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SUMMARY 
Estimates of seismic wave attenuation are strongly affected by scattering. Scattering 
is an important effect caused by interaction of seismic wavefields with in- 
homogeneities of hydrocarbon reservoirs, Earth’s crust and mantle. In order to 
study the contribution of scattering to apparent attenuation we consider plane-wave 
propagation in acoustic 2-D and 3-D inhomogeneous media. Different attenuation 
estimates result depending on what wavefield function is being averaged during 
corresponding processing. By wave-theoretical analysis and high-order finite 
difference modelling in two dimensions we show that scattering attenuation 
estimates derived from the mean of amplitude spectra and from the mean logarithm 
of amplitude spectra depend on travel distance. For not too long travel distances, 
where the coherent part of the wavefield dominates, we give an analytical 
description of these estimates. In 2-D and 3-D the relations are established between 
the autocorrelation functions of velocity fluctuations of a random medium and the 
autocorrelation functions of amplitude and phase fluctuations on a receiver line 
perpendicular to the general propagation direction of an originally plane wave. For 
long distances, where the wavefield fluctuates strongly, we show that both mean 
logarithm of amplitude and logarithm of mean amplitude tend to constants. They 
differ approximately by a factor two in both scattering regimes. The scattering 
attenuation coefficient of the meanfield is not dependent on travel distance. We 
compared our theoretical results with numerical calculations and found excellent 
agreements. The concept presented clarifies the nature of seismic Q estimations in 
the presence of scattering and can help to yield statistical earth models from 
seismic data. 

Key words: attenuation, finite differences, random media, scattering, wavefield 
fluctuations. 

INTRODUCTION 

For years seismologists have been extensively studying wave 
propagation in random media. Aki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Chouet (1975) were 
among the first who predicted small-scale velocity 
heterogeneities in the earth’s crust from the presence of the 
seismic coda. Aki (1980), Sat0 (1982), and Wu (1982a,b) 
started to study theoretical and experimental aspects of 
seismic waves scattering attenuation. Later Frankel & 
Clayton (1986) and Jannaud, Adler & Jacquin (1991) used 
finite difference modelling for a quantitative investigation of 
the coda decay rate and scattering attenuation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA stochastic 
approach based on traveltime tomography reveals the 
Earth’s mantle heterogeneity (Gudmundsson. Davies & 
Clayton 1990; Davies, Gudniundsson & Clayton 1992). 
Miiller, Roth & Korn (1992) analyse traveltimes in random 
media by finite difference modelling. 

Amplitudes and phases of wavefields fluctuate in random 
media. Averaged wavefields are characterized by attenua- 
tion, dispersion and anisotropy (Ishimaru 1978; Rytov, 
Kravtsov & Tatarskii 1987). 

Attenuation of seismic waves is caused by (1) scattering 
and (2) absorption (intrinsic attenuation). Attenuation by 
scattering depends on how fast rock parameters vary in 
space and how large these variations are. 

Scattering attenuation and absorption are important 
parameters for rock characterization. Both can have the 
same order or one can be stronger than the other dependent 
on the geology. Attenuation due to scattering can dominate 
in heterogeneous media. 

Scattering attenuation has been theoretically studied in 
the past (see for example Sat0 1982; Wu 1982a,b, 85; 
Hudson 1990). Theories on wave propagation in random 
media predict average wavefield quantities for averages over 
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a statistical ensemble of medium realizations. The following 
two points are important to relate theoretical results on 
scattering attenuation and seismological practice. 

(1) In  practice we are interested in the properties of a 
specific geological medium and we have to replace ensemble 
averaging by spatial averaging of a single realization which 
requires the medium to be ergodic. We will assume that this 
condition is satisfied. 

(2) Different functions of the recorded wavefield 
differently take into account the wavefield fluctuations 
caused by scattering. Therefore, different attenuation 
estimates are obtained dependent on what wavefield 
function is being averaged (Sato 1982; Wu 1982a). This 
point is central t o  this study. 

The ensemble-averaged wavefield is described by 
meanfield theory (Keller 1964). The resultant scattering 
attenuation is mainly a statistical effect (Sato 1982; Wu 
1982a) caused by averaging different realizations of the 
wavefield having individual phase fluctuations. The real 
scattering attenuation of seismic wavefields is smaller than 
that of meanfield. In order to emphasize this fact Wu 
(1982a) calls the corresponding attenuation coefficient of 
meanfield 'randomization coefficient'. 

Averaging the square of amplitude spectra measures 
wavefield intensity (Ishimaru 1978; Wu 1985). The intensity 
of plane waves is attenuated only due to absorption if we 
can neglect backscattering. 

Sat0 (1982) proposed a formalism to obtain attenuation of 
wavefield amplitudes averaged after traveltime correction. 
He assumed a boundary wavelength in the fluctuation 
spectrum of the inhomogeneities. Fluctuations of wave- 
lengths longer than this value are assumed to cause 
traveltime fluctuations and smaller wavelengths should cause 
attenuation. Similar results were obtained by Wu (1982b) 
under the assumption that seismic amplitudes attenuate only 
due to scattering in the back halfspace. Both approaches are 
accepted as a description of seismic pulse-wave attenuation 
although both of them are based on the heuristic 
assumptions mentioned above. 

In seismology attenuation estimates often are computed 
from amplitude spectra. In practice one works with the 
logarithm of the amplitude spectrum (see for example Pujol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Smithson 1991) and obtains attenuation by linear 
regression. But is linear regression always justified? What 
kind of estimation does it yield? No theory exists which 
describes the logarithm of seismic wavefield amplitude 
spectra in random media and which could answer these 
questions. 

Therefore, a practically relevant theory of seismic 
body-wave scattering attenuation which is new and a step 
beyond Sato's and Wu's approaches has to study explicitly 
the averaged logarithm of the amplitude spectrum of a 
seismic pulse wavefield. Such a theory should not be 
strongly restricted by heuristic assumptions. 

In this paper we proceed towards this direction. We 
consider the averaged logarithm of wavefield amplitude 
spectra in random media. Our  restrictions are: (1) plane 
harmonica1 wave, (2) acoustic case and constant density, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) 
correlation distance of the medium fluctuations is indepen- 
dent on azimuth and of order or larger than the wavelength, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4) medium fluctuations of a constant background are low 
contrast. Our numerical results show that our theory works 

satisfactorily for pulse wavefields too. 
We compare attenuation estimates based on averaged 

logarithms of amplitude spectra with scattering attenuation 
of the averaged amplitude spectra (the order of operations is 
crucial) and of the meanfield. We consider theoretically all 
three averages in 2-D and 3-D random media. 2-D theory is 
necessary to compare with numerical simulation. We 
describe wavefields in two regimes (regions) of wave 
propagation: the regions of weak and strong wavefield 
fluctuations. The region of weak wavefield fluctuations is 
defined as the region where the coherent part of the 
wavefield is much larger than the incoherent wavefield. The 
region of strong fluctuations is defined as the region where 
the incoherent wavefield component predominates. Our 
theory is based on the Rytov approximation for the 
wavefield in the weak fluctuations region. There we obtain 
the correlation functions of amplitude, phase and traveltime 
fluctuations. From the amplitude fluctuations we derive 
scattering attenuation estimates. Assuming that the loga- 
rithm of amplitudes is normally distributed, we obtain 
attenuation estimates in the strong fluctuation region. 

