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Abstract. This paper proposes a novel inerter-based component dynamic vibration absorber, 
namely, electromagnetic resonant shunt tuned mass-damper-inerter (ERS-TMDI). To analyze the 
performances of the ERS-TMDI, the combined ERS-TMDI and a single degree of freedom system 
are developed. The  norm performances of the ERS-TMDI, whose aim is to minimize the root 
mean square (RMS) value of structure damage under random ground acceleration excitation, are 
introduced in comparison with the energy-harvesting series electromagnetic tuned mass dampers 
(ERS-TMDs), tuned mass-damper-inerter (TMDI) and the classical tuned mass damper (TMD). 
The closed-form solutions, including the optimal mechanical tuning ratio, the optimal electrical 
damping ratio, the optimal electrical tuning ratio and the optimal electromagnetic mechanical 
coupling coefficient, are obtained. It is shown that the ERS-TMDI is superior to both the classical 
TMD and the ERS-TMD systems for protection from structure damage. Specifically, from the 
frequency-domain analyses, a case study is performed to illustrate the effectiveness, robustness of 
the ERS-TMDI and the sensitivity to the parameter changes. From the time-domain analyses, four 
types of earthquakes are studied to demonstrate the performances of vibration suppression. 
Keywords: vibration control, electromagnetic resonant shunt, tuned mass-damper-inerter, H2 
optimization. 

1. Introduction 

With the development of society, many civil engineering structures have been built, and some 
of these structures are subjected to dynamic loadings from ground earthquakes. To suppress the 
vibration, in addition to isolators, the classical Tuned Mass Dampers (TMDs) [1], also called 
dynamic vibration absorber, is one of the most effective and popular passive vibration mitigation 
devices in practice, to dissipate the vibration energy [2, 3]. 

Based on the concept of the classical TMD, various types of TMD have been proposed and 
optimized [4] by researchers with improved robustness or/and effectiveness of the vibration 
suppression, such as parallel multiple TMDs [5, 6], series multiple TMDs [7], multi-degree-of-
freedom TMDs [8], three or four element TMDs [9], and pounding tuned mass damper [10].  

Recently, the inerter, a concept of mechanical network introduced by Smith et al [11, 12], has 
been adopted from vehicle suspensions for the use in civil engineering for improving the 
performance of vibration control and displacement mitigation. The inerter produces a proportional 
force due to the relative acceleration. The inerter has been studied for improvement of car 
suspensions [13, 14] and railway vehicles [15, 16]. In the past two years, the inerter concept has 
also been used in proof mass dampers, aiming to improve their damping performance and 
frequency tunability [17-19], or proof-mass actuation [20] in automotive engineering. In [21], 
Ikago, et al presented the idea of using an inerter-like ball-screw mechanism in a seismic vibration 
system with viscous mass damper or tuned viscous mass damper system. A type of 
electromagnetic inertial mass damper using a ball screw mechanism and a motor was presented to 
control the vibration of structures subjected to earthquakes in [22]. Lazar, et al. [23, 24] proposed 
an inerter-based system with a configuration similar to that of a TMD, which is termed as tuned 
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inerter damper (TID), and developed an analytical tuning rule of a TID based on the Den Hartog’s 
method. Marian and Giaralis [25] also presented the concept of tuned mass-damper-inerter  
(TMDI) to mitigate the oscillatory motion of support systems which are stochastically excited.  

Moreover, the concept of shunting passive damping has been proposed, and initially applied 
to piezoelectric structures and recently to electromagnetic devices. Forward [26] carried out a 
preliminary experimental demonstration of the passive circuit shunting for narrow-band reduction 
of resonant mechanical response. Hagood and Von Flotow [27] theoretically confirmed the 
possibility that piezoelectric shunted with an RL circuit can serve as a TMD. Behrens et al.  
[28, 29] extended the idea of a shunt damping to electromagnetic transducer, and obtained the 
tuning parameters numerically. Inoue, et al [30] obtained closed-form solution with fixed-point 
method to optimize a one degree of freedom system with an electromagnetic shunt damper. Zuo, 
et al. studies the energy harvesting from large-scale vibration [31], and proposed the 
electromagnetic resonant shunt series TMDs (ERS-TMDs) [32], and applied it in the building 
seismic isolation [33]. 

