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Summary

Tall rigid blocks are prevalent in ancient historical constructions. Such struc-

tures are prone to rocking behaviour under strong ground motion, which is

recognizably challenging to predict and mitigate. Our study is motivated by

the need to provide innovative nonintrusive solutions to attenuate the rock-

ing response of historical buildings and monuments. In this paper, we examine

a novel scheme that employs external resonators buried next to the rocking

structure as a means to control its seismic response. The strategy capitalizes

on the vibration absorbing potential of the structure-soil-resonator interac-

tion. Furthermore, the benefits of combining the resonators with inerters in

order to reduce their gravitationalmasswithout hampering theirmotion-control

capabilities are also explored. Advanced numerical analyses of discrete models

under coherent acceleration pulses with rocking bodies of different slenderness

ratios under various ground motion intensities highlight the significant vibra-

tion absorbing qualities of the external resonating system. The influence of key

system parameters such as the mass, stiffness, and damping of the resonator

and those of the soil-structure-resonator arrangement are studied. Finally, a

case study on the evaluation of the response of rocking structures with external

resonators under real pulse-like ground-motion records confirms the impor-

tant reductions in peak seismic rotational demands obtained with the proposed

arrangement.
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1 INTRODUCTION

The vast cultural significance and value of historical constructions demands a careful implementation of seismic
protection and conservation strategies. In this respect, motion-control techniques are crucial to safeguard monumental
structures against deterioration or collapse during strong ground motion. Although the detailed numerical modelling of
historical buildings is difficulted by uncertainties in the estimation of material andmember characteristics,1 the dynamic
response of manymonuments and structures made of large stone blocks can be characterized by the rocking behaviour of
a rigid body.2-4 The strong nonlinearities experienced by a rocking structure5 and the challenges associted withmodelling
impact phenomena6 prevent a precise estimation of its rotational response under a given base motion.7 Neverthless, the
classical rocking model proposed by Housner8 has been shown able to predict the main statistics of the seismic response
of rocking structures with reasonable accuracy.9
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Much past research has been devoted to the prediction of the response of rocking structures subjected to various kinds of
basemotion, including harmonic pulses,10,11 earthquake action,12,13 and random excitation.14 By contrast, studies on con-
trol strategies applicable to rocking bodies are limited andhave been generally concernedwith the protection of equipment
or art objects.15 Some of the proposed interventions involve lowering the centre of mass of the structure or suppressing
its rocking motion all together by fixing it to a rigid base.16 Such measures are intrusive in nature and can lead to unin-
tended stress concentrations and damage during earthquakes. Similarly, a number of researchers have studied the use of
appendages and devices attached to the rocking body to modify its seismic response. For example, De Leo et al17 analysed
the behaviour of a rocking structure with a pendulum attached to it acting as a vibration absorber. They observed impor-
tant improvements in the overturning capacity of blocks with pendulums in comparison with uncontrolled structures.
Nevertheless, the strong nonlinearities of the systemmade the design of the pendulum extremely difficult and potentially
inefficient. In an effort to reduce the influence of nonlinarities, Simoneschi et al18 studied the response of a block equipped
with a tuned mass damper with linear visco-elastic properties attached at its top. Reasonable results were reported and
the frequency ranges over which the use of the mass damper is not effective were identified. Other studies examined the
potential of sloshing dampers to mitigate rocking.19 Similarly, after studying the stability of rocking blocks standing on
seismically isolated bases, Vassiliou and Makris20 concluded that seismic isolation is only beneficial for small structures.
More recently, Thiers-Moggia and Málaga-Chuquitaype21 have explored the seismic control potential of inerters, which
are mechanical devices that output forces proportional to the relative acceleration between their terminals. They demon-
strated that supplemental rotational inertia devices effectively reduce the frequency parameter of rocking blocks, resulting
in lower seismic rotation demands and enhanced stability due to the well-known size effects of the rocking behaviour.
In terms of remote options, a new device for the seismic protection of building clusters, designated as vibrating barrier

(ViBa), has been recently proposed by Cacciola and Tombari.22 It consists of a buried oscillator, detached from the sur-
rounding structures and tuned to act as a vibration absorber. By using linearized approximations, Cacciola and Tombari22

showed that a well-designed ViBa can mitigate the ground-motion effects on a building cluster where each structure is
idealized as an elastic single degree of freedom system. On the other hand, their study also highlighted the need of a size-
able supplemental mass (comparable with the mass of the structures to be protected) as a major drawback of the ViBa.
This handicap was further analysed by Cacciola et al23 who explored the use of an inerter coupled with the ViBa in order
to reduce themass demands of the damper. As before, linear discrete approximations of soil and buildings were employed
and the lateral displacement of the elastic building oscillator was used as the response parameter.
The concept of using external resonators as a means of vibration absorption is revisited in this paper and applied to the

seismic protection of historical structures exhibiting highly nonlinear rocking behaviour. Figure 1 presents a schematic
view of such an intervention where the structure is represented by a rocking block on a relatively rigid foundation. Exter-
nal resonators, contained within their respective foundation boxes, are buried in the adjacent soil and used as vibration
absorbers. The resonators can be coupled with inerters in order to achieve large values of inertial mass from relatively
minor quantities of gravitational mass.
We contend that the true potential of external resonators lies in their application to the seismic protection of monu-

ments and historical structures where the space, strength, and architectural constrains favour the use of nonlocal control

FIGURE 1 Seismic vibration control of a

rocking body. Concept
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FIGURE 2 Seismic vibration control

of a rocking body through external

resonators and inerter devices.

