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Abstract

The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic

exploration for decades, such as detecting seismic absorption and characterizing depositional

thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF

directly, which is a traditional method and susceptible to noise. In this paper, a robust approach

based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data.

In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is

called the modified analytical wavelet (MAW) and comes from the three parameter wavelet.

After transforming the seismic signal into a sparse time–frequency domain via the SST taking

the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and

accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a

complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method,

we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest

that the proposed procedure yields the higher resolution and the better anti-noise performance

compared to the conventional IF extraction methods based on the HT method and continuous

wavelet transform. Moreover, geological features (such as the channels) are well characterized,

which is insightful for further oil/gas reservoir identification.

Keywords: seismic instantaneous frequency, synchrosqueezing, noise immunity, analytic signal

(Some figures may appear in colour only in the online journal)

1. Introduction

Instantaneous attributes extracted from seismic data are

widely applied in identifying abnormal attenuation, detecting

faults in stratigraphy, and seismic stratigraphic interpretation

(Chopra and Marfurt 2005). Complex seismic trace attributes

are one of the most commonly used post-stack attributes,

which are derived from complex-trace analysis (Taner

et al 1979). These attributes include instantaneous amplitude,

instantaneous frequency (IF), instantaneous phase, instanta-

neous bandwidth, etc. As one of the most commonly used

attributes, IF is successfully applied to sub-surface structural

analysis, thin-bed tuning, quality factor (Q) inversion, and

boundaries characterization of different fluid saturated rocks

(Chopra and Marfurt 2005, Huang and Wu 2008, Yang and

Gao 2010, Kourki and Riahi 2014). Although IF has been
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applied to seismic exploration for several decades, improving

the estimation precision and the anti-noise performance are

still challenges (Barnes 1993, Guo et al 2008).

In general, seismic IF extraction based on complex-trace

analysis is divided into two categories: Hilbert transform

(HT) based methods and time–frequency transform based

approaches (such as continuous wavelet transform (CWT),

and windowed Fourier transform, etc). The HT based IF

extraction, was introduced by Taner et al (1979) and has

been widely applied to seismic data interpretation (Barnes

1993, 2007). The seismic trace is treated as the real part of the

analytical signal, while the corresponding imaginary part is

computed by taking the HT of the seismic trace (Chopra and

Marfurt 2005). Taner et al (1979) introduced seismic IF

extraction to the industry and developed a single mathema-

tical framework for attribute computation. Marfurt et al

(1998) generalized the calculation of conventional complex

trace attribute to the calculation of complex reflector attri-

butes. Moreover, he combined these attributes with coherency

and dip/azimuth cubes to provide a multi-attribute analysis.

Guo et al (2008) stated that proper scaling, attribute choice,

and color models can provide a means to rapidly scan large

volumes of seismic data to identify geologic features. Fomel

(2007) introduced the concept of local seismic attributes,

which measure signal characteristics in the neighborhood of

each point. Wang et al (2013) proposed a fractional IF

extraction technique using the Caputo operator and showed

the interpretive value of an anomalous IF to characterize a

sandstone channel. However, the estimated IF based on the

HT method will degrade in a noisy environment because the

differentials enhance noise during its calculation. The noise in

seismic signals makes it difficult to get an accurate and

effective calculation of the IF and interpret the geological

structure of the subsurface, especially in a low signal to noise

ratio (SNR) environment.

Another IF extraction methods, based on complex-trace

analysis, are time–frequency analysis based, which can

overcome the noise sensitivity (Gao et al 1999, Barnes 2007,

Li et al 2014). Zoukaneri and Porsani (2015) devised a

formula to estimate a robust and stable average IF in the time

domain by combining the Wigner–Ville distribution and the

maximum entropy method of Burg (1975). Among various

time–frequency transform tools, the CWT is frequently used

to estimate IF, because the subsequent signal reconstruction

using a basic analytical wavelet represents the corresponding

analytic signal of the input real-valued seismic signal (Gao

et al 1999). Gao et al (1999) proposed IF extraction by taking

advantage of the CWT and produced a robust IF estimation.

