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ABSTRACT

Quantitative imaging of the elastic properties of the subsur-

face at depth is essential for civil engineering applications and

oil- and gas-reservoir characterization. A realistic synthetic ex-

ample provides for an assessment of the potential and limits of

2D elastic full-waveform inversion �FWI� of wide-aperture seis-

mic data for recovering high-resolution P- and S-wave velocity

models of complex onshore structures. FWI of land data is chal-

lenging because of the increased nonlinearity introduced by free-

surface effects such as the propagation of surface waves in the

heterogeneous near-surface. Moreover, the short wavelengths of

the shear wavefield require an accurate S-wave velocity starting

model if low frequencies are unavailable in the data. We evaluat-

ed different multiscale strategies with the aim of mitigating the

nonlinearities. Massively parallel full-waveform inversion was

implemented in the frequency domain. The numerical optimiza-

tion relies on a limited-memory quasi-Newton algorithm that

outperforms the more classic preconditioned conjugate-gradient

algorithm. The forward problem is based upon a discontinuous

Galerkin �DG� method on triangular mesh, which allows accu-

rate modeling of free-surface effects. Sequential inversions of in-

creasing frequencies define the most natural level of hierarchy in

multiscale imaging. In the case of land data involving surface

waves, the regularization introduced by hierarchical frequency

inversions is not enough for adequate convergence of the inver-

sion. A second level of hierarchy implemented with complex-

valued frequencies is necessary and provides convergence of the

inversion toward acceptable P- and S-wave velocity models.

Among the possible strategies for sampling frequencies in the in-

version, successive inversions of slightly overlapping frequency

groups is the most reliable when compared to the more standard

sequential inversion of single frequencies. This suggests that si-

multaneous inversion of multiple frequencies is critical when

considering complex wave phenomena.

INTRODUCTION

Quantitative imaging of the elastic properties of the subsurface is

essential for oil- and gas-reservoir characterization and for monitor-

ing carbon dioxide sequestration with time-lapse acquisitions. In-

deed, fluids and gases have significant effects on the elastic proper-

ties of the subsurface in terms of Poisson’s ratio anomalies. This

quantitative imaging is also required for near-surface imaging in the

framework of civil engineering applications because the shear prop-

erties of the shallow weathered layers strongly impact the elastic

wavefield. Moreover, at the near-surface scale, short propagation

times do not allow for easy separation in time of body waves and sur-

face waves. In this case, filtering or muting surface waves is not

easy; both types of waves need to be involved in the imaging, which

requires solving the elastic wave equation. Evolution of acquisition

systems toward wide-aperture/wide-azimuth geometries and multi-

component recordings is another motivation behind the develop-

ment of elastic imaging methods because the occurrence of P-S-

mode conversion is dominant at wide-aperture angles.

Classically, reservoir characterization is performed by amplitude-

variation-with-offset �AVO� analysis in the prestack domain �e.g.,

Jin et al., 2000; Buland and Omre, 2003�. An alternative is full-

waveform inversion �FWI� of the elastic wavefield recorded by mul-

tiple components for reconstructing the P- and S-wave velocity �VP

and VS� models of the subsurface �or related parameters such as im-

pedances if density is involved in the inversion� with a resolution

limit on the order of a half-wavelength. The misfit between the re-

corded and modeled wavefields is minimized through the resolution

of a numerical optimization problem �Tarantola, 1987; Nocedal and
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Wright, 1999�. The FWI forward problem is based on the complete

solution of the full �two-way� wave equation.

One drawback is that elastic FWI is a computationally challeng-

ing problem. Recent advances in high-performance computing on

large-scale distributed-memory platforms allow 2D problems of

representative sizes to be tackled; whereas 3D problems start to be

investigated only in the acoustic case �Sirgue et al., 2007; Ben-Hadj-

Ali et al., 2008; Vigh and Starr, 2008; Warner et al., 2008�. More-

over, the complexity of the elastic wavefield at wide aperture makes

the inverse problem highly nonlinear and ill posed. This is even more

dramatic for onshore applications where surface waves with high en-

ergy and body waves can be used in the optimization process. Full-

waveform inversion is solved conventionally with local optimiza-

tion �linearized� approaches, which makes the inversion sensitive to

the limited accuracy of the starting model. As such, it is essential to

use realistic synthetic case studies to investigate under which condi-

tions the nonlinearity of the elastic FWI can be mitigated.

Most recent applications of FWI to real data have been performed

under acoustic approximation �Pratt and Shipp, 1999; Hicks and

Pratt, 2001; Ravaut et al., 2004; Gao et al., 2006; Operto et al., 2006;

Bleibinhaus et al., 2007�. Although reliable results can be obtained

with acoustic approximation if judicious data preprocessing and in-

version preconditioning are applied �Brenders and Pratt, 2007b�,

elastic FWI is desirable for applications that detect fluids and gases

and sequester carbon dioxide �CO2�. Moreover, acoustic FWI can

lead to erroneous models if applied to elastic data when the velocity

models show high velocity contrasts and when specific FWI prepro-

cessing and tuning are not applied to the data �Barnes and Charara,

2008�.

Only a few applications of elastic FWI have been presented. In

early applications, Crase et al. �1990, 1992� apply elastic FWI to real

land and marine reflection data using limited offsets. In this frame-

work, FWI is applied as quantitative migration processing for imag-

ing P- and S-wave impedances. With the benefit provided by wide-

aperture data to build the large and intermediate wavelengths of the

subsurface recognized by Mora �1987, 1988�, acoustic and elastic

FWI have evolved as an attempt to build high-resolution velocity

models.

Shipp and Singh �2002� perform 2D time-domain FWI of a small,

wide-aperture marine data subset recorded by a long streamer

�12 km long�. Although the forward problem is solved using the

elastic-wave equation, only VP is reconstructed during FWI, assum-

ing an empirical relationship between VP and VS and between VP and

density. They design a hierarchical multistep approach based on lay-

er stripping and offset and time windowing, where the goal is to miti-

gate the nonlinearity of the inverse problem.

Sears et al. �2008� design a similar multistep strategy to perform

elastic time-domain FWI of multicomponent ocean-bottom-cable

�OBC� data. Their strategy is based on the selection of the data com-

ponent, parameter class, and arrival type �by time windowing�. It is

useful especially when the P-to-S conversion is small at the sea bot-

tom, which makes reconstructing the VS model particularly ill posed.

