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ABSTRACT 

 

We first point out that envelope fluctuation and decay of seismic records carries ULF (ultra-low 

frequency, i.e. frequency below the lowest frequency in the source spectrum) signals which can 

be used to estimate the long-wavelength velocity structure. We then propose to use envelope 

inversion for the recovery of low-wavenumber components of media (smooth background) so 

that the initial model dependence of waveform inversion can be reduced. We derive the misfit 

function and the corresponding gradient operator for envelope inversion. In order to understand 

the long-wavelength recovery by the envelope inversion, we suggest a nonlinear seismic signal 

model: the “modulation signal model” as the basis for retrieving the ULF data and discuss the 
nonlinear scale separation by the envelope operator. To separate the envelope data from the 

wavefield data (envelope extraction), a demodulation operator (envelope operator) is applied to 

the waveform data. Numerical tests using synthetic data for the Marmousi model demonstrated 

the validity and feasibility of the proposed approach. The final results of combined EI+WI 

(envelope-inversion for smooth background plus waveform-inversion for high-resolution 

velocity structure) can deliver much improved results than the regular FWI (Full Waveform 

Inversion) alone. Furthermore, to test the independence of envelope to the source frequency-band, 

we use a low-cut source wavelet (cut from 5Hz below) to generate the synthetic data. The 

envelope inversion and the combined EI+WI show no appreciable difference from the full-band 

source results. The proposed envelope inversion is also an efficient method with very little extra 

work compared with conventional FWI.  

 

INTRODUCTION 

 

It is known that the lack of ultra low-frequency data leads to the difficulty in recovering long-

wavelength background structure and therefore to the starting-model dependence of full 

waveform inversion (FWI) (for a review see Virieux and Operto, 2009). Traditionally, the 

starting model for FWI is provided by some other methods such as traveltime tomography 

(including ray-based or wave-based, first-arrival traveltime tomography and reflection traveltime 

tomography) and velocity analysis. Within FWI, long offsets, multi-scale inversion has been 

developed to reduce the starting model dependence (Bunks et al., 1995; Pratt et al., 1996, 1998; 

Sirgue and Pratt, 2004; Ravaut et al., 2004; Plessix et al., 2010, Vigh et al., 2011, Baeten et al., 

2013). Multi-scale inversion is a cascade inversion starting from the lowest frequency available 

for the recovery of the largest scale possible. Recent development of low-frequency land source 

(down to 1.5 Hz) has allowed multi-scale FWI to use 1-D smooth starting model (Baeten et al., 

2013). They showed that the lowest frequency band (1.5 – 2.0 Hz) is crucial in recovering the 

correct long-wavelength background velocity structure. However, in general, the ultra-low 

frequency sources are not available and the standard seismic records can go down only to about 
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5Hz. Therefore, starting model is still a pressing problem for FWI. Shin and Cha (2009) has 

performed inversion in the Laplace-Fourier domain using seismic data below 5Hz, to estimate 

the smooth, large-scale velocity structure. A recent trend is that by introducing some extra terms 

in the misfit functional, FWI can incorporate into its framework some other inversion methods, 

such as traveltime tomography or inversion (Mora, 1989; Clément et al., 2001; Xu et al., 2012; 

Ma and Hale, 2013; Wang et al., 2013) and velocity analysis (Biondi and Almomin, 2012, 2013; 

Almomin and Biondi, 2012; Tang et al., 2013).  

 

In this paper, we extract the ULF (ultra-low frequency) signals contained in seismic trace 

envelopes and apply to the recovery of long-wavelength background structure without the use of 

low-frequency sources which are expensive or unavailable. Normalized integration method 

(Chauris et al., 2012; Donno et al., 2013) has used the normalized time integration of the squared 

waveform data as a new type of data for least-square minimization. However, much information 

of the envelope function has been lost due to the integration operator. We demonstrate that 

envelope fluctuation and decay of seismic records carries ULF signals but inaccessible from the 

conventional linear convolution signal model. In order to extract the envelope data from the 

wavefield data and keep the useful information, we need to perform a nonlinear operation using 

demodulation operator. For inversion we derive the gradient operator for envelope data and 

perform iterative inversion to obtain a smooth background model. Then we use the smooth 

model from envelope inversion as the starting model of waveform inversion to recover the high-

wavenumber components of the model. Comparing to the linear multi-scale inversion of FWI, 

this is a nonlinear two-scale inversion in which the nonlinear scale separation is done by the 

envelope operator. The other advantage of the envelope inversion is its independence to the 

source wavelet. We use a low-cut source wavelet (cut from 5Hz below) to generate the synthetic 

data. The envelope inversion and the combined EI+WI show no appreciable difference from the 

full-band source results. Numerical tests using the Marmousi model demonstrated the validity 

and special features of the approach. 