Wang and Gao (2013) introduced the generalized Morse

wavelet (Olhede and Walden 2002, Lilly and Olhede 2012) to

estimate the IF based on the CWT, which can constitute a

tighter frame than the Morlet wavelet family. This provides a

sparser time–frequency representation and a simple means of

recovering the original signal from its frame coefficients. The

energy distribution of the effective signal is confined in a

small subspace of the time-scale domain (Wang and

Gao 2013), while that of the noise may be dispersed in a

larger subspace (even over the whole time-scale domain) with

a lower amplitude. Based on this concept, the adaptive

threshold strategy (Donoho 1995, Herrera et al 2014) sup-

presses noise in the time-scale domain. Thus, wavelet-based

IF estimation methods can yield more stable and accurate

results compared to the HT based approaches. Although the

IF extracted by the wavelet-based method shows good anti-

noise performance, its resolution needs further improvement

to distinguish small geological structures. Because of the

Heisenberg uncertainty principle limiting time–frequency

resolution, energy spreads out over the time–frequency plane.

Different trade-offs can be achieved by the choice of the

linear transform or the generators for the family of templates,

but none is ideal, thereby causing a negative impact on time–

frequency domain denoising and IF estimation, especially in a

low SNR environment.

The synchrosqueezing transform (SST) proposed by

Daubechies et al (2011) provides an alternative method of

obtaining a high time–frequency resolution by means of

reallocating coefficients of the time–frequency plane along

the frequency axis (Wang et al 2014). This transform can also

accurately reconstruct the input signal. In this study, we take

advantage of this transform and propose a novel approach

based on the SST (Daubechies et al 2011, Brevdo et al 2013)

to extract seismic IF. This transform can preferably identify

the frequency distribution of seismic signals. Based on the

three parameter wavelet (TPW), we develop a novel wavelet

and choose it as the basic wavelet in the SST, which is called

the modified analytical wavelet (MAW). The MAW is an

exact analytic wavelet and able to match different seismic

wavelets better when compared with other common wavelets

(such as the Morlet wavelet) used in the seismic signal ana-

lysis (Gao et al 2006). The experimental results indicate that

the proposed IF extraction approach shows a significant

improvement in comparisons with classical methods, espe-

cially for anti-noise performance and high resolution.

This paper is organized as follows. First, the conven-

tional complex-trace analysis methods based on the HT and

the CWT are briefly introduced. Second, some basic facts

concerning the SST and the MAW are reviewed. Then, the

seismic IF extraction based on the SST taking the MAW

(SST-MAW) is proposed in detail. Finally, synthetic data and

field seismic data experiments are presented. Detailed dis-

cussions and conclusions end this paper.

2. Instantaneous frequency extraction via the HT and

CWT based methods

For a real-valued signal s(t), the definition of the corresp-

onding analytic signal z(t) is (Taner et al 1979)

z t s t h ti , 1= +( ) ( ) ( ) ( )

where the imaginary part h(t) denotes the HT of s(t). Then, the

IF exacted by the HT approach can be defined as

f t
t

h t

s t

s t h t s t h t

e t
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2
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where e t s t h t .2 2 2= +( ) ( ) ( ) The estimated IF result

degrades in a noisy environment due to the differential, which

enhances noise in the calculation of the IF. Large spikes in the

IF calculation occur in a noisy environment when the

denominator of equation (2) approaches to zero more rapidly

than the numerator. To eliminate the impact of the noise and

avoid division by zero, Gao et al (1999) suggested introdu-

cing a damping coefficient ε in equation (2).

f t
s t h t s t h t

e t e

1

2
, 3

2 2
maxp e

=
¢ - ¢
+

( )
( ) ( ) ( ) ( )

( )
( )

where 0<ε<1 and emax=max(e(t)). Many estimation

methods are based on equation (3). For simplicity, we choose

the damping coefficient as 0.05 in this paper. Even with the

damping, this IF estimation method is still sensitive to noise

on account of the presence of differential operations.

