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Seismic attenuation tomography using the
frequency shift method

Youli Quan∗ and Jerry M. Harris†

ABSTRACT

We present a method for estimating seismic atten-
uation based on frequency shift data. In most natural
materials, seismic attenuation increases with frequency.
The high-frequency components of the seismic signal are
attenuated more rapidly than the low-frequency com-
ponents as waves propagate. As a result, the centroid
of the signal’s spectrum experiences a downshift dur-
ing propagation. Under the assumption of a frequency-
independent Q model, this downshift is proportional to
a path integral through the attenuation distribution and
can be used as observed data to reconstruct the attenu-
ation distribution tomographically. The frequency shift
method is applicable in any seismic survey geometry
where the signal bandwidth is broad enough and the at-
tenuation is high enough to cause noticeable losses of
high frequencies during propagation. In comparison to
some other methods of estimating attenuation, our fre-
quency shift method is relatively insensitive to geometric
spreading, reflection and transmission effects, source and
receiver coupling and radiation patterns, and instrument
responses. Tests of crosswell attenuation tomography on
1-D and 2-D geological structures are presented.

INTRODUCTION

Recent improvements of seismic data quality, especially
crosswell data, make it possible to estimate the heterogene-
ous distribution of seismic attenuation from the dispersion of
amplitude with frequency. It has long been believed that at-
tenuation is important for the characterization of rock and
fluid properties, e.g., saturation, porosity, permeability, and
viscosity, because attenuation is more sensitive than velocity
to some of these properties (e.g., Best et al., 1994). Measure-
ments of both velocity and attenuation provide complementary
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information about rock properties. Attempts at estimating
attenuation tomographically have persisted for years. For
example, Brzostowski and McMechan (1992), and Leggett et
al. (1992) used the change in seismic amplitude as observed
data for attenuation tomography. However, amplitudes are
easily contaminated by many factors such as scattering, geo-
metric spreading, source and receiver coupling, radiation pat-
terns, and transmission/reflection effects. Therefore, it is often
difficult to obtain reliable attenuation estimates from the am-
plitude decay method. Here we use a method based on pulse
broadening. As a seismic pulse propagates in a medium, the
shape of the pulse broadens because of dispersion caused by
attenuation. The rise time associated with this broadening ef-
fect has been used to estimate attenuation (e.g., Kjartansson,
1979; Zucca, et al., 1994). However, a precise and robust mea-
surement of the rise time is difficult for field data; therefore,
we use a related quantity, the estimated shift in the centroid of
the pulse spectrum. To first order, the frequency shift or pulse
broadening for wave packets is not affected by far-field geomet-
rical spreading and transmission/reflection losses. Therefore,
the measurement based on frequency shifts appears to be more
reliable than the amplitude decay method. It should be pointed
out that the frequency shift method, in fact, measures the pulse
broadening in frequency domain, and the rise-time method
measures a pulse broadening in time domain. The measure-
ment in frequency domain may be more convenient and stable.

Seismic wave attenuation includes intrinsic attenuation and
scattering attenuation. Both of them can cause wave disper-
sion. Scattering transfers wave energy to later arrivals or to
other directions. Scattering attenuation depends on the scale
of heterogeneites. When the scale of heterogeneities is much
smaller than the characteristic wavelength, the high-frequency
components are lost because of destructive interference
(Marion and Coudin, 1992). Intrinsic attenuation transfers
wave energy to heat. In this study, we concentrate on the intrin-
sic attenuation and try to reduce the influence of the scattering
attenuation. In the situation when the scattering attenuation
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cannot be ignored, the estimated attenuation is a combination
of intrinsic and scattering effects.

Experiments indicate that the intrinsic attenuation for many
rocks is proportional to frequency (e.g., Johnston, 1981). The
high-frequency components of an incident wave are more at-
tenuated during wave propagation than the low-frequency
components. If we examine the shape of the frequency spec-
trum, we find that its centroid experiences a downshift in fre-
quency as the wave propagates, since the high-frequency part of
the spectrum decreases faster than the low-frequency part. This
phenomenon has been observed in vertical seismic profiling
data (Hauge, 1981). In this paper, we propose an approach
to estimate the attenuation distribution in an inhomogeneous
medium based on this frequency shift. Since we want a quanti-
tative estimate of the attenuation, we need to derive a relation-
ship that links the frequency shift to the attenuation parameters
describing the medium. We use a method that is similar to the
approach proposed in Dines and Kak (1979), and later used by
Parker et al. (1988) for medical attenuation tomography. This
method requires the data be broad band so that the frequency
shift can be estimated easily. High-frequency crosswell surveys
provide good examples of such data.

