
∂x2

·
)

− jωÊ + 1
jω

∂
∂x1

(
1
M̂

∂
∂x1

·
)



 ,

(C3)

with

Ê = ε̂ + σ̂ /jω, M̂ = µ̂ + 1̂/jω. (C4)

Note that Â obeys symmetry relation (A3) in an arbitrary
3D inhomogeneous dissipative medium, which validates
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reciprocity theorem (A7). Next, for the decomposition of Â at
∂D1 and ∂Dm we assume that there are no lateral variations of
the medium parameters at these boundaries. We define the
two-dimensional spatial Fourier transform from the space-
frequency domain to the wavenumber-frequency domain as
follows

f̃ (kH, x3, ω) =
∫

R2
f̂ (xH, x3, ω) exp{ jkH · xH}d2xH, (C5)

with kH = (k1, k2). Applying this transform to equation (A8)
gives

Ã = L̃H̃L̃−1, (C6)

where Ã is obtained from Â defined in equations (C1)–(C3) by
replacing ∂/∂ xα by − jkα. Note that equation (A3) transforms
to

Ãt(−kH, x3, ω)N = −NÃ(kH, x3, ω). (C7)

The sign-change of kH in the argument of the transposed ma-
trix is due to the relation (∂/∂xα)t = −∂/∂xα. Similarly, equa-
tion (C9) transforms to

{L̃(−kH, x3, ω)}tNL̃(kH, x3, ω) = −N, (C8)

or

{L̃(kH, x3, ω)}−1 = −N−1{L̃(−kH, x3, ω)}tN. (C9)

With this scaling we obtain (Ursin 1983)

H̃ =
(

− jH̃1 O

O jH̃1

)

, H̃1 =
(
H̃1 0

0 H̃1

)

, (C10)

L̃ =
(

L̃1 L̃1

L̃2 −L̃2

)

, L̃−1 = 1
2

(
L̃−1

1 L̃−1
2

L̃−1
1 −L̃−1

2

)

, (C11)

where

L̃1(kH, x3, ω) = 1√
2

(
ζ̂ H̃−1/2

1 0

− k1k2
ωÊ ζ̂

H̃−1/2
1 ϑ̂−1H̃1/2

1

)

, (C12)

L̃2(kH, x3, ω) = 1√
2

(
ζ̂−1H̃1/2

1
k1k2
ωM̂ϑ̂

H̃−1/2
1

0 ϑ̂H̃−1/2
1

)

, (C13)

1
2

{L̃1(kH, x3, ω)}−1 = {L̃2(−kH, x3, ω)}t, (C14)

1
2

{L̃2(kH, x3, ω)}−1 = {L̃1(−kH, x3, ω)}t, (C15)

with

H̃1 =
√

k2 − kαkα, )(H̃1) < 0, (C16)

k2 = ω2

ĉ2
= ω2ÊM̂, (C17)

ζ̂ =
(

ωM̂ − k2
1

ωÊ

)1/2

, ϑ̂ =
(

ωÊ − k2
1

ωM̂

)1/2

. (C18)

For an elastodynamic wave field in a dissipative inhomoge-
neous anisotropic solid we have (Woodhouse 1974)

Q̂ =
(

−τ̂ 3

v̂

)

, Â =
(

Â11 Â12

Â21 Â22

)

, (C19)

where τ̂ 3 = τ̂ 3(x, ω) is the traction vector and v̂ = v̂(x, ω) the
particle velocity vector,

Â11 = − ∂

∂xα

(
Ĉα3Ĉ−1

33 ·
)
, (C20)

Â12 = − jωρ̂I + 1
jω

∂

∂xα

(

Ûαβ

∂

∂xβ

·
)

, (C21)

Â21 = − jωĈ−1
33 , (C22)

Â22 = −Ĉ−1
33 Ĉ3β

∂

∂xβ

, (C23)

Ûαβ = Ĉαβ − Ĉα3Ĉ−1
33 Ĉ3β, (C24)

with (Ĉ jl )ik = ĉi jkl . Here ĉi jkl = ĉi jkl (x, ω) is the complex-
valued stiffness tensor and ρ̂ = ρ̂(x, ω) the complex-valued
mass density of the dissipative medium. Since ĉi jkl = ĉkli j , Â
obeys symmetry relation (A3) in an arbitrary 3D inhomo-
geneous anisotropic dissipative medium. This validates reci-
procity theorem (A7). Next, for the decomposition of Â at
∂D1 and ∂Dm we assume that the medium is laterally invari-
ant and isotropic at these boundaries, hence