The CWT based method is another complex-trace ana-

lysis method. For a given signal s t L R t, d2Î( ) ( ) with the

basic wavelet t ,y ( ) the CWT is defined as

S b a a s t
t b

a
t, d , 4s

1ò y=
-

-¥

¥
- ⎜ ⎟

⎛

⎝

⎞

⎠
( ) ( ) ( )

where t b R, ,Î R is the real number set, a represents the

scale, a>0, and ty ( ) is the complex conjugate of t .y ( )

Because it is more convenient for oscillatory signals (Lilly

and Olhede 2010), the normalization factor is chosen to be

1/a instead of the more common a1 . The wavelet should

satisfy the admissibility condition (Holschneider and

Kon 1996):

C d , 5ò y w w w= < ¥y
-¥

¥
∣ ˆ ( )∣ ∣ ∣ ( )

where t te dtiòy w y= w

-¥

¥
-ˆ ( ) ( ) is the Fourier transform of

the basic wavelet. If the input signal is noisy of unknown

level, the threshold V of Herrera et al (2014) is used to sup-

press noise as given by

N2 log , 62V s= ⋅ h ( )

where S a bmedian ,s n1: v
s =h (∣ ( )− S a bmedian ,s n1: v

( ( ))∣)/
0.6745, S a b,s n1: v

( ) are the finest scale wavelet coefficients

(Donoho 1995), N is the signal length and 0.6745 is the median

absolute deviation of a Gaussian distribution.

Supposing an analytic wavelet chosen as the basic

wavelet, Gao et al (1999) proved that

s b H s b
C

aS a b ai
1

d , , 7s
0

1ò+ =
y

¥
-( ) [ ( )] ( ) ( )

where H s b[ ( )] is the HT of s(b). The IF of a real-valued

seismic signal can be calculated with the reconstructed signal

of the CWT, taking the place of the HT method via (3). For

the CWT extraction described in this paper, the Morlet

wavelet is chosen as the basic wavelet without the specified

requirement.

3. Instantaneous frequency extraction via the

SST-MAW

Based on the SST and the MAW, a novel method of

extracting seismic IF is proposed in this paper, which is

entitled the SST using the MAW (SST-MAW). The algo-

rithmic procedure of the IF extraction, based on the SST-

MAW, is detailed in this subsection.

It is well known that the result of the wavelet analysis is

highly correlated to the choice of basic wavelet (Gao

et al 1996, Torrence and Compo 1998, Harrop et al 2002).

However, the TPW can provide an adjustable and optimizing

temporal-frequency resolution (Gao et al 2006), because the

three parameters can be modulated to different seismic waves.

Therefore, choosing it as the basic wavelet can represent the

seismic signal in time–frequency domain sparsely. It is also

able to contribute to identifying the energy distribution of the

effective seismic data. This approximate analytic wavelet in

frequency domain is defined as follows
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where σ denotes the modulated frequency, τ denotes the

energy decay factor, β denotes the energy delay factor and

Λ=(σ, τ, β) represents the set of σ, τ and β. These three

parameters in such a wavelet can be adjusted; for example,

choosing a smaller σ for a higher time resolution. When

choosing σ>5.33, the TPW is the same as the common

Morlet wavelet. The energy decay factor τ, which controls the

frequency bandwidth of TPW, is chosen smaller than 0.5 to

get an approximate analytic basic wavelet. β=0 is chosen to

obtain a symmetrical basic wavelet in this paper, especially in

the frequency domain. So the TPW in equations (8) and (9)

can be rewritten for convenience as
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where Λ′=(σ, τ) represents the set of σ and τ. We need an

analytic wavelet in the CWT in this paper, which will be

explained in the following part. So we develop a MAW using

equations (10) and (11), shown in equation (12).

U; ; , 12mody w y w wL¢ = L¢( ) ( ) ( ) ( )

where U(ω) is the Heaviside function and Λ′=(σ, τ).

;mody w L¢( ) is the MAW used in this paper, which is an

analytical wavelet. The spectra of the TPW (in blue) and

MAW (in red) are shown in figure 1 with regards to various

parameters. It can be easily seen that the proposed MAW is an

exact analytical wavelet, while the TPW is an appropriate

one. Note the narrow window width in the frequency domain

by choosing a small τ, which leads to an improved and

adjustable time–frequency resolution using the MAW in

the CWT.