We verify our theoretical results by numerical modelling 
of a pulse wavefield in an acoustic random medium with an 
exponential correlation function of velocity fluctuations and 
constant density. Numerical modelling 1s performed with a 
high-order finite difference method which has been shown 
(Kneib & Kerner 1993) to be suitable for wave-propagation 
simulations in random media. 

The paper proceeds as following. First, we present a 
theory for attenuation estimates obtained from averaged 
amplitude spectra and the averaged logarithm of amplitude 
spectra in the weak fluctuation region and then describe the 
behaviour of these averages in the strong-fluctuation region. 
Our deviation also yields the autocorrelation functions of 
amplitude, phase and traveltime in the weak-fluctuation 
region. Following the theoretical part we describe how we 
tested our theory by means of finite difference modelling 
and discuss the results. 

T H E O R Y  

In our model we consider a plane seismic body wave 
propagating in a 2-D or 3-D acoustic medium with constant 
density. The medium has a constant background velocity co 
and the index of refraction n(r) = co/c(r). The variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn ,  
describes the perturbation of the slowness squared 
n2(r) - 1 2n,. Under these conditions the wave equation 
reads 

1 d2U 
Au - ~ [ 1  +2n1(r)]-=0. dt2 

co 

For n, << 1 one can consider n ,  as a function describing 
velocity fluctuations: c(r) = cO[l - nl(r)]. A t  a point r of a 
random medium we write the wavefield as 

u(r ,  t )  = ( 4 r ,  t ) )  + uf(r, t ) ,  (2) 

where the angular brackets denote statistical ensemble 
averaging and an ensemble is defined as a set of the medium 
realizations. Here t denotes time, ( u )  is the coherent field, 
and uI is the fluctuation of u and is called the non-coherent 
field. The mean of it is (uf) = 0. From (2) it follows for the 
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Seismic attenuation by scattering 375 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lu(r, [ ) I 2  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I,  = I, +I,, ( 3 )  

with the total intensity f, = (I), the coherent intensity 
I, = l(u)I2, and the non-coherent intensity I, = (lurlz). If we 
assume that the incident monochromatic plane wave has 
amplitude unity, we obtain from statistical wave theory for 
monochromatic waves (Ishimaru 1978) for the coherent 
intensity 

where L denotes travel distance through the random 
medium and a<,,) = a ,  + a ,  is the attenuation coefficient of 
the meanfield. Here a,  is the coefficient of absorption, i.e. 
intrinsic attenuation, and a,  is the coefficient which 
describes meanfield attenuation due to scattering. Again we 
emphasize that Wu (1982a) proposed to call a ,  randomiza- 
tion coefficient in order to stress the statistical nature of 
meanfield attenuation. In the following it is more suitable 
for us to call a,  scattering coefficient of meanfield in order 
to emphasize its close connection to the scattering 
cross-section of  the unit volume of the medium and because 
this convention is widely accepted. 

It follows that 

f, = exp (-2ai.L). 

I I  

II I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
II ! 

Absorption and also partially scattering are taken into 
account in a:. The coefficient a: can depend on L and can 
be obtained by solving the transport equation. If 
backscattering can be neglected a: == a, and if no energy is 
absorbed total intensity remains constant. 

Recording a random field with receiver apertures much 
larger than r, = max (A,  a ) ,  where h is the wavelength and a 

is the correlation length of the medium, yields an 
approximate measurement of the coherent part of the field 
because the incoherent part interferes destructively during 
receiver aperture averaging if the random medium is 
ergodic, i.e. ensemble and spatial averaging are equivalent. 
In seismology we usually have point receivers or arrays of 
point receivers, and either are smaller than the correlation 
lengths of the random fields. Therefore, the recorded field 
consists of the coherent part plus most of the non-coherent 
part and there can be a discrepancy between the behaviour 
of the recorded field and relation (4). 

Seismic attenuation estimates depend on the function f(u) 
being averaged. We investigate averaged values (f(u)) as 
usual in seismology. Fig. 1 shows sketches of different 
averaging procedures which have been of interest in 
scattering attenuation studies in the literature and also for 
our work. The meanfield ( u )  (Fig. 1, left) is obtained by 
stacking individual records without any traveltime correc- 
tions. The second from the left part of Fig. 1 shows the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5) 

Averaging Procedures 

Figure 1. Sketch of averaging procedures. We obtain different scattering-attenuation estimates dependent on what wavefield function we are 
averaging. The logarithm of meanfield amplitude log I(u)l results from averaging records without phase corrections (left). Averaging records 
after traveltime corrections (second from left) yields the attenuation estimate described by Sat0 (1982). Averaging amplitude spectra yields the 
logarithm of the mean amplitude In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( A )  (third from left). The mean logarithm of amplitude (In A )  is the result of averaging only In amplitudes 
(right). Scattering-attenuation estimates determine the slope of these logarithms versus travel distance through the random medium. 
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wavefield averaged after traveltime corrections following 
Sat0 (1982). Amplitude decay without influence of 
traveltime fluctuations can also be measured by stacking 
amplitude spectra of individual records (Fig. 1, third part 
from left). Attenuation estimates are then performed by 
taking the logarithm of the averaged amplitude spectrum. 
Most relevant for practice is how the cloud of single 
logarithms of amplitude spectra computed from individual 
records depends on distance (Fig. 1, right). Formally, the 
behaviour of the centre of mass of this cloud at each 
distance can be described as a dependence of the averaged 
logarithm of amplitude spectra on distance. The two last 
procedures differ only by what is made first: averaging 
(stacking) or taking the logarithm. 

Usually it is assumed that both the dependence of the 
logarithm of the averaged amplitude spectrum In (A) and the 
average of logarithms of amplitude spectra ( lnA) on 
distance can be fitted by a straight line. The underlying 
assumption here is that the corresponding attenuation 
estimates which are determined from the slope of the fitted 
line are independent on travel distance. Moreover, usually 
one does not consider a difference between these two 
values. 

In the following paragraphs we shall study the latter two 
averages and we shall compare them with the behaviour of 
the logarithm of the amplitude spectrum of the meanfield. 
We derive approximate formulae that relate (In A), In (A), 
and In I(u)l to travel distance, frequency and medium 
statistics. This yields global attenuation estimates which can 
be written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@,b= - (InA)/L; 

= -In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~(u) l /L.  

aiob = -In (A)/L. 
( 6 )  

The local estimates of the attenuation can be written as 

aloe - d d 
- - -((In A);  afsoc = - -1n (A); 

dL dL 

d 

dL 
at:: = - -In 

(7) 

It will be clear from the following that only for the 
meanfield these estimates (a:$b and (YE) are the same. 

As a measure of wavefield fluctuations we introduce the 
parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 defined as ratio of incoherent field to coherent 
field: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 = ~ u f ~ / ~ ( u ) ~ .  In a random medium without energy 
dissipation, the coherent field and its intensity attenuate due 
to the energy transfer from (u)  t o  up Therefore, the region 
of weak wavefield fluctuations is limited to small 
propagation distances where 8 < .  1. For large L we have 
8 >> 1 and this part of the medium is the region of strong 
wavefield fluctuations. The transfer from the weak 
fluctuation region to the strong fluctuation region occurs 
where 8 has order unity. 

