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Seismic analysis and energy assessment of building installed with distributed tuned vibration absorbers (d-TVAs) are presented.
)e performance of d-TVAs is compared with single tuned vibration absorber (STVA) installed at the top of the building. )e
placements of the d-TVAs are based on the modal properties of the uncontrolled and controlled buildings. )e governing
equations of motion of the building with the STVA and d-TVAs are solved by employing Newmark’s integrationmethod. Various
energies under earthquake ground excitations are computed to study the effectiveness of using the STVA and d-TVAs. It is
concluded that the use of the d-TVAs is the most competent because it effectively dissipates the seismic energy, and they are
convenient to install requiring reduced space, as are placed at various floors.

1. Introduction

Earthquake events caused damages in structures especially
buildings. )e input energy of an earthquake excitation can
be dissipated by tuned vibration absorber (TVA), which
causes improvement in the performance of the buildings.
Several researchers had employed the TVA and reported
fairly good results of dynamic response control in structures
[1–7]. Later in [8–13], researchers proposed multiple TVAs
to overcome the decreased efficiency of the TVA in off-
tuning and occupy large floor area with its massive weight.
For tall and flexible buildings, Aly et al. [14] and Aly [15, 16]
showed that providing the TVAs prove to be useful in
mitigating their dynamic response. Dynamic response re-
duction in different structures achieved by using the tuned
vibration absorbers was studied by Lu [17, 18]. )ey found
that the particle movements of the plug flow pattern could
yield good vibration attenuation effects. )e detailed liter-
ature survey on passive TVA is provided by Elias and
Matsagar [19]. However, in majority of studies, it is assumed
that the structure vibrates in only one direction or in
multiple directions independently. In addition, the funda-
mental modal properties of the structures were used to

design the TVA or the TVAs. In reality, the structures will
undergo lateral as well as torsional vibrations simultaneously
under purely translational excitations. )erefore, many
researchers considered the three-dimensional (3D) model
installed with TVA or TVAs [10, 20–36]. )e common
outcome of the studies shows that TVAs are more robust
and effective as compared to the TVA in response mitigation
of 3D structures.

In most of the studies, absorbers are placed at the top of
the structures. )e loss of effectiveness of the multiple TVAs
is minimal if they are distributed based onmode shape of the
main system as concluded by Elias et al. [37]. Elias et al. [38]
presented the better performance of the d-TVAs as com-
pared to the STVA/TVAs all placed at the topmost floor.
)ey had conducted study on dynamic response control of
buildings wherein both (a) placement and (b) tuning of the
TVAs in the main system are made in accordance with the
modal proprieties of the uncontrolled and controlled
buildings. Gill et al. [39] showed that the d-TVAs were quite
effective in seismic response control of structures. However,
these studies do not establish energy-based seismic per-
formance assessment.)erefore, the objective of this study is
to investigate the efficient positioning of the TVAs based on
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the modal properties of the uncontrolled and controlled
buildings. )e TVAs are placed where the mode shape
amplitude of the building is the largest or larger in the
particular mode and tuned to the corresponding modal
frequency. )e number of modes to be controlled is decided
depending on total mass participation in the controlled
modes.

2. Mathematical Modeling and Governing
Equations of Motion

Mathematical models of the buildings are developed by
making the following assumptions:

(1) )e superstructure is considered to remain within
the elastic limit during the earthquake excitation.

(2) )e system is subjected to a single horizontal
(unidirectional) component of the earthquake
ground excitation.

(3) )e effects of soil-structure-interaction (SSI) are not
taken into consideration.

(4) At least ninety percent of total mass is included in the
controlled modes.

