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SUMMARY

In this paper a general methodology for the analysis of large concrete dams subjected to seismic
excitation is outlined. It is valid both for gravity dams (2D representation) and arch dams (3D
representation). The method allows for non-linear material behaviour of the dam, “transparent
fictitious boundaries” for properly dealing with in—coming and out-going seismic waves, and an
efficient procedure to deal with dam—soil-fluid interaction. The mechanical behaviour of concrete
is modelled using an isotropic damage model which allows for tension and compression damage,
and exhibits stiffness recovery upon load reversals. Emphasis is placed in the treatment of fluid-
structure interaction, regarding both formulation and efficiency aspects. A gravity dam and an
arch dam are analysed subjected to artificially generated earthquakes of different intensities, and
the results are used to study the degree of (un)safety of the dams.

1. INTRODUCTION

The safety evaluation of concrete dams subjected to severe seismic actions poses several dif-
ficulties to the structural analysts because it involves the solution of a complex non-linear
coupled problem. The first, but not the only, difficulty is the highly non-linear mechanical
behaviour of concrete in these situations, which inevitably include fracture under tension
with triaxial states of stress and repeated load—unload reversals. Of course, there is a wide
variety of different material models for concrete that could be used in these studies. The
available literature includes models based on the theories of hypoelasticity, hyperelasticity,
plasticity, fracture mechanics, plastic-fracture, or continuum damage, to name only some
of the more popular ones. The present work will make use of a continuum damage model
to characterize the mechanical behaviour of concrete. The Continuum Damage Theory
was firstly intoduced bu Kachanov! in the context of creep-related problems, but it has
afterwards been accepted as valid alternative to deal with complex material behaviour. It
is nowadays used for materials so different as metals, ceramics, rock and concrete, and




within a wide range of applications (creep, fatigue, progressive failure, etc.). The reason
for its popularity is as much the intrinsic simplicity and versatility of the approach, as well
as its consistency, based on the theory of thermodynamics of irreversible processes. Among
the different possibilities that such a framework offers®~8, this work will make use of an
isotropic damage model, with only two scalar internal variables to monitor the local dam-
age under tension and compression, respectively. This will provides a simple constituve
model which, nevertheless, is able to capture the overall non—linear behaviour of concrete
displayed under seismic loading, including the strain-softening response and the stiffness
degradation and regradation observed under multiple stress reversals. Furthermore, the
model can be implemented in a strain—driven form which leads to an almost closed—form
- algorithm to integrate the stress tensor in time. This is a most valuable feature for a model
intended to be used in large scale computations®®.

Seismic analysis of a dam is a fluid-structure interaction problem. These coupled prob-
lems are of great importance in many branches of engineering. In earthquake engineering
the problem is usually augmented because in most cases the foundation must be taken
into consideration, yielding a fluid-structure—-soil model to be solved. This is a typical
coupled problem. In fact, it is the archetypical example of a class of coupled problems
where interaction occurs at the interface between different physical domains. Here, nei-
ther the structure nor the fluid can be solved independently of the other: motion of the
structure depends on the hydrodynamic pressures at the interface, and pressures in the
fluid depend on the normal acceleration at the wet wall. It must also be considered that
earthquake excitation reaches the structure travelling through the soil region around the
structure. This means that soil-structure interaction has to be modelled in some way.
In this work a block-iterative technique is used to deal with the discrete fluid—structure
coupled problem!9-13, This has proved to be a simple and natural approach, as well as
computationally efficient, particularly when the non-linearity and the coupling are treated
within the same iteration loop. Both formulation and efliciency aspects of this approach
will be briefly discussed in the following sections.

Finally, it must be remarked that in these analyses both the water in the reservoir and
the soil in the foundation are semi-infinite unbounded domains. For static or quasi-static
loading, a fictitious boundary at a sufficient large distance from the structure can be in-
troduced in the computational model. The physical domain is hence “cut off”, expecting
that from the practical point of view, the structural response will not be affected. How-
ever, for dynamic loading this procedure cannot be used. The fictitious boundary would
reflect out~going waves back into the domain of interest, spoiling completely the computed
solution for any practical purpose. Thus, it is neccesary to model appropriately the ficti-
tious boundaries to allow the in—coming seismic waves to enter into the domain, as well
as to ensure that the out—going waves are not reflected. The necessary treatment of the
boundary conditions in the computational model to account for this will also be discussed
below.

From the computational point of view, there are three different physical phenomena
to be modelled in the seismic analysis of a concrete dam: the structural behaviour of the
dam (the final goal of the analysis), the mechanical behaviour of the soil (both as the
supporting medium of the dam and as the transmiting medium of the seismic waves), and
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Figure 1. Computational model showing the dam with the foundation and the reservoir

the behaviour of the water in the reservoir (as a transmiting medium of acoustic waves
travelling from and towards the up—stream wall of the dam). Therefore, the computational
model includes the following elements (see Figure 1):

¢ A displacement based non-linear dynamic model for the dam. As comented above,
the non-linear behaviour is accounted for here by means of a simple and computation-
ally efficient constitutive equation belonging to the family of the so—called ‘continuum
damage models’. It is also necessary to include appropriate structure-fluid interaction
boundaries.

¢ A displacement based linear dynamic formulation for the scil. Here, ‘transparent’
boundaries (for out-going and in-comming seismic waves) have to be included.

e A pressure based wave propagation formulation for the water in the reservoir. Ad-
ditionaly, appropriate ‘transparent’ (out-going waves) radiating boundaries, fluid-soil
and fluid-structure interaction boundaries and free surface boundaries need to be in-
cluded.

e
—

mm;_mbm these general features in mind, the paper is organised as follows. Section 2
describes the structural computational model, with especial reference to the boundary
conditions and the constitutive model. Section 3 describes the computational model for
the fluid phase of the problem (water in the reservoir). Section 4 deals with the coupled
fluid-structure problem, with emphasis on its block-iterative solution. Section 5 discusses
some alternatives for approaching the seismic evaluation of concrete dams. Sections 6
and 7 present the application of the proposed methodology to the seismic analysis of a
gravity and an arch dam, respectively. Section 8 closes the paper with some conclusions
on the proposed methodology.




