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ABSTRACT

Historically, seismic migration has been the practice
(science, technology, and craft) of collapsing diffraction
events on unmigrated records to points, thereby mov-
ing (“migrating”) reflection events to their proper lo-
cations, creating a true image of structures within the
earth. Over the years, the scope of migration has broad-
ened. What began as a structural imaging tool is evolving
into a tool for velocity estimation and attribute analysis,
making detailed use of the amplitude and phase infor-
mation in the migrated image. With its expanded scope,
migration has moved from the final step of the seismic
acquisition and processing flow to a more central one,

with links to both the processes preceding and follow-
ing it.

In this paper, we describe the mechanics of migration
(the algorithms) as well as some of the problems related
to it, such as algorithmic accuracy and efficiency, and ve-
locity estimation. We also describe its relationship with
other processes, such as seismic modeling. Our approach
is tutorial; we avoid presenting the finest details of either
the migration algorithms themselves or the problems to
which migration is applied. Rather, we focus on present-
ing the problems themselves, in the hope that most geo-
physicists will be able to gain an appreciation of where
this imaging method fits in the larger problem of search-
ing for hydrocarbons.

INTRODUCTION AND HISTORICAL PERSPECTIVE

Seismic migration is a wave-equation-based process that re-
moves distortions from reflection records by moving events
to their correct spatial locations and by collapsing energy
from diffractions back to their scattering points. Today, mi-
gration is a central step in the seismic data processing flow.
It represents the culmination of “standard” processing, and it
provides input for several relatively exotic nonstandard pro-
cesses. Migration has not always occupied this central loca-
tion in the flow; until a decade ago, migration was often an
optional final processing step. After such steps as scaling,
deconvolution, statics and velocity analysis, the application
of dip-moveout (DMO) corrections and common-midpoint
(CMP) stacking, the final stack would be migrated to provide
a structural image for interpretation. In cases where diffrac-
tion events on the unmigrated stack obscured subtle targets
such as pinch-outs and reef edges, migration might be per-
formed for stratigraphic imaging purposes as well. In contrast,
present-day seismic data are almost always migrated, usually
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before stack, and interpreting migrated data often involves
further detailed analysis of the migrated amplitudes or other
attributes.

Migration actually predates most of seismic processing. Im-
plemented as early as the 1920s as a graphical method, mi-
gration had several predigital incarnations, all of which em-
bodied the kinematic principles of the diffraction stack and,
ultimately, of Kirchhoff migration. Gardner (1985) presents
much of the early history of the subject with several pa-
pers describing mechanical, as opposed to digital, migration.
With the development of the CMP stack (Mayne, 1962) and
the application of digital signal processing techniques to seis-
mic data in the 1960s, including digital diffraction stacks
(Schneider, 1971), the stage was set for the first wave-equation-
based digital migration methods. These came from work in
the early 1970s by Jon Claerbout and his students in the
Stanford Exploration Project, who derived migration as a
finite-difference solution of an approximate wave equation
(Claerbout and Doherty, 1972). Kirchhoff wave-equation
migration (Schneider, 1978) and frequency-wavenumber
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migrations (Gazdag, 1978; Stolt, 1978) appeared shortly there-
after. All these methods appeared first as time migrations;
then, as the need for improved accuracy in the presence of
lateral velocity variations was recognized, some of them were
recast within a few years as depth migrations. At about the
same time, reverse-time migration appeared (Baysal et al.,
1983; McMechan, 1983; Whitmore, 1983). Based on the exact
wave equation, not an approximation, this method propagates
the recorded wavefield backwards through an interval veloc-
ity model of the earth and is, therefore, inherently a depth-
migration method. The last 20 years have seen extensions of
these methods to three dimensions and to prestack migration,
and ever-greater refinements to their efficiency and accuracy.