As shown in Figure 1, the total degrees of freedom
(DOF) of the controlled system become (N + n) by summing
up the N DOF building with n number of TVAs. For the
system under consideration, the governing equations of
motion for the earthquake-excited building installed with
the TVA at the top and installed with the d-TVAs are
obtained by considering the equilibrium of forces at the
location of each degree of freedom during earthquake ex-
citation as

MN[ ]N×N [0]N×n

[0]n×N mn[ ]n×n[ ] €XN{ }
N×1

€xn{ }n×1
 

+
CN[ ]N×N + cn[ ]N×N − cn[ ]N×n
− cn[ ]n×N cn[ ]n×n[ ] _Xi{ }

N×1

_xi{ }n×1
 

+
KN[ ]N×N + kn[ ]N×N − kn[ ]N×n
− kn[ ]n×N kn[ ]n×n[ ] Xi{ }N×1

xi{ }n×1{ }
� −

MN[ ]N×N [0]N×n

[0]n×N mn[ ]n×n[ ] r{ }N×1

r{ }n×1
{ }€xg,

(1)

where [MN], [CN], and [KN] are the mass, damping, and
stiffness matrices of the building, respectively; XN{ }, _XN{ },
and €XN{ } are the unknown relative floor displacement,
velocity, and acceleration vectors, respectively; earthquake
ground acceleration is represented by the scalar €xg; and r{ }
is the vector of influence coefficients. )e mass, damping,
and stiffness matrices of the TVAs, respectively, are [mn],
[cn], and [kn]; whereas, xn{ }, _xn{ }, and €xn{ }, respectively,
are the unknown relative displacement, velocity, and
acceleration of the TVAs. Modal analysis is conducted to
determine the natural frequencies, mode shapes, and
modal mass participations of the uncontrolled/controlled

building. Only the first few modes are considered for
controlling in this work as they predominantly influence
the total dynamic response being sum of their modal mass
participations reaches ninety percent. )e locations for
installation of the TVAs are identified based on the mode
shapes of the uncontrolled and controlled buildings.
Figure 1 also shows the placement of the five TVAs as
follows: TVA-1 at 20th floor, i.e., on the topmost floor;
TVA-2 at 7th floor; TMD-3 at 4th floor; TMD-4 at 14th
floor; and TMD-5 at 16th floor. )e first five natural
frequencies of the uncontrolled building are 0.3434,
1.0282, 1.7069, 2.3754, and 3.0305 Hz, which are the
tuning frequencies for the TVA-1, TVA-2, TVA-3, TVA-
4, and TVA-5, respectively, controlling each corre-
sponding mode.

2.1. Tuning of TMDs. Figure 2 shows the procedure followed
for (a) placement of the d-TVAs and (b) optimization of
parameters of the d-TVAs. )e modal analysis is conducted
to find the natural frequencies [Ωi′ ,ωj′], mode shapes
{ϕi′,j′}, and modal mass contribution [Mr] of the un-
controlled and controlled building using its stiffness [Ks]
and mass [Ms] matrices for (N + n) degrees of freedom
(DOF). Based on an assumption that 90% of the modal
mass participates in the response, the first five modal
responses (n � 5) are controlled, and subsequently, the
optimum tuning frequency of each TVA [40] is calcu-
lated as follows:

fopti �
1

1 + μiϕ
1− ζN

������
μiϕ

1 + μiϕ

√ , i � 1 to n, (2a)

ωi � foptiΩi, i � 1 to n, (2b)

where μi � μ/n, ϕ and ζN, are, respectively, the mode shape
and damping ratio of theNth mode. Moreover, ωi � ω1...ω5

are the frequencies of the five TVAs, respectively, from the
lowest to the highest, and Ωi � Ω1...Ω5 are the first five
natural frequencies of the building. For the TVAs, while
keeping the masses, m1 � m2 � m3 � . . . � mn, equal for all
the TVAs, the mass (mi) of each TVA is calculated by

mi �
mt

n
, i � 1 to n. (3)

)e stiffness is used for frequency tuning of each TVA
and the stiffness of the TVAs (ki) installed on different floors
(i) are then determined by

ki � miω
2
i , i � 1 to n. (4)

)e optimum damping ratio (ζdopti ≠ ζ1 ≠ ζ2 ≠ · · · ζn) of
the TMDs is not constant for all TMDs. )e optimum
damping ratio is calculated for base excited structure as per
the formula given by Sadek et al. [40].