2. STRUCTURAL COMPUTATIONAL MODEL

2.1 Dynanic equilibrium equation

Without going into details, the semidiscrete dynamic equilibrium equation for the struc-
tural part of the model (dam+foundation), arising from the standard Galerkin spatial
discretization, reads!®:

where subscript s refers to the solid phase in the problem. The notation invoived in
Eq. (1) is as follows. The mass and deamping matrices are M, and Cs, S(a} is the vector
of internal forces in the solid (S(a) = K;a if a linear constitutive model is adopted, where
K; is the stiffness matrix), f; is the vector of external forces (including the seismic and
the interaction forces, see below for details), a = a(t) is the vector of nodal displacements
unknowns and the dot denotes differentiation with respect to time ¢. If the displacements
u inside a finite element are interpolated in the standard way given by the shape functions
N; and the nodal displacements a, the expressions for matrix M, and vectors S(a) and f;
are easily obtained. The damping matrix accounts for both the natural viscous damping
(assumed to be of Rayleigh type) and the radiation boundaries (see below for details).

2.2 Boundary conditions

In the solid domain (dam-+foundation) there are three types of ‘especial’ boundaries to be
considered in the fluid-structure problem (see Fig. 1):

(a) Solid—fluid interaction boundary (T's¢): in the fluid-structure problem the coupling
occurs through the interface surface, noted here as I';y and I'y, if considered as
belonging to the solid or the fluid, respectively. Defining a unit vector n normal to
this surface (pointing outwards from the solid), the nodal forces on the solid due to
the pressure in the fluid can be computed as,

fy=—| N nPdl=- | NuN;pdl'=-Qp (2)
Tsf Lsf

where subscripts s and f refer to the solid and the fluid, respectively. P is the pressure
in the fluid, p is the corresponding vector of nodal pressures and-IN represent the

* shape function matrices. The rectangular matrix Q is the coupling matrix. Note that
if the pressure in Eq. (2) is the total pressure, the forces will include the hydrostatic
effects.

(b) Radiating or ‘transparent’ boundary (Isr): It is possible to derive a fictitious bound-
ary that will damp completely the elastic waves that reach it, providing these out—
going waves are plane and are propagating in a direction normal to the vocsama%wmuﬁ.
This boundary provides tractions which are proportional to the velocities in the
medium, and, therefore, its effects after the spatial discretization process will be a
contribution to the damping matrix of the system that can be written as,
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where D, is a diagonal matrix depending on the density and the elastic constants of
the solid, and T is an appropriate transformation matrix depending on the orientation
of the boundary. In the general case the given expression is only an approximation to
a real absorbing boundary, but numerical experiments show that the error involved
in this approximation is acceptable from an engineering point of view.

(¢) Radiating boundary with incoming wave (I's;): the fictitious boundary at the bhot-
tom of the model must be able to damp the out—going elastic waves and, at the same
time, be able to allow the prescribed in-coming seismic waves to enter the domain.
Under the same assumptions that for the previous case, the corresponding bound-
ary will contribute to the damping matrix and to the vector-of nodal forces. The

corresponding expressions arel?%14
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where © is the prescribed in—coming velocity wave. Note that in this way the seismic
input is introduced as a ‘natural’ condition in the model, in terms of the ground
velocities. This is different from the traditional approach, where the seismic input
is prescribed as a ‘forced’ condition, in terms of the ground accelerations. The ad-
vantage is that now we are able to write Eq. (1) in terms of the total displacements,
velocities and accelerations in the structure, rather than ‘relative’ to the ground. The
formulation is clearer in this way, and note that there will be no ‘forced’ boundary
conditions (prescribed displacements) in the structural model.

Note that we have made explicit the expressions for the nodal forces due to the water
and the seismic input. Apart from these the vector f5 in Eq. 1 will typically contain only
the system of self-weight nodal forces. It may also be remarked that in many applications
is not necessary to make use of the fictitious boundaries of type (b). If the portion of
foundation included in the computational mesh is large enough, these can be substituted
by a ‘repeatibility condition’, prescribing the displacements in the left~kand side of the
model' to be equal to those in the right-hand side!®?, This is satisfactory for most of
2D and many 3D applications, although naturally this will always depend on the actual
geometry of the problem.

2.3 Discretization in time. Algorithmic and natural damping

Due to the non-linearity introduced in the computational model through the constitutive
equation for concrete, the internal force vector S(a) is a time-history dependent quantity.
Therefore, the dynamic equilibrium equation (1) must be solved in the time domain, fol-
lowing a step—by—step procedure. There are several methods in the literature available for




the discretization and integration in time of such second order equations. In this work
we will make used of the well-known and widely employed Newmark method, but others
equally suitable would be the S822 method, the a-method, or the Houbold’s or Park’s
methods1®16, Each of these methods has its own characteristics regarding stability and
accuracy. It must also be remarked that because of the non-linear nature of Eq. (1) it will
be most convenient to use any of the previous methods in a predictor-multicorrector form,
using a scheme such as the Newton-Raphson method to linearize the equations for each
time step of the time integration wnoommms,:.