Meanwhile, the corresponding closed-form solutions of the optimal design parameters of 
different TMD systems have been derived. Den Hartog [1] developed the analytical solutions for 
the TMD for the undamped structures via the fixed-point method. In the [34], simple expressions 
for optimum absorber parameters of TMD are derived for undamped SDOF systems for harmonic 
and white noise random excitations. For the TMD with damped primary systems, various design 
methods and tuning criteria have been raised [35, 36]. Later, Marian and Giaralis [25] developed 
the optimal TMDI parameters for undamped structures under white noise excitation in 
closed-form as functions of the TMD mass and the inertance. In the [37], Zuo, et al. proposed the 
exact  solutions of the ERS-TMDs.  

Inspired by on the concepts of TMDI [25] and ERS-TMDs [32], this paper proposes a new 
inerter-based component dynamic vibration absorber, named electromagnetic resonant shunt 
tuned mass-damper-inerter (ERS-TMDI), in which we replaced the dissipative mechanical 
element of the TMDI with the electromagnetic transducer shunted with a resonant R-L-C circuit. 
In addition, this paper derives the closed-form solution of optimal design parameters to the 
ERS-TMDI for building structures under ground motion. The  norm optimal method is 
employed for the undamped single degree of freedom (SDOF) structure, with the objective to 
minimize the mean squared value of the displacement of the primary structure. The advantage of 
the ERS-TMDI will be illustrated through the comparison with the classical TMD, TMDI and 
ERS-TMDs. 

The organization of this paper is as follows. Section 2 describes the governing equations of 
the SDOF system with ERS-TMDI. Section 3 derives optimal  closed-form solutions to the 
ERS-TMDI systems under the ground motion. In Section 4, the numerical frequency-domain 
solution of undamped structures is presented in comparison with the classical TMD, TMDI and 
the ERS-TMDs. In Section 5, the numerical time-domain analysis of damped structures is 
presented in comparison with classical TMD. Finally, Section 6 concludes this paper. 

2. The single degree of freedom system model of the ERS-TMDI 

To demonstrate the suppression performance, the main structure is now idealized as a SDOF 
system modeled using a linear spring of stiffness , a mass , and a damping coefficient , 
which corresponds to the fundamental mode shape of the multi-story buildings. Fig. 1(b) shows 
the ERS-TMDs [32] where the foremost energy dissipative damping  in classical TMD, 
depicted in Fig. 1(a), is substituted by an electromagnetic transducer shunted with a coil resistance 

 capacitance  and inductance  [38, 39]. Inspired by the ERS-TMDs concept, this study 
considers the ERS-TMDI configuration shown in the Fig. 1(c), in which an inertance  is added 
between the absorber and the fixed ground. 

Using similar modeling in [37], the overall dynamic equations of ERS-TMDI, shown in  
Fig. 1(c), are given by: 
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+ + − ( − ) + = − ,( + ) + ( − ) − = − ,( − ) + + + 1 = 0.  (1)

 

 
a) Classical TMD 

 
b) ERS-TMD 

 
c) ERS-TMDI 

Fig. 1. Schematic of the coupled SDOF and tuning damper system 

When the primary damping = 0, the above can be simplified: + − ( − ) + = − ,( + ) + ( − ) − = − ,( − ) + + + = 0.  (2)

Set = , and normalize the frequency, we can have: 

( ) + − ( − ) + = − ,(1 + ) ( ) + ( − ) − = − ,( − )( ) + 2 + ( ) + 1( ) = 0. (3)

Rewrite the relative displacement = − : 

(( ) + 1) − + = − ,((1 + )( ) + ) + (1 + )( ) − = −( ) + 2 + ( ) + 1( ) = 0, , (4)

where: 
the natural frequency of the main structure = / ;  
the natural frequency of the absorber = / ;  
the resonant frequency of the circuit = 1/√ ;  
the mass ratio of the absorber to the main structure = / ;  
the mass ratio of inertance to the main structure = / ;  

 

= + = +
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the mechanical tuning ratio = / ;  
the electrical tuning ratio = / ; the normalized frequency = / ;  
the electrical damping ratio of the circuit = /(2 ),  in which the resistance  = + ,  is the internal resisitance, and  is the external resistance. 
The electromagnetic mechanical coupling coefficient = /( ), where  and  is 

the voltage constant and the force constant of the electromagnetic transducer. 