Choi and Shin �2008� and Choi et al. �2008� apply elastic frequen-

cy-domain FWI to onshore and offshore versions of the synthetic

Marmousi2 model �Martin et al., 2006�, respectively. They success-

fully image the model using a velocity-gradient starting model and a

very low starting frequency �0.16 Hz�.
Shi et al. �2007� apply elastic time-domain FWI to marine data

collected from a gas field in western China. They successfully image

a zone of Poisson’s ratio anomalies associated with gas layers.Accu-

rate starting VP and VS models are built from the P- and P-SV-wave

velocity analysis and from a priori information of several well logs

along the profile.

Gelis et al. �2007� implement a 2D elastic frequency-domain FWI

using Born and Rytov approximations to linearize the inverse prob-

lem. They highlight the dramatic footprint of the surface waves on

imaging small inclusions in homogeneous background models. To

mitigate this footprint, they only involve body waves during the ear-

ly stages of the inversion by selecting short-offset traces.

Our study presents a 2D massively parallel elastic frequency-do-

main FWI algorithm based on a discontinuous Galerkin �DG� for-

ward problem �Brossier et al., 2008�, applied to a realistic synthetic

onshore case study. We want to assess whether surface waves and

body waves recorded by wide-aperture acquisition geometries can

be inverted jointly to build high-resolution VP and VS of complex on-

shore structures.

We implement FWI in the frequency domain, which presents

some distinct advantages with respect to the time-domain formula-

tion �Pratt and Worthington, 1990; Pratt, 1999; Sirgue and Pratt,

2004�. The inverse problem can be solved with a local optimization

approach using a conjugate gradient or a quasi-Newton method �No-

cedal and Wright, 1999�. The gradient of the objective function is

computed with the adjoint-state technique �Plessix, 2006�. Succes-

sive inversions of increasing frequency provide a natural framework

for multiscale imaging algorithms. Moreover, by sacrificing the data

redundancy of multifold acquisitions, inverting a limited number of

frequencies can be enough to build reliable velocity models, provid-

ed the acquisition geometry spans over sufficiently long offsets.

These few frequencies can be modeled efficiently in the 2D case for

multiple shots once the impedance matrix that results from discretiz-

ing the frequency-domain wave equation is factorized through low-

er-and-upper-matrices �LU� decomposition �Marfurt, 1984; Nihei

and Li, 2007�. Finally, attenuation can be implemented in the for-

ward problem straightforwardly and without extra computational

cost by using complex velocities.

The main drawback of the frequency-domain FWI formulation

arises from the difficulty of time windowing the modeled data when

inverting one or a few sparsely sampled frequencies at a time. Time

windowing allows selection of specific arrivals during the various

stages of the inversion.Alast resort is the use of complex-valued fre-

quencies, which damp arrivals starting at a given traveltime �Shin et

al., 2002�.

In the next section, we review the theory of frequency-domain

elastic full-wavefield modeling and inversion. Following, we review

several multiscale strategies to mitigate the nonlinearity of the elas-

tic inverse problem. These strategies involve two nested levels of hi-

erarchy over frequencies and aperture angles in the inversion algo-

rithm. The effectiveness of these strategies is first illustrated with a

simple two-parameter elastic problem with a free surface. Then we

apply the elastic frequency-domain FWI algorithm to a realistic syn-

thetic example to reconstruct a dip section of the SEG/EAGE over-

thrust model, assuming a constant Poisson’s ratio. The results of the

analyses show that simultaneous inversions of multiple frequencies

and data preconditioning by time damping are critical to obtaining

reliable results when surface waves propagating in a heterogeneous

near surface are present in the elastic wavefield. We also illustrate

the improvements provided by quasi-Newton algorithms compared

to more conventional conjugate-gradient approaches.
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METHOD AND ALGORITHM

Forward problem

The 2D elastic frequency-domain FWI requires computing the

frequency solution of the elastic P-SV equations in heterogeneous

media. We present a short review of the P0 DG method used in this

study �see Brossier et al. �2008� for details�.

We consider the first-order hyperbolic system, where particle ve-

locities �Vx,Vz� and stresses �� xx,� zz,� xz� are unknown quantities, as

described by the system

�i�Vx�
1

��x�
� �� xx

�x
�

�� xz

� z
�� fx

�i�Vz�
1

��x�
� �� xz

�x
�

�� zz

� z
�� fz

�i�� xx� ���x��2��x��
�Vx

�x
���x�

�Vz

� z

� i�� xx0

�i�� zz���x�
�Vx

�x
� ���x��2��x��

�Vz

� z

� i�� zz0

�i�� xz���x�� �Vx

� z
�

�Vz

�x
�� i�� xz0

, �1�

where the Lamé coefficients that describe the medium are denoted

by � and �, the density by �, and the angular frequency by �. Source

terms are point forces � fx,f z� or applied stresses �� xx
0
,� zz

0
,� xz

0
�. The

purely imaginary term i is defined by i���1. Only isotropic media

are considered in this study.

Equation 1 is discretized and solved with the DG method �Käser

and Dumbser, 2006�. We use low-order P0 interpolation, which cor-

responds to piecewise constant-velocity and stress fields, and physi-

cal parameters in each cell. The DG method is applied to the weak

formulation of equation 1; the partial derivatives are computed

through numerical fluxes exchanged at interfaces between cells. The

perfectly matched layers �PML� method is used for absorbing

boundary conditions along the edges of the model �Berenger, 1994�.

An explicit free-surface boundary condition for arbitrary complex

topographies is implemented on top of the model by canceling fluxes

of normal stresses along the boundary that consists of edges of trian-

gles.

A sufficient level of accuracy for FWI can be obtained using the

DG P0 method, with 10–15 cells per minimum shear wavelength in

regular equilateral meshes �Brossier et al., 2008�. These regular

meshes are used for the simulations presented later. Note that ex-

tending the DG method to higher-order interpolations is required for

modeling in unstructured meshes and for combining different inter-

polations arbitrarily during one simulation �e.g., Dumbser and

Käser, 2006�.

The discretization of equation 1 leads to solving the linear system

Av�s, �2�

where the coefficients of the impedance matrix A — namely, the for-

ward-modeling operator — depend on the modeled frequency and

the medium properties. Vector s represents the source term; v repre-

sents the unknowns for particle velocities and stresses in each cell.

Note that only the vertical and horizontal particle velocity wave-

fields are inverted in this study.

Inverse problem

Full-waveform inversion is an optimization problem that can be

recast as a linearized least-squares problem which attempts to mini-

mize the misfit between the recorded and the modeled wavefields

�Tarantola, 1987�. The inverse problem can be formulated in the fre-

quency domain �Pratt and Worthington, 1990�. The associated ob-

jective function to be minimized is defined by

C�k�
�

1

2
�d†Wd�d�

1

2
�d†Sd

†Sd�d, �3�

where �d�dobs�dcalc
�k� is the data misfit vector, the difference be-

tween the observed data dobs, and the modeled data dcalc
�k� computed in

the model m�k�. Superscript † indicates the adjoint �transposed conju-

gate�, and Sd is a diagonal weighting matrix applied to the misfit vec-

tor to scale the relative contributions of each component. The itera-

tion number is given by k.