Because the higher modes of semidiscrete structural equations are spurious subproducts
of the discretization process and not representative of the governing partial differential
equations, it is generally viewed as desirable, and often is considered absolutely necessary,
to have some form of algorithmic damping present to remove the participation of the
high—frequency modal components. This is even more crucial in non-linear mb&%mmm&.
In terms of the Newmark method, the parameters v and f determine the characteristics
of stability and accuracy of the method. It is necessary to chose ¥ > 1/2 to introduce
high—frequency dissipation. For a fixed « one can chose # = (v + 1/ wvu /4 to maximize this
dissipation while retaining unconditional stability. However this leads to a drop to first
order accuracy of the method. If this is not acceptable, the a-method can be used, which
can introduce algorithmic dissipation while retaining unconditional stability and second
order accuracyl6:18,

The energy dissipation due to tensile (and eventual compressive) damage is explicitely
considered in the constitutive model for concrete. However, it will be seen that this does not
contemplate energy dissipation in a load-unload-reload cycle, as it would be desiderable
under seismic excitation. This added damping effect mat be heuristically considered via the
damping matrix Cs. Due to the lack of experimental results on the damping mechanisms of
mass concrete dams under seismic loading we will follow the usual finite element procedure
of assuming a Rayleigh type of damping, i.e.,

Cs = aM; + K Amv

which preserves the symmetry and positive-definiteness of matrices M; and K,. With
this type of damping the damping ratio & corresponding to an undamped frequency wy is

a
=5 (ot bur) ©)
T

The constants ¢ and b are calibrated to provide the desired amount of damping in two
selected modes of the dam, typically 3-10 % in the first and second modes. It is clear from
Eq. (6) that the effect of the ‘mass damping’ will be neglegible for the higher modes, while
the ‘stiffness damping’ will severely damp them. It is therefore desiderable to include in
the computational model a significant part of ‘stiffness damping’, as this will help to damp
out the high—frequency components of the response. It has to be remarked that as damage
occurs inside the dam the stiffness will also be degradated. Thus, it may be discussed if
the stiffness matrix in Eq. (5) should be the initial (elastic) one, or an updated tangent
or secant matrix!®. The question is open to different considerations, but for reasons of
computational efficiency we will use a constant damping matrix in the present work.



2.4 Constitutive model for concrete

The Continuum Damage Mechanics Theory is based on the definition of the effective
stress concept, which is introduced in connection with the hypothesis of strain equivalence?:
the strain associated with a damaged state under the applied stress o is equivalent to the
strain associated with its undamaged state under the effective stress . In the present
work the effective stress tensor & (second order) will assume the following form:

mHUc“m A.Nv

In this expression Dy is the usual fourth order linear-elastic constitutive matrix, € is the
second order strain tensor, and (:) denotes the tensorial product contracted on two indices.
As our aim is to use a scalar damage model, with separated internal damage variables
for tensile and compressive stress contributions, a split of the effective stress tensor into
tensile and compressive components is needed. In order to clearly identify contributions
respecting to each one of these independent effective stress tensors, (+) and (-) indices
will be extensively used, referring to tensile and compressive entities, respectively. In this
work, the stress split will be performed as 19; i

3
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where o; denotes the i-th principal stress from tensor &, p; represents the unit vector
associated to its respective principal direction and the symbol ® denotes the tensorial
product. The symbols < . > are the MacAuley brackets (thus giving the value of the
enclosed expression when positive, and setting a zero value if negative), and symbols > . <
aresuchthat <z >+ >z <=1,

Hence, according to this stress splitting, the contitutive law proposed in this work can
be explicitely &mmwmmmw, rendering for the Cauchy stress tensor ¢ the final expression:

o=(1-d"e" + (1—-d" )& (9.a)
with
0<dt <1t and 0<d <1 (9.5)
where dt and d~ are the tensile and compressive damage variables, respectively. Ther-
modynamic considerations about the non-negativeness of the dissipation!? demand that
d* >0 and d- > 0. The model is completed with appropriate evolution laws for these
internal damage variables.

In order to clearly define concepts such as loading, unloading, or reloading, a. scalar pos-
itive quantity, termed equivalent stress, will be defined. This enables to compare different
tridimensional stress states. With such a definition, distinct tridimensional stress states
can be mapped to a single equivalent unidimensional stress test, which makes possible




their quantitative comparison. As a consequence of the stress split, an equivalent effective
tensile norm 7+ and an equivalent effective compressive norm 7~ will be used. In the
present work they will assume the following forms:

7t = a\m+ 1Dt et | (10.a2)

= ,\,\w (K& + ot (105

In Eq. (10.b) K is a material property which depends on the ratio between the uniaxial and
biaxial compressive strengths of the concretel? (a typical value for concrete is K = 0.17);
additionally, 5., and 7., are, respectively, the octhaedral normal stress and the octhaedral
shear stress, obtained from 7.

With the above definitions for the effective equivalent norms, two separated damage
criteria g% and ¢~ will be introduced?, the former for tension and the latter for compression:

gtEt, ety = 7t —rt <0 (11.a)
gF T )=7"—-7r <0 (11.5)

Variables r+ and r— are current damage thresholds, in the sense that their values control
the size of the expanding damage surfaces. For the initial stage, that is, when no loading
has yet been applied, values r§ and rg, assumed material properties, are attributed to
these thresholds. As it can be deduced from definitions (10.a) and (10.b), Eq. (11.a)
corresponds to a damage bounding surface which is a sphere centered at the origin in the
space of principal undamaged tensile stresses’, and Eq. (11.b) defines a Drucker-Pragger
cone for compression. Eq. (11.a) states that tensile damage tends to increase if 7+ = rt,
and so it will be initiated when for the first time 7* = r{ (a similar reasoning can be
applied for compression). Figure 2 shows the initial damage bounding surface resulting
from the combination of both criteria in a biaxial effective principal stress space. Note the
good qualitative agreement with the documented experimental results for concrete.

