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S U M M A R Y

We develop an automated strategy for discriminating deep microseismic events from shallow

ones on the basis of the waveforms recorded on a limited number of surface receivers. Machine-

learning techniques are employed to explore the relationship between event hypocentres and

seismic features of the recorded signals in time, frequency and time–frequency domains. We

applied the technique to 440 microearthquakes −1.7 < Mw < 1.29, induced by an underground

cavern collapse in the Napoleonville Salt Dome in Bayou Corne, Louisiana. Forty different

seismic attributes of whole seismograms including degree of polarization and spectral attributes

were measured. A selected set of features was then used to train the system to discriminate

between deep and shallow events based on the knowledge gained from existing patterns. The

cross-validation test showed that events with depth shallower than 250 m can be discriminated

from events with hypocentral depth between 1000 and 2000 m with 88 per cent and 90.7

per cent accuracy using logistic regression and artificial neural network models, respectively.

Similar results were obtained using single station seismograms. The results show that the

spectral features have the highest correlation to source depth. Spectral centroids and 2-D cross-

correlations in the time–frequency domain are two new seismic features used in this study that

showed to be promising measures for seismic event classification. The used machine-learning

techniques have application for efficient automatic classification of low energy signals recorded

at one or more seismic stations.

Key words: Neural networks, fuzzy logic; Wavelet transform; Earthquake source observa-

tions; Seismic monitoring and test-ban treaty verification; Volcano seismology.

1 I N T RO D U C T I O N

Microseismic tremors are low-amplitude events, attributed to reduc-

tion in effective stress. These typically negative-magnitude events

provide useful information for understanding slow-slip earthquakes,

incipient volcanic activity, fluid transport properties in geothermal

reservoirs, potential ground control safety hazards in mining opera-

tions and induced seismicity from hydraulic fracturing for extraction

of unconventional oil and gas resources.

Hypocentre information is the core product of microseismic mon-

itoring. Locations of microearthquakes are inverted from seismic

signals recorded by sensors either distributed at the surface or in

monitoring boreholes. While surface monitoring usually suffers

from low signal-to-noise ratio (SNR), the ability to place receivers

in multiple azimuths and offsets allows for precise horizontal event

location. On the other hand, downhole monitoring provides robust

detection due to a higher SNR if an event is sufficiently close to the

monitoring borehole. Another advantage of downhole monitoring

over surface monitoring is the ability to estimate the depth based on

arrival time moveout and wave polarization observed by the array.

This allows a rough estimate of an event’s depth without inversion

and detailed velocity models.

The primary goal of this study is to develop a high-performance

strategy for automatic clustering of microearthquakes recorded on

a limited number of surface receivers based on their source depths.

Template matching is a common practice in observational seis-

mology which has the advantage of combining the detection and

classification. However, in some cases—such as the case study of

this paper—waveforms may be highly incoherent due to complex

wave propagation reducing the efficiency of the waveform cross-

correlation for some sensitive classification tasks. Hence, in this

study we try to understand signal characteristics of deep and shallow

microearthquakes and cluster them based on these characteristics

using machine-learning techniques.

In data mining using machine-learning systems, an algorithm

can learn patterns from a sample data set and then determine the

class of new data based on this previous knowledge. The advan-

tage of machine-learning techniques is that they adopt data-driven
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learning schemes to find the solution to the problem. These tech-

niques are capable of learning the input/output relationship directly

from the data being modelled. Therefore, no prior knowledge of the

statistical distribution of features is necessary to obtain a solution,

even if these features are redundant or noisy. Machine-learning

techniques, such as artificial neural networks (ANNs) have been

extensively applied to seismic data primarily for the automatic

classification of seismic events (e.g. Cercone & Martin 1994; Fal-

saperla et al. 1996; Scarpetta et al. 2005; Esposito et al. 2006;

Langer et al. 2006; Hammer et al. 2012, 2013; Ait Laasri et al.

2013; Esposito et al. 2013; Vallejos & McKinnon 2013; Riggelsen

& Ohrnberger 2014), the discrimination of artificial explosions

from natural earthquakes (e.g. Dowla et al. 1990; Dowla 1995;

Shimshoni & Intrator 1996; Amidan & Hagedom 1998; Fedorenko

et al. 1999; Tarvainen 1999), discrimination of earthquakes from

chemical explosions (e.g. Dysart & Pulli 1990; Benbrahim et al.

2005), discrimination of quarry blasts from microearthquakes (e.g.

Musil & Plesinger 1996; Ursino et al. 2001; Kuyuk et al. 2011),

discrimination of earthquakes from oil prospecting explosions (e.g.

Abu-Elsoud et al. 2004), discrimination of earthquakes and under-

water explosions (e.g. Del Pezzo et al. 2003), seismic event detection

and automatic onset-time determination (e.g. Dai & MacBeth 1995,

1997; Wang & Teng 1995; Gravirov et al. 1996; Mousset et al. 1996;

Tiira 1999; Zhao & Takano 1999; Glinsky et al. 2001; Gentili &

Michelini 2006; Beyreuther et al. 2012; Kong et al. 2016), model-

driven seismic interpretative processing (e.g. Maurer et al. 1992;

Enescu 1996), automated seismic facies mapping (e.g. Baaske et

al. 2007; Yuan et al. 2010), classification of seismic windows for

full wave inversion (Diersen et al. 2011) and earthquake early warn-

ing (Böse et al. 2008; Zazzaro et al. 2012).

Most of the applications above belong to a class of problems

referred to as pattern matching. In most of these cases, careful

analysis of waveforms by an experienced seismologist can reveal

the pattern and provide enough information for a robust detec-

tion/classification. However, the goal is to automate these time-

consuming processes by training an algorithm to search for these

patterns in large data sets. However, machine learning can be used

for seismic event characterization problems beyond just pattern-

matching (Perry & Baurngardt 1991). Some examples of these

types of applications are: earthquake prediction (Katz & Aki 1992;

Sharma & Arora 2005), imaging and interpretation of temporal pat-

terns in seismic array data (Köhler et al. 2009, 2010), denoising

of seismic signals (Essenreiter 1999; Djarfour et al. 2008), estima-

tion of peak ground accelerations (Garcı́a et al. 2006) and velocity

model inversion (Moya & Irikura 2010).

Machine-learning techniques have been little utilized for charac-

terization of seismic-source information such as event depth. Dowla

(1995) used wavelet decomposition of regional events followed by

a radial basis network and reported success in the depth estimation.