The gradient G�k� of the objective function is given by

G�k�
�R�JtWd�d*�, �4�

where J is the Fréchet derivative matrix. Adjoint-state formalism al-

lows efficient computation of the gradient, without explicitly com-

puting J �Plessix, 2006�. This leads to the following expression of

the gradient with respect to the parameter mi �Pratt et al., 1998; Gelis

et al., 2007�:

Gmi

�k�
�R�vt� �At

�mi

	A�1Wd�d*� . �5�

This shows that the gradient can be recast as a product between

the incident wavefields v and the back-propagated wavefields

A�1Wd�d* , using residuals at receiver positions as a composite

source. Therefore, only two forward problems per shot are required

for gradient building. In equation 5, we exploit the reciprocity of the

Green’s functions to remove the transpose operator in the expression

of the back-propagated residuals �A�1
t

Wd�d*
�A�1Wd�d* �.

The radiation pattern of the diffraction by mi is denoted by

�A /�mi.Analysis of these radiation patterns suggests that VP and VS

parameterization is optimal for large diffraction angles �i.e., for

wide-angle reflections�, whereas IP and IS impedances should pro-

vide better decoupling between the two classes of parameters for

small diffraction angles �i.e., short-angle reflections; Tarantola,

1986�.

A second-order Taylor expansion of the objective function pro-

vides the perturbation model � m, which minimizes the objective

function assumed to be locally parabolic, expressed as

B�k�� m��G�k�, �6�

where B�k� is the Hessian of the objective function. Because of high

cost to compute B�k�, Newton and Gauss-Newton methods generally

are not considered for realistic problems �Pratt et al., 1998�. Steep-

est-descent or conjugate-gradient methods preconditioned by the di-

agonal terms of an approximate Hessian are used more convention-

ally �Pratt et al., 1998; Operto et al., 2006�. Shin et al. �2001� use the

diagonal part of the pseudo-Hessian, a less computationally de-

manding approximation of the truncated Hessian. Accounting for
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the Hessian accelerates the convergence of the inversion and im-

proves the resolution of the imaging by correctly scaling and decon-

volving the gradient by geometric amplitude and limited-bandwidth

effects.

We use a quasi-Newton method for the FWI problem. The limit-

ed-memory Broyden-Fletcher-Goldfarb-Shanno �L-BFGS� method

is used commonly in numerical optimization to solve large-scale

nonlinear problems �Nocedal, 1980�.As indicated, L-BFGS is a lim-

ited-memory version of the BFGS method; it appears to be one of the

most robust and efficient limited-memory quasi-Newton algorithms

�Nocedal and Wright, 1999�. The quasi-Newton L-BFGS �n� meth-

od estimates curvature information contained in the Hessian matrix

from a limited number �n� of gradient-difference vectors and model

difference vectors associated with the n most recent iterations �n is

usually between 3 and 20�.

The iterative process is preconditioned by an initial guess of the

Hessian, typically the diagonal terms of an approximate Hessian.

Using the Sherman-Morrison-Woodburry formula �Nocedal and

Wright, 1999�, at each iteration the L-BFGS algorithm computes an

improved estimate of the inverse H�k� of the Hessian matrix B�k�.

Therefore, resolution of equation 6 is avoided and the perturbation

model is inferred directly from

� m��H�k�G�k�. �7�

The double-loop recursive algorithm designed by Nocedal �1980�

does not build and store H�k� explicitly but computes the right-hand

side of equation 7 directly with additions, differences, and inner

products of the vectors.

Finally, the model is updated with the perturbation vector:

m�k�1�
�m�k�

��� m, �8�

where � denotes the step length, which minimizes the objective

function. In this study, we estimate � by parabola fitting. When the

Hessian matrix is taken into account in the inversion, perturbation

models associated with each parameter class computed with equa-

tion 7 are scaled correctly with respect to each other �Nocedal and

Wright, 1999�. Therefore, an estimation of only one step length � is

necessary to minimize the objective function for the multiparameter

classes. A subspace method �Sambridge et al., 1991� that leads to

similar results also has been tested; however, it is more computation-

ally intensive because it requires extra forward-problem simula-

tions.

Parallel implementation

The massively parallel direct solver MUMPS �Amestoy et al.,

2006� is based on a multifrontal method �Duff and Reid, 1983� and it

is used to solve the linear system that results from discretizing the

forward problem �equation 2�. Parallel LU factorization of A speeds

up factorization by more than one order of magnitude compared to

sequential execution. Moreover, LU factors are stored in a distribut-

ed form over the in-core memory of the processors �Sourbier et al.,

2009�, making this quite efficient for solving larger problems with-

out intensive input/output �I/O� resources. After the substitution

phase, multiple solutions are distributed over the processors follow-

ing the domain decomposition driven by the distribution of the LU

factors.

Equation 5 shows that the gradient computation is a weighted

product of the forward problem solutions, i.e., the incident wave-

fields and the back-propagated residual wavefields. This product can

be easily performed in parallel by assigning one processor to each

subdomain. To improve the load balancing over the processors,

MUMPS-distributed solutions are reordered with message-passing

interface �MPI� point-to-point communications before gradient

computation, using a well-balanced mesh partitioning that is per-

formed with METIS software �Karypis and Kumar, 1999�. The gra-

dient and the initial estimation of the Hessian are therefore efficient-

ly computed in parallel before being centralized on the master pro-

cessor for perturbation model building.

FWI DATA PRECONDITIONING AND

MULTISCALE STRATEGIES

CPU-efficient frequency-domain FWI is generally conducted by

successive inversions of single frequencies, proceeding from low

frequencies to higher ones �Pratt and Worthington, 1990; Sirgue and

Pratt, 2004�. This defines a multiresolution framework that helps

mitigate the nonlinearity of the inverse problem associated with

high-frequency cycle-skipping artifacts. The CPU-efficient algo-

rithms can be designed by selecting a few coarsely sampled frequen-

cies so that the wavenumber redundancy which results from a dense

sampling of frequencies and aperture angles is decimated. This strat-

egy, referred to as the sequential inversion approach, has proven to

be effective for several applications of acoustic FWI �Ravaut et al.,

2004; Operto et al., 2006; Brenders and Pratt, 2007a�. However, it

might lack robustness when complex wave phenomena are present.