With these definitions, and after enforcement of the consistency conditions for loading—
unloading-reloading situations via the Kuhn—Tucker relations, the kinematics of the tensile
and compressive internal variables are defined as:

. ety
=7t >0 dt =+* .wlmlw.mm.lv =G*(r*) 20 __ (12.0)
=% >0 i = i ﬁ@b — G () 20 (12.5)

with G* and G~ being appropriate monotonically increasing functions derived from ex-
perimental observation. The particular forms assumed by the rate Eqs. (12.2) and (12.b)
allow to specify the following damage evolution laws, after performing a trivial integration
(with the initial condition of null damages):

rt = mazx(rd,71) d" = G*(rt) (13.a)

r~ = max(rg ,T ) d =G (r7) (13.5)



Figure 2. Initial damage bounding surface in a biaxial effective principal stress space

These equations put into evidence that the model is strain driven in a closed form:
once the current strain tensor is known, damage variables can be easily evaluated, as
they only depend on the equivalent norms 7+ and 7~, which are evaluated from €. So,
the selection for the particular forms of functions G* and G~ will determine the specific
damage evolutions to be considered, and consequently some care must be devoted to this
subject, so that a realistic representation of experimental behavior might be obtained.
Anyway, the change from one particular set of evolution laws to a different one does not
put any special problem, thus enabling this model to have substantial updating versatility.

For the present work, the following damage evolution rules will be adopted:

.,+
+>+Gs,_,v
dt=1-120, =3

o (14.a)
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Eq. (14.a) is able to reproduce the softening branch of a concrete unidimensional tensile
test, asymptotically to the strain axis. With this evolution law for d*, a finite area is re-
tained between the stress-strain curve and the strain axis, which is crucial to appropriately
define the fracture energy concept (as it is well known, of primary importance to satisfy
requisits of mesh-objectivity when dealing with softening Bmﬂmimmmv@. Besides the tensile
damage threshold r} (usually related to the uniaxial tensile peak strength), only the pa-
rameter A* exists, the determination of which is made by equating the material fracture




energy to the time integral of &mmmwmﬂmouE. By means of Eq. (14.b) it is possible to re-
produce the hardening effect on concrete submitted to compression, as well the softening
wich occurs after the compressive strength is attained®. Besides ry, for its characterization
two parameters (A~, B~) must be defined, usually by imposing that the evolution curve
satisfies two selected points of a unidimensional experimental test19,

It must be remarked that the aim of this model is to be able to model properly the
stiffness degradation of concrete both in tensile and compressive processes. Moreover,
the introduction of independent internal damage variables for tension and compression
allows for stiffness recovery (also known as unilateral effect) upon load reversal, a feature
which the authors have found of primary importance when conducting seismic analysis of
structures. Figure 3 shows the cyclic behaviour of the proposed continuum damage model
in a uniaxial test.
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Figure 3. Cyclic behaviour of the continuum damage model in a uniaxial test

2.5 Constitutive model for soil e

Soils behave non-linearly when excited by the strong earthquakes that are of interest
to structural engineers. Among the different possibilities available in the literature for soil
constitutive modelling, one of the alternatives is to use a similar constitutive model to that
used for the structure, that is, a continuum damage model with appropriate parameters.
However, when determining the input seismic excitation starting from the motion of one
free-field surface control point, the principle of superposition is frequently invoked. This
means that a linear soil system is actually assumed. The simplification of using a linear
soil medium should be considered in connection with the actual way of determining and
specifying the seismic input.

10



- 3. FLUID COMPUTATIONAL MODEL

3.1 Dynamic governing equation

The governing equation for acoustic waves for an inviscid, compressible fluid with small
amplitudes for the displacements and velocities is the well-known Helmholtz equation:

1. :
V2P — SP=0 (15)

where P is the pressure and ¢ is the acoustic speed in the fluid. After the standard process
of discretization in spacel® the semidiscrete governing equation can be written as

g%w.uuTHA.:v”%% G.mv

where subscript f refers to the fluid. The ‘mass’ matrix is M §» Xy is the matrix arising
from the discretization of the (linear) Laplace operator, f; is the vector of ‘force’, and
p = p(?) is the vector of nodal pressures in the fluid. Note that only natural boundary
conditions have been considered and that no viscous damping term is present in Eq. (16).
Note also that this is a second order equation in time, and so it can be integrated step-
by-step in an analogous manner to Eq. (1).

3.2 Boundary conditions

In the fluid domain (water in the reservoir) there are three types of ‘especial’ boundaries
to be considered in the fluid-structure problem (see Fig. 1):

(a) Solid-fluid interaction boundary (I'y;): in the fluid-structure problem the normal
velocities in the fluid (or their time derivatives) are prescribed to be equal to those
in the solid. It can be shown!® that this condition leads to a prescription on the
derivative of the pressure normal to the interface:

VP.n=psii'n 17

where n is a unit vector normal to the interface (pointing inwards to the fluid), ps

is the fluid density and ii is the acceleration. After discretization, this condition

appears as a term of nodal forces on the fluid due to the accelerations in the solid
"that can be computed as,

?uézw?.mv%ué \ Zwuezmm%néaem G@
Lgs Tgs
Note that the coupling matrix Q is the same as in Eq. (2).