In this paper, we present the basic theory of the frequency
shift method and discuss how the frequency shift is related
to the attenuation coefficient for various signal spectra. We
then test the frequency shift method in crosswell attenuation
tomography for both synthetic and field data.

THEORY

The attenuation model

For the purpose of estimating attenuation, we assume that
the process of wave propagation is described by linear system
theory. If the amplitude spectrum of an incident wave is S( f )
and the instrument/medium response is G( f )H( f ), then the re-
ceived amplitude spectrum R( f ) may be, in general, expressed
as (see Figure 1)

R( f ) = G( f )H( f )S( f ), (1)

where the factor G( f ) includes geometrical spreading, instru-
ment response, source/receiver coupling, radiation patterns,
and reflection/transmission coefficients, and the phase accu-
mulation caused by propagation, and H( f ) describes the at-
tenuation effect on the amplitude. In this study we concentrate
on the absorption property of the medium; therefore we call
H( f ) the attenuation filter. Experiments indicate the attenua-
tion is usually proportional to frequency, that is, response H( f )
may be expressed (Ward and Toksöz, 1971) as

H( f ) = exp
(

− f
∫

ray
αo d`

)
, (2)

FIG. 1. Linear system model for attenuation.

where the integral is taken along the raypath, and αo is atten-
uation coefficient defined by

αo = π

Qv
, (3)

i.e., attenuation is linearly proportional to frequency, where
Q is medium’s quality factor and v is wave velocity. Note
that our attenuation factor αo is different from the usually de-
fined attenuation coefficient α = αo f . This linear frequency
model is useful in demonstrating the frequency shift method.
More complex models, for example, α = αo f p with p 6= 1,
can be considered in a similar way (Narayana and Ophir,
1983).

Our goal is to estimate the medium response H( f ), or more
specifically, the attenuation coefficient αo, from knowledge of
the input spectrum S( f ) and the output spectrum R( f ). A
direct approach is to solve equation (1) by taking the logarithm
and obtaining ∫

ray
αo d` = 1

f
ln

[
GS( f )
R( f )

]
. (4)

Equation (4) may be used to estimate the integrated atten-
uation at each frequency and is called the amplitude decay
method. However, as described above, the factor G lumps
many complicated processes together, and is very difficult to
determine. Furthermore, the calculation of attenuation based
on individual frequencies is not robust because of poor indi-
vidual signal-to-noise. To overcome some of these difficulties,
we can rewrite equation (4) as

Y( f ) = C f + B (5)

where, Y( f ) =ln [S( f )/R( f )], C = ∫
ray αo d`, and B = − ln(G).

It can be seen from equation (5) that the integrated attenua-
tion C is the slope of the plot of Y( f ) versus frequency f . The
attenuation estimation based on equation (5) uses the spectral
ratio, S( f )/R( f ), over a range of frequencies, and is called the
spectral ratio method. This method may remove the effect of
factor G, when G does not depend on frequency f . In the fol-
lowing, we propose a statistics-based method that estimates the
attenuation coefficient αo from the spectral centroid downshift
over a range of frequencies.

Spectral centroid and variance

We define the centroid frequency of the input signal S( f ) as

fS =
∫ ∞

0 f S( f ) d f∫ ∞
0 S( f ) d f

, (6)

and the variance to be

σ 2
S =

∫ ∞
0 ( f − fS)2S( f ) d f∫ ∞

0 S( f ) d f
. (7)

Similarly, the centroid frequency of the received signal R( f ) is

fR =
∫ ∞

0 f R( f ) d f∫ ∞
0 R( f ) d f

, (8)

and its variance is

σ 2
R =

∫ ∞
0 ( f − fR)2 R( f ) d f∫ ∞

0 R( f ) d f
, (9)
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where R( f ) is given by equation (1). If we take the factor G to
be independent of frequency f , fR and σ 2

R will be independent
of G. This is a major advantage of using the spectral centroid
and variance rather than the actual amplitudes.