For example, reconstruction of a low-velocity layer in the overthrust

model was improved when several frequencies were inverted simul-

taneously, rather than successively, during acoustic FWI �Sourbier et

al., 2009�. More significant wave-propagation effects are expected

in elastic FWI because of conversions, dispersive surface waves, and

frequency-dependent attenuation.

More robust but more computationally expensive multiscale FWI

schemes should be designed by preserving partially the redundancy

of multifold seismic data. The first scheme, which we refer to as the

Bunks approach, is an adaptation in the frequency domain of the

time-domain approach of Bunks et al. �1995�. It consists of succes-

sive inversions of overlapping frequency groups. The first group

contains only the starting frequency; one higher frequency is added

from one group to the next. The second approach, which we call the

simultaneous inversion approach, consists of successive inversions

of slightly overlapping frequency groups. It differs from the Bunks

approach in that several frequencies are inverted simultaneously at

each inversion stage and overlapping between the two next-frequen-

cy groups is minimized. Definition of the frequency bandwidth of

each group should be driven by the best compromise between the

need to avoid high-frequency cycle-skipping artifacts and the need

to invert simultaneously as many frequencies as possible to stabilize

the inversion.

The nonlinearity of FWI can also be mitigated efficiently by se-

lecting a subset of specific arrivals �i.e., early arrivals, reflected

phases� in the data by time windowing �e.g., Sheng et al., 2006; Sears

et al., 2008�. Frequency-domain wave modeling is less flexible than

the time-domain system for preconditioning the data by time win-

dowing, because a limited number of frequencies are processed con-

ventionally at a given step of the inversion. However, data precondi-

tioning can be applied in the frequency domain by complex frequen-

cies �� � i	 �, equivalent to damp seismograms in the time domain

WCC108 Brossier et al.



�Shin et al., 2002; Brenders and Pratt, 2007b�. The Fourier transform

of a signal f�t� damped in time by exp�	 �t�t0� is given by

F�� � i	 �exp	 t0�

�


�


f�t�exp�	 �t�t0�exp�i�tdt, �9�

where the damping can be applied from an arbitrary arrival time t0,

which usually corresponds to the first-arrival time.

Time damping applied from the first-arrival time can be viewed as

a heuristic way to select aperture angles of P-waves in the data. Ar-

rivals located in time close to the first-arrival times correspond to

wide-aperture P-wave events, whereas the later-arriving phase from

the first-arrival traveltime corresponds to shorter-aperture P-wave

events and converted waves. Because aperture angle is an additional

parameter to frequency in controlling the spatial resolution of FWI

�Miller et al., 1987; Wu and Toksöz, 1987; Sirgue and Pratt, 2004�,

aperture selection can be exploited to implement a second level of

hierarchy in FWI in addition to that naturally introduced by frequen-

cy selection.

Another benefit expected from complex-valued frequencies is the

damping during the early FWI iterations of converted P-S waves,

free-surface multiples, and surface waves, which introduces addi-

tional nonlinearities into the inversion. In practice, this second level

of hierarchy can be implemented by progressively relaxing the time

damping during each frequency-group inversion. When complex-

valued frequencies are used in FWI, the amplitude term exp	 t0 must

be introduced in the weighting matrix Sd �equation 3� to apply the

same damping to the partial-derivative wavefields and to the data re-

siduals, which are crosscorrelated during gradient building.

We designed the elastic frequency-domain FWI algorithm so that

each of these strategies could be tested easily. The FWI algorithm

implements the two nested hierarchical levels through an outer loop

over the frequency groups and an inner loop over the damping terms

�i.e., the imaginary part of the complex-valued frequencies�. Here, a

frequency group is a set of real frequencies inverted simultaneously.

A third loop is over inversion iteration, and a fourth is over the fre-

quencies of the group.An updated model is produced after one itera-

tion of the inversion involving one frequency group and one damp-

ing term.

The major steps of our FWI algorithm are:

for frequency �group�group�1 to group�n do

for data�damping�highdamping to lowdamping do

while �NOT convergenceAND iter � nitermax� do

for frequency� frequency �1 to frequency �n do

Propagate wavefields from sources

Compute Residuals �d and Cost Function Cm
�k�

Backpropagate Residuals from receivers

end for

Build gradient vector Gm
�k�

if iter�1 then

Compute diagonal of Pseudo-Hessian

end if

Compute perturbation vector � m with L-BFGS

Define optimal step length � by parabola fitting

Update model m�k�1�
�m�k�

��� m

end while

end for

end for

APPLICATION TO A CANONICAL MODEL

Full-waveform inversion is an ill-posed, nonlinear problem even

for apparently simple models involving few parameters. Mulder and

Plessix �2008� analytically illustrate the nonlinearity of 3D acoustic

FWI with a 1D velocity-gradient model defined by two parameters.

The objective function shows multiple local minima around the true

global minimum. Here, we consider a similar two-parameter prob-

lem for a 2D elastic model with a free surface on top.

A 1D VP gradient model defined by VP�z��V0��z is consid-

ered, where V0 is the P-wave velocity at the surface and � is the verti-

cal velocity gradient. The S-wave velocity is inferred from the

P-wave velocity by considering a constant Poisson’s ratio of 0.24. A

vertical point force is located just below the free surface; 350 receiv-

ers record horizontal and vertical particle velocities on the free sur-

face along a 17-km-long profile.

The objective function is plotted as a function of V0 and � for the

5.8-Hz frequency in Figure 1a. The global minimum is located at the

coordinates of the true model �V0�4 km /s, � �0.35 s�1�. Cross

sections along the �-axis for V0�4 km /s and along the V0-axis for

� �0.35 s�1 show the nonconvex shape of the objective function

�Figure 1�. Multiple local minima are present, particularly on the �
section, even for this simple gradient model and the low-frequency

content in the data.

We repeat the same simulations for damped data using 	 �3.33

�equation 9�. Using this data preconditioning, the objective function

is now convex �Figure 1c and d�. The convex shape of the objective

function should ensure convergence of the inversion toward the glo-

bal minimum of the objective function for all of the starting models

sampled in Figure 1.

ONSHORE SYNTHETIC CASE STUDY

SEG/EAGE overthrust model and experimental setup

We considered a 204.65-km dip section of the SEG/EAGE

overthrust model to assess the potential of 2D elastic frequency-do-

main FWI for imaging complex onshore structures �Aminzadeh et

al., 1997; Figure 2a�. The overthrust model was a 20204.65-km

3D acoustic model that represents an onshore complex thrusted sedi-

0�

��a) b)

c) d)

Figure 1. Objective function as a function of the two model parame-
ters for the �a� full and �b� damped data sets. Cross sections for �c� V0

�4 km /s and �d� � �0.35 s�1. The solid and dashed lines corre-
spond to the full and the damped data sets, respectively.
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mentary succession constructed on top of a basement block. Several

faults and channels were present in the model as well as a complex

weathering zone on the surface. For elastic FWI, a VS model was

built from the VP model using a constant Poisson’s ratio of 0.24. A

uniform density of 1000 kg.m�3 was considered and assumed to be

known during the inversion. A free surface was set on top of the

model.