 

ENVELOPE INVERSION 

Review of conventional FWI in the time domain 

 

FWI (Full Waveform Inversion) can retrieve information of subsurface by fitting the difference 

between the recorded data obsd and the simulated data synd with the proposed model. The classical 

least squares misfit functional is given by: 
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Where obsu d is the observed wavefield, syny d  is the synthetic wavefield. The summation 

is over all the sources and receivers. 

The goal is to obtain the model parameter m , which can be updated as follows: 
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                                                                1n n n nm m                                                                 (2) 

where n  is the step length in the thn  iteration, n  corresponds to the updating direction which 

can be obtained from the gradient of the misfit function, so the gradient of the misfit function 

with respect to the model m  must be calculated first. 

 

Consider velocity v  as the model parameter, the gradient of the misfit function with respect to v

can be obtained by: 
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Introduce an operator J (Jacobian) and a vector (data residual) η , where 
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then equation (3) can be written as  

                                                                   T

v
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The Jacobian J is also called the linear Fréchet derivative. It is known that this gradient can be 

calculated by zero-lag correlation of the forward propagated source wavefields and the backward 

propagated residual wavefields η  (Lailly, 1983; Tarantola, 1984; Pratt et al., 1998; Pratt, 1999). 

 

Misfit functional and gradient operator for envelope inversion 

 

Now we define the misfit functional and derive the corresponding gradient operator for the 

envelope inversion. Here the “data” to be used in the misfit functional are the trace envelopes, 

not directly the traces (waveforms). Bozdag et al. (2011) have discussed the envelope misfit 

functional and its use in the kernel sensitivity analysis of global seismic tomography. However, 

their purpose is to use the instantaneous amplitude and phase information of individual arrivals, 

such as the first P or S arrivals, so they apply a short time-window to the traces for isolating the 

chosen arrivals. For our envelope inversion, we need to extract and treat the envelope of the 

whole trace.  

We adopt the power objective functional to minimize the residual: 
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where e  is the envelope function, u and y are the observed and synthetic waveforms respectively, 

Hu and Hy are the corresponding Hilbert transforms. “E” is the instant envelope data residual 

and the summation is over all the sources and receivers. p is the power for the envelope data, it 

can be any positive numbers. The extraction of the envelope function and the information 

contained in envelopes will be discussed in details in next section. The gradient operator can be 

derived from the partial derivative of the misfit with respect to the model perturbations as 

follows (for detailed derivation, see Appendix): 
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We introduce the Fréchet derivative operator (matrix) J and the effective residual vector η , 

defined as 
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So equation (7) can also be written as a matrix equation 

T

v
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This envelope inversion can also be implemented using back propagation method, and the term 

in the square brackets serves as the effective residual, which is the envelope residual riding on 

the carrier signal (modulation).  Note that operator J  includes a backpropagation operator and a 

virtual source operator (See Pratt et al., 1998). From the above equations, we see that the L-S 

(least-square) residual is calculated using envelope data, but the backprojection of the envelope 

residual to the model space is done by backpropagation using the carrying signal with the 

envelope residual riding on its shoulder. Based on the above equations, envelope inversion 

algorithm can be developed following the algorithm of time-domain waveform inversion. 