Migration was one of the earliest seismic imaging tools, but
the very earliest was simply the display of single-fold analog
seismic records. These records, full of diffracted energy and
random noise, still gave a rendition of the earth’s subsurface.
Mechanical migrations removed the structural distortions
present on early seismic records, and the CMP stack reduced
the amount of random noise while preserving much of the
diffracted energy. CMP-stacked data were used as input for
early digital migrations (which were typically limited in their
ability to image steep dips) for two reasons. First, the flat-
layered earth assumptions used in the normal-moveout (NMO)
equations of the CMP stacking process led to the suppression of
steep-dip energy on stacked records. Second, the popular finite-
difference migration methods were themselves dip limited. The
subsequent development of DMO (Judson et al., 1978; Yilmaz,
1979) as a method to improve the dip bandwidth of CMP
stacking, and later the discovery that DMO is a component
process of prestack migration (Hale, 1984), led to a demand for
migration methods with greater steep-dip imaging capability,
such as frequency-wavenumber and Kirchhoff methods. With
the ability to image steep dips came even more requirements
for accuracy in migration, including depth migration, leading
to the wide range of migration methods presently available.

Today, a variety of imaging problems exist, related to imag-
ing complex structures or subtle stratigraphy, or to producing
estimates of correctly positioned seismic attributes. A similar
variety of migration tools is available to solve these problems:
in time and depth, in two and three dimensions, and before
and after stack. We shall describe in this paper a number of
migration-related problems and solutions, as well as other top-
ics that touch on migration, such as the usefulness of seismic
modeling in testing and fine-tuning migration algorithms. Any
overview of such a large subject will necessarily skip many
technical details. Recognizing the limitations of space, we nev-
ertheless hope to present enough of the problems and issues
in general terms to hold the attention of readers who are not
expert in the field.

Now, geophysicists who plan to migrate their data face a
problem that is very different from the problems of a decade
ago. Then, geophysicists were likely to be frustrated with the
lack of tools available to solve their imaging problems; today,
geophysicists who are not migration experts are likely to be
confused by the wide range of migration choices available,
many of which may be more than adequate for the task. This
abundance of choices is not the case with other problems, such
as velocity estimation. Whereas estimating imaging velocities
for time migration is a routine task, estimating interval veloci-
ties for depth migration is a problem that continues to challenge
processing and interpreting geophysicists alike. Analyzing mi-

grated amplitudes, say for amplitude-versus-angle (AVA) pur-
poses, is similarly problematic. As important as this application
is becoming, along with the analysis of other seismic data at-
tributes, there is still no clear choice of which data-processing
flow to use (including the migration algorithm) if true ampli-
tudes in the resulting image are important.

THE ROLE OF SEISMIC MODELING

Seismic modeling and seismic migration are, in some sense,
inverses of each other (Santos et al., 2000). Modeling describes
the forward process of propagating waves from sources to scat-
terers to receivers, generating seismic data. Migration attempts
to undo the wave-propagation effects to produce an image of
the earth. Not surprisingly, seismic migration and seismic mod-
eling have historically had an intimate relationship. Early on,
researchers recognized that modeling and migration should be
inverse operations, and several migration methods were devel-
oped using this fact, most notably reverse-time migration. In
this section, we discuss a different aspect of the relationship
between modeling and migration, namely the use of numerical
modeling to calibrate our migration methods. We focus partic-
ularly on the use of finite-difference modeling using the full
acoustic or elastic wave equation (Kelly et al., 1976).

Full wave-equation finite-difference (F-D) modeling has no
dip limitations and produces all the events associated with the
wave equation (e.g., multiple reflections, head waves and, when
the elastic wave equation is used, anisotropic effects and mode
conversions). F-D modeling is therefore an ideal way to ob-
tain realistic seismic data from a model earth that is precisely
known, as opposed to “real” (field) data, which has the trou-
blesome property of coming from the unknown real earth. Al-
though the ultimate goal of migration is to construct images of
the earth using “real” data, it is difficult to test the accuracy of
migration methods when the desired result, the correct image,
is not known.