The onshore, wide-aperture survey consisted of 199 explosive

sources spaced every 100 m and located 25 m below the free sur-

face. All of the shots were recorded by 198 vertical and horizontal

geophones, spaced every 100 m on the surface. The vertical and hor-

izontal components of particle velocity were used as the data set for

the elastic FWI. The data were computed with the same algorithm

for observed and computed data in inversion. The source signature

was assumed to be known in FWI. An elastic shot gather is shown in

Figure 3a and b for the horizontal and vertical components of parti-

cle velocity. The corresponding shot gather computed when an ab-

sorbing boundary condition is set on top of the model is shown for

comparison in Figure 3c and d to highlight the additional wave com-

plexities introduced by free-surface effects �i.e., surface waves and

body-wave reflection from the free surface�. Of note, the high ampli-

tudes of the surface waves dominate the wavefield, especially on the

vertical component �Figure 3a and b�.

Starting VP and VS models for FWI were computed by smoothing

the true velocity models with a 2D Gaussian function of vertical and

horizontal correlation ranges of 500 m �Figure 2b�. This starting

model was proven accurate enough to image the overthrust model by

a 2D acoustic frequency-domain FWI using a realistic starting fre-

quency of 3.5 Hz �Sourbier et al., 2009�. For the elastic inversions

presented here, we used a lower starting frequency of 1.7 Hz.Astart-

ing frequency of 3.5 Hz for elastic FWI led to a deficit of long wave-

length in the VS models, which made the inversion converge toward

a local minimum.

The different behavior of acoustic and elastic FWI for the over-

thrust case study highlights the increased sensitivity of elastic FWI

with respect to the limited accuracy of the starting models. Five dis-

crete frequencies �1.7, 2.5, 3.5, 4.7, and 7.2 Hz� were used for the

elastic FWI. This frequency should allow continuous sampling of

the wavenumber spectrum according to the criterion of Sirgue and

Pratt �2004�.

We consider three full-waveform inversion data preconditioning

and multiscale strategies to manage frequencies: successive inver-

sion of single frequencies, successive inversion of frequency groups

of increasing bandwidth, and successive inversion of slightly over-

lapping frequency groups. For each frequency group, the inversion

is subdivided into two steps. In step 1, no offset-dependent gain is

applied to the data. Although we scale the gradient by the diagonal

terms of the Hessian, we observe some lack of reconstruction in the

deep part of the model, suggesting that the near-offset traces have a

dominant contribution in the objective function. This layer-stripping

effect might provide additional regularization of the inversion, in ad-

dition to that provided by the frequency and aperture-angle selec-

tions. In step 2, we apply a quadratic gain with offset to the data to

strengthen the contribution of long-offset data in the inversion and,

hence, to improve the imaging of the deeper part of the model.

During the two-step inversion, the coefficients of the diagonal

weighting operator Sd, respectively, are given by

Sd�exp	 t0

Sd�exp	 t0�offset�2, �10�

with the reminder that the coefficients exp	 t0 account for offset-de-

pendent time damping �equation 9�. For all of the tests presented ex-

cept the first, we use five damping factors per frequency to precondi-

tion the data �	 �1.5,1.0,0.5,0.1,0.033�. A shot gather computed

for the first four damping factors is shown in Figure 4 to illustrate the

amount of information preserved in the data. Note how the high

damping limits the offset range over which surface waves are seen.

b)

a)

Figure 2. �a� Dip section of the synthetic SEG/EAGE overthrust
model. P-wave velocity is depicted. �b� Starting model used for elas-
tic FWI.

a)

b)

c)

d)

Figure 3. Seismograms computed in the overthrust model for �a� hor-
izontal and �b� vertical components of particle velocity. The shot is
located at a horizontal distance of 3 km.Afree surface was set on top
of the model. �c, d� The same as for �a� and �b� except that an absorb-
ing boundary condition was implemented on top of the model.
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Inversion is also regularized by Gaussian smoothing of the perturba-

tion model to cancel high-frequency artifacts in the gradient.

The diagonal terms of the pseudo-Hessian matrix �Shin et al.,

2001� provide an initial guess of the Hessian for the L-BFGS algo-

rithm without introducing extra computational costs during gradient

building. Five differences of gradients and models vectors are used

for the L-BFGS algorithm. The model parameters for inversion are

VP and VS, which are suitable for wide-aperture acquisition geome-

tries �Tarantola, 1986�. The loop over the inversion iteration of one

complex-valued frequency group is stopped when a maximum itera-

tion of 45 is reached or when the convergence criterion is reached

�relative decrease of two successive cost functions lower than 5

10�5�. The schedule of the frequencies and damping terms used in

the sequential approach, the Bunks approach, and the simultaneous

approach are outlined in Table 1.

Here, we quantify the data misfit for each test with the normalized

misfit C̄, defined by

C̄�

�i�1
5 �di�mf�2

�i�1
5 �di�m0�2

, �11�

where �di�mf� denotes the data misfit vector for the ith frequency

and for the final FWI model mf and m0 denotes the starting model

shown in Figure 2b.

The FWI model’s quality is quantified by

mq�
1

N
�mf�mtrue

mtrue

�
2

, �12�

where mtrue denotes the exact model for VP or VS and where N is the

number of grid points in the computational domain. The normalized

misfit and the model quality for the different tests are outlined in Ta-

ble 2.

Raw data inversion

A first inversion test was performed without data damping �i.e.,

without using complex-valued frequencies�, which implies that all

of the arrivals were involved in the inversion. The five frequencies

�Table 1� were inverted successively with the sequential approach.

The FWI VP and VS models after inversion are shown in Figure 5.

The inversion clearly failed to converge toward the true models for

the VP and VS parameters, even at low frequencies.

Successive single-frequency inversions of damped data

We repeated the experiment, except that the

five damping terms �	 �1.5,1.0,0.5,0.1,0.033�
were used to stabilize the inversion �Table 1�. The

final FWI VP and VS models are shown in Figure

6. Contrary to the previous experiment, most of

the layers are now reconstructed successfully. A

comparison between 1D vertical profiles extract-

ed from the true model, the starting model, and

the FWI models shows a reliable estimate of ve-

locity amplitudes despite a low maximum fre-

quency of 7.2 Hz �Figure 7�.