Schematic view of the discrete model

idealization [Colour figure can be

viewed at wileyonlinelibrary.com]

strategies and where rocking is the main mode of motion. However, this is not a minor development and several hurdles
need to be carefully addressed in order to prove this concept. In the first place, the highly nonlinear nature of the rock-
ing motion with its amplitude-dependent frequency of oscillation8 configures a drastic departure from previous studies
on linear-elastic structures. Furthermore, the competition between size and slenderness24 makes the rotational response
and overturning of a rocking body highly sensitive to the predominant frequency of the main energetic pulse of the exci-
tation and to its structural configuration. To this end, in this study, we perform an extensive parametric study on discrete
finite-element (FE)models involving rocking blocks of different slenderness subjected to coherent pulses of varying inten-
sity. The influence of key parameters, such as the block slenderness, the mass, stiffness, and damping of the resonator,
and the stiffness and damping of the soil and the soil-structure-resonator system, is examined. The results reveal the exis-
tence of a threshold frequency ratio above which the use of external resonators becomes ineffective. Finally, we conduct
a detailed assessment of rocking demands using a set of real pulse-like ground motion records. We demonstrate that the
use of external resonators is an attractive alternative to control peak seismic rotational demands of rocking structures
and that the incorporation of the inerter effectively reduces the requirements for supplemental mass in the device up to
a certain extent although its ability to mitigate structural overturning is restrained to particular frequency ranges.

2 NUMERICAL MODELS

To conduct the series of analyses presented in this paper, discrete mechanical FE models of the structure-soil-resonator
system proposed (Figure 1) were constructed in the finite element framework OpenSees.25 A schematic representation of
themechanical components of one of suchmodels is shown in Figure 2. Eachmodel comprises of a stiff rocking structure
flanked by two symmetric external resonating devices. In Figure 2, m stands for the mass of the rocking structure, mf is
themass of its foundation,KSSRI andCSSRI are the stiffness and damping coefficient of the soil-structure-resonator approx-
imations, respectively,mresonator, KR and CR are the mass, stiffness, and damping coefficient of the external resonator, KSRI
and CSRI are the stiffness and damping coefficient used to simulate the soil-resonator interaction, and KSSI and CSSI are
the stiffness and damping coefficient used to simulate the soil-structure interaction. Besides, minerter represents the sup-
plemental inertial mass brought about by the inerter, if such device is present. If no inerter is provided, the mresonator is
connected on one side only to its foundation box through KR and CR. If a grounded inerter is employed, the connection
between the inerter and the ground is characterized by means of its stiffess, KSII, and damping coefficient, CSII.
To facilitate the proof of concept and subsequent comparisons, we consider a unidirectional motion within a 2D struc-

tural representation. It is acknowledged that this representation is particularly suitable to rigid blocks of rectangular base
with one side considerably larger than the other. However, the general trends identified in our study are a first-level
approximation and are expected to remain relevant for multidirectional actions where, if needed, an array of distinctly
oriented resonators can be used to control a 3D rocking motion.

2.1 Rocking structure

In general, the modelling principles proposed by Vassiliou et al26 are followed herein to simulate the superstructure and
its rocking interface as depicted in Figure 3. To this effect, the rocking interface between the superstructure and its support
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FIGURE 3 Finite-element model of the

rocking structure. After Vassiliou et al26 and

Spieth et al28

FIGURE 4 Comparison of analytical and numerical rotation histories

can be modelled via zero-length elements with elastic-no-tension resistance and a relatively large compression modulus
of elasticity. No viscous damping is employed for the rocking body, as suggested by Vassiliou et al,26 instead numerical
damping through the Hilber-Hughes-Taylor (HHT) algorithm27 is used to simulate the energy dissipation at the impact
between the rocking body and its foundation. The rocking body is modelled via elastic-beam-column elements. Recalling
that the moment of inertia of a rigid rectangular block rocking about its pivot corner is 4∕3mR2 whereas the moment of
inertia of a beam-column element with translational masses is 1∕3mR2cos2� + mR2, where � is the slenderness of the
block (� = arctan b∕h), the difference, 1∕3mR2sin2�, is assigned to the rotational degrees of freedom of the nodes along
the height of the rocking building.26

Figure 4 shows an example of a comparison between Housner's analytical prediction and the numerical estimations
obtained as described above. The plots correspond to the rotational response of a rectangular block undergoing free rock-
ing motion after being pushed to a tilted position. Preliminary sensitivity studies were carried out as part of the present
study to assess the influence of the number of elements and HHT dissipation factor. To this end, 20 beam-column ele-
ments were used to represent the rocking body and a HHT dissipation factor of 0.90 was employed. The response of the
whole system was not found to be sensitive to reasonable variations of this factor.
When a rigid block rocking on a rigid foundation is considered, only two springs, one at each corner, are enough to sim-

ulate its response. However, in order to incorporate the characteristics of a flexible foundation, a simplified multi-spring
approach was followed as also presented in Figure 3. To this end, the spring location and their relative stiffnesses were
calculated using the Lobatto integration scheme introduced by Spieth et al28 starting from the global vertical stiffness of
the foundation determined as described in Richart and Whitman.29 This approach allows for a realistic modelling of the
contact compression zones and the relocation of the pivot point due to local flexibility, if necessary. Previous studies have
demonstrated that the number of gap elements along a rocking surface can be calculated by dividing its length by a factor
of 10.30 Alternatively, each zero-length spring in Figure 3 can be defined via a fibre section (as in the original proposal by
Vassiliou et al26) with the cross-sectional area of each fibre following the Lobatto distribution mentioned above.
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FIGURE 5 Finite-element

model of the soil-structure,

soil-resonator, and

soil-structure-resonator system

[Colour figure can be viewed at

wileyonlinelibrary.com]

2.2 Soil-structure, soil-resonator, and soil-structure-resonator interactions

Simplified discrete basedmodelswere employed to represent the soil-structure interaction (SSI), soil-resonator interaction
(SRI), and soil-structure-resonator interaction (SSRI). This modelling approach is based on the principles described and
verified in the available scientific literature.31-35 Such models have been found to capture well the interactions between
resonators and soil when this latter is simulated by means of more comprehensive continuum models.22 Figure 5 illus-
trates the FE components employed. The external resonators are approximated via two-node-link elements while the SSI,
SRI, and SSRI are simulated via visco-elastic truss elements.