3.  optimization for the coupled system 

3.1. Vibration control of the ERS-TMDI 

Considering the seismic excitation is a random input, the  criteriais is more suitable for 
assessing the system performance for it is RMS value of the performance under unit Gaussian 
white noise input [37]. This is a good approximation when the earthquake frequency is broad when 
compared with the natural frequency of the building. To suppress the oscillation of the main 
structure subjected to the ground acceleration , the  criteria are minimized from the ground 
acceleration  to the displacement of the main structure  is defined as: 

 = [ ]2 = 〈 〉2 , (5)

where the symbols [∙] and 〈∙〉 refer to the ensemble and temporal averages, respectively. The 
performance index  represents the ratio of the response of the main system to the seismic 
excitation with a uniform power spectrum density . Units of the symbols  are (m2 s)/rad. The 
RMS value of the displacementof the SDOF structure  can be expressed as: 

〈 〉 = | | , (6)

where  is the criteria of the transfer function from the ground acceleration  to the 
displacement of the main structure , where = √−1 is the unit imaginary number. Substituting 
Eq. (6) into Eq. (5), the performance index in Eq. (5) can be presented as: 

 = 12 | | . (7)

The normalized transfer function  can be expressed by using the above dimensionless 
parameters as: =  /= − + 2 ( ) + + (1 + ) ( ) + 2 ( ) + ( )+  ( ) + ( ) + ( ) + ( ) + ( ) + ( ) , (8)

where: = 1 + ,    = 1 + , 
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= ,= 2 ,= + (1 + ) + (1 + ),= 2 + (1 + ) ,= (1 + )(1 + ) + (1 + )= 2 , ,= .
 (9)

The integral in Eq. (7) can be solved with the residue theorem [40]. Therefore, the performance 
index in Eq. (7) can be derived an expression of the four tuning parameters , , ,  and the 
three given parameters , , and : 

= 14 (−2 (1 + ) + (1 + ) + (1 + ) ( + )       + ( + + (−2 + (−2 + 2 ) + 2 )       + ( + 3 + 3 + )        + ( (−2 + 4 ) + (1 + )(2 + ( − ) ) + (2 − 8 )       + ( − − 4 + 4 ) + (1 + )(−2 + −4 ) − 2        +4 + 8 + (4 ) . 
(10)

For the purpose of minimizing the performance index  concerning the seismic control 
performance, the derivatives of  concerning all the tuning parameters should be equal to zero, 
wihch mean: 

= 0,   = 0,   = 0,   = 0. (11)

Thereby, the subsequent synchronous gradients’ equations could also be solved from Eq. (10). − + (1 + ) (1 + ) + (− − + (1 + ) )+ (2 − 4 ) − 2 (1 + ) (1 + − 2 ) = 0, (12a)+ ( + ) − 2 (1 + 2 ) + ( (1 + ) (1 + ) + (1 + )− 2 (1 + ) (1 + + 2 )) + (−2 (1 + )        +  (−2 + (−2 + 2 ) + 2 ) + (2 (2 + + 4 )        + ( (2 + + 4 ) − (2 + + 4 )))) = 0, (12b)

− + 3 ( + ) − 2 (1 + 2 )+ (− (1 + ) 1 + + 3 (1 + ) − 2 (1 + ) (1 + − 2 )+ 2 (1 + ) − 6 ( + ( − ) − )+ 2 (2 + − 4 ) + (2 + − 4 ) − (2 + − 4 ) = 0, (12c)

+ ( + ) − 2 (1 + 2 )+ (1 + ) (1 + ) + (1 + ) + 2 (1 + ) (−1 + 2 )+ −2 + (−2 + (−2 + 2 ) + 2 )+ −4 (−1 + 2 ) + −2 (−1 + 2 ) + 2 (−1 + 2 ) = 0. (12d)

To solve this set of equations, by linking Eq. (12d) with the other three equations in Eq. (12), we 
can remove  to acquire a new equation set in other variables , , and . Then with similar 



2445. SEISMIC CONTROL OF A SDOF STRUCTURE THROUGH ELECTROMAGNETIC RESONANT SHUNT TUNED MASS-DAMPER-INERTER AND THE 
EXACT H2 OPTIMAL SOLUTIONS. HONGXIN SUN, YIFAN LUO, XIUYONG WANG, LEI ZUO 

2068 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAY 2017, VOL. 19, ISSUE 3. ISSN 1392-8716  

handling, the parameters  and  can also be removed from the new equation set and we can obtain 
Eq. (12) in only variable . Thus, the optimal parameter  can be obtained by Eq. (12) as: = −(2( (11 + 22 − ) + 2 (10 + 15 + 30 + 9 )   +4 (1 + )(4 + ) + 36 + 55 + 58 + 43 + 7   + + 16 + 52 + 36 + 24 + 4 + 3 + 9   /( (−2 + (−2 − + 3 ) )(16 + 3 + 2 (8 + 3 ))) + (16 + 19 ))).