As mentioned above, introducing this modified wavelet

to time–frequency analysis of seismic signals can provide an

adjustable and sparse time–frequency representation. Note

Figure 1. The TPW (in blue) and the MAW (in red) in the frequency domain. The TPW and MAW with (a) 1, 0.5, 0 ,L = ( ) (b) L =
3, 0.5, 0 ,( ) (c) 5, 0.5, 0 ,L = ( ) (d) 3, 0.1, 0 ,L = ( ) (e) 3, 0.5, 0 ,L = ( ) and (f) 3, 1, 0 .L = ( )
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that how to choose appropriate parameters of the MAW is

explained in detail in appendix A. A test example is provided

in figure 2. The test signal is a Ricker wavelet, whose

dominant frequency is 50 Hz. The Morlet wavelet and MAW

with 3, 0. 5L¢ = ( ) are shown in figures 2(b) and (c).

Figures 2(d) and (e) represent the corresponding CWT

representations using these two basic wavelets. Note that the

CWT-MAW can get a higher time resolution than that using

the Morlet wavelet because the MAW matches the Ricker

wavelet better than the Morlet wavelet.

After reviewing the CWT in (4), we rewrite S(b, a) by the

Plancherel’s theorem as

S b a a s a,
1

2
; e d , 13b1 2

mod
iòp x y x x= L¢ x

-¥

¥
-( ) ˆ ( ) ˆ ( ) ( )/

where x is the angular frequency and ;mody x L¢ˆ ( ) is the

Fourier transform of the MAW. Considering a simple case of

a single harmonic signal s t A tcos w=( ) ( ) whose Fourier

transform is s A ,x p d x w d x w= - + +ˆ ( ) [ ( ) ( )] (13) can be

rewritten as

S b a
A

a

a

A
a a

,
2

; e d ,

2
; e . 14

b

b

1 2

mod
i

1 2
mod

i

ò d x w d x w

y x x

y w

= - + +

´ L¢

= L¢

x

w

-¥

¥
-

-

( ) [ ( ) ( )]

ˆ ( )

ˆ ( ) ( )

/

/

If ;mody w L¢ˆ ( ) is concentrated around its central frequency

,0x w= then S b a,( ) will be concentrated around a .0w w=
However, the wavelet transform S b a,( ) will be spread out

over a region around the scale axis a ,0w w= leading to a

blurred result in the time-scale plane.

To reduce the influence of the spreading along the scale

axis a after the CWT calculation using the MAW, a candidate

Figure 2. The Ricker wavelet example. (a) The test Ricker wavelet whose dominant frequency is 50 Hz, (b) and (c) denote the Morlet wavelet
and MAW with 3, 0.5 ,L = ( ) (d) and (e) represent the corresponding CWT representations based on the Morlet wavelet and MAW.
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frequency a b,sw ( ) for the signal s(t) (Daubechies et al 2011,

Brevdo et al 2013) is introduced. a b,sw ( ) is computed with

the CWT coefficients of (4) and (13) by

a b
S a b

b
S a b,

,
i , , 15s

s
sw =

¶
¶

( )
( )

( ( )) ( )

where S a b, 0s ¹( ) for any a b, .( ) A sufficiently small para-

meter V is chosen as the threshold (Daubechies et al 2011,

Wang et al 2014) such that S a b, .s V>∣ ( )∣ V is chosen as 10−8

in the numerical implementation with higher SNR. When the

noise level is unknown, the adaptive parameter in (6) is

introduced as the threshold .V
After the candidate frequency computation, the information

from the time-scale domain can be transformed to the time–

frequency domain, according to the map b a b a b, , ,sw( ) ( ( ))