2.2.1 SSI and SRI
The same expressions were employed to estimate the SSI and SRI parameters.31,32 To this end, the horizontal (Kh) and
vertical (Kv) stiffness of the discrete truss element employed to model these interactions were defined as follows:

Kh =
8GR0
2 − �

Jh
(
L

B

)
, Kv =

4GR0
1 − �

Jv
(
L

B

)
, (1)

where G is the shear modulus of the soil, � is the Poisson's ratio, L and B are the dimensions of the foundation of the
structure or resonator, and Jh is a correction factor calibrated by Gazetas.32 Additionally, the corresponding damping
coefficients can be approximated by the following:

�h =
0.29
̄

m
1∕2
h

, �v =
0.425
̄

m
1∕2
v

, (2)

with

m̄h =
m(2 − �)

8�R3
, m̄v =

m(1 − �)

4�R3
, (3)

where m is the mass of foundation of the rocking block or resonators, � is the Poisson's ratio of the soil, � is the mass
density of the soil, and R is the equivalent circular radius of the foundation. Similarly, the damping coefficient CSSI can

be obtained from the damping ratio (�) as CSSI = 2�
√
KM where K and � are defined in equations 1 and 2 and M is the

mass of the foundation. The employed idealizations approximate radiation and hysteretic damping and consider basic
kinematic interactions but the rotationalmotion of the foundation is disregarded. This latter assumption is not considered
determinant for the dimensionless comparisons that follow which are consistently performed in relative terms. Likewise,
approximate impedance factors are applied as recommended in previous studies29,32 and used in Vassiliou et al,31 among
others, to incorporate the dynamic effects on the SSI, SRI, and SSRI.
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2.2.2 SSRI
In order to account for SSRI effects, the coupling between the two foundations is simulated via discrete stiffness and
damping elements whose stiffness and damping can be approximated by33 the following:

KSSRI = Γ
Ga

2 − �
, (4)

CSSRI = Ψ
Ga2

Vs(2 − �)
, (5)

where Γ = 3.7561 · 10−0.18995(d/a) and Ψ = 13.2875, with d being the distance between the two foundations and a the
foundation dimensions, respectively.
It is worth noting that the stiffness and damping of an elastic media are frequency-dependent.36 However, the para-

metric studies undertaken herein to prove the concept cover a reasonable range of soil parameters that encompass the
frequency amplification effects36 most commonly expected in practice.

2.3 Inerter

In this paper, we also evaluate the use of supplemental rotational inertia devices, or inerters, acting in combination with
the external resonators. The supplemental inertia provided by these devices is intended to alleviate the need for very large
supplemental masses on the vibration absorbers, which can reach magnitudes comparable to the mass of the protected
structure. An inerter is a mechanical element which output force is proportional to the relative acceleration between its
terminals37,38 and which constant of proportionality is called inertance. Previous work39,40 has shown that inerters can
generate inertial forces several orders of magnitude higher than those corresponding to the gravitational mass deployed.
In this respect, resonators equipped with inerters can be used to alleviate the need for large supplemental masses which
can sometimes reach magnitudes comparable with the mass of the protected structure.
The inerter considered in this study corresponds to a rack-and-pinion flywheel system and its numerical imple-

mentation in OpenSees follows the proposal of Málaga-Chuquitaype et al41 shown schematically in Figure 5. This FE
representation of an inerter consists of two connected nodes with an angular mass assigned to the rotational degree of
freedom of the master node. This node represents the pivot of a rotating flywheel, whereas the slave node corresponds to
the pinion gear. The model transforms the horizontal relative displacement between the terminals into a rotation in the
flywheel node.
It is evident that the contribution of the inerter to the dynamic response of the system depicted in Figure 2 is a function

of its apparent mass and the relative acceleration between the resonator mass, mresonator, and the grounded terminal of
the inerter. This latter, in turn, will depend on the characteristics of the anchoring employed which will define the values
of KSII and CSII (Figure 5). In order to simplify the analyses that follow, a perfectly rigid connection (i.e., KSII ≈ ∞) is
assumed throughout this study. It is recognised that this is an upper bound case, which can nevertheless be approximated
by a careful design of the interter-ground connection that minimizes its compliance. On the other hand, the apparent
mass of the inerter can be increased by employing a gearing system38 that amplifies the rotational motion of the device.
These different levels of rotation amplification are accounted for by changing the distance between nodes C and D in the
model (Figure 5).

3 ROCKING DEMANDS UNDER PULSE-TYPE EXCITATIONS

This section presents a first assessment of the benefits of employing external resonators for the control of rocking demands
in rigid blocks. This evaluationwas carried out by subjecting a range of FEmodels, constructed as described in the previous
section, to coherent acceleration pulses of varying intensity. To this end, Mavroeidis and Papageorgiou (MP) velocity
pulses42 with varying amplitudes,Ap, and frequency parameters, fp, were employed. The analytical expressions developed
in MP42 for representing the ground velocity and the corresponding acceleration histories of ideal near-field pulse-like
ground motions are presented in Equations 6 and 7, respectively, as follows:

.
ug(t) =

Ap

2

[
1 + cos

(
2��p

gp
(t − t0)

)]
cos

[
2��p (t − t0) + 	

]
t0 −

gp

2�p
≤ t ≤ t0 +

gp

2�p
, (6)
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(A) (B)