(13)

Similarly, the other optimal parameters can be acquired and given as: 

= − (4 + ( + 7) + (5 − 1) − )4 (1 + ) ,
= 1√2 √(32 − 3 (1 + ) − 2 (−7 − 11 + + 5 ) + (78 + 43 + 25 − 3 + 90 + 116 + 58 − 3 +  /( (16 + 3 + (25 + 6 ) + (51 + 70 + 35 ) + (57 + 101 + 63 + 19 )))),= √ −( (4 + (−4 + 3 ) )(−56 + 22 (−4 + 7 ) +3 ⁄ (5 + 22 + 5 ) − 2 (4 − 143 + 63 ) + (24 + 94 − 293 + 14 ) +2 ⁄ (19 + 57 − 116 + 33 + 7 ) + 8 +12 ⁄ (1 + ) − 2 ⁄ (−8 + 3 ) − 4 ⁄ (−2 + 7 + 3 ) +2 ⁄ (11 − 11 − 5 + 5 ) )))/(√( (64 + 27 − 16 (−4 + 13 ) +8 (1 + )3 (20 − 53 + 8 ) − 4 (−8 + 85 − 109 + 32 )))),= −(2( (11 + 22 − ) + 2 (10 + 15 + 30 + 9 ) +4 (1 + ) 4 + ) + (36 + 55 + 58 + 43 + 7 + + 16 + 52 + 36 + 24 + 4 + 3 + 9 /( (−2 + (−2 − + 3 ) )(16 + 3 + 2 (8 + 3 ))) + (16 + 19 ))),

(14)

where = (16 + (1 + 14 + ) + 16 (1 + 2 ) + (33 − 2 + 17 )). 
Later on, the corresponding optimal absorber stiffness  the inductance , and the total 

resistance  can also be presented, involving the above parameters: 
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= ,
== 2 ,
= .

 (15)

While it is the need to declare that the optimal frequency ratio and damping ratio of the  
criterion for the classical TMD system [1] in Fig. 1(a) is: 

= 11 + 2 −2 ,
= (4 − )8(1 + )(2 − ) . (16)

And the optimal parameters in the TMDI system [25] are: 

= 11 + + ( + )[ ( − 1) + (2 − )(1 + )]2 (1 + ) ,
= ( + )2 (3 − ) + (4 − )(1 + )2 (1 + + )[ (1 − ) + (2 − )(1 + )] , (17)

where = / . 
Moreover, the optimal parameters for the ERS-TMDs system [37] in Fig. 1(b) are: 

∗ = 4 − 32(1 + ) ,
∗ = 12864 − 36 − 9 ,
∗ = 16 − 916 + 19 + 3 ,
∗ = 192256 − 96 − 27 .

 (18)

In addition, the normalized transfer function  from /  to the relative displacement of 
the main structure  can also be expressed with the above dimensionaless parameters of the  
ERS-TMDI as: 

=  / = − − 2 ( ) + (−1 +  )( ) + 2 ( ) + ( )+  ( ) + ( ) + ( ) + ( ) + ( ) + ( ) . (19)
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4. Frequency domain analyses of the ERS-TMDI 

4.1. Graphical descriptions of the  tuning norms and performance index for seismic 
control 

Fig. 2 and Fig. 3 graphically depicts the  tuning norms and the optimal index  for the 
seismic control when the main structure is subjected to the seismic excitation. Assuming the mass 
ratio is certain, when the inertance mass ratio is increasing, the optimal parameters and index  
are increasing. On the other hand, assuming the inertance ratio is certain, when the mass ratio is 
increasing, the optimal mechanical tuning ratio , electrical tuning ratio , and index  are 
decreasing, while the others are growing. Finally, when the mass ratio and inertance ratio are 
increasing simultaneously, the optimal electrical tuning ratio  and index  are decreasing, 
while the others are in increasing. 