To account for the limited bandwidth effect of

the source in the FWI model appraisal, we also

plotted the vertical profiles of the true models af-

ter low-pass filtering at the theoretical resolution of FWI for a maxi-

mum frequency of 7.2 Hz. The true models were convert-ed from

depth to time using the velocities of the starting model and low-pass

filtered with a cut-off frequency of 7 Hz before conversion back to

the depth domain. The VS model is affected more by spurious arti-

facts than the VP model, especially in the deep part of the model. This

could be caused by a deficit of small wavenumbers in the VS models

resulting from the shorter propagated wavelengths, which makes re-

construction of VS more nonlinear.

We saw some inaccuracies in the reconstruction of VP and VS in

the shallowest parts of the models �Figure 7�. The resulting residuals

of the surface waves and reflections from the free surface might have

Table 1. Inversion parameters for the sequential, Bunks, and simultaneous
approaches for frequencies within a frequency group (FG).

FG

Sequential
frequencies

�Hz�

Bunks
frequencies

�Hz�

Simultaneous
frequencies

�Hz�
Damping factors

�1/s�

1 1.7 1.7 1.7, 2.5, 3.5 1.5, 1, 0.5, 0.1, 0.033

2 2.5 1.7, 2.5 3.5, 4.7, 7.2 1.5, 1, 0.5, 0.1, 0.033

3 3.5 1.7, 2.5, 3.5 — 1.5, 1, 0.5, 0.1, 0.033

4 4.7 1.7, 2.5, 3.5, 4.7 — 1.5, 1, 0.5, 0.1, 0.033

5 7.2 1.7, 2.5, 3.5, 4.7, 7.2 — 1.5, 1, 0.5, 0.1, 0.033

a)

b)

c)

d)

Figure 4. Seismograms for vertical component of particle velocity
computed in the dip section of the overthrust model using four val-
ues of imaginary frequency: �a� 	 �1.5 s�1, �b� 	 �1.0 s�1, �c� 	
�0.5 s�1, �d� 	 �0.1 s�1. Time damping was applied from the
first-arrival traveltime to preserve long-offset information.
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been back-projected erroneously in the deeper part of the model,

leading to the above-mentioned inaccuracies �Figure 8�. The final

normalized L2 misfit computed for the five frequencies is 4.12

10�1. The VP and VS model qualities are 5.5410�2 and 6.47

10�2, respectively.

FWI without free-surface effects

To assess the footprint of surface waves and free-surface reflec-

tions on elastic FWI, we inverted the data computed in the overthrust

model with an absorbing boundary condition on top instead of a free

surface. The inversion process from the previous section was used

�sequential approach with damped data�. The final FWI VP and VS

models were very close to the low-pass-filtered versions of the true

models, and they were unaffected by spurious artifacts �Figure 9�.

The VP and VS model qualities are 4.0910�2 and 3.8910�2, re-

spectively. A comparison with previous results �Figure 6� illustrates

the substantial increase of nonlinearity introduced by surface waves

and free-surface reflections in elastic FWI.

Simultaneous multifrequency inversion
of damped data

Then we investigated the influence of simulta-

neous multiple-frequency inversion strategies for

FWI improvement. First, we considered the

Bunks approach. The different frequency groups

and damping terms are outlined in Table 1. Each

monofrequency data set belonging to a frequency

group was computed with a unit Dirac source

wavelet, which implies that each frequency of a

group has a similar weight in the inversion. This

is equivalent to an inversion of deconvolved data �i.e., data with a

flat-amplitude spectrum�.

Table 2. Final L2 misfit and model quality for reconstructed models.

Approach Data misfit C̄ VP VS

Sequential 4.1210�1 5.5410�2 6.4710�2

Bunks 1.5410�1 5.2210�2 5.3310�2

Simultaneous 1.4610�1 5.0310�2 5.3910�2

Sequential, no free-surface effects 9.0310�2 4.0910�2 3.8910�2

Sequential, PCG optimization 6.7110�1 5.5610�2 6.8910�2

a)

b)

Figure 5. Sequential inversion of raw data for the �a� VP and �b� VS

models after a frequency of 7.2 Hz.

a)

b)

Figure 6. Sequential inversion of damped data for the �a� VP and �b�
VS models after inversion. The L-BFGS algorithm was used for opti-
mization. Five frequency components were inverted successively.
Five damping coefficients were used successively for data precondi-
tioning during each monofrequency inversion.

a)

b)

c)

d)

x x

xx

Figure 7. Sequential inversion of damped data — vertical profiles for
the �a, b� VP and �c, d� VS parameters. Profiles �a� and �c� and profiles
�b and d� are at horizontal distances of 7.5 and 14 km, respectively.
Profiles of the starting and the true models are plotted with dashed
gray and solid black lines, respectively. A low-pass-filtered version
of the true model at the theoretical resolution of FWI is plotted with a
dashed black line for comparison with the FWI results. The profiles
of the FWI models of Figure 6 are plotted with solid gray lines.
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The final FWI VP and VS models �Figure 10� are slightly better

than those of the sequential approach �Figure 6�. The improvements

are more obvious on the vertical profiles �Figure 11�. Near-surface

instabilities in the models were mitigated although not fully re-

moved, and estimates of the velocity amplitudes improved in most

parts of the model �compare Figures 7 and 11�. Mitigation of the

near-surface instabilities translated into a significant misfit reduc-

tion for the surface waves and free-surface reflections �Figure 12�.

The final normalized L2 misfit decreased to 1.5410�1. The VP and

VS qualities were 5.2210�2 and 5.3310�2, respectively.

In a second step, we considered the simultaneous approach imple-

mented by successive inversions of two overlapping frequency

groups �Table 1�. The frequency bandwidth of each group was cho-

sen to avoid cycle-skipping artifacts. For example, we tried to invert

the five frequencies listed in Table 1 simultaneously. In this case, the

inversion failed to converge toward acceptable models. The comput-

ing cost of the simultaneous approach is similar to the sequential ap-

proach if the same convergence rate for the two approaches is as-

sumed. The total number of iterations in the simultaneous approach

is less important because the iterations are performed over fewer fre-

quency groups at the expense of more factorization and substitution

phases per frequency group. The extra cost of the simultaneous ap-

proach results only from the overlap between the frequency groups.

The final FWI VP and VS velocity models �Figure 13� are improved

with respect to the velocity models produced by the sequential ap-

proach �Figure 6� and the Bunks approach �Figure 10�, especially for

the VS velocity model in the thrust zone. The vertical profiles extract-

ed from the final FWI models no longer show near-surface instabili-

ties �Figure 14�, significantly reducing data misfit for the surface

waves and free-surface reflections �Figure 15�. A significant misfit

reduction of the wide-aperture arrivals recorded at large offsets also

is seen. The final L2 misfit is 1.4610�1. The VP and VS model qual-

ities are 5.0310�2 and 5.3910�2, respectively.