(b) Radiating or ‘transparent’ boundary (I's,): For the fluid domain it is also possible
to derive a fictitious boundary that will damp completely the pressure waves that
reach it, in a way similar to the one described for the solid, and under the same

11




mwmﬂgvﬁﬁﬁmuw.z.um. It can be shown that this condition leads to a prescription on
the derivative of the pressure normal to the interface of the form:

VP-n=-1p (19)

where P is the time derivative of the pressure. This boundary provides tractions
which are proportional to the velocities in the fluid, and therefore, its effects after
the spatial discretization process will be a contribution to the damping matrix of the
system that can be written as,

H .
o:.um\&zw?% @8

For some applications it would be handy to have a ‘transparent’ boundary for the
fluid with in—coming seismic gave (I's;). This is easy to derive based on the boundary
just described. The only difference is an added ‘force’ term which depends on the
prescribed seismic velocities ©, and which reads:

2

fr; =~ A N}odl (21)
I

(c) Free surface boundary (T's¢): On the free surface of the fluid the simplest assumption
is that :

P=0 (22)

and this can be imposed as a ‘forced’ condition at equation solution level. If the
possibility of having surface gravity waves is considered, this can be substituted by
the linearized surface wave condition!®, which results in an addition to the ‘mass’
matrix of the form

g&nm\ zwzwﬁ, G&
g Ly

" where g is the gravity acceleration.

4. FLUID-STRUCTURE INTERACTION

4.1 Governing equations and direct solution

Doubtless, fluid-structure interaction is one of the best known coupled problems in engi-
neering. In this case, the coupling occurs at the interface between two different domains,
occupied one by the solid and the other by the fluid. Neither the structure nor the fluid

12



can be solved independently of each other, since the motion of the structure depends on
the pressures of the fluid at the interface, and the fluid pressures depend in turn on the
normal acceleration of the wet wall of the solid. The equations considered here are the
conservation of momentum for the solid (see Section 2) and the Helmholz equation for
the fluid (see Section 3), both equations being coupled through the corresponding (mov-
ing) interface boundary terms. The constitutive relationship adopted for the structure is
the nonlinear isotropic continuum damage model described in Section 2, whereas alinear
elastic model is assumed for the foundation.

The semidiscrete problem arising from the standard Galerkin spatial discretization reads
as follows:

. - T (24)
M;p +Csp+ Kyp= fr+p;Q a
where subscripts s and f refer to the solid and the fluid, respectively, and the coupling
forces have been explicitely written. Remember that the coupling matrix Q only has non
zero terms for the nodes located on the wet wall. Observe that in Eq. (24) the coupling
is linear and the only non-linearity of the problem comes from the constitutive model for
the solid (the dam). Therefore, after using a suitable time discretization (the Newmark
scheme, for example) one will be led to a non-linear algebraic system of the form:

50 2210
A Agpllp]  LE

This system of equations can be easily symmetrized by scaling properly the equation for the
fluid pressure, and the coupled problem can be directly solved, in a step-by—step fashion,
by forming and solving Eq. (24) step after step. Iterations would be needed within each
step due to the non-linearity of the term Ags(a). One disadvantage of this strategy is that
the structure of the global matrix of the system is such that entries come from the two
different domains (solid and fluid), and so, integrals have to be evaluated in two different
domains, and they represent physically different magnitudes. Another disadvantage is
the larger size of the global matrix as compared with the ones arising from the different

domains. On the other hand, the advantage is that the final algorithm is easily and clearly
defined, and its analysis, regarding for instance stability, is feasible (although complicated).

4.1 Block-iterative solution T
1

Let us consider now the use of block-iterative algorithms to solve problem (24). This will
reduce the size of the resulting subproblems at the expense of iterating. Assuming that the
first equation in (24) is solved first, there are two possible block-iterative schemes, namely,

LP%?T.U vm@ =f5 Ass pt= (26)
P.&.ﬁ@ = mw — .P.?NEV k=1:—1or:

Here, superscripts in parenthesis refer to iteration counters. For & = ¢ — 1 this is the
block-Jacobi (or block-total-step) method, whereas for & = i it is the block-Gauss-Seidel
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(or block-single-step) method. From elementary numerical analysis it is known that, under
certain conditions, both the Jacobi and the Gauss-Seidel methods converge linearly when
applied to linear systems, the convergence rate of the latter being twice higher than that
of the former. In their block counterparts these properties are inherited, the convergence
rate depending now on the spectral radius of the matrices involved.

On the other hand, problem (25) (and also problem (26)) is non-linear, so that an
iterative procedure must be used to deal with this non-linearity. Both the Picard (or fixed
point) and the Newton-Raphson methods are suitable candidates to perform the necessary
linealization. Either the non-linearity or the coupling could be dealt with in two nested
jiterative loops. However, there is the strong temptation to use a single iterative loop to
deal both with the non-linearity and the ooﬁw:mmz_ﬁbm. This would lead (for the Picard
method) to:

Ass(@@D)al) = £ — A, pl-1) (27)
LPNH.@A& ﬂw&fb..wmﬁﬁwv.__ w H&|H or u. ﬁwmv

Perhaps the simplest choice to implement is: once a() is known by solving Eq. (27), it is
used to evaluate the right-hand side (RHS) of Eq. (28), and then this can be solved.

Box 1 presents the computational algorithm one of these block-iterative techniques
applied to the solid phase of the fluid-structure interaction problem. Note that here an
implicit predictor—mulficorrector scheme!!"17 has been assumed for the solution of the
non-linear transient problem, without loss of generality. Obviously, the computational
algorithm for the fluid phase could follow an identical or similar procedure. The squares
labelled “FLUID?” refer to the necessary inter—communication to interchange data between
the solid and the fluid phases in the problem. Note also the modify/unmodify steps
introduced for the evaluation of the residual force vector, which save unnecessary re—
evaluations of the internal forces S(a) every time that the coupling term is recalculated.