 
a) Optimal mechanical tuning ratio  

 
b) Optimal electrical damping ratio  

 
c) Optimal electromagnetic mechanical  

coupling coefficient  

 
d) Optimal electrical tuning ratio  

 
Fig. 2. Graphical descriptions of the  tuning norms 

 
Fig. 3. Schematic of optimal performance index  for the seismic control 

4.2. Comparing performances of different systems 

Fig. 4 show the  performances of vibration mitigation of the normalized displacement of the 
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main structure and the relative deformation of five types of SDOF systems, consisting of 
ERS-TMDI, TMDI, ERS-TMDs, classical TMD, and a system without TMD, which are compared 
under the same mass ratio of 0.02 in optimal condition with  norm. From Fig. 4, the  norm of 
the ERS-TMDI is better than other systems at the same mass ratio. Moreover, it is obvious that 
the ERS-TMDI has the advantage of suppressing the oscillation of the main structure and relative 
motion almost across the whole frequency spectrum, in comparison with the others. Particularly, 
at their own resonant frequencies, the spiked value of the normalized displacement of the main 
structure in the ERS-TMDI system is decreased by around 36 % in comparison with the classical 
TMD, 23 % with the TMDI and 18 % with the ERS-TMDs. In addition, when the frequency  is 
ranging from 0.7 to 1.3, the area of the  of the ERS-TMDI is decreased by about 9 % compared 
to the classical TMD, 4 % to that of the TMDI and 6 % to that of the ERS-TMDs. 

 
a) The deformation of the main structure 

 
b) The relative deformation of the damper 

Fig. 4. Schematic of the optimal frequency responses for types  
of SDOF system, where the mass ratio = 0.02 

4.3. Comparing performances of the ERS-TMDI under different inertance ratios 

The  performances of vibration mitigation of the displacement of the main structure and the 
relative displacement of the ERS-TMDI are compared under different inertance ratios. From  
Fig. 5, the  norm of the ERS-TMDI is better at the highest inertance ratio. 

 
a) The deformation of the main structure 

 
b) The relative deformation of the damper 

Fig. 5. Schematic of the optimal frequency responses for types of SDOF system  
under different inertance ratios 

4.4. Sensitivity of tuning parameters 

In practice, it is a challenge to tune the parameters faultlessly, since some parameters may vary 
after some time. Fig. 6 shows how the seismic control performance will change with the variations 
of the tuning parameters for the ERS-TMDI system at the different inertance ratios under a ground 
excitation, as compared with classical TMD. It is clear that the mechanical tuning ratio , is the 
most susceptive design parameter to the seismic control, while the electrical damping ratio , is 
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the least susceptive to the seismic control. Besides, when the inertance ratio is increasing, the  
ERS-TMDI is more robust to the parameter changes. In addition, we can also draw the conclusion 
that the tuning parameters of classic TMD is more sensitive than that of the ERS-TMDI. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 6. The sensitivity of vibration suppression to the changes of the design parameters of the  
ERS-TMDI and classical TMD: mechanical tuning ratio  of a) the inertance ratio = 0.1 and  

b) the inertance ratio = 0.5; the electrical damping ratio  of c) the inertance ratio = 0.1  
and d) the inertance ratio = 0.5; the coupling coefficient   and electrical tuning ratio   

of e) the inertance ratio = 0.1 and f) the inertance ratio = 0.5 

5. Time-domain analyses of the ERS-TMDI 

5.1. Mathematical model 

In Section 5, the time-history responses of the model demonstrated above are computed for 
four simulated earthquakes based on observed earthquake records in order to prove the effect of 
the ERS-TMDI. The equations of motion for the system of ERS-TMDI are simply described as a 
three-degree-of-freedom system, as shown in Eq. (1). Therefore, matrix representations of the 
equations of motion are useful for estimating the time-history responses. The equations of motion 
for the ERS-TMDI can be formulated as follows: 
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Eq. (1) can be expressed in second order form: + + − ( − ) + = − ,( + ) + ( − ) − = − ,( − ) + + + = 0.  (20)

Set = − , Eq. (20) can also be written in a matrix form: 

+ + = − ∙ , (21)

where: 

= 0 0+ + 00 0 ,   = 00 0 −0 ,   = − 00 00 0 1/ ,    = 0 . 
Define = [ ] , then the state space equation is: = + , (22)

where: = 0 × ×− − ,   = 0 ×− . 
5.2. Simulation parameters 

To facilitate the simulation analysis of ERS-TMDI, the performances of ERS-TMDI are 
compared with that of the Classical TMD in the optimal condition. The fundamental modal shape 
corresponding to ten-story frame buildings and Table 1 shows the parameters of the combined 
system in the numerical simulations. 