(Daubechies et al 2011, Brevdo et al 2013). By summing dif-

ferent contributions, T b,s w( ) can be calculated as

T b S a b a a,
1

, , 16s l

A

s k k k
1åw

w
=
D

D-( ) ( ) ( ) ( )

where A a a b: , 2 .k k l w w w= - D{ ∣ ( ) ∣ } Note ak =
t k Ln2 , 0, 1, , 1,k n

v
vD = -/ and tD is the time sampling

interval. nv is chosen as 32 in the experiments. The time–

frequency representation T b,s w( ) is likewise determined only at

the centers lw of the successive bins 2,l lw w w- D +[

2 ,wD ] with .l l 1w w w- = D- The maximum frequency is

tmax
1

2
w =

D
and the minimum is ,

T n tmin
1 1w = =

D
where

T n t= D is the signal duration. After collecting the time–

frequency coefficients along the frequency axis, a sparse time–

frequency representation is obtained (Wang and Gao 2013).

After combining with the adaptive parameter V as the threshold,
the energy distribution of the effective seismic signal can be

extracted accurately as

T b
T b

T b

T b
T b

T b

,
,

,

,
, ,

0, , .

17

s l
s l

s l

s l
s l

s l


w

w V
w
w

w V

w V
=

-

<

⎧

⎨
⎪

⎩
⎪

( )
( )

( )

∣ ( )∣
∣ ( )∣

∣ ( )∣

( )

The original signal can still be reconstructed from the sparse

time–frequency result in (17). When the MAW t;mody L¢( ) is

an analytic wavelet function with its real part being even and

t;mody L¢( ) satisfying the admissibility condition denoted in (5),

and an arbitrary real s t L R t, d2Î( ) ( ) is given, we have

s b H s b
C

T bi
1

, , 18
l

s l

,

å w w+ = D
y W

( ) [ ( )] ( )( ) ( )

where T b,s lw( ) is defined as (17) and H s b[ ( )] is the HT of s(b).

Ω is the energy distribution of the effective seismic signal.

The detailed derivation of (18) is attached in appendix B,

which is used to obtain complex trace. Like the extraction

method based on the CWT, the IF of a real-valued seismic

signal is calculated via the analytical reconstructed signal

shown in (18).

4. Algorithm steps to extract IF via SST-MAW

Based on the SST using the MAW, the implementation of the

proposed IF estimation method can be summarized below:

(a) Apply the CWT to the seismic signal, using the MAW

as the basic wavelet via equation (4);

(b) Calculate the candidate frequency of the input seismic

signal by equation (15), taking use of the CWT

coefficients;

(c) Relocate the wavelet transform coefficients based on the

candidate frequency received via equation (16);

(d) Obtain an effective and anti-noise energy distribution of

the seismic signal, taking advantage of the threshold

method;

(e) Achieve the analytic reconstruction signal by equation (18);

(f) Extract the instantaneous seismic frequency via equation (3),

using the reconstruction analytic signal in equation (18).

5. Numerical experiments

In this part, both synthetic and field seismic data examples are

applied to test the effectiveness of the proposed method. To

highlight the effectiveness and stability of the proposed

approach, various IF extraction methods are also presented as

comparative experiments. One is the classical HT based

method. Another is the CWT approach with the common

Morlet wavelet as the basic wavelet. In addition, the SST

taking the Morlet wavelet as the basic wavelet is introduced

as a contrast.

5.1. Synthetic data examples

Firstly, a Ricker wavelet with a dominant frequency of 30 Hz

in figure 3(a) is used to verify the validity of the proposed

method. The sampling frequency is 500 Hz with 500 samples.

Figures 3(b)–(d) show the IFs calculated by the HT method,

CWT method, and proposed approach, respectively. The three

IF results are almost identical, thereby demonstrating the

validity of the proposed procedure. Note that the parameters

in the MAW are chosen as 3, 0.5L¢ = ( ) in synthetic

examples.