FIGURE 6 Example of rocking

demands for protected and unprotected

rocking structures

üg(t) =
Ap��p

gp

⎧
⎪⎪⎨⎪⎪⎩

sin

(
2��p

gp
(t − t0)

)
cos

(
2��p(t − t0) − �gp + 	

)

− gp sin
(
2��p(t − t0) − �gp + 	

) [
1 − cos

(
2��p

gp
(t − t0)

)]

⎫
⎪⎪⎬⎪⎪⎭

t0 −
gp

2�p
≤ t ≤ t0 +

gp

2�p
. (7)

In these equations, the parameter Ap defines the velocity-pulse amplitude, 	 is the phase angle of the harmonic excitation
which is assumed to be 0 throughout this study, fp(= 1∕Tp) is the prevailing frequency of the pulse, gp determines the
oscillatory character of the pulse, and t0 defines the peak of the of the excitation envelope. An important feature of the
MP model is the relationship between the pulse duration and the input parameters (i.e., pulse duration equals gp/fp).
Likewise, the prevailing frequency is related to the magnitude,Mw, of the ground motion by42 the following:

log(1∕�p) = −2.9 + 0.5MW . (8)

The relative simplicity of equations 6 and 7, together with the physically realizable nature of the motions, makes MP
pulses a neat tool for parametric studies.43,44

Figure 6 offers a clear assessment of the benefits of employing external resonators. It compares the rocking spectra of
protected and unprotected structures, where protected stands for systems that incorporate external resonating devices. It
is apparent from Figure 6A that employing external resonators brings significant benefits to the rocking response. These
benefits are noticeable for all intensities of groundmotionwhen � = 1∕3 (Figure 6A). For less slender blocks (e.g., � < 1∕6)
under a intensity of PGA = 1.5 g, the rocking demand can still be reduced by the resonators in the high-frequency range
(e.g., fp > 0.7 Hz) although the reduction is less appreciable than in stocky blocks. In general, for a given system (i.e.,
mresonator = 0.5m, KR = 2 × 104 N/m, KSSI = 4.61 × 105 N/m, KSSRI = 4.96 × 105 N/m, KSRI = 2.31 × 105 N/m, �SSI = 1.5%,
�SSRI = 1.7%, �SRI = 1.5% and �R = 1.0% in the case of Figure 6) a threshold frequency ratio can be identified below
which the effects of the external resonator will be detrimental. The precise location of such frequency thresholds can be
altered depending on the design of the external resonators, as will be discussed latter in this paper. Importantly, on the
spectral regions where the resonating devices are effective, very significant reductions in rocking demands are observed,
with peak rotations in controlled structures reaching a 75% reduction or more in rotation magnitudes at frequency ratios
close to overturning.

4 PARAMETRIC ANALYSES

We conducted a parametric investigation on the response of rocking structures with external resonating devices under
coherent MP pulses in order to understand the influence of the mass and stiffness of the resonator, its damping, and the
SSI parameters. The parameters selected were varied over a carefully selected range in order to reflect the characteristics
of physically realizable configurations. The results of the parametric studies are summarized in Figures 6 to 12 and will
be discussed in detail in the following sections.

4.1 Dimensional analysis and parameter space

The parameters governing the response of the system formed by the rocking block, its foundation, the soil, and the external
resonators depicted in Figure 5 when subjected to a ground motion of frequency fp and amplitude ag are: the response
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FIGURE 7 Comparison of

dimensionless rocking spectra (A) (B)

FIGURE 8 Influence of the mass of

the resonator,mresonator . Unprotected

refers to systems without external

resonators

(A) (B)

(C)

FIGURE 9 Influence of the stiffness of the resonators, KR. Unprotected refers

to systems without external resonators

quantity of interest, which in this case is the maximum rotation of the rigid block (
); the block slenderness (�); its
frequency parameter (p) and mass (m); the mass of the foundation (mf); the mass of the resonator (mresonator), its stiffness
(KR) and damping (CR); themass of the resonator foundation (mf,resonator); and the stiffness and damping corresponding to
the soil-structure (KSSI,CSSI), soil-resonator (KSRI,CSRI), and soil-structure-resonator (KSSRI,CSSRI) interaction parameters,
the apparent mass of the inerter (minerter), the inerter-ground connection stiffness and damping (KSII,CSII), as well as the
ground motion parameters (ag, fp):
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FIGURE 10 Influence of the resonators damping. Unprotected refers to

systems without external resonators

(A) (B)

(C)

FIGURE 11 Influence of the soil

interaction stiffness. Unprotected refers

to systems without external resonators


 = �
(
�, p,m,m� ,mresonator,m�, resonator,minerter,KR,CR,KSSI ,CSSI ,KSRI ,CSRI ,KSSRI ,CSSRI ,KSII ,CSII , ag, �p, g

)
. (9)

This results in a group of 21 characteristic variables involving three reference dimensions, those of length [L], time [T],
andmass [M]. Asmentioned above, a rigid inerter-ground connection is assumed herein (i.e.,KSII ≈ ∞,CSII ≈ 0) together
with a constant fundation to superstructure ratio (i.e., mf∕m = mf,resonator∕mresonator = 0.10). Therefore, the application
of Vaschy-Buckingham's Π-theorem45,46 to this newly constrained variable space leads to the following 14 independent
dimensionless Π-products:


 = �

(
�,

�p

p
,
mresonator

m
,
minerter

m
,
�R

2��p
, �R,

�SSI

2��p
, �SSI ,

�SRI

2��p
, �SRI ,

�SSRI

2��p
, �SSRI ,

ag

g

)
, (10)

where

�R =

√
KR

mresonator
, �SSI =

√
KSSI
m�

, �SRI =

√
KSRI

m�, resonator
, �SSRI =

√
KSSRI
m�

(11)