 

To see the effect of the parameter p , we rewrite the misfit function in equation (6) as follow: 
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Calculate the gradient operator, we get:  
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Since syne is a function with respect with y  and Hy , using the chain rule we know that the above 

equation can be written in  the following form: 
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Figure 1 shows two traces generated from the Marmousi model. The top panel are the original 

traces; the middle panel are trace envelope in the time domain with different value of p  (the 

amplitudes have been normalized); the bottom panel are the trace envelope in the frequency 

domain with different value of p  (the amplitudes have been normalized). We see that different 

values of power p of envelope data have the effect of preconditioning the data in both the time 

and frequency domains. In the time domain higher power p put heavier weight on the energetic 

arrivals, in this case (acoustic wave) earlier envelope arrivals, especially the direct arrivals 

(including turning waves); while in the frequency domain, heavier weight on the low-frequency 

envelope data. We tested three cases, p = 1, 2, 3. The parameter p = 3 diminish the later arrivals 

too much and the inversion cannot penetrate to the depth. Therefore, in applications we use only 

p = 1, 2. In next section, we show that p = 2 is a good choice for the Marmousi data set, which 

provides a good balance on windowing the data for stable inversion to recover the long-

wavelength background velocity structure. 

 

 

INFORMATION IN THE ENVELOPE AND THE MODULATION SIGNAL MODEL 

Envelope operator (demodulation operator) 

 

In equation 6 we have introduced the envelope function for the misfit functional. The envelope 

function is extracted from the waveform data by an envelope operator (or demodulation 

operator). The envelope operator  ( )f t is consisted of two steps: 

(1) Analytic transform of trace  f t  

                         a Hf t f t iH f t f t if t                                                     (13) 
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(a) 

 

  (b) 

Figure 1 Data traces generated from Marmousi model and their envelopes with different powers (different values of 

p) in both the time domain and frequency domain. 
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where  ( )H f t is the Hilbert transform of a real function f, and af is the analytic signal (complex) 

corresponding to f. 

 

(2) Take magnitude of the analytic signal 
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Now we discuss the properties of the envelope operator and information contained in envelopes. 

 

Since envelope operator contains a square-root operator, it is a nonlinear operator (nonlinear 

filtering). From the modulation theory in signal processing (e.g. Robinson et al., 1986), we see 

that the envelope operator is equivalent to a demodulation operator if we consider a seismogram 

as a modulated signal: the low-frequency envelope is the modulation signal and the high-

frequency reflection waveforms as the carrier signal. We will discuss the signal model in the next 

subsection. But let us know concentrate on the properties of the extracted envelopes. From the 

modulation theory we know that amplitude modulation is a nonlinear operation, and the 

modulation frequency is riding on the shoulders of the carrying frequency, as show schematically 

in Figure 2. Although the modulation frequency may be very low, it does not show up in the 

corresponding low frequency range in the frequency-domain representation of the modulated 

signal. In this Figure, (a) is the modulation signal (the envelope); the carrier signal is a sinusoidal 

signal with a carrier frequency of 8Hz, (b) is the modulated signal which is the product of the 

modulation signal and the carrier signal; (c) and (d) is the spectra of the modulation signal and 

the modulated signal respectively (the amplitudes have been normalized). Only the nonlinear 

demodulation operator can extract the low-frequency information coded in the envelope. 

 

Figure 3(a) shows a shot profile of waveform data (top) and envelope data (bottom) from the 

synthetic data set of the Marmousi model (see next section); The corresponding waveform 

spectra (top) and envelope spectra (bottom) are plot in Figure 3(b). We clearly see that the 

envelope data have ULF spectra compared with the waveform data. From Figure 1 and 3, we can 

also see that envelope shapes are different for different parts of the traces. For the early arrivals 

of near offsets, the envelopes look like individual envelopes of the source wavelet; however, for 

later arrivals and even early arrivals of far offsets, the envelopes become continuous fluctuations 

due to the interference between many arrivals and the nonlinearity of the envelope operator. The 

match of envelope data residual may avoid the high-frequency cycle skipping, reduce local 

minima and decrease the sensitivity to high-frequency noises. 

 

 

Modulation signal model  

 

In order to better understand the nonlinear nature of the envelope operator and its effects on 

information extraction from seismograms, we first discuss the modulation signal model for 

surface reflection seismic data.  

 

In surface reflection survey, the data set (wavefield records) is composed of direct arrivals 

(including turning waves) and scattered waves  from  subsurface  reflectors.  For the formation of  
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                                                       (a)                                                                         (b) 

 

                                                      (c)                                                                         (d) 

Figure 2 (a) The modulation signal; (b) the modulated signal; (c) the spectra of the modulation signal (with a carrier 

frequency of 8Hz); (d) the spectra of the modulated signal.  