However, details about the method and results of his study are not

available. Perry & Baumgardt (1991) used ANNs to characterize

event depth for regional earthquakes. They implemented a tech-

nique, called matched field processing (Bucker 1976; Baggeroer

et al. 1988), to compute the spectral matrix of the Lg wave, and

compare it to the Lg wave spectral matrix for master events at dif-

ferent depths. Using this method on synthetic data, they were able

to distinguish deep regional events from shallow ones with 69.4 per

cent precision.

In this study, we use machine-learning techniques such as

correlation-based feature selection (CFS), ANNs, logistic regres-

sion (LR) and X-mean as research tools to explore the relationship

between different seismic features of microearthquakes and their

source depth and categorize events based on these features. Here,

the proposed method is used for classifying pre-detected events.

We successfully applied the method on real data for a sequence of

microearthquakes observed at very close distance. Results of this

study can have applications in the automatic classification of in-

duced seismicity especially when signals are recorded by local net-

works with a limited number of sensors. In these cases, low energy

signals recorded by single stations may be important manifesta-

tions of ongoing induced seismic activity, and their classification on

the sole basis of the seismogram characteristics might be a way to

discriminate between different types of induced microearthquakes.

2 DATA

In June and again in early July 2012, two widely felt events strongly

shook the residents of a small community next to the Napoleonville

salt dome in south Louisiana (Fig. 1). Around June 14, the USGS

and CERI installed six stations in the area and observed ∼14 shal-

low microearthquakes per day. The rate increased to several hundred

events/per day. On August 3rd, a sinkhole was found to have opened

up near the earthquakes through August 2nd at which time they

ceased. It later turned out to be due to an underground collapse of

a cavern that fractured to surface and formed the sinkhole. Seismic

monitoring of the sinkhole continues at this time although the sur-

face network was reformed in a denser shape in January 2013 and a

downhole string array of geophones was installed down to the depth

of 915 m on top of the collapsed cavern in October 2013. Higher

quality of recorded waveforms by the downhole array revealed that

many deeper events are occurring in the salt body in addition to

the shallow microearthquakes previously observed. Some of these

deep events are observable on the surface network, but since they

are usually noisy and recorded on just one or two stations, they

cannot be located using conventional methods.

In this study, we develop a model for deep and shallow events

based on the high-quality data recorded after October 2013. This

model can be later applied on the data set recorded prior to the

sinkhole formation for automatic discrimination of deep events

(microearthquakes in salt body) from shallow ones (microseismic

events in the cap rock). To develop the model, we used the cata-

logue of events located by downhole array and selected 4712 events

located at depths between 1.0 and 2 km (deep), and 4498 events

with hypocentre depths ranging between 40 and 400 m (shallow)

for the initial processing. Out of these numbers, only a small set

could be identified on the surface data and pass the criteria of hav-

ing a minimum number of three stations (nine seismograms) and

SNR of at least 2.0. More shallow events meet these criteria for

the surface sensors while only the bigger deep events meet these

criteria (Fig. 2). Therefore, 143 events, located at depths between

1.0 and 2 km (deep), and 297 events, with hypocentre depths rang-

ing between 40 and 400 m (shallow) were ultimately selected for

this study. Hypocentres for these events are shown in Fig. 3. MW

magnitudes range from −1.7 to 1.29.

The surface network consists of eight broad-band three-

component instruments at the surface and three short-period (2 Hz)

geophones in shallow boreholes at distances up to 3 km from the

collapsed cavern. Data were continuously recorded with a sampling

rate of 200 Hz. For the selected events, all traces were highpass

filtered above 2 Hz, and they were cut from 2 s before to 10 s after

the event origin time.

A simple and common method for seismic event classifica-

tion is to use cross-correlation between each event and template

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
7
/1

/2
9
/2

5
8
3
5
3
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Discriminating deep microseismic events 31

Figure 1. Location of Napoleonville Salt Dome (NSD) in Louisiana, USA. Contours show the top of the salt dome in feet below sea level.

Figure 2. Magnitude (Mw) distribution of deep and shallow events.

events. To test the feasibility of this method we used the

Hierarchical clustering method and clustered all the selected events

based on their pair cross-correlation values (Fig. 4). In Hierarchi-

cal clustering, each event starts out as its own cluster with sim-

ilar clusters being iteratively combined until only a single clus-

ter remains. The cluster dendrogram for our selected events is

shown in Fig. 4, with rectangles corresponding to cluster mem-

bership. Deep and shallow events spread out across different clus-

ters. This is because waveforms associated with each type of event

are not very coherent due to complex wave propagation at the re-

gion. Relatively low coherency of the waveforms can be seen in

the plot of stacked waveforms for events with highest correlation

(Fig. 5)

3 M E T H O D O L O G Y

The aim of pattern recognition is the classification of objects into

a finite number of categories. In a pattern recognition system an

object and a set of categories are given as input and the system

decides to which category the object belongs. In general, it works

in two stages. In the first stage, feature extraction (also known as

the pre-processing or parameterization stage), a set of measures is

extracted from the input object (seismogram). In the second stage,

classification, the object is associated with one of the categories

based on these features.

In common pattern recognition problems associated with seismic

studies usually the parameters associated with each group (class)
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32 S.M. Mousavi et al.

Figure 3. Location of microearthquake events and seismic stations used in this study.

of data are known beforehand. But for the classification purpose of

this study, waveform features associated with event source depths

are not completely known in advance. However, one advantage of

using machine-learning algorithms is that the machine is able to

discern patterns in the solution space that are difficult even for

human experts.

3.1 Feature selection

Feature extraction is basically a transformation stage from data

space into a feature space to extract robust information from the

waveform in a compressed form. This step is critical for the success

of the classification task.

Each datum, here three-component seismograms associated with

one event, is represented by a feature vector which is used to train

and test machine-learning models. It is important to select fea-

tures that are informative and predictive of the individual datum

properties. Furthermore, the size of the feature set and types of

features (e.g. nominal, numeric, etc.) define the size of the learning

problem. In other words, the larger the feature space, the more pos-

sible combinations of features need to be examined and learned

by the machine-learning algorithm. In this study many different at-

tributes of the seismic signals have been extracted from the data in

time, frequency and time–frequency domains. We then test which

features best represent the characteristics of the signal and limit the

classification step to those features.