Because seismic records are often contaminated by var-

ious kinds of noise in real applications, it is difficult to obtain

the IF with high accuracy and stableness. Hence, we study

how the estimated IF is impacted when there is noise in the

seismic traces. Two different noise levels are tested to eval-

uate the noise immunity of the proposed method. Figures 4(a)

and (b) depict the noisy signals contaminated by additive

Gaussian white noise with SNR of 10.0 dB and 5.0 dB,

respectively. The definition of the SNR is shown in

equation (19)

s t
SNR dB 10 log

var
, 1910 2s

= ⎜ ⎟
⎛

⎝

⎞

⎠
( )

( ( ))
( )
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where s tvar( ( )) represents the variance of the signal s(t) and

σ2 denotes the variance of the Gaussian white noise. The

sample period is 4 ms, and there are 512 samples. The blue

lines in the figures represent the noise-free Ricker wavelets

and the red the noisy ones. Figures 4(c), (e) and (g) show

the IFs calculated by the HT approach, CWT approach, and

proposed approach, respectively. The blue lines represent

noise-free solutions and red lines noisy. Figure 4(c) shows

that the IF appears to be sensitive to the noise. The IF

estimation produced by the CWT method has anti-noise

performance on account of introducing the adaptive

threshold in equation (6). Figure 4(g) shows that the pro-

posed method has the most accurate and stable estimation of

the IF among these three extraction results. When the SNR

drops to 5.0 dB in figure 4(b), figures 4(d), (f) and (h)

display the corresponding estimated results. The IF calcu-

lated by the proposed method in figure 4(h) can also give a

more accurate estimation of the IF, while IF estimations

obtained by the HT method and CWT method appear to be

drastically degraded due to the presence of noise. It can

generally be found that the proposed method can receive a

more stable and precise IF estimation than the other two

approaches in noisy environments.

The stability of the proposed method is evaluated further.

A Ricker wavelet with coherent noise, whose SNR is about

3.0 dB, is used during the test. The bandwidth of the coherent

noise is in the seismic range of about 10– 60 Hz. Figure 5(a)

shows the noise-free (blue line) and noisy Ricker wavelets

(red line). The sample period is 4 ms and there are 512

samples. Figure 5(b) displays spectra of noise-free data (blue

line) and noisy data (red line). The IF extracted by the HT

method in figure 5(c) is sensitive to the coherent noise, where

the blue line represents a noise-free solution and red line

noisy. Although the CWT solutions show noise immunity, the

IF calculated by the proposed method in figure 5(e) gives a

more accurate and stable estimation than that produced by

the CWT.

5.2. Field seismic data examples

To further demonstrate the effectiveness and stability of the

proposed approach, it is applied to a post-stack field 3D

offshore seismic data from China National Offshore Oil

Corporation. Figure 6 represents a time section of the 3D

seismic data, which contains 1000 traces and 1400 ms time

duration. The time sampling interval is 2 ms. According to the

well data in figure 6, the sandstone reservoir is controlled by

the fluvial-delta deposited system between the horizon H6 and

H7 in this study area. There are many sedimentary cycles in

the well log in figure 6, which can further prove that the study

area is a multi-stages delta. The superimposition of sandstone

bodies, indicated by the red ellipse, cannot be directly iden-

tified because this amplitude data suffers from heavy noise.

Figures 7(a)–(d) show IFs obtained by the HT method, CWT

method, SST taking the Morlet wavelet, and proposed

method, respectively. The parameters in the MAW are chosen

as 2.2, 0.5L¢ = ( ) in this filed data example. To show the

superimposition of sandstone bodies clearly, we enlarge the

superimposition shown in blue rectangles. Noise dramatically

limits the resolution and performance of the HT method in

figure 7(a). Although the CWT method reduces the influence

of the noise in seismic data, the extracted IF in figure 7(b) gets

Figure 3. The test signal example. (a) The Ricker wavelet whose dominant frequency is 30 Hz, the IFs produced by the (b) HT method, (c)
CWT method, and (d) proposed method.
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Figure 4. The noisy Ricker wavelet examples. (a) The noisy Ricker wavelet (SNR=10.0 dB) obtained by adding Gaussian white noise to
the 30 Hz Ricker wavelet, the IFs of the noisy Ricker wavelet calculated by the (c) HT method, (e) CWT method, (g) proposed method;
(b) the noisy wavelet whose SNR is 5.0 dB, the corresponding estimation results are showed in (d), (f) and (h).
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a low resolution and cannot identify stacked superimposition

of sandstone bodies. The SST using the Morlet wavelet can

recognize stacked sandstone bodies better, where the super-

imposition is much clearer than IF extractions based on the

HT and CWT methods. Affected by the noise, each stacked

sandstone of the SST result in figure 7(c) seems to be discrete.