�R =
CR

2 (mresonator +minerter)�R
, �SSI =

CSSI
2m��SSI

, �SRI =
CSRI

2m�, resonator�SRI
, �SSRI =

CSSRI
2m��SSRI

. (12)
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FIGURE 12 Influence of the soil

interaction damping. Unprotected refers

to systems without external resonators

(A) (B)

(C)

TABLE 1 Summary of range of variation of dimensionless parameters

ag

g

�p

p

�R

2��p
�R

�SSI

2��p
�SSI

�SRI

2��p
�SRI

�SSRI

2��p
�SSRI

mresonator

m

minerter

m
�

Min 1.0 0.1 1.62 0.01 2.8 0.015 2.8 0.015 2.9 0.017 0.25 0.0 1/9

Max 2.0 2.0 16.24 0.10 11.1 0.38 11.1 0.38 11.5 0.15 5 4.0 1/3

Base case 1.5 Variable 5.14 0.025 5.6 0.077 5.6 0.077 5.8 0.041 0.5 0.5 1/3

In the analyses that follow, the influence of a given parameter is assessed by changing its value between predefined
ranges while keeping all other parameters constant. This involves the generation of a series of consistently dimensionless
systems since many of the Π products of Equation (10) are dependent on fp.
Importantly, the ranges for the variation of the dimensionless parameters were selected to broadly represent realistic

configurations. These ranges are summarized in Table 1 together with the base case scenario employed as a control point.
In general, 4-m wide rocking structures with aspect ratios between 1/3 and 1/9 were analysed. These configurations are
broadly consistent with a range of historical structures and buildings.47,48 The horizontal distance between the rocking
block and the resonator was typically 10 m with a 2 by 2 m foundation box. Finally, comparisons are also established
against the response of the corresponding rocking block sitting on an ideal rigid foundation and the response of an unpro-
tected rocking body resting on a soil corresponding to the base case (i.e., assuming the R, SRI, and SSRI terms equal to
zero).
Figure 7 presents and compares dimensionless rocking spectra of protected and unprotected structures. The parameters

of these analyses correspond to the base case scenario in Table 1, except for the acceleration and block slenderness which
are reported in the figure. The block peak rotations obtained from the response history analyses considering deformable
soil conditions are depicted in this figure as a function of the frequency ratio, fp∕p, where fp is the prevailing frequency

of the ground motion and p is the rocking block frequency parameter8 defined as p =
√
3g∕4R. Results are presented

for structures of different slenderness (�) and for various ground-motion intensities (ag∕g�). In these graphs, rotations of

∕� > 1 denote overturning. Zhang and Makris10 have noted the existence of safe regions located above the minimum
acceleration levels associated with overturning of rigid blocks on the acceleration-frequency plane. However, even if the
rocking body survives the ground motion without overturning, the high rotations and angular accelerations that can
be experienced during ground-shaking may be damaging to the structure; therefore, our attention was placed on 
∕�

rotations equal to or less than 1.
The influence of external resonators can be assessed by comparing the rocking spectra of protected and unprotected

structures depicted in Figure 7 where protected stands for systems that incorporate external resonating devices. In gen-
eral, the protected structures experience lower rocking demand across all the frequency range considered under all
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intensities of groundmotion. In addition, it is apparent from Figure 7A that the benefits of employing external resonators
are greater for lower intensities of ground motion although the reduction in peak rotations still reaches 50% across the
wide spectral region under highest intensity.
Figure 7B shows the influence of aspect ratios on the rocking demand. The resonators can alleviate the rocking ampli-

tude over the entire spectral region in the case of � = 1∕3. However, as the structure becomes slenderer, a threshold
frequency ratio, fp∕plim, can be identified belowwhich the effects of external resonatorswill be detrimental. This frequency
limit is relatively large for � = 1∕6 in Figure 7B where a resonator mass of mresonator = 0.5m is employed hinting to the
need of larger masses as will be discussed in the parametric section of this paper. It is also worth noting that the seismic
rotations in controlled structures present a sharp increase in the proximity of the frequency ratio threshold, fp∕plim, while
they remain very close to zero for higher frequencies (shorter pulses). Besides, the rotational demands of structures with
resonators are less sensitive to the pulse intensity or the block slenderness in the high frequency region of the spectra.

4.2 Resonator mass

Figure 8 provides an insight on the evolution of the rocking response of structures with external resonators of different
masses. The cases presented correspond to a ground motion intensity of ag∕g� = 4.5, rocking blocks of � = 1∕3, 1/6 and
1/9, �R∕2�fp = 5.14, and �SSRI∕2�fp = 5.8. Five different levels of supplemental mass are explored in Figure 8, namely
mresonator = {0.25m, 0.5m, 1.0m, 2.0m, 5.0m}. An inerter with an apparent mass or inertance of minerter = 0.5m is used in
all cases. The rocking spectra for an unprotected structure of the same characteristics resting on deformable soil (base
case without resonator) and on an ideally rigid medium are also included in Figure 8 for comparison. A marked decrease
in rotation demands of structures with resonators is observed for all ranges of fp∕p when � = 1∕3. This reduction in
seismic demands is particularly noticeable at frequency ratios of fp∕p > 0.4 in Figure 8A for � = 1∕3. It is also evident
from this figure that a large external mass, in the order of mresonator = m, leads to a better mitigation of the amplitude of
rocking motion extending the range of efficiency of the resonators towards proportionally lower frequencies. This mass
increment also leads to a noticeable increase in the block overturning capacity in comparison with the original structure.
However, resonator masses above themresonator = m level become progressively less effective in the short frequency range
0.28 < fp∕p < 0.6 with very large resonator masses (e.g., mresonator = 4m) being less able to control rocking than the
mresonator = 0.25 m case at short frequency ratios.
The need for larger resonator masses to control the response of more slender blocks is verified in Figure 8B,C for blocks