(Ĉ jl )ik = ĉi jkl = λ̂δi jδkl + µ̂(δikδ jl + δilδ jk), (C25)

where λ̂ and µ̂ are the complex-valued Lamé parameters at
∂D1 and ∂Dm. The decomposition of Â is again defined by
equation (C6) in the wavenumber-frequency domain. By scal-
ing the matrices such that equations (C8) and (C9) are obeyed,
we find [modified after Frasier (1970); Ursin (1983)]

H̃ =
(

− jH̃1 O

O jH̃1

)

, H̃1 =





H̃1,P 0 0

0 H̃1,S 0

0 0 H̃1,S



 ,

(C26)

L̃ =
(

L̃+
1 L̃−

1

L̃+
2 L̃−

2

)

, L̃−1 =
(

Ñ +
1 Ñ +

2

Ñ −
1 Ñ −

2

)

, (C27)
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where

L̃±
1 (kH, x3, ω) =

µ̂

ω3/2(2ρ̂)1/2





±2k1H̃1/2
1,P ∓ k1(k2

S−2k2
r )

kr H̃1/2
1,S

∓ k2kSH̃
1/2
1,S

kr

±2k2H̃1/2
1,P ∓ k2(k2

S−2k2
r )

kr H̃1/2
1,S

± k1kSH̃
1/2
1,S

kr

(k2
S−2k2

r )

H̃1/2
1,P

2krH̃1/2
1,S 0




, (C28)

L̃±
2 (kH, x3, ω) =

1
ω1/2(2ρ̂)1/2





k1

H̃1/2
1,P

− k1H̃
1/2
1,S

kr
− k2kS

kr H̃1/2
1,S

k2

H̃1/2
1,P

− k2H̃
1/2
1,S

kr

k1kS

kr H̃1/2
1,S

±H̃1/2
1,P ± kr

H̃1/2
1,S

0




, (C29)

Ñ ±
1 (kH, x3, ω) = ∓{L̃∓

2 (−kH, x3, ω)}t, (C30)

Ñ ±
2 (kH, x3, ω) = ±{L̃∓

1 (−kH, x3, ω)}t, (C31)

with

H̃1,P =
√

k2
P − kαkα, )(H̃1,P ) < 0, (C32)

H̃1,S =
√

k2
S − kαkα, )(H̃1,S) < 0, (C33)

k2
P = ω2

ĉ2
P

= ρ̂ω2

λ̂ + 2µ̂
, (C34)

k2
S = ω2

ĉ2
S

= ρ̂ω2

µ̂
, (C35)

kr =
√

k2
1 + k2

2 . (C36)

For the 2D situation (i.e. assuming that the field quantities and
medium parameters are independent of the x2-coordinate),
the elastodynamic wave field decouples into horizontally po-

larized shear waves (SH-waves) and waves polarized in the
vertical plane (P and SV waves). The matrices for SH-waves
were discussed in Appendix A. The matrices for P and SV
waves can be obtained from equations (C28) and (C29) by
setting k2 to zero and deleting all matrix elements that are
equal to zero. The disadvantage of this approach is that the
resulting matrices will contain terms proportional to the dis-
continuous functions kr = |k1| and k1/|k1| = sign (k1). As an
alternative, we may define L̃±

1 (k1, x3, ω) and L̃±
2 (k1, x3, ω) as

follows

L̃±
1 (k1, x3, ω) = µ̂

ω3/2(2ρ̂)1/2




±2k1H̃1/2

1,P − (k2
S−2k2

1 )

H̃1/2
1,S

(k2
S−2k2

1 )

H̃1/2
1,P

±2k1H̃1/2
1,S



 ,

(C37)

L̃±
2 (k1, x3, ω) = 1

ω1/2(2ρ̂)1/2





k1

H̃1/2
1,P

∓H̃1/2
1,S

±H̃1/2
1,P

k1

H̃1/2
1,S



 . (C38)

With these choices the above mentioned discontinuities are
avoided and equations (C8) and (C9) are again obeyed.With
the matrices discussed in this appendix, wave field decompo-
sition at ∂D1 and ∂Dm is accomplished through

P̃ = L̃−1Q̃, (C39)

or, applying an inverse spatial Fourier transform,

P̂(x, ω) =
( 1

2π

)2
∫

R2
L̃−1Q̃ exp{− jkH · xH}d2kH. (C40)

This decomposition is exact when the medium parameters
at ∂D1 and ∂Dm are laterally invariant (everywhere else the
medium can be arbitrarily inhomogeneous). When the medium
parameters at ∂D1 and ∂Dm are smoothly varying, this equa-
tion can still be used in an approximate sense. To this end
L̃−1(kH, x3, ω) should be replaced by L̃−1(kH, x, ω), based on
the local medium parameters at x on ∂D1 and ∂Dm.
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