Weak fluctuation region 

In this paragraph we derive (In A), In (A), 
and ap in the region of weak wavefield fluctuations. 

constants-the square of the field amplitude 

a p ,  aFA 
The intensity I of the recorded field is-apart from 

I = = I, + E ,  (8) 

where E is the fluctuation of I and ( E )  = 0. From (2) we get 

E = ( u * ) u ~  + (u)u;+ o(e2)Ic. (9) 

One can see that E = O(e)I,. Taylor expansions of A and 
InA yield by using (8): 

(In A) = 0.5 In I, - 0.25(~’)/1: + O(e3) ,  

In (A) = 0.5 In I, - 0.125(~)~/1: + O( 63).  

(10) 

(11) 

and 

Eq. (8) gives for ( E ) ~  

Here m2 is the scintillation index (Ishimaru 1978) which 
describes the variance of the intensity. Let us now write u as 

u = ug exp (9 )  = u(, exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x + is). (13) 

Eq. (13) is often called Rytov transformation. x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs are 
random rational functions which are called the level of 
amplitude and phase fluctuation respectively. Using this 
transformation we obtain 

x = In A - In Iu(J. (14) 

Now using the Taylor expansion of (lnA)2 and (10) obtain 
the variance of the amplitude level: 

O; = ((x - 01))’) = 0 . 2 5 ( ~ ~ ) / 1 :  + o(e3). 

(In A) = 0.5 In I, - a: + 0(13’), 

In (A) = 0.5 In I, - 0.50: + O(0’)). 

(15) 

(16) 

(17) 

Therefore, instead of (10) and (11) we have 

and 

Let us emphasize that these two relations have been 
obtained here for a general case, namely a harmonic plane 
wave in the weak fluctuation region, and without any 
restrictions of the probability density of x .  In case of 
spherical waves these relations will be valid too. It is 
straightforward that 

In (A)  - (In A) = 0.502, + O( 8’)). (18) 

This relation is interesting because it yields an amplitude 
measure which is independent of the total intensity. This 
difference allows us to study statistical properties of the 
medium without any theoretical model of the behaviour of 
I,. This is important because the latter is difficult to derive 
for spherical waves if the inhomogeneities are not very 
small. 

The second remark we would like to make is the 
following. In random media x usually has a normal 
distribution. Physically this means that the amplitude results 
from a wavefield which crossed statistically independent 
parts of the random medium (Rytov et al. 1987). Making 
use of the normal distribution of x (12) and (13) yields 

m’ = exp [4a:] - 1. 

m2 = 402,. (20) 

(19) 

In the weak fluctuation region O: is small and Taylor 
expansion yields: 
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Seismic attenuation by scattering 377 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This connection between the scintillation index and the 
variance of the amplitude level again leads to (16) and (17) 
from (10) and (11). A similar way of obtaining relations 
analogous to (16) and (17) was used by Rytov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1987) 
using the assumption of normal distributed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. 

We continue now in our derivation. If we neglect 
backscattering (i.e. I ,  is a constant which we suppose to be 
1) and take into account that a; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= O(f3’) we can expect in 
the weak fluctuation region 

(In A )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-u;, (21) 

In ( A )  = -0.5ai.  (22) 

and 

Now the problem of relating scattering attenuation to (In A )  
and In ( A )  is reduced to relating scattering attenuation to 
the variance of the amplitude level a;. Furthermore, we can 
expect that alnA = 2a, and it is sufficient to study (In A).  

In the Appendix 1 we derive the amplitude level and 
phase fluctuation correlation functions for 2-D isotropic 
random media with the correlation distance of the order or 
larger than the wavelength. In the weak fluctuation region 
the Rytov approximation can be used for the derivation. 
These correlation functions read (see also A1-10 and 
Al-11): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B, (Az )  = 2k’xL%cos (5 A z )  

where is the 2-D Fourier transform of the corelation 
function of the index n ,  (or velocity) given by (A2-10). 
These relations are slightly different in 3-D (Ishimaru 1978): 

where is the 3-D fluctuation spectrum given by 
(A2- 13). 

Before proceeding let us make the following note about 
the phase fluctuations correlation functions. A s  is shown by 
Miiller ef a f  (1992) and Gudmundsson ef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1990) the 
statistics of traveltime fluctuations can be very useful for an 
inversion of medium statistics. In these studies the 
geometrical optics approximation has been used. The 
relations (24) and (26) are more general because they are 
valid not only for very short wavelengths but for 
wavelengths up to the order of a and contain the 

geometrical optics approximation as a special case. In the 
geometrical o tics approximation it is assumed that 

fluctuation spectrum @ differs from 0 noticeably only 
for ( 5 2n/a << 2 7 r l d .  This means that the factor 

L<<a’/A ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- AL is the Fresnel zone). The medium 

sin ( t 2 L / k ) )  . 
in the integrands of (24) and (26) is 

+ [’L/k 
approximately equal 2. Substituting then relations (A2-10) 
and (A2-13), integration over 6, and taking into account 
that phase fluctuations are the fluctuations of traveltimes 
multiplied by angular frequency yield exactly the relation 
(4 )  from Miiller et af. (1992) for the autocorrelation function 
of the traveltime fluctuations. 

Here we are interested in the variances u; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf. Taking 
the corresponding correlation functions at zero lag yields 
these variances. The formulae for variances are very similar 
to (23), (24), (25) and (26) with the only difference that in 
the integrands the factors with cos in the 2-D case and with 
Bessel functions in the 3-D case are equal unity. From that 
and (A2-16) and (A2-17) it is straightforward to obtain 

u; + u: = 2as L. (27) 

This relation shows that attenuation of the mean field is not 
only caused by phase fluctuations but also due to amplitude 
fluctuations. Relation (27) can be obtained directly from 
(13) by using the assumption that x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs are normal 
distributed. 

The value (In A )  depends on u: only and, therefore, its 
behaviour with L is more complicated than a simple 
proportionality: 

(In = -a: = -2k’nL 

Let us give a more detailed analysis of (28). First note that 
this relation is slightly different in 3-D problems: 

(In A)3-D = -u; = -2k’n’L 

If L<<a’/h (i.e. we apply the geometrical optics 
approximation) we can use the Taylor expansion of 
sin ( ( ’L/k)  for small arguments. Therefore, 

In the case L >> a2/A we have 2n/a >> 2 n / a  and the main 
contribution in the integrals (28) and (29) stems from 
5 > 2 n / a .  This means that 

(33) 

As is shown in Appendix 2, the integrals in (32)  and (33) are 
proportional to the scattering cross-sections of unit volumes 
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of 2-D and 3-D media respectively, for a/h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1. i.e. for 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>> a2/A we have 

(lnA)== -a,L. (34) 

This result has already been obtained by Fayzullin & 
Shapiro (1988). 

If the index n ,  has an isotropic exponential correlation 
function (see Appendix) and a variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa: then the 
fluctuation spectrum of the medium is 

2-D u:aL 
@" (5) = + (ta)21"2 ' (35) 

and the amplitude level variance can be computed explicitly 
from (28) which yields 

(lnA)z-I, = -Lm:ak2 1 + - [J , (b)  cos b + Y , ( b )  sin b ]  . (36) 

Here b = L/(2a2k) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ,  and Y, are the Bessel functions of 
the first and second kind. The scattering attenuation 
estimations obtained from (In A )  and from In (A) depend on 
travel-distance L because L appears in the argument of the 
Bessel and trigonometric functions. 