Fig. 6 shows a selected set of seismograms and their continu-

ous wavelet transform (CWT) spectrograms. Shallow earthquakes

are characterized by surface waves with the dominant energy con-

centrated around scale 4 and longer periods. Deep events radiate

relatively higher frequency energy (Fig. 6) with no prominent sur-

face waves.

Based partly on these observations, we implemented a broad

range of parametrization methods including spectral analysis and

polarization analysis. Table 1 gives an overview of the 40 fea-

tures initially used in this study. Details of the mathematical def-

initions of features can be found in Appendix A. There are 12

frequency-based measurements, 11 time-based measurements and

17 time–frequency-based measurements. For every earthquake, the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
7
/1

/2
9
/2

5
8
3
5
3
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Discriminating deep microseismic events 33

Figure 4. Hierarchical cluster tree generated based on intercluster correlation for vertical components of selected events. Showing different clusters of events

based on their pair cross-correlations.

three-component waveforms are parametrized into a 40-element

feature vector automatically by averaging measured attributes from

all stations. Spectral features are measured on all three components

and averaged for each station. In this study, we have incorporated

the cross-correlation between waveforms and one shallow and one

deep events (template matching) into the method as two features.

In addition to the cross-correlating waveforms in the time domain,

we have also measured cross-correlations in the time–frequency

domain.

The 40-element feature vector provides a broad characterization

of the waveforms. However, the exact relationship between each fea-

ture and event depth is not known yet. Moreover, some features may

be irrelevant or redundant. It has been shown that whenever super-

fluous features are detected and removed using a feature selection

technique before the classification step, the accuracy of the model

will be improved and also time and effort will be saved (e.g. Kare-

gowda et al. 2010; Samei et al. 2014). Removing redundant and/or

irrelevant attributes can prevent the overfitting problem. Hence, we

next assess the extracted features to find the best subset of features

relative to the classification problem of our study. This was done by

applying a CFS method (Hall 1998). This algorithm evaluates the

worth of a subset of features by considering the individual predictive

ability of each feature along with the degree of redundancy between

them. Subsets of features that are highly correlated with the classes

while having low intercorrelation are preferred (Hall 1998).

The merit of a feature subset Z containing k features is defined

by (Ghiselli 1964)

MeritZ =
krcf

√

k + k (k − 1) rff

, (1)

where, rcf is the average feature–class correlation, and rff is the

average feature–feature intercorrelation. Correlations, r, in this for-

mula are standard Pearson’s correlations. The numerator in this

equation can be thought of as an indicator that how predictive a

group of features are and the denominator shows how much redun-

dant they are. The Genetic algorithm is used as a search method

with CFS as the subset evaluation mechanism. The Genetic algo-

rithm is a stochastic, general search method, capable of effectively

exploring large search spaces, which is usually required in the case

of attribute selection (Goldberg 1989).

In the Generic search algorithm (Goldberg 1989), CFS values

(merits in eq. 1) are calculated for 20 different combinations of

features (subsets) and this process is repeated 40 times and at the

end the combination with highest merit is selected. We ran a cross-

validation for this procedure to evaluate features. The average merit

is calculated for each feature based on the number of times that the

feature is selected over the cross-validation.

Based on initial feature evaluation one new feature was designed

to combine the power of two other worthy features. Maximum power

of frequency amplitude and the dominant frequency were combined

to produce a new feature defined as

maxPF FA =
Maximum power of frequency amplitude

Dominant frequency
. (2)

At the end, 30 features (a subset with highest merit) were selected

for the classification step.
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Figure 5. The stack of highly correlated events in each cluster showing a wide dispersion in their waveform shapes.

3.2 Classification

In machine-learning research, models that predict an outcome from

a set of categories (e.g. deep and shallow) are often referred to as

classifiers and the task of predicting an outcome from a datum (i.e.

feature vector) is called classification. Several learning algorithms

can be applied to deduce the classification models. Algorithms are

designed to learn either from a set of labelled data (i.e. super-

vised) or unlabelled or partially labelled data (unsupervised and

semi-supervised, respectively). We applied the supervised learn-

ing approach. Labelled training data with known class-membership

(i.e. deep or shallow events) are used to introduce the patterns to

be recognized by the algorithm. This training data set is then em-

ployed to predict class-memberships of the unseen data. The goal

is to minimize the misclassification rate and the amount of false

alarms.

LR and ANNs learning algorithms were applied to train a model

that predicts shallow versus deep hypocentres based on selected fea-

tures. Each of these algorithms has certain properties that take into

account different characteristics of data. The reason for the compar-

ative application of both techniques was to increase the reliability

of discrimination.

3.2.1 Logistic regression

LR (Cox 1958) is a popular, powerful and easily understood statis-

tical method to model and analyse multivariate problems (Press &

Wilson 1978; Kleinbaum & Klein 2010). In LR the probability that

a category is related to a set of explanatory variables (i.e. features)

and the relationship between variables and a response variable is

explored (Hosmer & Lemeshow 1989).
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Discriminating deep microseismic events 35

Figure 6. Seismograms for six events presented both in the time and time–frequency (continuous wavelet transform, CWT) domains. Left and right columns

show deep and shallow events, respectively. Signals associated with deep events exhibit a limited frequency content mostly concentrated around scale 4 and

spread out at the higher frequencies. Shallow events have a relatively broader spectrum with the concentration of the energy in lower frequencies (scales

above 4).

Suppose that there are M classes with N measured seismic at-

tributes. The probability for a particular class m with the exception

of the last class is (LeCessie & van Houwelingen 1992)

P (m|Z ) =
eZ

1 +
∑M−1

m=1 eZ
. (3)

The last class has probability of

P (M) = 1 −

(

M−1
∑

m=1

P (m|Z )

)

=
1

1 +
∑M−1

m=1 eZ
, (4)

where P(m|Z ) is the categorical response of variables xi, which

represents the probability of a particular outcome, m. Z is a measure

of the contribution of observed predictor variables xi, in the category

m, computed from a logistic model. The logistic model is a weighted

summation of a set of explanatory variables, which is defined as

Z =

N
∑

i=1

βi xi + β0, (5)

where β0 is a constant (intercept), βi are the predictor variable

coefficients (the regression coefficients) which are estimated by

maximum likelihood procedure.