of slendernesses � = 1∕6 and � = 1∕9, respectively. In the case of � = 1∕6 structures, the existence of a region (e.g.,
fp∕p < 2) where the use of external resonators is detrimental to the seismic response is evidenced. In these cases, low
resonator masses (i.e., mresonator = 0.25 or 0.5 m) are associated with higher vulnerabilities to overturning and larger
masses in the order ofmresonator = m or larger are required to shift the frequency ratio linked to overturning towards lower
levels. Similar trends are observed for blocks with � = 1∕9 (Figure 8C) where mresonator = 0.25 or 0.5 m do not lead to
significant improvements in the response. As stated above, the requirement for a large tuned mass can be alleviated if
inerter devices are employed to amplify the supplemental inertia of the vibrating block.

4.3 Resonator stiffness

Figure 9 summarizes the effects of changing the stiffness of the resonator's spring (i.e., �R∕2�fp = 1.6, �R∕2�fp =

5.1, �R∕2�fp = 16.2) for systems with � = 1∕3, mresonator = m, and �SSRI∕2�fp = 5.8. A ground motion intensity of
ag∕g� = 4.5 is employed. As before, the rocking spectra for an unprotected structure with comparable properties rest-
ing on deformable soil and on an ideally rigid foundation is also depicted in Figure 9 to facilitate the comparisons. It
can be concluded from this figure that, provided the spring of the resonator is not low in comparison with the soil, the
ability of the system to control rocking demands is not affected. More flexible resonators will lead to slightly higher rota-
tional demands, as appreciated from Figure 9, but overall the reductions in peak rotations are significant. This should be
understood in the context of the soil characteristics, as will be discussed later, with stiffer soils requiring stiffer resonating
devices to transfer the required forces.

4.4 Resonator damping

The influence of the energy loss in the resonator, accounted via viscous damping in our models, is explored in Figure 10.
Three different values of viscous damping ratio are analysed including �R = 1%, �R = 2.5%, and �R = 10% while the rest
of the modelling parameters correspond to the base case in Table 1. A high damping value is considered to represent the
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provision of a supplemental source of energy dissipation or a marked increase in the viscous coefficient associated with
an inefficient mechanism or faulty design. Similarly, a value of �R = 1% represents a lower bound of energy dissipation
capacity. It can be seen from Figure 10 that these important variations in damping are virtually immaterial to the rocking
response of the structure.

4.5 Soil-structure interaction

The equivalent soil properties (stiffness and damping) can take awide range of values covering several orders ofmagnitude
across different soil types. This leads to a high variation of KSSRI, KSRI, CSSRI, and CSRI even if the foundations of the
resonators and building remain unchanged. In order to identify general response tendencies, the soil stiffness was varied
within the range proposed in Table 1. The approximations employed to define the SSI, SRI, and SSRI-related parameters
have been discussed in detail in previous parts of this paper. In this section, it is our interest to examine the effects brought
about by implementing external resonating devices in soils of broadly defined moderately stiff and soft categories. It
should be noted that, although the soil stiffness and damping will be determined by the particular site conditions, there is
important room formanoeuvre in the design of the resonators foundation that can be strategically dimensioned to provide
desired levels of KSRI and KSSRI stiffness. To this end, Figure 11 presents the response of rocking structures with vibrating
devices of the same characteristics in terms of mass and stiffness (mresonator = 0.5m,�R∕2�fp = 5.14) but placed on soils of
different types and stiffness. Likewise, Figure 12 summarises the results for different levels of energy dissipation in the soil
components characterized by different viscous damping coefficients. It can be concluded from these figures that external
resonators located in more flexible soils are able to control better the rocking of the protected structure over a wider
range of frequencies. Figure 11 shows that external resonators on flexible soils successfully suppress the rocking due to
pulses with significantly low frequencies and that a reduction of the frequency associated with overturning, fp∕p(
/�=1), is
possible under these conditions. As the soil becomes stiffer, the resonators become less effective and can even amplify the
response (�SRI∕2�fp = 11.1 for fp∕p > 1.25 in Figure 11B). On the other hand, as noted above, levels of energy dissipation
in the soil within realistic estimates do not influence significantly the ability of the resonator to control rocking as can be
observed from Figure 12.

4.6 External resonators with inerters

As discussed above, the coupling of an inerter with the external resonating mass can offer a potential solution for increas-
ing the effective mass of the external resonator without increasing their gravitational mass. Previous research has shown
that if amplifying mechanisms such as ball screws49 or geared wheels38 are used, high levels of inertial mass can be
achieved keeping the associated gravitational mass at a minimum. To study this further, Figure 13 presents the rocking
spectra for structures protected via external resonators whosemasses have been connected to grounded inerters of various
apparent mass levels. In all cases, the resonator has a massmresonator = 0.5m, and the soil media leads to �SSI∕2�fp = 5.6,
�SRI∕2�fp = 5.6,�SSRI∕2�fp = 5.8, and �SSI = 7%, �SRI = 7%, �SSRI = 4%. The rocking demands on the original unprotected
structure on deformable and ideally rigid soils are also presented in Figure 13 for completeness.
In general, Figure 13 supports the concept of employing external coupled inerter-resonator systems for mitigating rock-

ing. Significant response improvements are achieved by incorporating inerters when themass of the resonator is relatively
low in comparison with the mass of the rocking body. However, a maximum level of response control is obtained for an
inertance of minerter∕m = 0.25 in the case of � = 1∕3 (Figure 13A) while larger inertances lead to progressively larger
peak rotations. This points to the existence of an optimal (mresonator,minerter) pair beyond which the potential benefits
of the external resonator are offset by the large forces and interactions brought about by the inerter. This, sometimes
counter-productive, behaviour can induce potentially higher peak rotations similar to those in systems without inerters
(minerter∕m = 0). Such is the casewhenminerter∕m = 4 for the frequency range 0.38 < fp∕p < 0.58 in Figure 13A. In the case
of more slender rocking blocks (� = 1∕6 and � = 1∕9 in Figures 13B,C), only the larger inertances (i.e.,minerter∕m > 2) are
able to produce noticeable reductions in peak rotationswithminerter = 2m being associatedwith the higher demand reduc-
tions than minerter = 4m, which can be attributed to the larger forces generated by the device that need to be transferred
to the soil-foundation system.