The global scattering attenuation estimates obtained in 
2-D and 3-D from (In A )  and described by (6) are the same 
as (28) and (29) except for a factor -L before the integrals. 
With (A2-16) and (A2-17) we obtain: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 2 "  I 

in 2-D and 

(37) 

in 3-D. 
The local attenuation estimates can be obtained by (7), 

(28) and (29) and taking into account (A2-16) and (A2-17): 

at;':,)== a ,  - 2k 'z rcos  (.$*L/k)@;-"(t) d [  

a:&, = a, - 2k2n2ffC cos ([2L/k)@:-D(t) d t  

(39) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

in 2-D and 

(40) 

in 3-D. 
These four relations explicitly show the deviations of the 

global and local attenuation estimates from the coefficient of 
scattering attenuation of the mean field as. The deviations 
depend non-linearly on the travel distance and they are 
described by the Fourier-type integrals of the medium 
fluctuation spectrum. This means that they can be used for 
an inversion. The difference between local and global 
estimations is obvious, but for large travel distances, both 
global and local estimations asymptotically tend to the 
scattering coefficient of the meanfield (at least for 
quadratically integrable spectra an). As attenuation 
estimates obtained by Sat0 (1982) or Wu (1982b) estimates 
based on (In A) are also smaller than as. But in contrast to 
their results these estimates depend on travel distance. 

In Fig. 2 we plot the travel-distance dependence of three 
attenuation parameters calculated for a 3-D medium with 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 20 30 40 50 60 70 
traveldistance [m ]  

Figure 2. The travel distance dependence of ( 1 )  the logarithm of 
the meanfield amplitude (solid line); (2) the logarithm of the 
wavefield amplitude calculated in the approximation of Wu [relation 
(17), 1982b; dotted line], and ( 3 )  the averaged logarithm of the 
amplitudes [relation (29) from this paper, denoted by crosses]. The 
curves have been calculated for a 3-D medium with exponential 
correlation function, a correlation distance a = 20 m, with an 
average velocity of 3000 m s C ' ,  a standard deviation of the velocity 
fluctuations of 90 m s C ' ,  and a frequency of 100 Hz. 

exponential correlation function. For this particular example 
we chose a = 201x1, an average velocity of 3000m s-', a 
standard deviation of the velocity fluctuations of 90 m sC1 
and a frequency of 100Hz. The solid line shows 
the logarithm of the meanfield amplitude 

a s  = BrI(0) 4k4a3 ] The dotted line shows the 
+ 4k2a2 . 

logarithm of the wavefield amplitude calculated in Wu's 
approximation [relation (17), Wu 1982b]. The crosses 
denote the averaged logarithm of the amplitudes (29). For 
small travel distances the latter curve is close to the dotted 
line but with increasing travel distance it deviates more and 
more to the solid line. The physical interpretation is: at short 
travel distances meanfield attenuates mainly because of 
arrival-time fluctuations of individual records. Both 
estimates corresponding to the dotted and crossed lines are 
independent of these fluctuations. With increasing travel- 
distance, amplitude fluctuations play an increasing role in 
meanfield attenuation. The crossed line describes a pure 
amplitude fluctuations effect. This is why the crossed line 
deviates to the solid line. Therefore, Wu's approximation 
(and similarly Sato's traveltime corrected estimation) 
underestimate the influence of amplitude fluctuations on 
scattering attenuation estimates. 

On the other hand, Fig. 2 shows also that applying the 
linear regression to the travel-distance dependence of the 
logarithm of amplitude leads to misinterpretations. Let us 
finally note that the estimations obtained from In(A) are 
two times smaller than those obtained from (In A). 

Strong fluctuation region 

Consider now the wavefield behaviour in the strong 
fluctuation region ( 8  >> 1) and remember the exponential 
representation of the wavefield (13). If the intensity of the 
incident field is unity this representation will give 
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and on the other hand 

(e2X) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I,. (42) 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAus make the assumption that the amplitude function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
has a normal distribution. This is generally true in the weak 
fluctuation region (Rytov et al. 1987; Ishimaru 1987) and 
recalling the central limit theorem it should be 
approximately correct in the strong fluctuation region. 
Therefore, 

(43) 

(44) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(45) 

(46) 

(e’X) == e 2 ( X ) + 2 4  

201) = In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl, - 2 4 .  

(In A )  = 0.5 In I, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvi, 

In ( A )  = 0.5 In I ,  - 0.5~:.  

which leads to 

These two relations yield 

and 

We have obtained relations (16) and (17) again. Provided zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
is normally distributed these relations are exact. 

Fluctuations of the amplitude level reach a state of 
saturation in the strong fluctuation region. In the limit 
L --+ m the variance of intensity and therefore the 
scintillation index in --+ 1 (Rytov et al. 1987; Ishimaru 1978). 
From (19) it follows that v: = const = 0.25 In (2) ~ 0 . 1 7 3 .  
Provided backscattering can be neglected, i.e. I, = 1, both 
values (In A )  and In ( A )  will tend to constants -0.173 and 
-0.087 respectively. One important consequence is that in 
the strong fluctuation region the global estimates of 
attenuation will decrease as 1/L if L + m  and the local 
estimates will tend to zero, too. The resulting bias in the 
attenuation estimate can lead to serious misinterpretations. 

NUMERICAL EXPERIMENT 

We computed synthetic shot records of the plane wave that 
propagated through a 2-D acoustic random medium with 
constant density. The aim of the modelling is to demonstrate 
the validity of the main theoretical conclusions about the 
behaviour of (u) (Appendix 2) ,  In (A) ,  and (In A )  and their 
importance for attenuation estimation in seismology. 

Our numerical experiment involved three steps: (1) 
producing a random medium with specified statistical 
parameters, (2) computing shot records with finite 
differences, and (3) extracting attenuation from the synthetic 
data and comparing with the presented theoretical results. 

Most common random media models are based on 2-D 
random fields of normal distributed parameters with 
Gaussian, exponential and von Karman autocorrelation 
functions. These simple models are useful not only for 
investigations of wave propagation in the lithosphere 
(Frankel & Clayton 1986) but also in seismic exploration 
(Gibson & Levander 1990). 

The velocity fluctuation of our random models is 
characterized by the Gaussian distribution function of the 
P-wave velocity with the mean 3000 m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs C 1  and relative 
standard deviation 3 per cent and by the isotropic 

distance [m]  
ZOO 400 800 800 1000 1200 1400 1600 1800 2000 

Figure 3. Random model used for the numerical experiment. 
Bottom: a homogeneous zone is followed by a random medium with 
an isotropic exponential distribution function and a correlation 
length of 20 m. A vertical trace through the medium illustrates how 
fast the medium fluctuates (top). 

1000 X 400 grid points with a grid interval of 2 m. A vertical 
trace through the medium (Fig. 3,  top) illustrates how fast 
velocity fluctuates. 