ζdopti � ϕ
ζN

1 + μi
+

�����
μi

1 + μi

√( ), i � 1 to n, (5)
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and the damping coefficients (ci) of the TMDs are calculated
by

ci � 2ζdoptimiωi, i � 1 to n. (6)

2.2.EnergyFormulation. Energy is input to the building by
the ground motion during an earthquake excitation.
Nevertheless, entire input energy is not dissipated at any
time during the earthquake excitation, and remainder of
the energy is stored in the structure in the form of in-
terchangeable kinetic and strain energies. )e input
energy (Ei) is the work done by the ground motion on the
building.

Ei � −
1

Mt( ) ∑
tk

0

dX{ }N×1

dx{ }n×1



T

MN[ ]N×N [0]N×n

[0]n×N mn[ ]n×n
 

·

r{ }N×1
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 €xg,

(7)

where dXi{ }td � Xi{ }td − Xi{ }td−1, dxi{ }td � xi{ }td − xi{ }td−1,
tk is the duration of the earthquake excitation, and td is the
small time increment. It is desirable that the chimney

installed with the TVAs be able to dissipate more damping
energy than without installation of the TVAs, as the tuned
mass dampers help in maximizing the damping energy
dissipation. In this study, Ed is defined as the damping
energy per mass of the building and dampers. )e damping
energy per mass for uncontrolled (NC) and controlled
building is calculated by

Ed �
1

Mt( ) ∑
tk

0

dX{ }N×1

dx{ }n×1



T

·

CN[ ]N×N + cn[ ]N×N − cn[ ]N×n
− cn[ ]n×N cn[ ]n×n

 

·

_Xi{ }
N×1

_xi{ }n×1


.

(8)

In these expressions, at any point of time, the input
energy and damping energy dissipated by the building and
TVAs is the summation of the total damping energy
dissipated till that time [41]. )e energy stored in the
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Figure 1: Model of 20-storey building installed with (a) STVA and (b) d-TVAs.
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building due to its deformations is strain energy (Es). In
this study, it is assumed to model shear building; there-
fore, Es can be

Es �
1

2

1

Mt( )
Xi{ }N×1
xi{ }n×1



T

·

KN[ ]N×N + kn[ ]N×N − kn[ ]N×n
− kn[ ]n×N kn[ ]n×n

 

·

Xi{ }N×1
xi{ }n×1


.

(9)

Similarly, the kinetic energy (Ek) is stored in the
structure in the form of its motion.
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1
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1

Mt( )
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_xi{ }n×1



T
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·
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.
(10)

3. Numerical Study

)e seismic energy assessment of the 20-storey concrete
building installed with the STVA and d-TVAs is in-
vestigated. )e 20-storey building is modeled as shear-type
lumped masses. )e mass each floor is 252 tonnes, and
stiffness of each floor is calculated from the columns. In this
study, the beam and column sections are assumed to be 0.6 ×
0.6m2 and 0.7 × 0.7m2, respectively. )e modulus of
elasticity (Ec) of the concrete is assumed to be 2.5 ×