 

reflection data, the roles of forward scattering and backscattering are very different from each 

other. Forward scattering only modifies the Green’s function (propagator) of the background 
medium (smooth part), while backscattering of reflectors is actually responsible for the 

generation of reflection signals. 

 

In the frequency domain the wave field measured on the surface can be modeled as: 

                                                0, , , , , ,sc
r s r s r sp p p   x x x x x x                                          (15)                              

where    0 , , , ,r s r sp g x x x x is the direct wavefield in the background medium (including 

turning waves), and  ,sc
r sp x x is scattered field received by geophone at rx due to a source at sx .  

 

Now we discuss the seismograms formed by backscattered waves, which can be modeled as: 
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                                              (a)                                                                                          (b) 

Figure 3  (a) A shot profile of waveform data (top) and envelope data (bottom); (b) waveform spectra (top) and 

envelope spectra (bottom). The data are from the synthetic data set of the Marmousi model. 

                                   

        , , ( ) , , ( )bsc
r s M s M r

S
p s g g dS   x x x x x x x x                                   (16) 

where S represents all the reflection surfaces in the model space, Mg is the modeling Green's 

function which is a full-wave Green's function, ( )s  is the source spectrum and   x is scattering 

coefficient of the reflector element. The full-wave Green's function can be decomposed into a 

primary-wave part and a multiple-wave part: 

 

            M F mulg g g                                                                      (17) 

 

where Fg is the forward-scattering Green's function, which includes all the forward-scattering 

effects (the transmission mode), such as refraction, diffraction, geometric spreading and focusing 

effects and therefore contains the average velocity information along the propagation path; while 

mulg contains multiply scattered waves from other scatterers. To simplify the treatment, we 

consider only the primary reflections, so mulg is neglected. The approximation is similar to the De 

Wolf approximation (De Wolf, 1971, 1985; Wu, 1994, 2003). We know that the scattering 

models for forward-scattering and backscattering are very different, and therefore the 

information contained in the reflection series   x and in the forward scattering approximated 
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Green's function Fg  represents different properties of medium perturbations. In the case of direct 

arrivals, Fg contains velocity perturbations along the propagation path; while for reflected 

arrivals,   x corresponds to local reflectivity due to impedance jump (velocity jump for acoustic 

media with constant density). 

 

Assuming there are totally L’s interfaces (including reflector surfaces) and each interface has lM

elements (after discretization), so the total number of scattering elements is
1

L

l

l

N M


 . Then the 

primary backscattered field (discretized version of (16)) can be modeled as reflection series 
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For simplicity, we take the reflection coefficients as frequency-independent. The frequency-

domain and time-domain solutions for reflected signals can be written as: 
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where “*” denotes time convolution. Green’s functions can be expressed in a form 
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where s and r are the corresponding time-delays due forward-scattering along the source path 

and receiver path, respectively. We define a propagator  
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so the reflection seismograms can be modeled as reflection time series 
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Here the spatial distribution of reflectors in the 3-D space is transformed into a time series by a 

distance-time correspondence in a background medium (e.g. homogeneous medium). The above 

equation is the traditional convolution signal model (Robinson, 1957; Robinson et al., 1986), in 

which the propagator (Green's function pairs)  , ; ,sr i s rG t x x x only modify the travel-times and 

amplitudes of the reflection events, and the signal spectrum is mainly determined by the source 

wavelet. Both the amplitude and phase functions of the propagator srG are smoothly varying 
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functions. The neglect of mulg is equivalent to the drop of “reverberation waveform” in the 
convolution model (Robinson et al., 1986). We see that the propagator, although carrying smooth 

medium information, can only modify the source spectrum. Based on the linear signal model, we 

are restricted to only access the information provided within source spectra. This convolution 

model is good for seismic imaging, since it provides the mathematical model for resolution 

analysis and resolution enhancement (such as deconvolution) in high-resolution imaging. 