Let us consider a special case where the incident spectrum
S( f ) is Gaussian, i.e., given by the equation

S( f ) = exp
[
− ( f − fo)2

2σ 2
S

]
. (10)

The source and receiver centroid frequencies are (see
Appendix)

fS = fo, (11a)

and

fR = fS − σ 2
S

∫
ray

αo d`, (11b)

respectively. We can rewrite equation (11b) as a line integral
suitable for tomographic inversion as∫

ray
αo d` = ( fS − fR)

/
σ 2

S. (12)

Figure 2 gives a pictorial description for the Gaussian spectra.
Using the values of fS, fR, and σ 2

S given with Figure 2, we get the
inversion result to exactly match the value,

∫
αo d` = 0.0008,

used in computing the filter H( f ) for this example. Here, the
factor G in equation (1) is assumed to be 1.

A similar derivation (see Appendix) for non-Gaussian spec-
tra (boxcar and triangular) leads to the following results. Nu-
merical results for these special case spectra are summarized in
Table 1. For the boxcar spectrum with bandwidth B, we obtain
an approximate formula∫

αo d` ≈ 12( fS − fR)/B2, B
∫

αo d` ¿ 1. (13)

Figure 3 gives a pictorial description of frequency shift for the
boxcar spectrum. Plugging the values of fS, fR, and B shown
in Figure 3 into equation (13), we obtain the inversion result∫

αo d` = 0.000797 which is very close to the given value of
0.0008. For a triangular spectrum with bandwidth B, we obtain
another approximate formula∫

αo d` ≈ 18( fS − fR)/B2, B
∫

αo d` ¿ 1. (14)

Under the assumption of a constant Q model we have de-
rived tomographic equations (12), (13), and (14) for Gaussian,
rectangular and triangular spectra, respectively. These equa-
tions show that the attenuation coefficient for an inhomo-
geneous medium αo(x, z) can be obtained by measuring the
centroid frequency downshift ( fS − fR) between the incident
and transmitted signals. The integrated attenuation equals
this frequency downshift multiplied by a scaling factor. From
equations (12–14), we find that a broader input bandwidth

Table 1. Numerical results for three special spectra.

Spectrum Model Estimated fS σ 2
S or B2 fR σ 2

R or B2

Shape
∫

αo d`
∫

αo d` (Hz) (Hz2) (Hz) (Hz2)

Gaussian 0.0008 0.0008 400 12730 389.8 12730
Boxcar 0.0008 0.000797 400 8002 357.5 8002

Triangular 0.0008 0.000765 266.3 8002 239.1 8002

(larger σS or B) leads to a larger frequency change. There-
fore, a broad input frequency band is important for a robust
estimation of αo(x, z). Crosswell seismic profiling with a high-
frequency downhole source provides a good opportunity to test
attenuation tomography using this frequency shift method.

The tomographic formula relating frequency shift with the
attenuation projection is exact only for Gaussian spectra, i.e.,
equation (12). Nevertheless, the approximate formulas, equa-
tions (13) and (14), are useful in practical situations where
Gaussian spectra can not be assumed. Although equations (12),
(13), and (14) are derived from spectra of different shapes, they
are somewhat similar. This similarity implies the robustness of
this method, that is, the estimate of relative attenuation is not
sensitive to a small change in spectrum shapes.

a)

b)

c)

FIG. 2. (a) An input spectrum of Gaussian shape with center
frequency (spectral centroid) of 400 Hz and variance of 12,
730 Hz2. (b) Medium response for

∫
αo d` = 0.0008. (c) The

output spectrum remains Gaussian shape with a variance of 12,
730 Hz2, but the spectral centroid is shifted to 389.8 Hz.
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PRACTICAL CONSIDERATIONS

Static correction of source frequency

Equation (12) is the basic formula for attenuation tomogra-
phy. It can be written in a discrete form as∑

j

αi
oj`

i
j = fS − f i

R

σ 2
S

. (15)

Here the index i represents the i th ray, j the j th parameter-
ized pixel of the medium, and `i

j is the length of i th ray within
the j th pixel. In practice, we can measure fR from recorded
seismograms, but may not directly measure the source cen-
troid frequency fS and its variance σ 2

S. For the constant Q-
model described by equation (2) and Gaussian spectrum given
by equation (10), the source spectrum S( f ) and receiver spec-
trum R( f ) exhibit the same variance σ 2