We let a plane wave propagate through the random 
medium and register the wavefield at many geophones for 
each of several propagation distances (Fig. 4). The 
subsequent processing was then performed based on the 
common travel-distance gathers. In order to get good 
averaging, the lengths of the receiver lines have to be much 
larger than max (a, Amax). We choose the distances between 
geophones along the receiver lines and the distances 
between receiver lines so that they are of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I homogeneous medium I 

It t t t t ti 
I plane wave I 

exponential autocorrelation function with the correlation 
length a = 20 m. Density is constant. The model used in our 
wave propagation simulation (Fig. 3, bottom) contains 

Figure 4. Experimental set-up for the wavefield simulations. A 
plane wave enters a random medium and the scattered field is 
registered at several receivers and propagation distances. 
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380 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Shapiro and G. Kneib zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtake amplitude spectrum I 
1 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i f i t tanpent at distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof interest 1 

I 

lcomrnon traveldistance gather1 

1-1 
1-1 
L - I 

t 
Ifit tanxent at distance of interest I 

Figure 5. Processing sequences to compute In I(u)l, In (A) ,  and (In A).  Each yields a different scattering-attenuation estimate. 

max zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, Amax). This avoids processing of many statistically 
dependent measurements. To avoid artificial damping of 
the plane wave with traveltime we apply periodic boundary 
conditions at the left and right side of the grid. Seismic 
waves are absorbed a t  the top and bottom boundaries 
parallel to the originally plane wave. To make sure that the 
results are not biased by the periodic boundaries we exclude 
the outermost traces from our analysis. The source is located 
in a small homogeneous region with the constant 
replacement velocity cO of the random medium. The source 
wavelet is the first derivative of a Gaussian with a dominant 
frequency of 100Hz and a maximum frequency of about 
300Hz. Given the mean velocity, the dominant wavelength 
is 3 0 m .  Wave propagation in this regime can be 
characterized by the dimensionless wavenumber ka = 4.2 

where k = ~. 
2 n  

Adominant 

Analysis of numerical dispersion and attenuation caused 
by the our finite difference scheme shows that eighth-order 
accuracy in space and fourth-order accuracy in time yield 
sufficient accuracy in the wavefield modelled (Kneib & 
Kerner 1993). We validated this by repeating our 
attenuation estimation procedure for models with identical 
grid sizes as in the random medium simulations but with the 
constant slowness l/c,). The results show that the logarithm 
of the meanfield spectrum deviates only slightly from the 
expectation value of zero with log values always below 0.1 
per cent of the equivalent random medium experiment. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 shows the simple processing sequence to obtain 
meanfield attenuation (left), the logarithm of the mean 
amplitude (centre), and the mean logarithm of amplitude 
spectra (right). The only difference is the order of 
operations. The meanfield theory requires to stack 
immediately after common travel-distance gathers could be 
collected. The travel-distance dependence of the logarithm 
of the meanfield amplitude spectrum for a given frequency 
can then be fitted by a straight line whose slope is the 
scattering coefficient as. Computing amplitude spectra for 
each trace in the common travel distance gathers, stacking 
and taking the logarithm for given frequency yields the 
logarithm of mean amplitude In(A). If we take amplitude 
spectra of each trace, take the logarithm of the spectra, and 
stack afterwards, we shall obtain the mean logarithm of 
amplitude spectra (In A). 

The numerical modelling was performed in the time 
domain. We studied the propagation of the pulse which had 
the form of the first time derivative of the Gaussian curve. 
The theoretical results were obtained for a harmonic 

wavefield. Therefore, in order to compare numerical and 
theoretical results we have to perform the Fourier analysis 
of the complete traces without windowing. Putting a short 
window around the main coherent arrival would exclude the 
fluctuations contained in the coda. However, studying 
statistical moments of harmonic wavefields requires 
complete traces because scattered energy from the coda also 
contributes to these moments. Of course, the exclusive 
processing of ‘direct arrivals’ requires windowing and the 
theory should be extended accordingly. In the discussion 
section we shall consider the prouem of windowing and 
demonstrate at least the qualitative validity of the presented 
theory for the ‘direct arrivals’, too. 

Results 

Fig. 6 shows shot records registered at  different propagation 
distances through a random medium. The left record 
corresponds to the region of weak wavefield fluctuations and 
has been obtained after the wavefield travelled 20 m through 
the random medium. The strong fluctuating wavefield 
passed 620 m through the random medium and is shown on 
Fig. 6, right. Both wavefields have been bandpassed with a 
centre frequency of 160 Hz. As  a result 8 = 0.3, resp 8 = 3.3. 
for the centre frequency. This corresponds to a(,,)L = 0.04, 

wrak fluctuations strong fliictiiations 

Figure 6. Shot records registered in the region of weak wavefield 
fluctuations (left) with a,,$ = 0.04 and 8 =0.3, and strong- 
wavefield fluctuations (right) with a(,,& = 1.24 and 8 ~ 3 . 3 .  Both 
plots are normalized t o  their maximum and no time-dependent scale 
has been applied. 
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dominating frequency to lower frequencies. Now the spectra 
are smooth because random fluctuations caused by 
non-perfect averaging are largely left outside the window. 

Fig. 9 shows In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI(u)l (top, left), (In A )  (top, right), In ( A )  
(bottom, left), and In@’) (bottom, right) as function of 
travel-distance L and for the dominant frequency of 100 Hz. 
Theory is represented by solid lines [relation (A2-15) has 
been used for In I(u)l, relations (22) and (36) for (In A )  and 
In (A)]  and logarithms calculated from synthetic data are 
denoted by dots. The meanfield shows the predicted 
behaviour. The straight line indicates that attenuation is 
independent on the travel distance. Log values scatter 
farther away from the theoretical curve at large distanccs 
because the spatial averaging does not suppress incoherent 
energy sufficiently. Mean logarithm of amplitude and 
logarithm of mean amplitude follow closely the theory in the 
region of weak wavefield fluctuations (bent curve). Finally, 
Fig. 9, bottom right, proves that backward scattering could 
be neglected in our simulation because the total intensity 
registered remains approximately constant and its In scatters 
near zero. The slight shift of these values in the positive 
direction can be explained by some reasons. The first is our 
normalization procedure, where all spectra were normalized 
by the amplitude spectrum o f  the meanfield obtained in 
homogeneous strip of the model. The small amount of 
backscattering makes this spectrum lower amplitude than 
the one of the wavefield in homogeneous medium. The 
second reason could be resonances in the limited model 
space. In any case we found this positive shift small 
compared with the effects under investigation. The 
subsequent Figs 10 to 14 are similar to Fig. 9 but have been 
computed for frequencies of 120 Hz, 140 Hz, 160 Hz, 180 Hz 
and 200 Hz. Attenuation grows with frequency as predicted 
by the theory. Figs 10 to 14 demonstrate that the region of 
weak wavefield fluctuations is reduced in size with frequency 
and therefore compared to Fig. 9. In the growing region of 
strong wavefield fluctuations the values scatter near the 
constants -0.25 In 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -0.173 for the mean logarithm of 

resp cr(,,)L = 1.24. Each plot is normalized to its maximum 
and no  time-dependent scale has been applied. In the weak 
fluctuation region the wavefront of the first arrival is 
distorted compared to wave propagation in a homogeneous 
medium. The larger the travel distance the stronger the 
wavefield fluctuates and the larger the portion of energy 
transferred to the coda. In the region of strong fluctuations 
it is impossible to determine for a certain trace where the 
first arrival ends and where the coda begins. The amplitudes 
of the first arrivals can have the same order of magnitude 
than the fluctuations several periods afterwards. Intuition 
already implies that determining attenuation from 
amplitudes in the region of strong wavefield fluctuations 
could be problematic. In fact as already mentioned above 
(In A )  and In ( A )  tend to constants. The stronger linear 
events in Fig. 6, right are diffractions at near-receiver 
heterogeneities. 