The last plot obtained by the proposed method shows good

noise immunity. The superimposition is also the clearest of all

the four plots. It can be easily concluded that the proposed

method is an effective measure to identify sandstone

boundaries.

The final experiment is a stacked 3D seismic data from a

sedimentary basin in China, which contains many fluvial

channels at different scales. The field data contains 700 inlines

Figure 5. The noisy Ricker wavelet with coherent noise example. (a) The noise-free (blue line) and noisy (red line) Ricker wavelet with
coherent noise whose SNR is 3.0 dB. The bandwidth of the coherent noise is 10–60 Hz. (b) The spectrums of the corresponding Ricker
wavelets, the IFs of the Ricker wavelets calculated by the (c) HT method, (d) CWT method, (e) the proposed method. The blue lines represent
noise-free solutions and red lines noisy.

Figure 6.A seismic field section from CNOOC, which contains 1000
traces and 1400 ms time duration. The time sampling interval is
2 ms. The red ellipse indicates a stacked superimposition of
sandstone bodies.

1003

J. Geophys. Eng. 15 (2018) 995 N Liu et al

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jg
e
/a

rtic
le

/1
5
/3

/9
9
5
/5

2
0
3
2
3
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Figure 7. The IF extraction results of the seismic section shown in figure 6. The IF estimations calculated by the (a) traditional HT approach,
(b) CWT approach, (c) SST taking the Morlet wavelet, (d) SST-MAW. The black rectangles identify stacked superimposition of sandstone
bodies, which is enlarged in blue rectangles.

Figure 8. The 3D field data example. IF horizontal slices of a 3D stacked field seismic data calculated by (a) the HT method, (b) CWT
method, (c) SST taking the Morlet wavelet and (b) the proposed approach. The channel structures at different scales are indicated by the red
arrows and rectangles.
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and 700 crosslines. The IF data cubes are calculated by the HT

method, CWT method, SST-Morlet, and SST-MAW. Then,

horizontal slices of the IF data cubes are extracted, shown in

figure 8. In this experiment, the frequency axes are scaled with

numbers from 10 to 70. It can be seen that the characterization

of channels is unclear because the HT method suffers from

noise heavily. The IF extractions, produced by the CWT

method and SST taking the Morlet wavelet, show anti-noise

performance, but the channels are not distinct enough to dis-

tinguish. On account of the anti-noise performance and the high

resolution, the proposed method gets a stable and anti-noise IF,

which can reveal distinct and continuous subtle channel features

at different scales (indicated by the red arrows and rectangles).

The proposed method describes the edges of channels at dif-

ferent scales much clearly than the other three methods. This

illustrates geological features can be characterized with high

resolution by introducing the proposed approach to seismic data

analysis.

6. Conclusions

We have introduced a method to estimate instantaneous

seismic frequency (IF), based on the SST taking the MAW.

The MAW can help improve time–frequency resolution by

matching seismic wavelets well, which is an analytic wavelet

and comes from the TPW. The SST can create a robust and

sparse time–frequency representation by squeezing values

along its frequency axis. Using the MAW as the basic wavelet

in the SST-MAW, we can reconstruct a complex signal to

extract instantaneous seismic frequency. The IF estimated by

the SST-MAW is robust to noisy data and yields improved

accuracy. The results on synthetic signals show the advan-

tages of the proposed procedure in both resolution and anti-

noise performance by comparing with the HT based method,

CWT based approach, and some other comparative methods.

After applying the proposed approach to 2D and 3D field

data, we can easily characterize geological structures (such as

the channels) with high resolution and precision. We can

conclude that the proposed IF extraction method has the

potential to identify sandstone boundary and fluvial channel

features with high resolution under noise contamination,

which is helpful to seismic data interpretation and further oil/
gas reservoir identification.
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Appendix A. Parameter selection in the MAW

Choosing a matching wavelet in the CWT, we can achieve a

time–frequency representation with high resolution. The

MAW matches the Ricker wavelet better than the popular

Morlet wavelet, which has been proved in figure 2. There are

two parameters in the MAW. Choosing appropriate σ and τ in

the MAW, we can make the MAW in equation (12) match the

Ricker wavelet to improve the time–frequency resolution of

the CWT.