In our case, the outcome variables are the event depth categories,

deep or shallow, and P(m|Z ) is the probability of having a deep

event based on the contribution of the observed features xi. Coeffi-

cients are estimated using an iterative computation procedure. LR

can be viewed as tossing a coin with ‘deep’ and ‘shallow’ sides,
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Table 1. Seismic parameters derived from waveforms used in this study.

Feature Description Domain

Maximum amplitude (1 feature) The maximum amplitude of the waveform, which characterizes the size of

energy released.

Time

Spectral centroid (1 feature) Indicates the ‘centre of mass’ of the spectrum.a Frequency

Spectral attributes (4 features) Includes the RMS of frequency amplitude, the maximum power, the

dominant frequency and maximum power of frequency amplitude divided

by dominant frequency.

Frequency

Energy density (1 feature) The energy density of the signal.a Time

Polarization parameters (5 features) Include the measurement of the degree of rectilinearity, the apparent

vertical incidence angle of rectilinear motion, azimuth range and dip angle,

and dip times rectilinearity determined from eigenvalues of 3C-covariance

matrix.a

Time

Waveform cross-correlation

(2 features)

The estimation of the degree of similarity between waveforms and

waveforms of one shallow and one deep template events.a
Time

Dominant period in CWT (1 feature) The maximum scale continues wavelet representation of the data

associated with the dominant energy in the signal.a
Time – Frequency

2-D wavelet cross-correlation

(14 features)

2-D cross-correlation of CWT and DWT pictures of the signal and

template events.a
Time – Frequency

The spectral coherency (2 features) The measure of temporal (and spatial) variability in the spectral character

of signals and template events.a
Time – Frequency

The spectral semblance (2 features) Compares an event and a master event based on the correlation between

their phase angles, as a function of frequency.a
Frequency

The envelop similarity (2 features) A measure of the similarity between the signal shapes.a Time

Spectral distance (4 features) Measuring the spectral distance as a measure of correlation of event’s

spectra.a
Frequency

Spectral skewness (1 feature) The skewness is used here to characterize the degree of symmetry or

asymmetry of spectral contents of an event around its dominant frequency.a
Frequency

aThe full description is provided in Appendix A.

where the probability of having a deep event is a function of βi xi .

An event with seismic attribute measurements xi could be classified

as a deep event if P(deep | Z) > P(shallow | Z) (Amidan & Hagedom

1998).

3.2.2 Artificial neural networks

ANNs are powerful mathematical models for organizing informa-

tion relevant to the phenomena under study and representing com-

plex relationships between inputs and outputs.

A neural network is made up of large numbers of simple, highly

interconnected processing elements called neurons (nodes). Each

node takes one or more inputs from other nodes and produces an

output by applying an activation function over the weighted sum

of its inputs. Nodes interact using weighted connections and are

arranged in layers. A common type of ANN is a multilayer percep-

tron (MLP) which consists of an input layer, hidden layer(s), and

an output layer (Duda et al. 2000). MLPs are capable of modelling

complex nonlinear functions. Assuming an MLP with one hidden

layer, the sigmoid activation function is given by

S (x) =
1

1 + e−x
. (6)

Therefore, given N features in the input layer, the output for the

hidden node j, is calculated as

H j = S

(

N
∑

i=1

w j i xi+θ j0

)

, (7)

where w j i is the weight of the connection from the ith node in

the input layer to the node j, the xi are outputs of the input layer

(features) and θ j is a variable bias for the node j. In the output layer,

the contribution ZN from the NH hidden nodes on category m is

given by

Z N =

NH
∑

j=1

wmj H j + θm0, (8)

where wmj is the weight from hidden node j to the output category

m. The probability for each category is calculated using eqs (3)

and (4). The data are entered into the input layer. The neurons then

process the input data, with the values resulting from each sigmoid

progressing through the network towards the output layer. Once the

values reach the output layer, the output computed by the network is

compared with the desired output, and any error is employed as the

basis for adjustment of all the connection weights, w using back-

ward propagation. The weights associated with each connection are

adjusted to strengthen connections that produce correct answers

and weaken those that produce incorrect answers. This is done by

iterative minimization of the errors using steepest descents in the

backward propagation process. The direction of steepest descent is

determined by the partial derivatives of the error with respect to the

weights and bias in the network. This back propagation process is re-

peated until the network has learned the relationship between inputs

and desired outputs. With no hidden layer, the ANN is equivalent

to the LR.
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Discriminating deep microseismic events 37

Figure 7. ROC curves (left) and precision-recall curves (right) for the LR (a) and ANN (b). The closer the curve follows the left-hand border and then the top

border (bending in the curve towards the upper left corner of the chart), the more accurate the test.

Table 2. Performance of classifiers.

Model Accuracy AUC Precision Recall RMS error F-measure Optimum threshold

LR 88.2% 0.86 0.88 0.88 0.32 0.88 0.53

ANN 90.7% 0.92 0.91 0.91 0.28 0.90 0.55

Table 3. Confusion matrix for LR.

Classified as Deep Shallow

Deep 103 40

Shallow 12 285

Table 4. Confusion matrix for ANN.

Classified as Deep Shallow

Deep 111 32

Shallow 9 288

3.3 Model evaluation

To assess the quality of the classification model, the whole training

data set is divided into k unique subsets (folds) with roughly equal

size. Then k − 1 folds are used for training the network, and the

remaining fold is used for testing the learned model. This process is

repeated so that each fold is used for testing exactly once. Therefore

a k-fold cross-validation process builds k models and the results are

averages over all k test sets.

In binary classification problems, like the subject of this study,

an attempt is made to categorize the outcome of an event into one

of two categories, either true (1) or false (0). This process can result

in one of four possible outcomes that are defined as follows:

True Positive (TP): Evaluated and actual results are 1 (Valid

Detection)

False Positive (FP): Evaluated result is 1, but actual result is 0

(False Alarm)

False Negative (FN): Evaluated result is 0, but actual result is 1

(Missed Detection)

True Negative (TN): Evaluated and actual results are 0 (Valid

Non-detection)

This information is displayed in a two-by-two ‘confusion’ matrix

describing the performance of the resulting model on the test data.

Each column of the matrix represents the instances in a predicted

class while each row represents the instances in an actual class.

For identifying deep and shallow events with LR and ANN there

is only one case which corresponds with the probability of having
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Table 5. Ranking of selected features based on the CFS evaluation.