However, depending on the information you want to extract from the seismic records 

(seismograms), one can define different signal models. In fact, seismograms have much rich 

information than the convolution model predicts. For seismic inversion, we need the low-

frequency information contained in seismograms for the recovery of long-wavelength 

background velocity structure. We see from the above analysis that there is low-frequency 

information coded into the envelope fluctuation and decay of seismograms, but not accessible 

from linear convolution model.  The problem is how to take use of the information associated 

with Fg coded in the envelope for the estimate of long-wavelength velocity structure in 

waveform inversion. Demodulation operator can peel off the envelope from the seismograms, 

and therefore can in certain way decode the low-frequency information not reachable by linear 

methods. To understand the demodulation operator and its effect to the signal spectra, we need to 

consider the modulation signal theory.   

 

We reformulate and redefine the signal model of equation (18) as a modulation model. Since the 

propagator  , ; ,sr i s rG t x x x is a smooth function of time with respect to the reflection series, so 

the signal model (18) can be rewritten as: 
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where  w t is the reflectivity series with the source wavelet signature, which is considered as the 

carrier signal, while  srG is the modulation signal. The high-frequency carrier signal is modulated 

by the earth medium though wave propagation (only forward-scattering involved). We can 

consider the reflection series (23) as a Modulation-convolution signal model, or simply as a 

modulation signal model for the reflection series if we are concern mainly on the low-

wavenumber background recovery (This signal model has been briefly discussed in Wu et al., 

2012, 2013). In fact we can say that the carrier and the modulation signals contain quite different 

information about the earth media. The carrier  w t is formed by impedance discontinuities 

convolved with the source wavelet; while the modulator srG contains mainly the information on 

the smoothed medium velocity structure (under the forward-scattering approximation). 

Now we include the direct arrivals, which can be written as: 
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   

 

x x x x x x

x x x x
                                      (24) 
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where 

                                                   ( , , ) ( , , )d i t d
r s r sg t d e g

  x x x x                                            (25) 

is the Green's function for the direct arrival and is assumed to be a much slower time-varying 

function than the source wavelet. Since the direct arrivals are single arrivals or sparse arrivals, so 

the convolution can be approximated by product. Including the direct arrivals (24) and the 

reflection series (23), the modulation signal model for the whole seismogram can be expressed as: 

                                            , , ( , , ) ; ,( )d
r s r s sr s r ws tp t g t G t t x x x x x x                                    (26) 

 For a seismogram including the reflection series, we can view it as a product of two functions: a 

carrier signal and a modulator. For the direct arrivals, the carrier is the source wavelet, and the 

modulator is the direct propagator (Green's function); for the reflect series, the carrier is  w t

and the modulator is the propagator  ; ,sr s rG t x x . If we apply a long-wavelength velocity 

perturbation to a given model, but keep the impedance jumps unchanged, then the propagator 

will change, resulting in a modulation in both amplitude and phase to the original reflection 

series. After demodulating the traces, the envelope changes (residuals) contain the long-

wavelength information of the velocity perturbation. This provides the signal basis for long-

wavelength background recovery. 

 

Now we look at the consequence and effect of demodulation operator applied to the modulation 

model (equation (26)). We apply the Hilbert transform product theorem, i.e. the Bedrosian-

Brown theorem (Bedrosian, 1962; Brown, 1986), to the trace model (26), 

 

                           
       

      
, , ( , , ) ; ,

( , , ) ;

( )

( ) ,

d
r s r s sr s r

d
r s sr

w

s r w

H p t H g t Gs t t

g t H G t H t

t

s t





 



x x x x x x

x x x x
                           (27) 

Since the propagator functions ( , , )d
r sg t x x and  ; ,sr s rG t x x are low-pass functions (slowly 

varying function) (under the forward-scattering approximation) and satisfies the Brown’s 
condition for demodulation (ibid), so it can be pulled out of the Hilbert transform. Therefore, the 

envelope function of the seismic traces can be approximated by 

                                   

       

22 2 2

2 222 22

2
2 2 2

( ) ( ) ( ) ( )

( ) ( )( )

( )( () )

a H

d
H sr

d
sr

w w

w

t p t p t p t

g t s t G t ts t

s t t

H t

g t G t

 



  

       