1013N/m2 and 2.9 × 1010N/m2, respectively, for the beam
and the column, and density of the concrete is considered
2,400 kg/m3. )e floor-to-floor height is 4m, and the floors
are assumed to be rigid in the horizontal plane because they
provide diaphragm action in its own plane. )e damping
matrix is not explicitly known; hence, it is defined with the
help of the Rayleigh’s approach using damping ratio (ζs �
5%) in all modes of vibration. )e mass participation
factors (Γi) for the first, second, third, fourth, and fifth
vibration modes are about 0.7300, 0.0829, 0.0502, 0.0306,
and 0.0294, respectively. )e present energy study con-
tains three parts as follows: (i) the uncontrolled building
(NC); (ii) the STVA is installed at the topmost floor of the
building; (iii) in case of the d-TVAs, the TVAs are placed
at the locations where the mode shape amplitude of the
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Figure 2: Flowchart for location and design parameters of d-TVAs for seismic response control of buildings.
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buildings is the largest/larger in the particular mode, and
each TVA is tuned to the corresponding modal frequency,
while controlling first five modes having total mass par-
ticipation of greater than 90%. )e earthquake motions
selected for the study are as follows: (i) 1940 Imperial
Valley earthquake recorded at Elcentro; (ii) 1994
Northridge earthquake recorded at Sylmar station; and
(iii) 1995 Kobe earthquake recorded at Japan meteoro-
logical agency (JMA). )e peak ground acceleration
(PGA) of the Imperial Valley, Northridge, and Kobe
earthquakes are 0.34 g, 0.6 g, and 0.86 g, respectively;
where, g denotes the gravitational acceleration.

3.1. Variation of Responses for STVA and d-TVAs. In this
section, a comparison is made between the seismic responses
of the building controlled with the STVA and d-TVAs. For
STVA, the damping ratio (ζdopt) is calculated by Equation (5)
andmass ratio (µ) is assumed to be 0.05.)e fair comparison
requirement is to install the d-TVA system having same total
mass ratio (µ) of 0.05. Equations (2a) through (6) are used to
calculate the optimum parameters for TVA system. )e

focus of the present is not optimization of the parameters of
the TVA or TVA schemes. In this section, spectral dis-
placements and pseudospectral accelerations are calculated
for the NC, STVA, and d-TVAs. )e 20-storey building is
considered while increasing the rigidity that the funda-
mental time period reaches 0.03 sec. Similarly, the rigidity
of the building is reduced that the fundamental time period
reaches 5 sec. )e variation in both spectral displacements
and pseudospectral accelerations by varying the rigidity is
shown in Figure 3. Generally, it is seen that, by making the
structure more flexible, the spectral displacement increases.
However, the pseudospectral acceleration is decreased
significantly. In addition, it is observed that both controller
schemes are quite effective in controlling the spectral
displacements and pseudospectral accelerations. In case
spectral displacement response is concerned, it is seen that
up to 40% and 50% reductions achieved, respectively, for
the STVA and d-TVAs. Further, it is seen that both
schemes are less effective for rigid structures. Best per-
formances are achieved for both schemes while the time
period is between 2 sec and 4 sec. )erefore, it is concluded
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Figure 3: Spectral displacement and pseudospectral acceleration for the NC, STVA, and d-TVAs subject to different ground excitations.
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that the STVA and d-TVAs are effective in displacement

response control of flexible structures as compared to rigid

structures. Also, better performance of d-TVAs as com-

pared to STVA is evident based on results presented.

Further, the installation of d-TVAs is practically easier as

compared to STVA because of its reduced size.
In case pseudospectral acceleration response is concerned,

the response is reduced for flexible structures for NC, STVA,

and d-TVAs. )e STVA is generally more effective in

structure with time period higher than 1 sec. It is seen that up

to 35% reduction is achieved after installation of the STVA. It

is also clearly found that the d-TVAs are better controllers as

compared to the STVA for the range of the structure from

rigid to flexible. )e reduction in pseudospectral acceleration

is up to around 50% for the case where the d-TVAs are

installed. It is concluded that the d-TVAs is more effective in

controlling the pseudospectral acceleration response of the

structures.