The advantage is now that the structure of the matrices in the left-hand side, A,
and Ajy, is such that entries come only from the single field currently considered, and
so, integrals have to be evaluated only in that domain, and they represent physically
homogeneous magnitudes. Moreover, for many practical applications these matrices are
symmetric. There is no difficulty in evaluating the coupling terms appearing in the RHS
of Eqgs. (27) and (28), as they only involve integrals over the ‘interaction boundary’, and
this is “seen” from both domains. Finally, note that the two systems of equations to be
solved are smaller in size and with reduced band-width, as well as better_conditioned, as
compared to that yielding from the direct solution of Eq. (25). On the other hand, the
disadvantage of the block—iterative solution of Eq. (24), is that iterations will be needed
even if the problem is linear (note the need to check global or overall convergence in Box 1).
This is not especially inconvenient if the problem is non-linear, as equilibrium iterations
would be required anyway, or if the coupling effect is not too strong.

As the time dimension is involved, the analysis of any proposed solution strategy must
consider the time integration stability of the approach. It may happen that, even if an
unconditionally stable algorithm has been used for every one of the fields, the overall
algorithm may still be conditionally stable!®1%, In practice, as the size of the chosen
time step will always be limited by accuracy considerations, this may not be a serious
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COMPUTE INTERACTION TERM
fey 1= Qp

MODIFY RESIDUAL

Yy =1y =1

ASSEMBLE
K (according with linearization)

SOLVE
$a = [K] 2y,

CORRECT
Aa = Aa+ba

ZO=HORITOQ

EXTRAPGOLATE
”u+>w . ﬂ.n + Aa
Attat . .. p+At

EXPORT

artar l..llllqrcuu

COMPUTE RESIDUAL
ry i=f, — M- C,a— S(a) - £,

t
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UNTIL GLOBAL STATUS=CONVERGED

UNTIL e end

Box 1. Computational algorithm for block—iterative technique applied to the solid phase
of the Huid-structure interaction problem.
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drawback. Regarding the stability analysis of the block—iterative solution, it is certainly
complicated and very problem dependent. Stabilization methods have been proposed to
ensure unconditional stability of the block—iterative solution for specific problems under
certain circumstances!®21:22 Lyt they require matrix operations that destroy the modu-
larity (and so, the main motivation) of this approach. |

An important point to remark regarding stability of this iterative technique is that
time integration stability will also depend on the tolerance demanded to achieve overall
convergence. If the solution of problem (26) is iterated until full overall convergence is
achieved, then the stability characteristics of the approach are identical to those of the
direct solution (problem (25)). However, as this is impossible or impractical to manage in
real computations, a new source of instability will come from the tolerance specified by the
user. As a limit case, if no check on the overall convergence is made, the approach becomes
block—explicit (also known as “staggered” methods), and it will be obviously conditionally
stable, or, in some unfortunate cases, unconditionally unstable!®12.23 Sensibility to this
factor is again very problem dependent. No difficulty was found by the authors in the
numerical examples run for fluid-structure interaction even if slack tolerances were used.

The main conclusion from the authors’ experience in solving this and other coupled
problems is that dealing with the non-linearity and the coupling within a single iterative
loop is very effective. Roughly speaking, the number of iterations due to the nonlinearity
and the coupling do not add up. Even with weak nonlinearities, these are who govern
the global process, so that the coupling is achieved automatically, and ﬁmmxwonm?mqu.
For a more detailed discussion of the efficiency of the block-iterative techniques applied to
coupled problems, as well as some clues to their implementation, see reference 24.

5. SEISMIC EVALUATION OF CONCRETE GRAVITY DAMS

When dealing with a large structure it is important to be able to quantify somehow a
“factor of safety’ to measure the safety of the structure against the possibility of failure.
This is not a simple concept to apply in cases of complex non-linear structural behaviour,
as present, for instance, in the seismic analysis of dams. The difficulties associated to this
and similar definitions have been clearly stated by Fanelli?S; “.. the currently accepted
quantitative definitions of the ‘“factor of safety’ of a dam are rather fuzzy concepts, open
to criticism from a rational viewpoint... In each instant of a dam’s life, there will be a
definite relationship between the ‘load’ acting on it and the ‘ultimate load’ of the same
type that the dam is able to withstand (this concept of ‘ultimate load’ requires that the
path to ‘failure’ and the very concept of ‘failure’, be defined in an unambiguous way, which
is by no means a trivial operation). ... [The factor of safety] is a continuously changing
function of time, as load vary and the dam ages; its instantaneous physical values cannot be
computed in a realistic way, because we lack complete information on loads and material
properties and distribution. Besides, these values are also bound to vary considerably
according to the different definitions of the ‘path to failure’ for any given situation. ... So,
we are forced to conclude that there is not, in any given instant, a unique value of the
safety factor, but rather and indefinite number of them, and that all those safety factors
are also continuously varying in time”.
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Additionally, there are situations in which the occurrence of a certain degree of ‘local
failure’ is unavoidable. Such is the case of a concrete dam subjected to severe seismic
excitation, where stress reversals will almost certainly produce damage in certain areas of
the dam. This will not, in general, lead to the (global) collapse of the structure. In some
rare cases, the non-linear behaviour of the material and the change of stiffness associated to
partial damage may even help the structure to withstand the earthquake without amm.&ﬁmm
a state of ‘failure’.

Nevertheless, the concept of safety (or unsafety) of a structure is intuitively www@m to
the ‘damage’ that it suffers when subjected to a particular external action. The ‘ultimate
load’ that a structure is able to withstand is associated to a high level of damage, while a
load producing little or no damage is far from leading to structural collapse. Keeping in
mind that there may exist mechanisms of global collapse not associated to damage (elastic
inestability, brittle fracture, etc.) the present work intends to study the intuitive relation
between damage and safety.

5.1 The concept of global damage

The damage or degradation variables d* and d™ defined in Section 2 are a measure of the
loss of secant stiffness of the material at.a.point and a at given time. Therefore, these
variables are understood as a measure of the ‘local damage’ inside a structure, and as
such it provides very useful information to the analyst. The purpose of this section is to
introduce a ‘global damage index’ Dt (and D™) whose value gives an indication of the
state of the structure, as a whole, at a given time.