                           (28) 

where  2 ( )s t is the squared envelope of the source wavelet. In deriving the above equation, we 

neglected the cross-talk between the direct arrival energy and the reflection series energy. This 

assumption is valid for near and medium offsets due to the travel-time difference. For far offsets, 

the approximation may not be valid and needs further study. However, this approximation is not 

critical for envelope extraction. We see that taking envelope of seismograms (demodulation) is 
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equivalent to the application of a nonlinear signal filtering, resulting in the extraction of low-

frequency information coded in the seismograms. For direct arrivals (the first term in the right-

hand side), the resulted envelope-gram (envelogram) has the effect of using a low-resolution 

wavelet (a Gaussian pulse) to replace the original high-frequency wavelet (Ricker wavelet). For 

reflection series (The second term in the right-hand-side),  2 ( )w t will extract only the low-

frequency part of the carrier signal ( )w t . We also noticed that the envelope operator keeps the 

long-wavelength information riding on the propagator srG  untouched. In this way, the high-

wavenumber reflection information is peeled off and only low-wavenumber background is kept 

in the envelograms. 

 

Nonlinear scale separation by envelope operator  

 

It is well-known that seismic data has a wavenumber gap (or a scale gap) in terms of subsurface 

structure inversion. That is the lack of intermediate wavenumber (medium-scale) information 

about the subsurface media in the data (Claerbout 1983; Jannane et al. 1989; Mora, 1989; Ghosh 

2000; Latimer et al. 2000; Plessix et al., 2012; Baeten et al., 2013). For 3-D earth structure, this 

gap is the combined results of limited acquisition frequency-band and limited observation 

aperture. For surface reflection survey with limited acquisition aperture, the gap is mainly caused 

by the lack of low-frequencies in source spectra (e.g., Latimer et al., 2000; Baeten et al., 2013). 

Therefore, substantial efforts have been paid to develop low-frequency sources. Big gun arrays 

and a deeper towing depth can provide low frequencies down to as low as 2Hz, but even lower 

frequencies are still needed (Vigh et al, 2011; Baeten et al., 2013 ). Recently, low-frequency land 

source (vibrator with nonlinear frequency sweep) has been reported (Plessix et al., 2012; Baeten 

et al., 2013) which can extent the low-frequency end to 1.5 Hz. FWI using the corresponding 

data showed improved low-wavenumber background recovery. Due to the availability of low-

frequency data, they could use a 1-D smooth starting model in their multi-scale inversion scheme. 

They showed that the lowest frequency band (1.5 – 2.0 Hz) is crucial in recovering the correct 

low-wavenumber background velocity structure.  

 

As we mentioned above, the linear scale separation is usually realized by a multi-scale inversion: 

the large-scale recovery is done using the low-frequency data and the smaller scales are 

recovered from the high-frequency data subsequently. In this linear approach, the expensive low-

frequency source is a necessary and critical armament for success. In the following we discuss 

the nonlinear scale separation through envelope operator.   

 

To simplify the scale analysis, in the following we mainly discuss the scale response for vertical 

structural variations as in previous discussions (Jannane et al., 1989; Baeten et al., 2013). From 

equation (28) and Figure 2-3, we see that the envelope operator can peel off the low-frequency 

envelope from the waveform traces. The low-frequency nonlinear extraction in fact separates the 

large-scale response which is coded in the envelope, from the waveform data which are the band-

limited response to the medium perturbation. This is very different from the concept of linear 

scale separation which depends on the linear correspondence between the signal frequency and 

medium scale. In Figure 4a we show the comparison of waveform spectrum (blue line) and 

envelope spectrum (red line) for the Marmousi data with a full Ricker source excitation. In the 

figure we also plot the average medium velocity spectrum (thin grey line) and the average 
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velocity perturbation (medium velocity subtracts the background velocity) spectrum (dotted line). 

In order to see the correspondence of medium wavenumber spectra to the data frequency spectra, 

we perform a z-t transform using the known velocity structure. The medium spectrum shown on 

the figure is the average over all the vertical profiles. The same has done for the perturbation 

spectrum. Form Figure 4a, we see that for the waveform data, the low-frequency spectral 

components are missing so the long-wavelength part of the perturbation spectrum is not covered. 

Compared with envelope spectrum, we see the complimentary role of envelope data which has 

strong low-frequency components but has very weak high-frequency components. This property 

of the envelope function can reduce the cycle skipping and local minima problems of waveform 

data and can recover the long-wavelength components of the perturbation structure as show in 

the next section for the Marmousi model. Of course its limitation needs to be further studied.  