S. Therefore, we may
choose the average of σ 2

R at the receivers as the estimate of
the source variance σ 2

S. While the centroid frequency fS of the
incident wave may also be unknown, we include it along with
the matrix of unknown attenuation values. We then simulta-
neously invert for both the attenuation coefficients αi

j and the
source frequency fS as follows. Let

fS = f̄ S + 1 f, (16)

where f̄ S = max{ f i
R} is an initial estimation of fS, and 1 f is a

correction to be found. Then

fS − f i
R

σ 2
S

= f̄ S + 1 f − f i
R

σ 2
S

= f̄ S − f i
R

σ 2
S

+ 1 f

σ 2
S

. (17)

a)

b)

FIG. 3. (a) A boxcar input spectrum with spectral centroid of
400 Hz and band width is 800 Hz. (b) The spectral centroid of
the output spectrum shifts to 357.5 Hz. The medium response
is same as Figure 2b.

Equation (15) can now be written as∑
j

αi
j `

i
j − 1 f

σ 2
S

= f̄ S − f i
R

σ 2
S

, (18)

where αi
j and 1 f are the unknowns to be determined.

Data processing

The main purpose of data processing is to extract the di-
rect wave and reduce the interference caused by scattering.
To do this we first pick and align the direct wave. Next we mix
traces to reduce interference caused by scattering, and perform
a fast Fourier transform (FFT) on the direct arrival isolated by
a short time window. The centroid frequency fR and variance
σ 2

S are then calculated by equations (8) and (9). If we treat
( f̄ S − f i

R)/σ 2
S as “data,” αi

j as “unknown,” and then add one
more term −1 f/σ 2

S into the system, then we only need to mod-
ify slightly the algorithms and programs used for traveltime
tomography to do the attenuation tomography.

In most situations, the medium is heterogeneous in both ve-
locity and attenuation. Our procedure is to use the traveltimes
first to estimate the velocity distribution and the ray paths, then
use the frequency shift data and these raypaths to estimate at-
tenuation. Finally, because the Q model underlies the devel-
opment of the theory, we estimate the Q distribution by com-
bining the velocity and attenuation tomograms. However, the
image of the attenuation factor can be used as the final result.

NUMERICAL TESTS

VSP geometry: An ideal test

Let us first examine the validity of equation (12) by con-
sidering an ideal synthetic example in the zero offset vertical
seismic profiling (VSP) geometry. For this geometry, both in-
put and output centroid frequencies fS and fR are measurable
since signals in two successive receivers can be viewed as the
incident and transmitted spectra. In this case, we may write
equation (12) as

αoi = 1
σ 2

i

1 fi
1zi

, (19)

where 1 fi = fi − fi +1 is the centroid frequency difference be-
tween two successive depth levels, 1zi is the distance between
these two receivers, αoi is the average attenuation coefficient
between the two levels, and σ 2

i the variance at i th receiver.
The generalized reflection and transmission coefficients

method (e.g., Luco and Apsel, 1983; Chen et al., 1996) is used to
calculate the complete wavefield in layered media. The atten-
uation is introduced through the complex velocity defined by

v( f ) = v( fre f )
[

1 + 1
π Q

log
(

f

fre f

)
− i

2Q

]
, (20)

where Q is the quality factor for either P-waves or S-waves,
and v is either the P-wave velocity or S-wave velocity. A
vertical seismic profile is calculated at 220 receivers for a
source located at the surface. Figures 4a and 4b show the
P-wave velocity and Q-value parameters of this model. The
frequency band of the source is 10 Hz–2010 Hz. This frequency
band is much broader than the real vertical seismic profiling,
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but it is used here to illustrate the range of typical crosswell
data for which this algorithm was developed initially.

We select a time window that isolates the first arrival.
Figure 4c is a plot of the centroid frequency estimated from the
synthetic data. The centroid frequency decreases from 370 Hz
to 280 Hz over a depth range of 1000 ft (305 m). After smooth-
ing the frequency shift data and applying equation (19), we

a) b) c)

FIG. 4. The velocity and Q-value shown in (a) and (b) are used to calculate a zero offset VSP, and (c) is a plot of
the centroid frequency corresponding to the direct wave in this VSP.

a) b) c)

FIG. 5. Reconstructed Q-values (dotted lines) using the frequency shift method (a), the amplitude decay method
(b), and the spectral ratio method (c).