3.2. Variation of Energies for NC/STVA/d-TVAs. Based on
the results presented in Figure 3, the building with funda-
mental time period of 2.91 sec is selected as most vulnerable.
)erefore, for the energy assessment, the building with
fundamental time period of 2.91 sec is selected. Figure 4
shows the time histories of the total energy, damping energy,
kinetic energy, and strain energy for the building without
(NC) and with the TVAs used in different schemes defined
earlier; STVA and d-TVAs and corresponding peak values
are given in Table 1. )e mass ratio of 5%, tuning frequency
ratio by Equation (2a), and damping ratio by Equation (5)
are considered for both the schemes. It is generally seen from
the energy plots that, as compared to the NC case, higher
damping energies are dissipated when the TVAs are in-
stalled. )e relative increase in the damping energy is sig-
nificantly more in the d-TVAs than the STVA and NC.
Increase in total energy and damping energy are, re-
spectively, 13% and 12.5% by installing STVA, whereas it is
30% and 28% by installing the d-TVAs. )us, the effec-
tiveness of the multimode control strategy using the d-TVAs
in enhancing damping energy in the system is confirmed.
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Figure 4: Different energies for the NC, STVA, and d-TVAs subject to Imperial Valley, 1940, ground excitation.
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Further, it is evident that the kinetic energy and strain energy
are reduced by installing the STVA and d-TVAs as com-
pared to NC. It is generally due to reduction of the dis-
placement and acceleration responses of the structure. )e
improved performance of d-TVAs is observed as compared
to the STVA. Similar trend of response control and ob-
servations can be made from Figures 5 and 6 for different
earthquake excitations. It is concluded that increase in the
total energy and damping energy is significantly more in the
d-TVAs than the STVA and NC. It is also concluded that the
decrease in the kinetic energy and strain energy is

significantly less in the d-TVAs than the STVA and NC.
Generally, it is concluded that the use of the d-TVAs is the
most competent because it effectively dissipates the seismic
energy, and they are convenient to install requiring reduced
space, as are placed at various floors. )e procedure adopted
here is based on ignoring the torsional degrees of freedom;
whereas practically structures will undergo lateral as well as
torsional vibrations simultaneously under purely trans-
lational excitations. )e TVAs for seismic response control
of the irregular structures using the multimode control
approachmay require separate complex analysis under other
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Figure 5: Different energies for the NC, STVA, and d-TVAs subject to Northridge, 1994, ground excitation.

Table 1: Peak energy for the uncontrolled building and controlled with STVA and d-TVAs having mass ratio of 0.05.

Energy (m2/sec2)
Imperial Valley, 1940 Northridge, 1994 Kobe, 1995

NC STVA d-TVAs NC STVA d-TVAs NC STVA d-TVAs

Total 0.429 0.484 0.608 0.544 0.572 0.643 0.155 0.158 0.165
Damping 0.423 0.476 0.584 0.408 0.519 0.559 0.143 0.151 0.152
Kinetic 0.290 0.223 0.215 0.283 0.200 0.117 0.074 0.072 0.070
Strain 0.160 0.110 0.097 0.203 0.179 0.172 0.045 0.041 0.032
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parametrics involved in the system, which can be in-
vestigated in the future studies.

4. Conclusions

Seismic response control of buildings installed with a single
tuned vibration absorber (STVA) and distributed tuned
vibration absorbers (d-TVAs) is investigated. An assessment
is made on the response of the buildings installed with the
STVA and TVAs distributed along the height of the
buildings. From the trends of the results of the present study,
the following conclusions are drawn:

(1) )e STVA and d-TVAs are effective in displacement
response control of flexible structures as compared
to rigid structures. Also, better performance of
d-TVAs as compared to STVA is evident based on
results presented

(2) )e installation of d-TVAs is practically easier as
compared to STVA because of its reduced size

(3) )e d-TVAs are more effective in controlling the
pseudospectral acceleration response of the
structures.

(4) )e increase in the total energy and damping energy
is significantly more in the d-TVAs than the STVA
and NC.

(5) )e decrease in the kinetic energy and strain energy
is significantly less in the d-TVAs than the STVA and
NC.
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