 

Because of the nonlinear nature of the envelope operator, the low-frequency contents of the 

envelope data do not tightly depend on the source spectrum, which is a sharp contrast to the 

conventional FWI. In Figure 4b we plot a similar spectral comparison as in Figure 4a, but using a 

low-cut Ricker source. When generating synthetic seismograms, the source wavelet was filtered 

with a 5 Hz low-cut taper. From the spectrum of waveform data thus generated, we see very little 

energy exists below 5 Hz. Later in the FWI tests we can see much worse results than the full-

band source because of the lack of low-frequency energy. However, the spectrum of the envelope 

data (average over all the traces) does not show too much difference from the full-band source 

case. This demonstrates the nonlinear nature of the envelope extraction, which does not have the 

linear correspondence between the source spectrum and the data spectrum. Later in the inversion 

test section, we will show that the inversion results for these two cases are very similar, showing 

the independence of envelope inversion to the source spectra. 

 

 

                                            (a)                                                                                      (b) 

Figure 4 (a) Comparison of waveform spectrum and envelope spectrum for the Marmousi data with a full Ricker 

source excitation; (b) Same as (a) but with a low-cut source excitation. The low-cut source is obtained by a 5Hz low-

frequency taper. 

 

 

This kind of nonlinear scale separation is similar to the Laplace domain inversion (Shin and Ha, 

2008) and the normalized integration method (Chauris et al., 2012; Donno et al., 2013). For 
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linear scale separation in the multi-scale inversion method, the inversion theory is based on the 

Born modeling. However, for nonlinear scale separation, the forward modeling theory for the 

long-wavelength part is not the Born modeling. The forward modeling theory for envelope 

inversion needs further investigation, which may provide more insight on the benefit and 

limitation of the envelope inversion. 

 

INVERSION TESTS WITH THE MARMOUSI MODEL 

 

The data were generated by a FD algorithm with an acquisition system composed of 50 shots 

evenly distributed along the surface. We used total 228 receivers across the surface for each shot. 

The true model is shown in Figure 5(a). A linear gradient model is used as the initial model 

(Figure 5(b)).  

 

 

                                         (a)                                                                                  (b) 

                                      Figure 5 (a) True Marmousi model; (b) linear gradient initial model. 

 

To test the independence of envelope inversion to source spectra, especially the existence of low-

frequency in the source wavelet, we use two types of ricker wavelets as the source wavelet: one 

is the full-band wavelet, the other is the low-cut wavelet. Figure 6 shows the two types of ricker 

wavelet and their envelopes in both the time domain and frequency domain. Figure 7 shows two 

traces selected from the data generated from the Marmousi model when using the low-cut source 

wavelet in Figure 6. The upper panels are the time domain traces and their envelopes, and the 

lower panels are the corresponding frequency domain spectra. We can see the rich low frequency 

information in the envelopes. 

 

Starting from the linear initial model, the smooth backgrounds obtained from envelope inversion 

(after 10 iterations) are shown in Figure 8(a) and (b) for the two types of sources, respectively. 

We see the strong similarity of these two recovered background structures. This shows the 

insensitivity of EI (envelope-inversion) to the source frequency band, and further demonstrates 

that the long-wavelength recovery of  background is from the demodulated envelope curve, not 

from the low-frequency source excitation. Figure 8(c) and (d) show the final results of combined 

inversion (EI+WI) by  waveform inversion  using the recovered  smooth background  by EI. This  
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                                             (a)                                                                          (b) 

            

                                                      (c)                                                                             (d) 

Figure 6 Ricker source wavelet (solid line) and its envelope (dashed line): (a) full-band source in time domain; (b) 

full-band source in frequency domain; (c) low-cut source in time domain; (d) low-cut source in frequency domain. 

                    

                                                     (a)                                                                       (b) 

 

Figure 7 Two traces selected from the data generated from the Marmousi model using the low-cut Ricker wavelet. 

The upper panels are the time domain traces and their envelopes, and the lower panels are the corresponding spectra 

in the frequency domain. 
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strategy is similar to that used in the combined inversion of Chauris et al. (2012) and Donna et al. 