Some important aspects must be considered for the definition of such a global damage
index: (i) The global damage index must be the same for two identical structures with the
same distribution of local damage, regardless of the instant of time or the type of loading.
Therefore, the global index must be computed uniquely in terms of the values of the local
damage variable, defined at each point inside the dam, and its distribution; (ii} As the
local variable d¢, the global index D! must be a non—dimensional scalar value, ranging
between 0, for an undamaged structure, to 1, for a fully degradated structure; (iii) The
structure is undamaged (D! = 0) if and only if no local damage has occurred (d! = 0 for all
points); similarly, the structure is fully degradated (D! = 1) if and only if all the point are
fully damaged (d* = 1 for all points); (iv) If a structure with a certain degree of damage
is subjected to an external action, the global damage index can only increase or remain
unchanged.

Thus, we will define the global damage index for a structure, at a givén time ¢, as a
scalar ‘variable D? verifying the following conditions:

(i) D' = DYd)
(i) 0<Dt <1
(i) D! =0 <= d' =0 for all points
Dt =1 < d¢ =1 for all points
(iv) Dh < Db «= t; <ty
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Among the many possibilities for the definition of the ‘global damage index’ we propose
the following two:

f, dt a2
Jo 49 o

Di= Jold)? a0 © (29.)
vV Ja @

where d! is the local damage variable. Note that both definitions verify the necessary
conditions.

The first proposed alternative D! is the average value of the local damage over the
nonlinear part of the structure and it is the simplest measure of global damage that can be
devised. However, this value does not consider at all the distribution of damage over the
structure. In particular, it is not sensitive to the existance of relatively small areas with
relatively high values of damage, a circumstance that can very well affect m_mﬂumomba,% the
overall behaviour of the dam. On the other hand, the second proposal D} gives a greater
weight to the higher values of local damage, and thus it takes somehow into account the
localization effect. For the same value of the average damage D!, the index D% will be
greater depending on the degree of localization of the damage é_mvrm. That is ﬁ&u\ it has
some interest the consideration of both indexes when comparing different distributions of
local damage for the same structure subjected to different seismic excitations.

Di = (29.a)

5.2 Definition of the structural collapse

When attempting to perform the safety assessment of a concrete dam against seismic
actions it is important to define a situation of structural collapse. Ideally, this definition
should be unambiguous and independent of the computational model used to analize the
structural behaviour. Furthermore, the safety assessment must answer to (at least) three
quite different questions: firstly, does the dam collapse while subjected to an earthquake
of a given intensity and with a given response spectrum?; secondly, if this is not the case,
which is the state of the dam after the seismic excititation?; and thirdly, how has the factor
of safety of the dam against, for instance, the hydrostatic pressure been affected by the
action of the earthquake?.
In this work we will distinguish between: e

¢ Dynamic collapse during the earthquake, in any of the three following related situ-
ations: (a) when the computed displacements at selected points reach unaceptable
values or grow unbounded, or (b) when the state of damage is either widely spread or
highly localized, or (c) when the non-linear dynamic response departs greatly from
the one obtained in a linear analysis.

e Static collapse after the earthquake, when the dam is able to withstand the seismic
excitation but a quasi-static analysis performed a posteriori shows that the factor of
safety against the action of the hydrostatic pressure has been greatly reduced due to
the state of degradation induced by the earthquake.
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It is clear that these definitions are not totally objective, and more effort should be
put into their quantitative assessment, particularly for the dynamic collapse. Also, they
are linked somehow to the computational model used in the analysis (a damage model in
this case). However, they adress questions of engineering interest and could be ‘easily’
re—interpreted for other material models, such as plasticity or smeared crack models or
fracture mechanics.

6. SEISMIC ANALYSIS OF A GRAVITY DAM

The computational model described the previous sections is now applied to the analysis of
a concrete gravity dam. The geometry of the problem is depicted in Figure 1. The dam
selected resembles very closely Koyna Dam in India {107 m high) that has been studied by
many researchers interested in seismic analysis. The water level in the reservoir is 100 m.
The natural damping is tuned to provide a damping ratio of 5 % for the first and second
modes of the dam-—soil system (Rayleigh parameters a = 0.8 s=1,5 = 0.003 s).

With the objective of analysing the response of. this large concrete dam subjected to
seismic actions of different intensities an artificial velocigram has been generated?. The
design spectrum and the response espectrum of the generated accelerogram are compared
in Figure 4, which shows the good agreement obtained. The generated velocigram has
a total duration of 10 seconds, with a peak ground acceleration of 0.255¢ and maximum
ground velocities around 0.25 m/s (occurring about ¢ = 3.7 s. The dominant period of the
signal is 0.4 s, which is very close to the first fundamental period of the dam—soil system
(T1 = 0.4355 s). This input velocigram is shown in Figure § compared with the velocity
computed at the free—field of the computational domain. Note that, apart for the shift due
to the time that the signal takes to travel though the soil domain, the agreement between
both of them is good. This shows that the boundary conditions are Hunowol% represented
in the SgwﬂﬁmeObm,_ model.