obtain an estimate of the attenuation coefficient αo. Then us-
ing the definition Q = π/(αov), we get the estimated Q-values
shown in Figure 5a. The reconstructed Q-value (dotted line),
fits the original model (solid line) quite well. The deviations
of the inversion result near interfaces are caused by the inter-
ference of reflections in the estimation of the frequency shift
near interfaces. Therefore, the thicker the layer, the better the
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inversion result. However, even for a relatively thin layer, the
layer around the depth of 1770 ft (540 m), we still obtain a
satisfactory result. We also apply the amplitude decay method
[equation (4)] and the spectral ratio method [equation (5)] to
the same synthetic data. Figure 5b shows the results using the
amplitude decay method for peak frequencies. The reconstruc-
tion is poor, especially near the interfaces. Figure 5c is Q-value
reconstruction using the spectral ratio method. It can been seen
from Figures 5a and 5c that the reconstructed Q-value by the
spectral ratio method is similar to the frequency shift method.
Both of them fit the original model quite well. Since the fre-
quency shift method is based on the statistics of the spectrum, it
may be more robust than the spectral ratio method. The spec-
tral ratio method requires a complete spectrum as reference
for the calculation of ratio. In many cases, this reference spec-
trum is not available. For the frequency shift method, we only
need a reference frequency. This feature makes the frequency
shift method very suitable for attenuation tomography.

The source signature used in this example is a Ricker wavelet
(not the Gaussian assumed in theory). Figure 6 shows the re-
ceived spectrum at a depth of 1575 ft ( 480 m). For the frequency
shift method, the centroid frequency and the variance are cal-
culated using equations (8) and (9), respectively. Then, equa-
tion (19) is used for the attenuation estimation. Though equa-
tion (19) is derived from the spectrum with Gaussian shape, it
still gives a good result for the Ricker wavelet. Thus, it appears
from this synthetic test that equation (19) can also be used for
other spectra, if the Gaussian is an approximate fit to them. Re-
flections near interfaces are a major noise source in this test.
To reduce reflections, we use a model that has a constant ve-
locity distribution but with the same Q-value distribution as
in Figure 4b. For this model, the frequency shift method, the
spectral ratio method, and the amplitude decay method give
the same reconstruction results shown in Figure 7.

Crosswell seismic profiling

For our first synthetic crosswell tomographic simulation, we
use a simple 1-D model shown in Figure 8a. We place 51 sources
and 51 receivers with an offset of 400 ft (120 m). Figures 8b
and 8c give a common-source gather in time domain and fre-
quency domain, respectively. Figure 9 is the reconstruction
of Q-values. The second synthetic example has two abnormal

FIG.6. The spectrum at depth 1575 ft. This is a Ricker wavelet in
frequency domain. With the calculated centroid and variance,
we use a Gaussian shape to fit this curve.

structures that terminate between wells. Figure 10a gives the
original model. Again we place 51 sources in a well and 51
receivers in the formation. Both source interval and receiver
interval are 2 ft. A Ricker wavelet with a peak frequency of
1000 Hz is used as the source signature. Figure 10b shows the
inversion result. The reconstructed Q-values in Figures 9 and
10b are both quite close to the given ones. The tomography,
based on the line integral defined by equation (12), is capable
of imaging the Q field very well.

In the frequency shift method, information on wave dis-
persion is used to estimate attenuation. Therefore, the grid
dispersion in the numerical methods would introduce seri-
ous numerical error in the forward modeling. For the model
shown in Figure 10a, we used a semi-analytical method (Quan
et al., 1996) for the calculation of synthetic seismograms.
There is no grid dispersion in the computing. This modeling
method simulates the complete viscoelastic wavefield in me-
dia with complex structures. The model also includes a source
borehole.

To perform the attenuation tomography, we first need cal-
culate the raypath. The error in the velocity estimation can
affect the raypath, and therefore the attenuation estimation
result. Figure 11 shows a synthetic example to investigate how
the velocity error influences the attenuation tomography us-
ing the frequency shift method. We use a two-layer model
with velocities V1 = 4 km/s and V2 = 3 km/s. In Test I, we set
V1 = 3.5 km, V2 = 3 km/s and perform inversion. In Test II, we

Table 2. Effects of velocity error on the attenuation
tomography.