Fig. 7, left, shows the complete meanfield traces computed 
for different distances in one plot. The decay with travel 
distance, resp traveltime is obvious. Note that the smaller 
the travel distance, the better the spatial averaging 
suppresses fluctuations. Non-perfect averaging leads to a 
meanfield ‘tail’ at large distances. If we put a box-car 
window around the coherent arrival and centred around the 
expected arrival time of the centre of mass of the event for 
a homogeneous medium with average slowness (Fig. 7, 
right) we can see pulse broadening more clearly. The 
amplitude spectra corresponding to Fig. 7 are shown in Fig. 
8 and display the expected decrease and degeneration of 
high-frequency components with travel distance. The 
roughness of the spectra in Fig. 8, left, is due to the 
fluctuations ‘tail’ remaining after stacking the traces. The 
spectra get smoother with recording distance because the 
wave arrives later and therefore the number of samples 
representing fluctuations decreases. For comparison the 
input wavelet spectrum is included in the plots (uppermost 
curves). The amplitude spectra of the windowed meanfield 
(Fig. 8, right) show the same decay and shift of the 

17 stacked t races  a t  different d is tances 

- 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.04 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.08 0.12 0.16 0.2 0.24 0.28 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
time [sec] 

17 stacked t races  a t  different d is tances 

I ,  I 

0 0.004 0.008 0.012 0.016 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . 0 2  
t ime [ sec ]  

Figure 7. Meanfield traces of the wavefield recorded at different travel distances in a medium with 3 per cent velocity perturbation. The plots 
show 17 traces above each other. The complete meanfield traces (left) show the decrease with traveltime, resp travel distance. Meanfield has 
been windowed by a rectangular window centred around the arrival travelling with average slowness (right). 
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18 amplitude spectra a t  different distances 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA150, 200 250 300 

18 amplitude spectra at different distances 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

W 
0 

N 
0 

c 
0 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 50 100 150 200 250 300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

frequency [Hz] frequency [Hz] 

Figure 8. Meanfield amplitude spectra computed at different travel distances. The spectra have been computed from the data in Fig. 7. Spectra 
of the complete traces (left) are rough because the meanfield coda is not zero, i.e. spatial averaging is not perfect. Amplitude spectra of the 
windowed traces are smooth. The decrease and shift to lower frequencies reflects the behaviour of meanfield amplitudes. For reference the 
amplitude spectrum of the input wavelet is also shown. 

amplitude, and resp -0.125 In 2 = -0.087 for the logarithm 
of the mean amplitude as expected from the theory. 

In summary, we find good agreement between the theory 
and the numerical simulations. Small deviations from theory 
in Figs 7 to 14 can be explained by non-perfect averaging 

and therefore can be reduced by improved spatial averaging 
or by ensemble averaging. Our  results not only prove that 
our theory works but also that high-order finite difference 
operators can be applied to model random-media wave 
propagation highly accurately. 
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Figure 9. In /(u)l (top, left), (In A )  (top, right), In (A )  (bottom, left), and In (A2) (bottom, right) for the dominant frequency of 100 Hz. Points 
denote the numerical experiment, solid lines denote theory. The bent curve in the Figures of (In A)  and In (A) refers to the weak fluctuation 
region and the horizontal line to the strong fluctuation region. 
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ln(lA(<u>)l); f=120; data=. theory=fat line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 10. The same as Fig. 9, but for the frequency of 120 Hz. 
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Figure 11. The same as Fig. 9, but for the frequency of 140 Hz. 
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Figure 12. The same as Fig. 9, but for the frequcncy of 160 Hz. 
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Figure 13. The same as Fig. 9, but for the frequency of 180 Hz. 
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Figure 14. The same as Fig. 9, but for the frequency of 200 Hz. 

DISCUSSION 

In this paragraph we discuss usefulness and restrictions of 
our results and consider some perspectives and open 
questions. 

The main conclusion of our theoretical and numerical 
consideration is that if scattering plays a noticeable role 
compared with absorption we cannot apply a linear 
regression to obtain attenuation estimates from the 
travel-distance dependencies of logarithms of amplitude 
spectra. We propose a theory which could be a base for 
studying scattering properties of heterogeneous media from 
these dependencies. 

First we have to make the following remark. Our analysis 
was performed for media without any absorption and with 
the negligible backscattering. This leads to the independence 
of total intensity I ,  on travel distance. This means that the 
mean energy is being conserved. Therefore, the dependence 
of the logarithms of amplitude spectra on the travel distance 
does not describe the attenuation of the mean energy but 
the average decrease of amplitude spectra because of 
increasing energy fluctuations. This increase cannot be 
unlimited and in the strong fluctuation region a saturation of 
the energy fluctuations occurs which yields constant 
logarithms of amplitude spectra. 

Now let us discuss the restrictions of the presented 
concepts. 

Impulse wavefield 

The theory presented here considers only propagation o f  
harmonic wavefields. Therefore, the generalization to 

0 I00 200 300 400 500 600 
distance [m] 

l n (< lA ( f ) I * *Z>) ;  f=200, data=. 
0 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R 1  ‘i, , , , , , , 
P 

0 100 200 300 400 500 600 
distance [m] 

impulse wavefields is an open and practically relevant 
problem. Intuitively it is clear that the estimations of the 
scattering attenuation obtained from logarithms of ampli- 
tude spectra will depend on the length and kind o f  the 
window applied to extract the direct arrivals. The larger the 
window the more samples of the fluctuating field will be 
analysed and in the limit of infinite window the results will 
tend to the results for harmonica1 wavefields. We assumed 
that inhomogeneities arc not too small and we neglected the 
backscattering. This means that wavefield fluctuations arc 
caused mainly by scattering within the volume of the 
medium between source and receiver. This volume 
additionally is limited by the small scattering angle. 
Windowing data leads to a similar restriction of the 
scattering volume. Therefore, we can expect that our 
theoretical results describe estimations obtained only from 
direct arrivals too, at least qualitatively. In order to 
demonstrate this we repeated the processing described 
above but did this after applying a box-car window around 
the direct arrivals having 1.5 times the length of the input 
wavelet. We find good agreement with the theory for the 
harmonic wavefield in the weak fluctuation region (Figs 
15-17). The  strong fluctuation region now begins later 
(compare Figs 9, 12, 14 and Figs 15-17) and probably the 
level of saturation changed. 

The second aspect of windowing is the window shape. 
The choice of a window always has to compromise between 
the amount of variance and bias introduced. We came to the 
conclusion that the choice of a window function is less 
important where many spectra or traces can be averaged to 
perform the spectral estimation because averaging smooths 
and hias partly averages away. In practice, data volumes 
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Figure 15. The same as Fig. 9, but the processing has been performed after windowing around direct arrivals. The frequency is 100 Hz. 
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Figure 16. The same as Fig. 15, but for the frequency of 160 Hz. 
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\ j  

\ I  

often do  not allow sufficient averaging. In that case the 
shape of the window is an important subject. But it will not 
be considered here. 

Point source 

Another principal limitation of the presented theory is that 
it has been developed for an incident plane wave. At  least 
partially this theory can be generalized for a point source in 
a random medium. Relations (16), (17) and (18) are valid 
for the case of spherical waves, too. The relations for the 
amplitude level variance can be obtained in the same way 
as described in Appendix 1, and also in Ishimaru (1978). 
Particularly, for the 2-D case, we obtain an equation which 
is similar to the corresponding equation for a plane wave: 

This relation together with the relations (16) and (17) yields 
a generalization of the presented theory to the case of a 
point source and for the weak fluctuation region. But this 
description is not complete because we still need a theory 
for the total intensity in the presence of large in- 
homogeneities. Relation (18) represents a value, which is 
measurable and which is independent of the total intensity, 
i.e. it is described by fl:.pc,in, only. 