We note, however, slightly underestimated velocity amplitudes in

the deep part of the VP and VS models at the thrust location �see below

3 km depth in Figure 14a and c�. We attribute this amplitude deficit

to a slower convergence of the simultaneous approach when com-

pared to that of the sequential approach, which results from the fact

that more information is inverted simultaneously in the simulta-

neous approach. The imaging was further improved by decreasing

the frequency interval by a factor of two within each frequency

group �five frequencies instead of three frequencies per group�. This

resampling strengthens the spectral redundancy in the imaging.

Close-ups of VP and VS models centered on the thrust zone show how

the resolution and the signal-to-noise ratio of the velocity models

still improve by involving more frequencies in one inversion itera-

tion �Figure 16�. Using five frequencies instead of three in each

group leads to a factor of 5 /3 in computing costs.

L-BFGS versus preconditioned conjugate-gradient
optimizations

The sequential approach is applied using a preconditioned conju-

gate-gradient �PCG� algorithm for numerical optimization. Precon-

ditioning is performed by scaling the gradient by the diagonal terms

of the pseudo-Hessian matrix. The same frequencies and damping

terms are used as for the L-BFGS run based on the sequential ap-

proach �Table 1�. The velocity models recovered with the PCG algo-

rithm are shown in Figure 17 and can be compared with the corre-

sponding L-BFGS algorithms �Figure 6�. Amplitude estimations

and structure focusing are improved by the L-BFGS algorithm �Fig-

ure 18�, leading to sharper models.

The improvements in model resolution and quantitative estimate

of model parameters can be attributed to the approximate estimate of

the off-diagonal terms of the Hessian performed by the L-BFGS al-

gorithm. These off-diagonal elements help to deconvolve the mod-

els from limited-bandwidth effects resulting from the limited-source

bandwidth and the limited extent of the acquisition geometry �e.g.,

Pratt et al., 1998�.

a)

b)

c)

d)

Figure 8. Sequential inversion of damped data. Seismograms com-
puted in the FWI models of Figure 6 for a shot located at a horizontal
distance of 3 km. �a� Horizontal component. �b� Vertical compo-
nent. �c, d� Residuals between seismograms computed in the true VP

and VS models �Figure 3a and b� and in the FWI models of Figure 6.

a)

b)

Figure 9. Sequential inversion without free-surface effects for the �a�
VP and �b� VS models. The models can be compared with those of
Figure 6 to assess the footprint of free-surface effects on elastic FWI.
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Figure 19 shows the objective functions as a function of iteration

number for the L-BFGS and PCG algorithms. The L-BFGS algo-

rithm provides accelerated and improved convergence when com-

pared to PCG. The PCG convergence level �i.e., the minimum value

of the objective function reached during optimization� cannot match

that of L-BFGS because the off-diagonal information of Hessian es-

timated by L-BFGS cannot be retrieved by more iterations of PCG.

The final L2 misfit of PCG is 6.7110�1, whereas that of L-BFGS is

4.1210�1. These two issues open promising applications of

L-BFGS for computationally challenging problems, such as for 3D

FWI.

Computational aspect

All of the simulations were performed on the cluster at the Simu-

lations Interactives en Géophysique, Astronomie, Mécanique et

Mathématiques �SIGAMM� computer center, which is a 48-node

cluster with each node comprising two dual-core 2.4-GHz Opteron

processors, providing 19.2 Gflops peak performance per node. This

computer has a distributed-memory architecture, where each node

has 8 GB of RAM. The interconnection network between proces-

sors is Infiniband 4X. Twenty-four processors were used for each

simulation, leading to the best compromise between execution time

and numerical resources used. A single regular equilateral mesh

composed of 265,675 cells was designed for the simulations. Al-

though the mesh could have been adapted to the inverted frequency

we did not consider this strategy here and the mesh was kept constant

whatever the inverted frequency.

Table 3 outlines the memory requirements and computing time of

the major tasks performed by the parallel FWI algorithm. Of note,

most of the memory and computational time were dedicated to LU

factorization and substitution phases performed during the multi-

source forward problem. Computing the gradient had a negligible

computational cost because of the domain-decomposition parallel-

ism. The L-BFGS algorithm required a negligible extra amount of

memory and computing time compared to a steepest-descent or PCG

algorithm, suggesting that this optimization scheme can be used effi-

ciently for realistic 2D and 3D FWI applications.

DISCUSSION

Elastic FWI applied to the overthrust model highlights the strong

nonlinearity of the inversion resulting from free-surface effects. The

impact of these effects on FWI can be assessed by comparing the

FWI results inferred from the data including or without the free-sur-

face effects �compare Figures 6 and 9�. The best models are obtained

when free-surface effects are not considered, showing for this case

study that inversion of the surface waves did not improve the recon-

struction of the near-surface structure.

We interpret the failure of the raw-data inversion as the footprint

of surface waves, the amplitudes of which dominate the wavefield

and carry no information about the deep part of the model �Figure 5�.

Similar effects of surface waves on elastic FWI are also seen on a

smaller scale by Gelis et al. �2007�. A comparison between the se-

quential FWI results obtained with the raw data and the precondi-

tioned data illustrates how time damping helps to mitigate the non-

linearities of FWI by injecting progressively more complex wave

phenomena in the inversion �Figures 5 and 6�.

The improvements obtained by simultaneous inversion of multi-

ple frequencies combined with hierarchical inversions of damped

data show that preserving some wavenumber redundancy in elastic

FWI is critical to mitigating the nonlinearity of the inversion associ-

ated with propagating surface waves in weathered near-surface lay-

ers and free-surface reflections. The more stable results obtained

with the simultaneous approach compared to the Bunks approach,

especially in the near surface, suggest that several frequencies must

be inverted simultaneously from the early stage of the inversion

�compare Figures 10 and 13�. Strengthening the wavenumber redun-

dancy by decreasing the frequency interval in each frequency group

further improves imaging �Figure 16�.

Another factor that increases the nonlinearity of elastic FWI is the

short S-wavelengths, which could require more accurate starting

models or lower frequencies to converge toward an acceptable mod-

a)

b)

Figure 10. Bunks inversion of the �a� VP and �b� VS models obtained
with the frequency-domain adaptation of the multiscale approach of
Bunks et al. �1995�.

x = 7.5 km x = 7.5 km

x = 14 km x = 14 km

a)

b)

c)

d)

Figure 11. Same as Figure 7 but for the profiles extracted from the
models recovered by the Bunks approach �Figure 10�.