Three seismic analyses are performed by scaling the input velocigram to achieve peak
ground accelerations of 0.255¢, 0.383¢ and 0.510¢, respectively. The corresponding signals
are applied as an horizontal seismic excitation along the canyon direction. Figure 6 shows
the computed horizontal displacements (relative to the ground) for the three signals. Non—
linear effects are present for the smallest intensity, and grow significantly for the other two
(stronger) signals. This is also evident in Figure 7, which depicts the evolution with time
of the global (tension) damage index D! (no compression damage occurred during any of
the analyses). Note that the evolution of damage is mostly concentrated in a few intervals
of time where the maximum positive and negative displacements occur (close to ¢t = 1.6 s.
and ¢t = 4.0 s.). This is again shown in Figures 8 and 9, which show the distribution of
damage and the deformed shape of the dam at selected times for the lowest and medium
intensities, respectively. Note how for 0.255¢ damage does not bridge across the ‘neck’ of
the dam, whereas this does occur for 0.383g. However, as the up-stream and down-—stream
faces are not under tensile stress at the same time, the dam retains its overall stability.
Regarding the evolution of the hydrodynamic pressure acting on the up—stream wall (not
shown), it must be said that the graphs follow closely those of the (relative) horizontal
displacement. Negative pressures are only encountered in the upper tenth of the dam, for
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Figure 8. Koyna Dam. Evolution of the tensile damage and deformed shapes for the 0.255¢
signal

Figure 9. Koyna Dam. Evolution of the tensile damage and deformed shapes for the 0.383¢
signal
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the highest intensity and only for ¢ = 4.0 s. Thus, it seems that the assumption of linear
behaviour for the fluid is valid for this particular case.

About the assessment of seismic safety the results of the analyses are open to discussion.
It can be said that the dam is severely damaged by the earthquake with a peak acceler-
ation of 0.255¢, and more importantly for the stronger signals. Therefore, the collapse
intensity for a signal with this particular frequency content could be placed around 0.250g.
However, it must be remarked that in all the analyses the dam retains its structural in-
tegrity. Furthermore, the a posteriori quasi-static analyses with increasing hydrostatic
pressure produce a safety factor of 2.28 for all cases, with an identical collapse mechanism
of over—turning. This can be explained considering that a gravity dam resists the hydro-
static pressure due to its self-weight, and for this load it is subjected to a triaxial state of
compression everywhere. Clearly, this structural mechanism is not affected at all by the
tensile damage induced by the earthquake.

7. SEISMIC ANALYSIS OF AN ARCH DAM

The computational model described in the previous sections is now applied to a the seismic
analysis of an arch dam, which contitutes a'3D nonlinear coupled problem. To this end
we have selected Talvacchia Dam, in Italy, a 75 meters high double curvature dam which
has been studied previously by several researchers. The finite element meshes used for the
reservoir water and the dam-soil domain are shown in Figure 10. It must be remarked
than although the Figure shows both meshes together, the analysis has been performed
separatedly for each of the domains, following the scheme presented in Section 3. Damping
elements are appropriately situated at the bottom and lateral boundaries to prevent the
out—going waves from artificially reflecting on them. The model is subjected to a horizontal
earthquake in the longitudinal direction of the river (symmetric excitation), propagating
vertically from the base of the model.

Figure 11 shows the amplified deformed shape of the dam (amplification factor equal to
500) for two given times (top and bottom) of the analysis correspondent to the earthquake
with a peak acceleration of 0.364g. The Figure shows only half of the model (the water is
not shown for clarity) from the front (left) and from the rear (right), with the corresponding
tensile iso—damage contours. As expected, due to the symmetry of the model and the
excitation, the higher values of the damage appear at the top of the central cantilever.
Lower values of damage appear at the dam—foundation interface in the down-stream wall.
Figure 12 shows the horizontal displacement at the top of the central cantilever for different
intensity factors of the excitation. It can be seen that the response for a peak acceleration
of 0.312¢ is only mildly nonlinear, while for 0.364¢, and specially for 0.416g, the nonlinear
effects are evident. Figure 13 shows the evolution of the global (mean square value) damage
with time for these three intensities. It can be seen that most of the damage develop during
the first two seconds of the excitation, where the peak accelerations of the ground occur.
Note that, nevertheless, important displacements occur later without changing significantly
the level of damage.

Regarding the computational cost of the analysis it must be said that the additional
cost due to the fluid interaction is very small (about 4% of the total CPU time), because
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of the formulation used (a single degree of freedom per node). Unfortunately, most of
the computer time is spent by the foundation; therefore, and always supposing that linear
behaviour is a valid assumption, alternative techniques, such as the boundary element
method, may be used. In this work, we have used reduced integration with an hourglass—
control technique to keep the computational cost within reasonable limits.

8. CONCLUSIONS

The paper presents a general methodology for the evaluation of large dams subjected
to seismic actions with two main objectives: generality, as it is valid both for gravity
and arch dams and it includes most of the relevant features present in the problem, and
efficiency, as it allows for the use of modular and computationally efficient software. Four
different conclusions can be drawn from this work: (a) The non-linear behaviour of the
dam may be appropriately represented via an isotropic continuum damage model with
separated internal variables for degradation under tension and compression stress states.
Moreover, this option allows for stiffness recovery (also known as unilateral effect) upon
load reversal, a feature of primary importance for seismic analysis of structures. Also, the
model is particularly suitable for large scale problems due to its explicit format. (b) The
treatment of the boundary conditions for the dynamic transient problem is fully stated
both for the solid and the fluid phases in the computational model. The introduction of
radiating or “ransparent’ boundaries, and the imposition of the in-coming seismic wave as
an appropriate force term seem an adecuate option from the analytical and computational
standpoints. (¢) The partitioned block-iterative solution of the fluid—structure interaction
problem is formulated and tested for real application analyses. It is found that both
the non-linearity and the coupling can be treated most efficiently within a single iterative
loop, without loss of generality. No stability difficulties are found for real case data and the
overhead to be paid due to the coupled analysis of the fluid is almost negligible. (d) Finally,
some qualitative criteria for the definition of structural collapse and the seismic assessment
of concrete dams are presented. The topic is open for discussion and future work must
be primarily directed in this direction. To conclude, the application of the proposed
methodology to the seismic analysis of two real dams of different topologies shows that it
can be used as a valid tool for earthquake engineering and structural analysis.

[
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