Relation (47) shows a complicated dependence of c:.~~,,, , ,  

on travel-distance L. Again we cannot apply a linear 
regression to obtain attenuation estimates from the 
dependence of the logarithm of the amplitude spectra on the 
travel distance (even after correction for geometrical 
spreading). Of course, the results for a plane wave can be 

? I , \  

0 100 200 300 400 500 800 
distance [m] 

ln(<lA(f)l**Z>); f=200; data=. 

. . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo . . . : .  

I ,  I 
0 100 200 300 400 600 800 

distance [m] 

used directly for large travel distances where we can 
approximate the spherical wave by a plane wave. 

Frequency domain 

The next limitation of the presented theory we want to 
discuss is the restriction on the frequency range. The 
limitation a 2 A can be expressed by the dimensionless 
wavenumber ka zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 ~ .  No upper frequency limit exists. This 
follows from the theoretical results for the correlation 
function of the phase where we obtained the geometrical 
optics approximation as the high frequency limit. In our 
experiments we investigated the range 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ka 5 12 and 
found good agreement between finite difference simulations 
and the theory. Smaller ka values, i.e. longer wavelengths or 
weaker scattering, are more difficult to investigate 
numerically at  least if the region of strong fluctuations is of 
interest because spatial averaging is less effective at large 
wavelengths and sufficient ensemble averaging would 
require much more computational efforts. The low- 
frequency limit of our theory is required to exclude 
backscattering. The theory is based on the parabolic 
approximation of the wave equation and therefore demands 
strong forward scattering. The generalization to small 
inhomogeneities is an open problem. 

Other limitations 

In our theory we also assume an isotropic autocorrelation 
function of the medium fluctuations, i.e. of n , .  In an 
additional experiment (no pictures shown) we choose the 
correlation length parallel to the wavefront of the plane 
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wave a, unchanged (20 m) but increased the correlation 
length perpendicular a,  to 50 m. Compared to the isotropic 
medium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, = a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 20 m) the transition from the weak to the 
strong-fluctuation regions occurs at shorter travel distances 
and smaller frequencies indicating stronger scattering. The 
higher the frequency the stronger predominates small-angle 
scattering and the better is the fit to the theory for the 
isotropic medium. The wave interacts practically only with 
the scattering cross-section parallel to the wavefront which 
defines an ‘effective’ correlation length. 

Our theory also demands the velocity perturbations of the 
random medium to be small. We found good agreement 
between simulations and theory in the range 
1% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10%. Smaller perturbations pose no problem 
but the larger a; the stronger scattering and the less 
effective is averaging. Again we meet practical limits of the 
computer simulation. 

Application to inverse problems 

The main aim of our paper has been an analysis of the 
forward problem. Let us discuss now some possibilities to 
apply the presented theory to inverse problems. 

Using wavefield-amplitude fluctuations for inverse prob- 
lems is often obscured by the coupling effect originating in a 
small region around a source or a receiver. In more or less 
stationary media we can hope that the coupling does not 
systematically depend on travel distance. Our results give 
the systematic relationships between the logarithms of 
wavefield amplitudes and travel distance. Therefore, the 
curves of the logarithms of amplitudes versus travel distance 
(in a weak fluctuation region) are more or less free of the 
influence of the coupling effect. These curves are 
Fourier-type integrals of the media-fluctuation spectra and 
therefore they can be inverted. 

As noted before it is not adequate to apply linear 
regression to the travel distance dependencies of the 
logarithms of amplitudes. But what could be approximated 
by a straight line is the sum -(ln A) + u: [see (21) and (27)]. 
In the absence of absorption the slope of this straight line 
will be equivalent to 2a, and in presence of absorption it 
will be a ,  + 2as. The slope of In I(u)l plotted as a function 
of travel distance is a, + as. Subtraction yields as, i.e. allows 
us to separate absorption and scattering effects. By studying 
phase fluctuations, the travel distance dependence of the 
logarithms of wavefield amplitudes and of meanfield 
amplitudes, and the linear regression described above, we 
can take into account the contributions of scattering and 
absorption in different ways. This enables us to estimate the 
strength of scattering and absorption separately. 

CONCLUSIONS 

If scattering plays a noticeable role compared to absorption 
we cannot apply a linear regression to obtain attenuation 
estimates from the travel-distance dependencies of the 
logarithms of the amplitude spectra. Our results describe 
these estimates and can be a base for studying the scattering 
properties of the earth using these dependencies and (or) 
traveltime fluctuations. Different scattering attenuation 
estimates are obtained by averaging different wavefield 
attributes. aA and alnA depend on travel distance, while a(ii) 

does not. The behaviour of the logarithm of mean amplitude 
and the mean logarithm of amplitude are completely 
different in the weak and strong-fluctuation regions. They 
depend non-linearly on travel distance if the wavefield 
fluctuations are small and can be tied with the logarithm of 
the meanfield. The averages (InA) and In(A) differ 
approximately by a factor two. In the region of strong 
wavefield fluctuations they tend to the constants -0.173, 
resp -0.087. Decrease in the total intensity can be 
attributed to absorption as long as the weak scattering 
approximation holds and backscattering can be neglected. 
The slope of (In A)  and In (A) plotted versus travel distance 
will be the absorption coefficient a ,  in the region of strong 
wavefield fluctuations. 
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APPENDIX 1 

Derivation of amplitude level and phase correlation 
functions 

In this appendix we derive the dependencies of the 
amplitude level and phase-fluctuations correlation functions 
on frequency, travel distance, and the statistical medium 
properties. Taking the amplitude correlation function at 
zero lag yields the variance which can be substituted into 
(21) and (22)  to obtain (InA) and In(A). We derive these 
relations for 2-D wave propagation (these results are new to 
our knowledge) and compare them in the main text to 
Ishimaru (1978) who has already presented most of the 
analogous formulae for the 3-D case. 

Following the derivation of Ishimaru (1978) for the 3-D 
case, we study the amplitude variance for harmonic plane 
waves in the Rytov approximation, which gives for 

u(r) = uO(r) exp [@(r)]; @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+is (Al-1) 

the first iteration 

(Al-2) u"(r') dV,. 
G(r - r')n,(r') ~ 

uo(r) 

Here k is the wavenumber, G is the Green's function for a 
n-D medium, and V' is the volume containing scatterers. In 
the 2-D case the Green's function of harmonic waves is 
given by (A2-2). For a large volume V' one can expect that 
the main contribution in @ is given by inhomogeneities far 
away from the receiver point r. We can use the far-field 
approximation of the Green's function (A2-3). Our next 
assumption is that the size of inhomogeneities a (or the 
correlation radius) is not much smaller than the wavelength: 
A 5 a. Moreover, if there exist inhomogeneities of different 
scale lengths, large inhomogeneities will give the main 
contribution (provided that they are not too few). These 
assumptions permit us to neglect backscattering, i.e. in 
(Al-2) the integration can be limited to the interval 
0 % x  I L. Furthermore, in the Green's function we can 
assume Iz - z'l<< Ix - x'I because scattering is confined with 
an angle of order A/a  in the forward direction. This yields 
the following approximation for the Green's function: 