V1 (km/s) V2 (km/s) Q1 Q2

Given model 4 3 80 50
Test I 3.5 3 94 52
Test II 3.5 3.5 155 44

FIG. 7. The reconstructed Q-values (dotted line) for a model
that has a constant velocity distribution.
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a) b) c)

FIG. 8. The synthetic forward modeling for crosswell attenuation tomography. A layered model (a) for crosswell profiling is calcu-
lated. A point source with Ricker wavelet is used. We show a common-source gather in time and frequency domains in (b) and (c),
respectively. The spectral downshift can be seen in (c).

a) b)

FIG. 9. The tomographic inversion result of the synthetic test. The dotted line in (a) is the profile of the 1-D
imaging (b). The comparison in (a) shows the inversion is pretty close to the given model.
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set V1 = 3.5 km/s, V2 = 3.5 km/s and perform inversion. The test-
ing results are shown in Table 2. For this particular model, if
we use straight raypaths (Test II) instead of true raypaths, the
estimated Q-values are 155 and 44, corresponding to the given
values 80 and 50, respectively. The error in velocity estima-
tion exhibits a significant effect on the attenuation tomography.
Bending rays and good velocity estimation are important.

APPLICATIONS TO FIELD DATA

One-dimensional geological structure

For field data, we first choose a data set collected at BP’s
Devine test site where the lithology is layer cake and ap-
proximately one dimensional. A linear sweep from 200 Hz to
2000 Hz was used as the source spectrum. Figure 12 shows the
traveltime and centroid frequency picks from this field data set.
It can be seen from these picks that the high centroid frequency
correlates to the low traveltime. This correlation indicates that
the high velocity formation in this area has low attenuation.
We first use traveltime tomography to reconstruct the velocity
structure and obtain raypaths. Then, we use the raypaths and
centroid frequencies to reconstruct the attenuation structure.
A 1-D model is assumed for this inversion problem. Figure 13
shows the velocity and attenuation reconstructions. For the at-
tenuation tomography, the starting modeling is a homogeneous
model that is calculated using the average centroid frequency
shift. The initial source frequency f̄ S is 1750 Hz. After inver-
sion, the final source frequency fS is found to be 1520 Hz.
The attenuation coefficient αo and velocity v are converted to
Q-values using equation (3). The lithology and the sonic log
are also shown in Figure 13 for comparison. They exhibit an
excellent geometric agreement with the inversion results. As
we expect, Figure 13 shows that shales and sands exhibit lower
Q-value and slower velocity, and that limestone has higher
Q-value and faster velocity.

a) b)

FIG. 10. A synthetic test on 2-D attenuation tomography. (a) is the original model. There are two low Q-value
areas in this model, and (b) is the reconstructed Q-value distribution.

2-D geological structure

The second crosswell data set was collected from a reef
structure in West Texas. This geological structure is strongly
two-dimensional and is complicated. Only the source well
penetrated the carbonate reef target. The starting model for
inversion is homogeneous. The centroid frequency picks of this
data range from 600 Hz to 1000 Hz. The maximum frequency
1000 Hz is chosen as the initial source frequency f̄ S. The final
source frequency fS is found to be 850 Hz. Figure 14 shows the
2-D P-wave velocity and attenuation tomograms that reveal a
consistent image of the lateral variations of the carbonate reef
buildup.

FIG. 11. This is an example showing the effect of the error in
velocity estimation on the attenuation tomography. There are
two layers, one source and two receivers in the model. Using the
given model parameters, we calculate the centroid frequencies
at receivers. For the inversion, if we use the correct (given)
velocities, the Q-values for two layers are recovered correctly.
If we add some errors to V1 and/or V2 and perform inversion, the
recovered Q-values also have errors. Table 2 gives the results
of two such tests.
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a) b)

FIG. 12. The data picked from the Devine survey for the attenuation tomography. The traveltime of the direct P-wave is shown in
(b), which is used to obtain a velocity model and raypaths. With these raypaths and the P-wave centroid frequency shown in (a)
we can perform the attenuation tomography. A horizontal line in (a) or (b) represents a common source gather and a vertical line
represents a common receiver gather. From these picks we can see a good correlation between traveltime and centroid frequency.
The high frequency (dark color) corresponds to the high Q-value formation and correlates to the low traveltime (dark color) that
corresponds to the high velocity formation.

a) b) c) d) e)