5 RESPONSE UNDER REAL PULSE-LIKE GROUND MOTIONS

Previous sections have evaluated the benefits of employing external resonators, with and without inerters, for the control
of rocking demands in structures utilizing ideally coherent MP pulses. This has facilitated a generic exploration of the
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FIGURE 13 Influence of the

inertance. Unprotected refers to

systems without external resonators

influence of key parameters on the efficiency of the newly proposed control strategy. Nevertheless, real ground motions
have a richer (noncoherent) spectral content that can potentially alter the seismic demands of rocking structures. In
this section, we assess the response of rocking bodies with external resonating devices under a set of 42 real pulse-like
acceleration series through detailed statistical comparisons. The selection of modelling parameters of the rocking block
and soil-resonator system employed in this section is identical to that adopted in Figure 6 (Section 3).

5.1 Record database and intensity measures

A set of real records with pulse-like features were employed to study the realistic behaviour of rocking structures equipped
with external resonators. The set of records was obtained from the Pacific Earthquake Engineering Research Center
(PEER) database and involves 21 earthquakes with magnitudesMw ranging from 5.4 to 7.1. Table 2 summarizes the cat-
alogue of earthquakes used in the analyses presented in this section. The range of ground-motion main pulse periods
varies between 0.5 and 2 s. All accelerograms were scaled to attain a PGA of 1.5 g (ag∕g� = 4.5). Besides, Dimitrakopou-
los et al50 demonstrated that intensity parameters defined in terms of the uniform duration tuni, defined as the sum of the
time intervals during which the ground acceleration exceeds the acceleration limit associated with uplifting, exhibit the
greatest efficiency among different alternatives for quantifying rotational demands in rocking structures. For this reason,
the proposed dimensionless parameter, ptuni, is considered in the analyses that follow.

5.2 Case study results and statistical analysis

A series of dynamic response history analyses were carried out by subjecting rocking structures with andwithout external
resonators to the pulse-like ground-motion record set detailed above. In particular, the response of a system with the
following characteristics is evaluated: KR = 2×104 N/m, KSSI = 4.61×105 N/m, KSSRI = 4.96×105 N/m, KSRI = 2.31×105

N/m, �SSI = 1.5%, �SSRI = 1.7%, �SRI = 1.5%, and �R = 1.0%. It comprises of a 4-mwide and 12-m tall rocking bodywith � =

18.5o and resonators placed at a distance of 10 m from it. Both components of the earthquake were employed by applying
them independently to the numerical models in their horizontal direction. The peak rotations were recorded and are
presented in Figure 14. Cloud analyses were conducted on the database of results generated and used to assess the seismic
rotation demands in protected and unprotected rocking structures. As before, the structural demands are described in
terms of the dimensionless peak rotation 
∕� and are now plotted in the 
∕�-ptuni logarithmic plane. Following standard
practice, we consider a power law distribution for the median estimated demand, Dm, as follows:


∕�m = a(ptuni)
b, (13)
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TABLE 2 Ground motion database used in the analyses

Record Magnitude [Mw] Mechanism Rjb [km] Rrup [km] Vs30 [m/s] Lowest usable frequency [Hz]

1,004 6.69 Reverse 0 8.44 380.06 0.182

1,050 6.69 Reverse 4.92 7.01 2,016.13 0.16

1,052 6.69 Reverse 5.26 7.26 508.08 0.14

1,119 6.9 Strike slip 0 0.27 312 0.1625

1,120 6.9 Strike slip 1.46 1.47 256 0.125

148 5.74 Strike slip 6.75 7.42 349.85 0.1625

149 5.74 Strike slip 4.79 5.7 221.78 0.15

3,548 6.93 Reverse oblique 3.22 5.02 1070.34 0.1

4,040 6.6 Strike slip 0.05 1.7 487.4 0.0625

4,097 6 Strike slip 1.6 2.99 648.09 0.125

4,101 6 Strike slip 4.95 5.55 397.36 0.4125

4,103 6 Strike slip 3.3 4.23 410.4 0.15

4,228 6.63 Reverse 6.27 8.93 375 0.05

4,451 7.1 Reverse 0 6.98 462.23 0.25

4,458 7.1 Reverse 3.97 5.76 318.74 0.1625

4,482 6.3 Normal 0 6.55 552 0.0625

451 6.19 Strike slip 0.18 0.53 561.43 0.125

459 6.19 Strike slip 9.85 9.87 663.31 0.1625

566 5.4 Normal 4 5.6 382.21 0.1625

568 5.8 Strike slip 2.14 6.3 489.34 0.125

77 6.61 Reverse 0 1.81 2,016.13 0.0875

FIGURE 14 Seismic demand analysis of a rocking body (� = 18.5o, w = 2 m)

subjected to the suite of records described in Table 2. Unprotected refers to

systems without external resonators. No supplemental rotational inertia is

present (i.e.,minerter = 0).  is the corresponding standard deviation

which becomes a linear function in the logarithmic plane

ln
(

∕�m

)
= ln(a) + b ln (ptuni) , (14)