Next we introduce the representation of the random 
medium fluctuation n I (r) in the space-wavenumber domain 

n ](x, z )  = eit' d v ( x ,  5). (Al-4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Integration in (Al-2) over z '  gives 

(Al-5) 

The complex conjugate function @* reads 

@,*(L, Z )  = - ikl-_dv(x' ,  ()I'-dx'e"e' g ( L - x ' ) .  (Al-6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Here the identity d v ( x ' ,  5) = dv*(x',  -5) and the 
substitution (+ -5  were used. With (Al-5) and (Al-6) we 
obtain for x: 
x ( L ,  z )  = &[@I(L z )  + @?(k z ) l  

The spatial-amplitude level-correlation function B, = 

01(L zl)x*(L, z2) )  reads 

B,(Az) = k ' r  d([:dx'[)Ldx"eicAi sin [g t2 ( L  - x r ) ]  
-m 

(AI-8) 

where Az = z ,  - z,; Ax = x '  - x", (dv(x ' ,  5') dv(x", 5")) = 

F ( / W ,  5')6(5' - 5") d5', and 

F(lAxl, 6) = [ ~ / ( 2 n ) ] P ~ ~ ) 1 P " x ( n I ( ~ , z ) n I ( ~ + A x ,  z + A ~ ) ) e ' ~ ~ ' d A z .  

We introduce the new centre of mass coordinates 
7) = O.S(x' + x") and the difference coordinates Ax = 

(x' - x") and perform the integration over Ax from --oo to 
00. The latter is admissible because F(IAx1) differs from 0 
noticeably only within the correlation distance, i.e. for 
Ax ~ a .  We finally use 

sin [ ( t 2 / ( 2 k ) ) ( L  - x')] =sin [ ( t 2 / ( 2 k ) ) ( L  - v)] 
and obtain from (Al-8) 

(Al-9) 

where a)",." is the fluctuation spectrum of the refractive 
index n ,  determined in (A2-7). Finally, the integration over 
7) gives the correlation function of the amplitude level. 

(A 1 - 10) 

By the analogous calculation we obtain the phase 
correlation function 

(Al-11) 

Substituting B,(Az) = B,(Az)w' only changes the factor in 
front of the integral and yields traveltime fluctuations. The 
analytical formulae (Al-10) and (Al-11) describe ampli- 
tude level and phase, respectively traveltime fluctuations of 
a random field in the region of weak wavefield fluctuations 
in 2-D media. They are very useful in studying fluctuations 
of x, s and traveltime. 
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

Meanfield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Here we derive the scattering cross-section X of a unit 
volume in a 2-D random medium, and from that obtain the 
scattering coefficient of the meanfield. Most of the presented 
results are used in the main part of the text and, therefore, 
are necessary for consideration. The formula for the 
scattering coefficient of the meanfield in 2-D exponential 
random media is new to our knowledge and it will be used 
in the numerical experiment. 

'The scattering cross-section is the ratio of the power flux 
scattered by the unit volume in all directions to the incident 
power flux per unit surface. Note that the scattering 
cross-section is a far-field characteristic of scattering. In 
order to find the scattering cross-section we write the 
scattered field U' as 

is the fluctuation spectrum, i.e. the 2-D Fourier transform of 
the medium-correlation function 

B,(Ar) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (nl(r)nl(r + Ar)). (A2-8) 

The differential scattering cross-section is defined as the 
ratio of the power flux scattered by a unit volume in a given 
direction to the incident power flux per unit surface. 
Integration over all directions gives the total scattering 
cross-section for an isotropic random medium 

us(r) = k'J G(r - r')2nl(r')u(r') dV'  (A2-1) 

assuming the secondary sources are the inhomogeneities of 
the medium confined by the volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ' .  Here G is the 
Green's function and k is a wavenumber in the 
homogeneous background medium. The Green's function of 
harmonica1 waves in two dimensions reads (Morse & 
Feshbach 1953) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

G(r - r') = - H:')(kR), 
4 

(A2-2) 

where R = Ir - r'l and r' is the radius vector of the source. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H:;) is a Hankel function of the first kind. In the far field of 
the scattering volume we can use the far-field approximation 
of the Green's function 

(A2-3) 

Supposing that the scattering volume is located at the origin 
we can now write the far-field approximation of the 
scattered field 

112 

us(r) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf( j, i)( :) elk', (A2-4) 

where the unit vector j describes the direction of scattering; 
the unit vector i describes the propagation direction of the 
incident plane wave. f(j, i) is the scattering amplitude 

In the Born approximation, which is valid for low-contrast 
inhomogeneities (weak scattering) we can substitute in this 
integral equation the incident plane wave exp (iki - r') 
instead of u(r') (Ishimaru 1978). Using this substitution we 
obtain the differential scattering cross-section of the unit 
scattering volume 

where k, = k(i - j) and 
4 I_- 

@-"(k) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 J B,(Ar)eikA'd2 Ar (A2-7) 
(2n)2 -r 

I: = 4nk3 @i-D(k,) d.9, 1: (A2-9) 

where 6 is the angle between the vectors i and j and 
k, = 2k sin (6/2).  With an isotropic correlation function B ,  
it follows that 

1 "  
@i-"(k,) = - / Bn(r)Jc,(ksr)r dr. (A2-10) 

2n 0 

Here J, is the Bessel function of the first kind. Using the 
variable k, instead of 6 we can rewrite the relation for I: as 

2k k2 -112 

I: = 4zk2[) ( 1  -$) @i-D(k,) dk, 

The corresponding relations for the 3-a'case are 

X = (2n)'k2b k,@:-D(k,) dk,, 

and 

2k 

(A2-11) 

(A2-12) 

(A2-13) 

The attenuation of the meanfield due to scattering is 
described by the scattering coefficient a,. In our 
single-scattering approximation 

as = OSX. (A2- 14) 

In 2-D finite-difference modelling we use an exponential 
random medium with isotropic correlation function 
Bn = ut exp (-Arla), where Ar = (Ax2 + Az2)".'. Substitut- 
ing that into eqs (A2-10) and (A2-9) we have for the 
meanfield scattering coefficient: 

2ka 
a,  = 2k3a2u: (A2-15) 

where E(x ,  a/2) is the complete elliptic integral of the 
second kind and has been tabulated. Note that the meanfield 
scattering coefficient does not depend on travel distance. 

For inhomogeneities small compared to the wavelength 
we have in two dimensions a 0: k3.  This is Raleigh scattering 
for which, in the 3-D case, cr k4 is typical. In the case of 
large inhomogeneities the fluctuation spectrum differs from 
0 noticeably only for k, < 2n/a and this leads to 

a,  = 2nk2jU (Pi-D(k,) dk, 

in the 2-D case and to 

a,  = 2a2k2[ks(P:-D(k,) dk, 

(A2- 16) 

(A2-17) 
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in three dimensions. Therefore, the scattering coefficient of equation approximations of multiple scattering (Rytov et al. 

the meanfield is proportional to the square of frequency in 1987; Ishimaru 1978). The parabolic approximation of the 
both 2-D and 3-D provided the weak-scattering approxima- wave equation neglects backscattering and corresponds to 
tion holds and inhomogeneities are not small. These our investigation of wavefield amplitude spectra and their 
relations hold for the more geneal Bourret and parabolic logarithms. 
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