WCC114 Brossier et al.



el. The maximum frequency of the starting frequency group must be

chosen so that it prevents cycle-skipping artifacts that can result

from the limited accuracy of the starting S-wave velocity model.

Laplace-domain waveform inversion, proposed as a reliable ap-

proach to build smooth initial elastic models of the subsurface �Pyun

et al., 2008; Shin and Cha, 2008�, might represent a way to build the

starting model. An alternative approach is PP-PS stereotomography

�Alerini et al., 2002�, including joint inversion of refraction and re-

flection traveltimes of wide-aperture data.

a)

b)

c)

d)

Figure 12. Same as Figure 8 but for seismograms computed in the
FWI models recovered by the Bunks approach �Figure 10�.

a)

b)

Figure 13. Simultaneous inversion. Final models obtained by suc-
cessive inversions of two overlapping frequency groups composed
of three frequencies each for �a� VP and �b� VS models.

x =7.5 km x =7.5 km

x = 14 km x = 14 km

a)

b)

c)

d)

Figure 14. Same as Figure 7 but for the profiles extracted from the
models recovered by the simultaneous approach �Figure 13�.

a)

b)

c)

d)

Figure 15. Same as Figure 8 but for seismograms computed in the
FWI models recovered by successive inversion of two overlapping
frequency groups �Figure 13�.
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Table 3. Computing values for the main tasks performed by
FWI, averaged over several iterations for 24 processors.

Task Value

Time for factorization �s� 21.3

MUMPS total memory for factorization �Gb� 4.8

Time for substitutions �199 shots� �s� 22.9

MUMPS total memory for substitution �Gb� 20.2

Time for gradient buildup �s� 13.8

Time for L-BFGS perturbation computation �s� 1.2

Memory for L-BFGS�5� history �Mb� 21.2
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Figure 16. Comparison between FWI models obtained by the suc-
cessive inversion of two overlapping groups of frequencies �simul-
taneous approach� when three and five frequencies per group are
used in the inversion, respectively. The frequency bandwidth is the
same for each experiment, but the frequency interval differs. �a�
Close-up of the true VP model after low-pass filtering at the theoreti-
cal resolution of FWI. �c, e� Close-up of the FWI VP model when five
frequencies �c� and three frequencies �e� per group are used, respec-
tively. �b, d, f� Same as �a, c, e� for the VS model.

a)

b)

Figure 17. Full-waveform inversion velocity models obtained with
the PCG algorithm for �a� VP and �b� VS parameters. The sequential
approach with five damping terms was used. The velocity models
can be compared to those recovered by the L-BFGS algorithm �Fig-
ure 6�.

x = 14 km x = 14 km

a) b)

Figure 18. Comparison between velocity profiles extracted from the
FWI models recovered by L-BFGS �solid gray line� and the PCG al-
gorithm �dashed black line� for �a� VP and �b� VS models. Starting and
true models are depicted with dashed gray and solid black lines, re-
spectively.

Figure 19. The L-BFGS and PCG objective functions plotted as a
function of iteration number for the inversion of the complex fre-

quencies �1.7� i1.5� Hz and �4.7� i1.5� Hz. The curves associat-
ed with one frequency are normalized by the PCG objective func-
tions at the first iteration. Other frequencies and damping factors
show similar trends.
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With this case study, we were unable to illustrate the usefulness of

the surface waves to reconstruct the near-surface structure because

the most accurate FWI models were inferred without involving free-

surface effects in the data �Figure 9�. Instead, we have shown how to

manage the nonlinearities introduced by the surface waves via judi-

cious data preconditioning and FWI tuning. Alternatively, the sur-

face waves in the recorded and modeled data can be filtered out or

muted. We did not investigate this approach because efficient filter-

ing of the modeled surface waves in the frequency domain is not

straightforward. The surface waves must be filtered out not only at

the receiver positions but also at each position in the computational

domain, where they have significant amplitudes to remove their

footprint from the gradient of the objective function. This investiga-

tion requires further work.

Realistic applications of elastic FWI in more complex models still

must be investigated.Areas of complex topography such as foothills

will lead to conversions from surface waves to body waves and vice

versa, which could carry additional information on the near surface.

The robustness of elastic FWI for imaging models with heteroge-

neous Poisson’s ratios is a second field of investigation, especially in

areas of soft seabeds where the P-S-converted wavefield might have

a limited signature in the data �Sears et al., 2008�. In our study, we in-

verted data computed with a constant density that was assumed to be

known. For real data inversion, a density estimate is required for a

more reliable amplitude match.Areliable density estimate by FWI is

difficult because the P-wave velocity and density have similar radia-

tion patterns at short apertures �Forgues and Lambaré, 1997�. The

benefit provided by wide apertures to uncouple these two parameters

should be investigated.

Other extensions of isotropic elastic FWI could relate to recon-

structing attenuation factors and some anisotropic parameters. Verti-

cal transversely isotropic elastic FWI should be implemented easily

from isotropic elastic FWI because only the expression of the coeffi-

cients of the P-SV elastodynamic system needs to be modified com-

pared to the isotropic case �e.g., Carcione et al., 1988�.

Application of 2D elastic FWI to real data will require additional

data preprocessing that is not addressed in this study, such as source

estimation �Pratt, 1999� and 3D to 2D amplitude corrections �Blein-

stein, 1986; Williamson and Pratt, 1995�. The sensitivity of the elas-

tic FWI to the approximations and errors underlying this processing

will need to be determined.

CONCLUSIONS

Our study presents a new, massively parallel 2D elastic frequen-

cy-domain FWI algorithm applied to a dip section of the SEG/EAGE

onshore overthrust model. Strong nonlinearities of elastic FWI arise

from the presence of converted and surface waves and from the lim-

ited accuracy of the VS starting model. These factors prevent the con-

vergence of FWI on the global minimum of the objective function if

specific preconditioning is not applied to the data and no low starting

frequency is available. Data preconditioning performed by time

damping is necessary to converge toward acceptable velocity mod-

els, whatever the frequency sampling strategy.

Successive inversions of overlapping frequency groups outper-

form successive inversions of single frequencies for removing insta-

bilities in the near surface of the FWI models. The bandwidth of the

frequency groups must be chosen so that cycle-skipping artifacts are

avoided while injecting a maximum amount of redundant informa-

tion into the frequency groups. The quasi-Newton algorithm of

L-BFGS outperforms the most popular PCG algorithm in terms of

convergence rate and convergence level without significant extra

computational costs and, hence, is very useful for this application.
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