where a and b are the linear regression coefficients obtained by least squares procedures. Although not significant in
number, overturning cases are not considered for the regression analyses. Importantly, these regression models are not
offered as predictive tools but rather as a means for a qualitative comparison of potential improvements when the non-
coherent components of realistic records are accounted for. In fact, the simplicity of the regression models employed is
associated with noticeable levels of dispersion; however, the main trends and relative improvements are still appreciable
from the corresponding figures.
Figure 14 presents the results of the cloud analyses and the corresponding seismic demand models for rocking blocks

protected with external resonators of different effective masses and without supplemental inertia devices. Overall, the
systems equipped with external resonators show major reductions in seismic demands for the whole range of ptuni stud-
ied in comparison with unprotected structures. Reductions of around one order of magnitude are observed for low ptuni
values when the external resonators are employed (Figure 14). These large levels of vibration absorption are maintained
over the full frequency range when resonator masses of 25% or 50% of the structural mass are employed. On the other
hand, the larger resonator mass of mresonator = 1m, although still effective in reducing peak rotations, becomes progres-
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FIGURE 15 Seismic demand analysis

of a rocking body (� = 18.5o, w = 2 m)

subjected to the suite of records

described in Table 2 with different levels

of supplemental rotational inertia.

Unprotected refers to systems without

external resonators.  is the

corresponding standard deviation

sively less effective at larger ptuni values. This confirms the observation made above regarding the existence of an optimal
supplemental mass quantity above which the resonators lose their vibration control efficiency. The occasions of block
overturning (
∕� > 1), not considered in the regression analysis, are also reduced from 2 in the unprotected case to 1
in the protected structure with mresonator = 1m and completely avoided in the mresonator = 0.25m and mresonator = 0.5m
configurations.
The case study for systemswith coupled inerter-vibration absorber devices shown inFigure 15 provides further evidence

for the significant improvements on the seismic response of rocking structures brought about by the external vibrating
masses. The improvements are higher when an effective mass of 50% of the total structural mass is employed in the
resonator (Figure 15B) in comparison with themresonator = 0.25m configuration (Figure 15A). This level of supplemental
mass (mresonator∕m = 0.5) can lead to 85% smaller rotations at the short ptuni range. As before, the relationship between
the total amount of inertial mass (mresonator + minerter) and the rotation reduction is not linear and very large inertance
values (e.g.,minerter∕m = 4 in Figure 15A,C) are found to be suboptimal. Nevertheless, in the cases studied in this section,
no counter-productive effects are noticed even for the largest combination ofmresonator andminerter.

6 CONCLUSIONS

This paper has examined the feasibility of employing external resonators to mitigate the rotational demands in rocking
structures. Our study builds on a previously proposed system that employs vibrating masses detached from the main
structure and buried in the adjacent soil interacting with it to control the seismic motion of the superstructure. These
devices can be coupledwith inerters in order to keep the levels of supplementalmass lowwhilemaintaining, or improving,
themotion-control capabilities of the external resonators.Wehave shown, bymeans of numerical analyses and parametric
studies, that the solution proposed is able to bring about significant reductions on the rotational demands experienced by
rigid rocking structures. Our analyses also revealed the existence of frequency thresholds, fp∕plim, belowwhich the effects
of the external resonator can be detrimental. Besides, the rotational demands of structures with resonators are found to
be less sensitive to the pulse intensity or the block slenderness, particularly in the high-frequency spectral region.
Based on numerical results employing a series of coherent pulses, we investigated the influence of important system

parameters. A nonlinear relationship between resonator mass and mitigation efficiency was found with larger masses
usually extending the range of efficiency of the resonators towards proportionally lower frequencies. However, resonator
masses above themresonator = m level become less effective in the short frequency range for blocks of slenderness � = 1∕3
with very large resonator masses being progressively less able to control rocking. On the other hand, larger masses are
required to control the response of more slender blocks (e.g., � = 1∕6 and 1/9). Some of this mass can be delivered by
supplemental rotational devices although we found evidence of the existence of an optimal value of the inerter apparent
mass beyond which the potential benefits of the external resonator are offset by the large forces and interactions brought
about by the inerter. By contrast, provided that a stiff enough connector—able to transfer the forces generated in the
resonator, hence engaging the SSRI interaction—is provided, the dynamic response of the system appears less sensitive
to the stiffness of the resonating system. Similarly, the results seem insensitive to reasonable variations in the levels of
energy loss or viscous damping.
On the other hand, we found evidence that external resonators located in more flexible soils are able to control better

the rocking of the protected structure over a wider range of frequencies leading to lower requirements of supplemental
mass. As before, higher levels of energy dissipation in the soil can steer lower reductions in rocking motion. Moreover,
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nonoptimal configurations of external devices can reduce the minimum amplitude of acceleration leading to overturning
when subjected to pulse-like motion, specially for larger blocks or short period pulses. Further studies on the optimal
design of external resonators aimed at broadening the frequency range over which their positive effects can be manifest
are required.
Finally,wehave conducted a comparative assessment of the seismic performance of rocking structureswith andwithout

external resonators under real near-field ground-motion records. The results of this case study confirmed the behavioural
trends observed under coherent pulse excitations. Reductions of around one order of magnitude are observed for low
ptuni values when the external resonators are employed for this particular structure with all records scaled to PGA =

1.5 g (ag∕g� = 4.5). The observation of an optimal supplemental mass quantity above which the resonators lose their
vibration control efficiency was also corroborated in this case study. Although not significant in number, the occasions
of block overturning are also reduced by the presence of the external resonators. Importantly, due to the complex system
under analysis and the constraints of the parameter space studied, further examinations are required to generalize our
observations; however, the solution explored in this paper appears attractive as it opens the possibility of controlling the
dynamic response of rocking structures without invasive structural interventions.
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