FIG. 13. Attenuation and velocity tomography for the Devine survey. (a) Crosswell 1/αo; (b) Crosswell Q(= π/vαo); (c) Lithology;
(d) Crosswell velocity; (e) Sonic log velocity. We first calculate the velocity (v) and attenuation coefficient (αo), then convert them
to Q-value. To make a closer comparison, we plot the profile curves within the tomograms. It can be seen that Q-value, velocities
and lithology exhibit a good correlation.
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a) b) c) d)

FIG. 14. The attenuation and velocity tomography for the west Texas survey. (a) Sonic log velocity in receiver well; (b) Crosswell
velocity; (c) Crosswell Q; (d) Sonic log velocity in source well. The geological structure in this area is complex. The main features
are two low-velocity/low-Q zones indicated by “A” and “B”, respectively. Area B is interpreted as a carbonate mound or reef.
The sonic log in the source hole matches tomograms. But the one in the receiver hole does not show the low-velocity/low-Q- zone
indicated by “B”. Area B is pay zone. Sonic log at this zone may only measure the velocity for the near borehole flushed layer, not
the formation velocity.

CONCLUSIONS

Frequency-dependent attenuation causes a change in the
amplitude distribution of a wave’s frequency spectra. For a
constant Q-model and a Gaussian spectrum this change is sim-
ple: the difference in centroid frequency between the incident
(input) and transmitted (output) waves is proportional to the
integrated attenuation multiplied by a scaling factor. This fact
results in a simple formula that can be used for attenuation
tomography. Spectra other than Gaussian can be handled by
changing the scale factor, or using Gaussian as a curve fit to
them. Although the method is sensitive to small frequency
changes, it is best on data with a broad frequency band. The
crosswell geometry with a high-frequency downhole source
provides a good opportunity for using this method. Field data
tests in 1-D and 2-D geology show that the attenuation tomo-
grams have a good correlation with lithology and the velocity
tomogram. Further research is underway to adapt the tech-
nique to sonic log analysis.
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APPENDIX

RELATIONSHIPS BETWEEN THE ATTENUATION COEFFICIENT AND THE FREQUENCY SHIFT

If the input amplitude spectrum, S( f ) is of Gaussian shape,
i.e.,

S( f ) = exp
[
− ( f − fo)2

2σ 2
S

]
, (A-1)

then, the centroid of S( f ) is fo. Assume that the factor G in
equation (1) does not depend on frequency. From equations (1)
and (2), we can write the output amplitude spectrum as

R( f ) = GS( f )H( f )

= G exp
[
− ( f − fo)2

2σ 2
S

− f
∫

ray
αo d`

]

= G exp
[
− f 2 − 2 f fR + f 2

R + fd

2σ 2
S

]

= Aexp
[
− ( f − fR)2

2σ 2
S

]
, (A-2)

where

fR =
(

fo − σ 2
S

∫
ray

αo d`

)
, (A-3)

fd = 2 foσ
2
S

∫
ray

αo d` −
(

σ 2
S

∫
ray

αo d`

)2

, (A-4)

and

A = G exp
[
− fd

2σ 2
S

]
. (A-5)

It can be seen that fR is the centroid of R( f ), and A is its
amplitude.

If the spectrum S( f ) is of rectangular shape with a width of
B, then

fS =
∫ B

0
f d f

/ ∫ B

0
d f = B/2, (A-6)

fR =
∫ B

0 f e− f aoLd f∫ B
0 e− f aoLd f

= aoL

1 − e−aoL B

[
1

(aoL)2
− Be−aoL B

aoL

(
1

aoL B
+ 1

)]
.

(A-7)

For simplicity, we write
∫

ray αo d` as αoL for a homogeneous
medium. If αoL B ¿ 1, we have

exp(−αoL B) ≈ 1 − αoL B + 1
2 (αoL B)2 − 1

6 (αoL B)2

(A-8)
and

fR ≈ B

2
− B2

12
αoL = fS − B2

12
αoL , (A-9)

or write it as tomographic equation∫
ray

ao d` ≈ 12( fS − fR)
/

B2. (A-10)

Similarly, if S( f ) is a right triangle with a side of B and αoL B
¿ 1, we get

fS = 1
3 B, (A-11)

fR ≈ B

3
− B2

18
αoL = fS − 1

18
αoL (A-12)

and ∫
ray

ao d` ≈ 18( fS − fR)
/

B2. (A-13)