In this paper, the two parameters in the MAW can be

optimized and chosen based on the concentration measure

(CM) approach (Jones and Parks 1990, Sejdić et al 2008),

which is designed to minimize the energy concentration for

any time–frequency representation based on the automatic

determination of some time–frequency distribution para-

meters (Stanković 2001). Introducing the CM method, the

parameters in the MAW can be chosen as the following steps:

(1) For each selected from the given set {(σ, τ)}, calculate

the CWT-MAW S(b, a) taking used of equation (13).

(2) For each (σ, τ) in the given set, normalize the energy of

the CWT coefficients, so that all of the representations

with different (σ, τ) have the equal energy as

S b a
S b a

S b a b a

,
,

, d d

. A1,
,

, 2ò ò
=s t

s t

s t

-¥

¥

-¥

¥
( )

( )

∣ ( )∣

( )( )
( )

( )

(3) For each (σ, τ) in the given set, calculate the CM as

CM S b a b a, , d d , A2
p

, p
1

ò òs t = s t

-¥

¥

-¥

¥⎡
⎣⎢

⎤
⎦⎥

( ) ∣ ( )∣ ( )( )

where p is chosen as 3 in this paper (Jones and

Parks 1990, Stanković 2001).

(4) By the following equation, we can determine the

optimal parameters , .opts t( )

, min CM , . A3opt
,

s t s t=
s t

( ) [ ( )] ( )
( )

(5) Based on the , opts t( ) in equation (A3), define the

optimal CWT-TPW coefficients as

S b a S b a, , . A4opt , opt= s t( ) ( ) ( )( )

Note that the proposed method calculates the CWT-

MAW for each (σ, τ) in the given set

, 0 5, 0 1 .s t s t< < < <{( )∣ } Based on the computed

CWT coefficients, we can calculate the CM ,s t( ) for each (σ,

τ). The minimum of the CM corresponds the optimized

, ,opts t( ) which provides the least smear of S b a, .opt ( )

Appendix B. Proof of equation (18)

t;mody L¢( ) is an analytic wavelet with its real part t;Rmody L¢- ( )

being even andC ; d ,R
0

modmod ò y w w w= L¢y
¥

-( ˆ ( ) ) with 0 <
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C .< ¥y And t t; ; e dtmod mod
iòy w yL¢ = L¢ w

-¥

¥
-ˆ ( ) ( ) is the

Fourier transform of the basic wavelet. Then for an arbitrary real

s t L R t, d ,2Î( ) ( ) we have (Gao et al 1999)

S b a a s t
t b

a
dt

a s t
t b

a

t b

a
t

a s t
t b

a
t

a s t
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and then in SST, we can obtain
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where A a a b S a b0 , , , 0 ,sw w= > = ¹{ ∣ ( ) ( ) }

T b S a b a a T b S a b a a, , d and , , d .R
A

R I
A

I
1 1ò òw w= =- -( ) ( ) ( ) ( )

Both sides of (B2) multiplied by C1
mody and then integrate

it concerning w from zero to infinity

C
T b

C
T b T b

s b H s b

1
, d

1
, i , d ,

i .

B3

R I
0 0
ò òw w w w w= +

= +

y y

¥ ¥
( ) [ ( ) ( )]

( ) [ ( )]

( )

When ω is discrete as the body of the context, we can get the

discrete form of (B3) as follows

s b H s b
C

T bi
1

, , B4
l

s l

,mod

å w w+ = D
y W

( ) [ ( )] ( )( ) ( )

where H s b[ ( )] is the HT of s b .( ) W is the energy distribution of

the effective seismic signal. (B4) is (18) in the body of the

context.

Based on the above consequences, the analytic counter-

part of a field valued signal can be calculated with its syn-

chrosqueezing coefficients, and the IF can be estimated using

equations (3) and (B4).
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