Table 1. The parameters of simulation 
Description Symbol Value 

Main structure mass  58970 [kg] 
Stiffness coefficient of the main structure  4.81×104 [kN/m] 

The fundamental period of the main structure  0.22 [s] 
Damping of the main structure  67.4 [kN s/m] 

Inertance mass  589.7 [kg] 
Stiffness coefficient of the mechanical TMD  1.35×103 [kN/m] 

Mechanical TMD mass  1179 [kg] 
Grossinductance of electrical transducer  30.6 [mH] 

Gross capacitance of electrical transducer  41.6 [mF] 
Internal resistance of motor  0.13 [Ω] 

External resistance  0.13 [Ω] 
The constant of the electromagnetic actuator ,  50 

5.3. The performance of seismic control 

Time-history analyses are performed by numerical integration using the Newmark’s method, 
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with a time interval of 0.01 s and the adjusted maximum earthquake acceleration of 200 cm/s2 to 
compare the performance with the different records. The observed earthquake records used for 
applying the ground acceleration to the models are as follows: (1) ChiChi, (2) El Centro, (3) Kobe, 
and (4) Northridge. The time histories of the earthquake records are shown in Fig. 7. The elastic 
acceleration response spectra of the earthquakes are also shown in Fig. 8, in which we can know 
the predominant periods of the selected earthquakes from the response spectra. In the time-history 
analyses, the characteristics of the model are identical to those used in the frequency-domain 
analyses described Section 4. 

 
a) ChiChi 

 
b) El Centro 

 
c) Kobe 

 
d) Northridge 

Fig. 7. Time histories showing observed earthquake records used for time-history analyses 

 
Fig. 8. Response spectra for observed earthquake records 

From Fig. 9 to Fig. 11, on the whole, it is clear that the ERS-TMDI effectively reduces the 
peak and root mean square (RMS) value of the displacement of the main structure, especially for 
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the case of Northridge, which contains strong long-period components. It is also noted that the 
performance of the vibration mitigation of the ERS-TMDI is clearly superior to that of the classical 
TMD. 

 
a) ChiChi 

 
b) El Centro 

 
c) Kobe 

 
d) Northridge 

Fig. 9. Time-history diagram of displacements (left) and accelerations (right) of the main structure: 
comparison between classical TMD and ERS-TMDI excited 
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a) 

 
b) 

Fig. 10. Reduction ratio related to a) response peak displacement and b) response peak acceleration  
of classical TMD system and ERS-TMDI system 

 
a) 

 
b) 

Fig. 11. Reduction ratio related to a) response RMS value of displacement and b) response RMS value  
of acceleration of classical TMD system and ERS-TMDI system 

6. Conclusions 

This paper investigates electromagnetic resonant shunt tuned mass-damper-inerter  
(ERS-TMDI) system, which consists of an auxiliary mechanical mass, an inertance mass, a spring, 
and an electromagnetic shunted RLC. We derive  tuning laws on a SDOF system, with the 
physical meaning to reduce the RMS value of the displacement of the main structure subjected to 
random acceleration excitation from the base. Later on, both frequency-domain and time-domain 
analyses are studied to demonstrate the performance of vibration mitigation.  

The frequency-domain analyses show that the ERS-TMDI can enhance efficiency of seismic 
control due to tuning both the resonances of the mechanical mass, the inertance, and the electrical 
resonator, in comparison with classical TMD, where only the mechanical resonance is tuned. 
Particularly, the ERS-TMDI of mass ratio 0.02 and inertance ratio 0.5 improves the vibration 
suppression by reducing the resonant peak value of displacement of main structure by around 36 % 
compared to that of the classical TMD, 23 % to the TMDI and 18 % to the ERS-TMDs, and the 
area of  by around 9 %, 4 %, 6 %. In addition, the  performances of vibration mitigation of 
the oscillation of the main structure and the deformation of the ERS-TMDI are better at the higher 
inertance ratio. And compared with classical TMD, the system is more robust to the off tuning or 
parameter changes. 

The time-domain analyses show that the ERS-TMDI effectively reduces the peak and RMS 
value of the displacement of the main system, especially for the case of Northridge. It is also noted 
that, in the performance of the vibration mitigation, the ERS-TMDI is superior to the classical 
TMD. 
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