Feature Short name Average merit + standard deviation Domain

Spectral centroid spCen 0.445 ± 0.016 Frequency

Degree of rectiliniarity (polarization) rect 0.358 ± 0.019 Time

RMS of frequency amplitude rmsA 0.286 ± 0.021 Frequency

Maximum power of frequency amplitude maxPFA 0.278 ± 0.015 Frequency

Dominant frequency maxFA 0.27 ± 0.014 Frequency

2-D-CWT cross-correlation for deep template ccnAb2D 0.262 ± 0.018 Time–frequency

Dip (polarization) Dip 0.261 ± 0.015 Time

Waveform cross-correlation for deep template ccD 0.254 ± 0.023 Time

The envelop similarity for deep template envelopD 0.245 ± 0.05 Time

The envelop similarity for shallow template envelopS 0.234 ± 0.02 Time

2-D-DWT cross-correlation for deep template xp2S 0.214 ± 0.039 Time–frequency

Spectral coherency for deep template semD 0.21 ± 0.017 Time–frequency

Dip angle times rectilinearity DipRec 0.205 ± 0.071 Time

Dominant period in CWT xotsu 0.167 ± 0.05 Time–frequency

Spectral semblance for deep template semblanceD 0.132 ± 0.083 Frequency

Average power spectral skewness around dominant frequency skwnss 0.13 ± 0.018 Frequency

Spectral distance for deep template udD 0.127 ± 0.01 Frequency

2-D-CWT cross-correlation for shallow template ccnAb2S 0.122 ± 0.095 Time–frequency

Spectral distance for shallow template udS 0.111 ± 0.055 Frequency

Maximum coefficient of normalized 2-D-CWT cross-correlation along

scale axis for shallow template

ypicD 0.101 ± 0.002 Time–frequency

Maximum coefficient of normalized 2-D-CWT cross-correlation along

scale axis for deep template

ypicS 0.094 ± 0.012 Time–frequency

Maximum power of frequency amplitude/dominant frequency maxPF-FA 0.092 ± 0.005 Frequency

Azimuth azmth 0.0901 ± 0.061 Time

2-D-DWT cross-correlation for shallow template xp2D 0.088 ± 0.086 Time–frequency

Mean coefficient of normalized 2-D-CWT cross-correlation between real

parts for shallow template

ccnRel2S 0.081 ± 0.088 Time–frequency

Maximum amplitude maxAmp 0.080 ± 0.081 Time

Waveform cross-correlation for shallow template ccS 0.076 ± 0.08 Time

Apparent vertical incident angle indAngle 0.052 ± 0.05 Time

Energy density enrg 0.0501 ± 0.085 Time

Spectral semblance for shallow template semblanceS 0.050 ± 0.09 Frequency

a deep event P(deep | Z) > t. After selecting a decision threshold

value (t) several parameters for evaluating the performance of the

model can be calculated such as true positive rate (TPR) and the

false positive rate (FPR), which are both functions of the decision

(detection) threshold, t:

TPR (t) =
TP (t)

TP (t) + FN (t)
= Sensitivity (9)

FPR (t) =
FP (t)

TN (t) + FP (t)
= 1 − Specificity. (10)

Accuracy of the model is calculated based on the percentage of

correctly classified instances. ‘Precision’ is defined as the fraction

of predictions that are accurate. ‘Recall’ is defined as the fraction

of instances that are accurately predicted. ‘F-measure’ is another

Table 6. Confusion matrix for waveform cross-correlation.

Classified as Deep Shallow

Deep 73 70

Shallow 70 227

Table 7. Confusion matrix for 2-D-CWT cross-correlation.

Classified as Deep Shallow

Deep 88 55

Shallow 59 238

measure of a test’s accuracy computed as a weighted average of the

precision and recall:

Accuracy =
TP (t) + TN (t)

TP (t) + TN (t) + FP (t) + FN (t)
(11)
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Table 8. Feature clusters based on X-mean clustering. The centroid of each

cluster is shown by the asterisk (∗).

Cluster 1 Cluster 2 Cluster 3 Cluster 4

spCen∗ rmsA∗ xp2D rect∗

maxFA maxPFA xotsu Dip

envelopD udD ccAb2S∗ ccS

semblanceD skwnss semD

DipRec

envelopS

Precision =
TP (t)

TP (t) + FP (t)
(12)

Recall =
TP (t)

TP (t) + FN (t)
(13)

F − measure =
2 × Precision × Recall

Precision + Recall
. (14)

The accuracy and precision of the algorithm represents a measure

of its ability to consistently estimate the true outcome of an event.

For a perfect classifier TPR = Accuracy = 1, and FPR = 0.

The plot of TPR as a function of FPR for a range of decision

thresholds is known as a ‘receive operating characteristic’ (ROC)

curve. The area under the ROC curve (AUC), is an absolute measure

of the performance of the model (Fawcett 2006). The AUC takes

values between 0.5 and 1.0. The predictive power of the classifier

increases as the AUC approaches 1.0 and decreases as the AUC

approaches 0.5. The objective of any classifier is to maximize the

AUC.

4 R E S U LT S

Selecting an optimum architecture for the neural network is an

important task. The topology of the network impacts the network

performance, its generalization skills and its training duration.

In a classification problem, the number of neurons in the input

layer is equal to the number of features (30 in our case) and the

number of output nodes is determined by the number of classes (2

for deep and shallow classes). However, the appropriate number of

hidden layers and the number of neurons in each hidden layer needs

to be defined in a way that improves the classifiers performance.

We tested 10 topologies with one hidden layer and 8 topologies

with two layers. The number of hidden neurons was selected con-

sidering the number of features, samples and classes. Most of these

topologies had very similar performance. However, the topology

with one hidden layer and five nodes had the best performance in

terms of the average mean squared error over all folds, AUC, and

accuracy.

We applied the above learning algorithms for classification and

evaluated their performance using a 10-fold cross-validation. Our

training data set consisted of 440 samples so that each fold had

44 samples. Thus the algorithm had 10 unique runs where each

run started with a different set of random link weights, a slightly

different example set and a unique test set. After calculation of

regression coefficients for the model, the remaining fold was used

for testing the learned model and making a prediction. The pre-

dictions were then compared to the actual outcomes, and the per

cent of correct and erroneous predictions were calculated. This pro-

cess was repeated 10 times until the model was tested on all the 10

folds. The overall performance was reported. We used WEKA (Hall

et al. 2009), a machine-learning toolkit, to create and evaluate our

models.