(2013), where they used the estimated background velocity model from the normalized 

integration method as the starting model for the high-wavenumber recovery by FWI. For 

comparison, in Figure 8(e) and (f) we show the conventional full waveform inversion results 

directly starting from the linear initial model. We see the significant improvement in inversion 

fidelity by combined inversion EI+WI. This is mainly due to the scale separation of the envelope 

operator, so that the long-wavelength background can be recovered correctly by EI. From Figure 

8(e) and (f) we see also that conventional FWI is sensitive to the source frequency band. The 

inversion result using the low-cut source is noticeably worse than that of the full-band source; 

while the corresponding two results by EI+WI show no appreciable difference. 

 

 
                                                         (a)                                                                   (b) 

 
                                                         (c)                                                                   (d) 

 
                                                         (e)                                                                   (f) 

Figure 8 Envelope inversion tests on the Marmousi model: (a) Smooth background obtained from envelope 

inversion (EI) using the full-band source; (b) Same as (a) but with the low-cut source; (c) Combined EI+WI 

inversion result (waveform inversion using the smooth background from envelope-inversion) using the full-band 

source; (d) Combined EI+WI inversion result using the low-cut source; (e) Direct waveform inversion (FWI) from 

the linear initial model using the full-band source; (f) Same as (e) but using the low-cut source. 
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Figure 9 shows the reduction of L-S residuals with iterations. Compared with FWI (dashed line), 

the convergence of EI+WI (solid line) is faster and has avoided the false local minima.  
 

 

     Figure 9 Reduction of L-S residuals with iterations. Comparison of EI+WI (solid line) and FWI (dashed line). 

 

 

To demonstrate the effect of data power p to the result of envelope inversion, in Figure 10 we 

show the result of envelope inversion (EI) with p=1 and the final result of EI+WI. As we 

discussed in the previous section, the EI results in this case are much rougher than the case of 

p=2 due to the heavier weight on the later arrivals (reflections) and on the high-frequency 

components of the envelope data. We know that the backpropagation of envelope data is similar 

to energy-pact imaging, so there is no destructive interference, resulting in a noisier image than 

the FWI image. Note that even though the EI results of p=1 are very different from that of p=2, 

the final result of EI+WI in this case is very similar to the case of p=2. This indicates that long-

wavelength background media recovered in these two cases are fairly close to each other. 

 

 

 

                                         (a)                                                                                  (b) 

Figure 10 Envelope inversions (EI) with p=1 (a). and the final result of EI+WI (b). Note that even the EI results of 

p=1 are very different from that of p=2, the final result of EI+WI in this case is very similar to the case of p=2. 
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CONCLUSION 

Envelope fluctuation and decay of seismic records carries ULF (ultra-low frequency) signals 

which can be used to estimate the long-wavelength velocity structure. We proposed a nonlinear 

seismic signal model: the “modulation model” for retrieving the ULF information in seismic 

waveform data. Eenvelope inversion based on least-square minimization of envelope data can 

recover the low-wavenumber components of unknown velocity strucutes (smooth backgrounds) 

so that the initial model dependence of waveform inversion can be reduced. This is demonstrated 

by the Marmousi model tests, in which a 1-D linear grandient starting model is used and the 

combined EI+WI (envelope-inversion plus waveform inversion) can correctively recover both 

the low- and high-wavenumber structure of the model. The other advantages of the envelope 

inversion are its independence to the source wavelet and its low cost (very little extra cost 

beyond the regular FWI cost). Futher study is needed for the inversion dependence on reflector 

distribution, acquisition aperture, and other limintations of the envelope inversion. The other 

important research topic for better understanding the advantages and limitations of envelope 

inversion is the forward modeling of envelope formation, which will be investigated in the future 

study. 
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APPENDIX 

 

In this appendix we show how to derive the gradient of the envelope misfit as shown in equation 

(7). 

 

First, calculate the gradient of the misfit as in equation (6) with respect to velocity, we obtain 
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Let us define the Hilbert transform of signal ( )f t  as  

 

                                                      { ( )} ( )* ( )H f t h t f t

                                                              

(A2)

 

where  
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Note that ( ) ( )h t h t   . We then have 
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where  means differention with respect to some kind of parameter. 

 

Using the equation in above, then equation (A1) becomes: 
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