Next we examined the ROC curves (or threshold curves) for the

LR and ANN (Fig. 7). ROC curves are cost-sensitive measures to

evaluate the performance of classifiers and obtained by applying the

classifier for various threshold levels. They illustrate the trade-off

between the sensitivity and specificity. The closer the curve follows

the left-hand border and then the top border of the ROC space

(bending in the curve towards the upper left corner of the chart), the

more accurate the test. Optimum detection thresholds are associated

with points on the ROC curve that are closest to the point of perfect

classification (0,1), which represents the highest TPR and the lowest

FRP.

The area under the ROC curve is a measure of accuracy of the

classification. Based on the AUC, the LR and ANN models present

a very good discrimination of deep and shallow events within the

seismic records for both the training and testing data sets. Another

important visualization tool for evaluating a classifier’s quality is

the precision-recall curve. The goal is to observe whether your

precision-recall curve is located towards the upper right corner of

the chart. Final results of model evaluations are presented in Table 2.

As seen in Table 2, ANN achieves the best results while LR is

relatively close in terms of performance. Both algorithms show a

balance in precision and recall. Overall, these results suggest that

ANN is a proper classifier in our case, however, LR also performed

well. Confusion matrices for ANN and LR are presented in Ta-

bles 3 and 4, respectively. Both tables indicate relatively higher

miss-classification of deep events. This was expected since our data

set consists of surface recording and hence more constrains for

shallower events.

We repeated this process using a different subset of the data

consisting of 492 single-station three-component seismograms (218

associated with deep and 274 with shallow events). Similar results

were obtained using single station data in that ANN achieved 87

per cent accuracy and LR achieved 85 per cent accuracy.

Background noise level is an important factor in performance

of a seismic classifier (Riggelsen & Ohrnberger 2014). To check

sensitivity of the classifier to the SNR and magnitude we di-

vided the data set into four groups with Mw ≥ −0.5, −0.5 > Mw

≥ −0.9, −0.9 > Mw ≥ −1.2 and −1.2 > Mw ≥ −1.7, and repeated

the classification using the ANN. Obtained accuracies are 94.54 per

cent, 87.07 per cent, 88.09 per cent and 69.23 per cent, respectively.

This suggests as events get smaller (as a result lower SNR), the

accuracy of the classifier deteriorates.

5 D I S C U S S I O N

We have demonstrated that it is possible to separate deep and shal-

low microearthquakes based on waveform features. However, it is

not only important to be able to separate two data sets, but also

to determine which variables are most relevant for achieving this

separation.

To evaluate this, we refer to the CFS results. In Table 5, the

selected features were ranked based on CFS results after 10-fold

cross-validation. In general, we can conclude that frequency and

polarization attributes, respectively, have the highest sensitivity for

determining event source depth.

To test how a classifier based on waveform-cross-correlation

or 2-D-wavelet cross-correlation perform in comparison to

LR/ANNs, we classified events solely based on ccnAb2-D and
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Figure 8. Relative distribution of spectral centroid, dip angle and degree of rectilinearity for deep (blue) and shallow (red) events.

ccD values. Classification accuracies for ccD (waveform) and

ccnAb2-D (2-D-CWT) cross-correlations are 0.68 and 0.74,

respectively. Confusion matrices are presented in Tables 6

and 7.

To take a closer look at the seismic features and their correlations,

we applied the X-means method on the first 17 features with highest

merits presented in Table 5. X-mean is an unsupervised clustering

method (Duda & Hart 1973; Bishop 1995) similar to the K-means

method. In K means clustering a parameter K is preset to the number

of clusters and is based on the assumption that we know how many

clusters exist. However, in the X-mean approach the number of

clusters is unknown and the algorithm starts with assigning each

instance to a new cluster and then merges the clusters based on their

distance (in our case we used Euclidian distance) until it converges.
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Figure 9. Mean normalized power spectra for the 440 events used in the classification.

X-mean discovered 4 clusters of features based on the correlation

of each feature with other features.

Cluster 2 in Table 8 mainly consists of spectral attributes mea-

sured in the frequency domain. Cluster 3 mostly consists of time–

frequency features with 2-D CWT cross-correlation as the centroid

feature. Polarization features dominate in cluster 4 while features in

the first cluster are more diverse in types. We have tested feasibil-

ity of the classification using just four centroid features of X-mean

clusters, however, performance of the classifier is deteriorated. This

can be due to high correlation between different features in each

cluster with small portion of one class of outputs.

We can see that deep events have relatively higher centroid values

from examination of the distribution of spectral centroid values

(Fig. 8a). This is in agreement with the observation that deeper

events have higher frequency content than shallow events seen in

the raw data (Fig. 6).

In Fig. 9, we have plotted the mean normalized power spectra

for all 440 events used in the classification. It can be seen that

deeper events are slightly richer in the higher frequencies. Fagan

et al. (2013) also reported a similar observation of higher spectral

energy at higher frequencies for events farther from the receiver. We

suspect that in our case the phenomenon is caused mainly by large

surface waves contributing to the waveforms of shallow events and

associated with the structure of low-velocity unconsolidated sub-

surface sediments. Essentially, low-frequency energy is amplified

by surface wave excitation with the near-surface sediments also ab-

sorbing higher frequency body wave radiation. However the specific

geometry of the salt and underground caverns also can cause com-

plex wave propagation that may contribute to differing frequency

content for these two groups of events.

Plots of the spectral centroid and maximum frequency amplitude

values for 1033 single seismograms are shown in Fig. 10. Relatively

higher frequency values for both measures occur for deep events

compared to shallow. However, one can verify that the spectral

centroid does a better job representing the higher frequency content

of deep events. This is in agreement with the X-mean and CFS

results.

Spectral centroid (also known as the barycentre or first order

momentum of the magnitudes of the spectrum of frequencies) is a

spectral measure usually used in audio signal processing. Although

it is not a common measure in seismic practice our results indicate

its potential to be used in seismic analyses. These results show that

spectral characteristics of waveforms generally have tighter corre-

lations to source parameters of small microearthquakes compared

to other measures such as waveform correlation.

The second group of features that show high correlation to

source depth are polarization features. We see that shallower

events have relatively higher values of dip angle and rectilinearity

(Figs 8b and c). This is because deep events in our study area are

more horizontally dispersed and they can be located farther from

receivers, while shallower events are clustered under the seismic net-

work (Fig. 3). The high correlation between polarization attributes

and event depth is due to the special geometry and hypocentre dis-

tribution of data used in this study so that it might not be a good idea

to draw a general conclusion. However, it is interesting that spectral

and polarization features can be ranked above the cross-correlation

features, which are currently the most popular measures, used by

seismologists for clustering purposes.

Another interesting result of this study is the slightly better per-

formance of 2-D cross-correlation of data in the time–frequency

domain compared to the waveform cross-correlation strictly in the

time domain. Our results show that 2-D wavelet cross-correlation

between time–frequency representations (TFRs) of template signals

(one shallow and one deep) has better performance for classifica-

tion (Tables 5–7). This result can be generalized for applications

in other seismic studies. TFRs are powerful representations of the

signal that have been shown to contain useful information for study

of micro earthquakes induced by hydraulic fracturing (Pettitt et al.

2009; Das & Zoback 2011; Tary & van der Baan 2012; Tary et al.

2014). They localize information in time and frequency simultane-

ously and describe the energy distribution in the signal segment as

a function of time and frequency. Hence they combine time-domain

and frequency-domain analyses to yield a potentially more revealing

picture of the temporal localization of a signal’s spectral compo-

nents. Hence, by 2-D cross-correlation of TFRs the similarity of

the spectral content of two TFRs and their variation over time can

be estimated. This performance can be improved for noisy traces

by utilizing time–frequency denoising algorithms (e.g. Mousavi et

al. 2016; Mousavi & Langston 2016a,b) prior to feature measure-

ment. This can assemble the spectral content of the seismic signal

more precisely. Thus, as we saw from higher correlation of spectral

features and source depth, it seems reasonable that time–frequency

comparisons give us a better measure than just waveform compari-

son alone.

The better performance of the 2-D cross-correlation in the CWT

compared to the DWT, may be due to the higher resolution of the
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Figure 10. Spectral centroid (a) and the maximum power spectra (b) measured for 1033 single vertical components. The data have been ordered into deep

(blue) and shallow (red) events.

CWT. It also can be seen that the Euclidean distance does not

seem to be a good measure of correlation for event spectra. Other

attributes defined for measuring spectral similarity, such as spectral

skewness, and spectral semblance show lower correlation to event

depth.

However, we should not forget that the data used in this study

have been collected over a very local scale and that differences

between event depths, referred to here as deep or shallow, are less

than 800 m. Successful discrimination of event depth using wave-

form information with weak amplitude indicates the potential of the

method and definition of seismic attributes proposed in this study

for a variety of other seismic studies. One possible application of

such methods can be in characterizing regional earthquakes and

seismic hazard studies (e.g. Mousavi et al. 2011, 2014; McNamara

et al. 2012). The relationship between these seismic attributes of

the signal and other parameters of microseismic events is an inter-

esting topic and can be studied further using other clustering and

unsupervised techniques such as self-organizing maps (SOM; e.g.

Musil & Plesinger 1996; Bashivan et al. 2008; Köhler et al. 2009,

2010; Esposito et al. 2013).

6 C O N C LU S I O N S

In this study the possibility of discrimination of an event’s source

depth was tested using the LR and ANN. The cross-validation test

showed that these models were able to correctly predict the depth

category of small events in a very local scale with 90.7 per cent of

accuracy. ANN had a better performance compared to the LR. The

applicability of the method for single-station data was tested with 87

per cent accuracy obtained. Seismic features based on the spectral

measurements and polarization analysis had better correlation to the

source depth. The spectral centroid had a better performance in rep-

resenting the spectral contents of signals compared to other spectral

parameters. Euclidian distance as a measure of spectral distance did

not have good performance compared to other spectral attributes.

2-D cross-correlation of time–frequency representations showed an

acceptable performance compared to the common waveform cross-

correlation and seems to be a promising tool for analyses of signal

similarities.
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A P P E N D I X A : D I S C U S S I O N O F

F E AT U R E E X T R A C T I O N

A1 Spectral centroid

The spectral centroid indicates the ‘centre of mass’ of the spectrum

and is measured as the weighted mean of the frequencies present in

the signal, determined using a Fourier transform, with their magni-

tudes as the weights, divided by the sum of magnitudes (Tzanetakis

et al. 2001):

Spectral Centroid =

∑M

1 fi .mi
∑M

1 mi

, (A1)

where mi is the magnitude of bin number i, fi represents the centre

frequency of that bin, and M is the number of bins. We measured

mean spectral centroid values.

A2 Energy density

The spectral energy density of signal x(t) is

E =
1

N

∫ ∞

−∞

|x (t)|2dt, (A2)

where N is the number of samples.
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A3 Polarization analysis

The polarization of a wave depends on wave type, wave propaga-

tion and sensor orientation. Here we use the covariance matrix of

three-component seismograms for the polarization analysis (Vidale

1986). A covariance matrix, σ , is calculated using an M-sample

sliding window over three orthogonal ground-motion recordings

corresponding to the east, north and vertical components (respec-

tively noted X, Y and Z):

σ =

⎛

⎝

Cov (X, X ) Cov (X, Y ) Cov (X, Z )

Cov (Y, X ) Cov (Y, Y ) Cov (Y, Z )

Cov (Z , X ) Cov (Z , Y ) Cov (Z , Z )

⎞

⎠ . (A3)

The covariance between any two components X and Y is defined

as

Cov(X, Y ) =
1

M

M
∑

i=1

xi yi . (A4)

We compute the covariance matrix of the pre-processed seismo-

grams for a 0.25 s (50 sample) sliding window. Then corresponding

eigenvalues (λ3 ≥ λ2 ≥ λ1) and eigenvector matrix u = (u1, u2, u3)

of σ are used to estimate the degree of rectilinearity (i.e. a measure

of the strength of polarization in the signal (Jurkevics 1988)), for

each window as

Rec = 1 −

(

λ2 + λ1)

λ3

)

. (A5)

The degree of linear polarization, Rec is approximately equal to

1.0 when there is only one nonzero eigenvalue, as for pure body

waves. Hence, we use the window with the closet value to 1.0 to

extract the characteristics of the ground motion based on attributes

computed from the principal axes (λiUi).

The azimuth of propagation can be estimated from the horizon-

tal orientation of rectilinear motion, given by the eigenvector u1

corresponding to the largest eigenvalue (Jurkevics 1988):

P azimuth = tan−1

(

u13sign (u33)

u23sign (u33)

)

, (A6)

where uj3, j = 1. . . 3 are the three direction cosines of eigenvector

u3. The sign function is introduced to resolve 180◦ ambiguities by

taking the positive vertical component of u3.

The apparent vertical incidence angle of rectilinear motion, φ, is

obtained from the vertical direction cosine of u3

φ = cos−1 |U33| . (A7)

The dip of the direction of maximum polarization is defined as

Dip = tan−1

(

U33
√

U32
2 + U31

2

)

. (A8)

Possible values for dip angle range from −90◦ to +90◦, where

0◦ dip represents a vector which points horizontally in the direction

back to the epicentre.

A4 Waveform cross-correlation

The waveform cross-correlation is a standard method of estimating

the degree to which two time series are similar. Consider two series

x(i) and y(i) where i = 0, 1, 2. . . N−1. The cross-correlation C at

delay d is defined as

C (d) =

∑

i [(x (i) − mx) ∗ (y (i − d) − my)]
√

∑

i (x (i) − mx)2 ∑

i (y (i − d) − my)2
, (A9)

where mx and my are the means of the corresponding series (e.g.

Gibbons & Ringdal 2006).

A5 Dominant period in CWT

For a given mother wavelet ψ , the CWT of x(t) at scale a and time

shift τ is given by (Daubechies 1992)

CWTx (a, τ ) =

∫

x (t)a− 1
2 ψ∗

(

t − τ

a

)

dt, (A10)

where the ∗ is the complex conjugate, and CWTx is the coefficient

representing finite energy of the signal x(t) in a concentrated time–

frequency picture. The maximum scale corresponds to the minimum

frequency.

A6 2-D Wavelet cross-correlation

The 2-D-CWT cross-correlation of an M-by-N matrix X and a P-

by-Q matrix Y is a matrix C of size M + P − 1 by N + Q − 1 given

by (Haralick 1992)

C (k, l) =

M−1
∑

m=0

N−1
∑

n=0

X (m, n) Y ∗ (m − k, n − l) (A11)

where the ∗ denotes complex conjugation. And
{

− (P − 1) ≤ k ≤ M − 1

− (Q − 1) ≤ l ≤ N − 1
. (A12)

The time–frequency representations of waveforms (CWT coef-

ficients) are used for the 2-D cross-correlation between wavelet

representations of each event and master events (one shallow and

one deep template).

A7 The spectral coherency

The spectral (wavelet) coherency is a measure of the similarity of

wavelet representations of two signals and provides the ability to

account for temporal (or spatial) variability in spectral character.

The cross-wavelet transform (Torrence & Compo 1998), is defined

as

CWT1,2 = CWT1 × CWT∗
2 (A13)

and is a complex quantity having an amplitude (the cross-wavelet

power) given by

A =
∣

∣CWT1,2

∣

∣ (A14)

and local phase θ ,

θ = tan−1 (Img (CWT1,2) /Rel (CWT1,2)) . (A15)

Wavelet coherency is a measure of phase correlation between two

wavelet representations and can be calculated by (Cooper & Cowan

2008)

Scwt = cosn (θ ) (A16)

where, n is an odd integer greater than zero. Scwt values range from

1 (inversely correlated) through zero (uncorrelated) to +1 (corre-

lated). Combining the phase information of Scwt with the amplitude
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information of A, another measure of coherency of wavelet repre-

sentations can be defined as:

Dcwt = cosn (θ )
∣

∣CWT1 × CWT∗
2

∣

∣ (A17)

A8 The spectral semblance

Semblance filtering compares two data sets based on correla-

tions between their phase angles, as a function of frequency.

When the Fourier transforms of two time-series x1 and x2 are

calculated, the difference in their phase angles at each fre-

quency can be computed simply from (von Frese et al. 1997;

Christensen 2003)

S = cos θ ( f ) =
R1 ( f ) R2 ( f ) + I1 ( f ) I2 ( f )

√

R2
1 ( f ) I 2

1 ( f ) ×

√

R2
2 ( f ) I 2

2 ( f )
(A18)

where, Ri(f) and Ii(f) are the real and imaginary components of the

Fourier transform of xi, expressed as a function of frequency f. The

semblance S can take on values from 1 to +1. A value of +1 implies

perfect phase correlation, 0 implies no correlation, and −1 implies

perfect anticorrelation.

A9 The envelope similarity

Envelope similarity is a measure of the similarity between the signal

shape of each event e and the reference template (master event)

em. The envelope similarity Es is measured using the Manhattan

distance:

Es =

∑N

i=1 |e (i) − em (i)|
∑N

i=1 e (i)
(A19)

where,

e (i) =

√

X (i)2 + H [X (i)]2
, (A20)

X is the vertical component seismogram and H indicates the

Hilbert Transform.

A10 The spectral distance

We used the squared Euclidean distance between the normalized

spectral powers to measure the similarities of events in the frequency

domain (Fagan et al. 2013). All waveforms start 2 s before the

origin time and have 12 s duration and length of 2000 samples. The

autocovariance for lag k of event {x(t): t = 1, 2, . . . , n} with zero

mean is defined as

Ac (k) =
1

n

n
∑

t=k+1

xt xt−k, k = 0, 1, . . . , n − 1. (A21)

The spectrum is the discrete Fourier transform of Ac and has the

form of

F (ω) = Ac (0) + 2

n−1
∑

k=1

Ac (k) cos (kω), (A22)

where Ac(0) is the variance of x and ω = 2π j/n for positive integer

j < n/2. The first 500 Fourier frequencies are then used for the

correlation. The squared spectral distance for event e and master

event em is

d2 (e, em) =
[

Fe (ω) − Fem
(ω)

]T [

Fe (ω) − Fem
(ω)

]

. (A23)

A11 The spectral skewness

Skewness is used here to characterize the degree of symmetry or

asymmetry of the amplitude spectrum of an event signal around its

dominant frequency. Sk for a roughly symmetrical function is near

zero and is given by

Sk =

1
N

∑N

i=1 (F (ω) − ω̄)3

(

√

1
N

∑N

i=1 (F (ω) − ω̄)2

)3
, (A24)

where N is the Nyquest frequency and ω̄ is mean frequency in the

window around the dominant frequency of the signal.
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