F-D modeling also has intrinsic advantages over physical-
model data, which are recorded over scale earth models us-
ing scaled-down sources and receivers, and scaled-down wave-
lengths and times. Precisely controlling the model geometry at
this fine scale is difficult. In consequence, physical models tend
to be geometrically simple, consisting of a few homogeneous
blocks or layers. If some of these do contain complex internal
structure, it comes from the materials used to construct the
model, and so is generally unknown in precise detail. Synthetic
(computed) data are both as exact and as detailed as we care to
make them and, as such, they are clinical, allowing us to study
the effects we wish to study.

Kirchhoff migration has always been expensive, and F-D
modeling has always been even more expensive. In order to
produce accurate synthetic data over propagation ranges of
hundreds of wavelengths at seismic frequencies, the modeling
algorithms must ensure that artifacts arising from numerical
problems such as instability and dispersion are kept under con-
trol. Significant progress has been made in reducing these arti-
facts, but the practicalities of F-D modeling ensure that we will
pay handsomely to obtain high-quality synthetic seismic data.
Nevertheless, we can take the view that this price is low when
it is averaged over hundreds of production runs of a migration
code that has been fine-tuned with the help of synthetic data.

The earliest finite-difference models used to test the struc-
tural imaging capabilities of migration were 2-D models of
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CMP stacked (or more precisely, zero-offset) data. Since zero-
offset data do not come from a single wave-equation experi-
ment, it was necessary to contrive an experiment that would
mimic the acquisition of a stacked data set. The exploding re-
flector model (Loewenthal et al., 1976) produced such an ex-
periment. In this model, the reflectors “explode” at time t = 0,
producing waves which propagate upwards to the earth’s sur-
face at one-half the actual velocity. Because the model prop-
agation distance (reflector to surface) is also one-half the ac-
tual zero-offset propagation distance (surface to reflector to
surface), the modeled zero-offset event times are correct. An
exploding-reflector synthetic (computed using the wave equa-
tion) thus provides a reasonably faithful representation of a
zero-offset seismic section from a known earth. (The explod-
ing reflector model notably fails to include energy that traveled
from source to reflector along one path and returned back to
the source along a different path.) Migrating an exploding-
reflector synthetic produces an image that can be compared
with the known model, sometimes successfully but sometimes
to the embarrassment of the migration. Figure 1 (from Baysal
et al., 1983) shows a successful example of applying migration
to data from a realistic model.

This example also illustrates a pitfall to be avoided when
migrating model data or, indeed, when using any inverse tech-
nique. The method used to migrate this particular data set,
reverse-time migration, is seismic modeling in reverse, which
is essentially perfect. To obtain model data to test this method,
a different—less accurate—modeling method had to be used.
Since any other method can only approach the accuracy of
using the full wave equation, the model data were less than
perfect, and this caused the artifacts that are visible on the mi-
grated image. In general, to validate the inverse of a method, we
must use a different, more accurate, forward-modeling method
to create the data for the test.

One of the best known of all synthetic model data sets is
Marmousi (Versteeg and Grau, 1991). Based on a detailed ge-
ological 2-D cross section of a real Angola basin, this data
set consists of 240 single-cable marine shot records acquired
using acoustic F-D modeling, with variations in both acous-
tic velocity and density. This model was generated by the
French Petroleum Institute, and was released to the industry
for the purpose of testing migration and velocity estimation
techniques.

The Marmousi model is structurally complex, with many very
thin layers broken by several major faults and an unconformity
surface (Figure 2). The intricate structure of this model pro-
duces very realistic seismic data, causing problems for some
migration methods. Even when the correct velocity model is
used, many migration methods cannot completely image the
target structure, while other methods have little trouble pro-
ducing a nearly perfect image. The large number of thin layers
in the Marmousi velocity model also causes problems when
doing velocity estimation. It is difficult to estimate a blocky ve-
locity model for migration that looks geologically reasonable
but still honors the actual velocities well enough to produce a
good image. This extremely successful data set continues to be
used as a testbed for migration and velocity estimation meth-
ods (Versteeg, 1994). As expensive as this data set was to design
and produce, the total cost averaged over all the times it has
been used to test algorithms yields an average cost that can be
no more than pennies, certainly one of the most worthwhile
investments in the history of seismic R&D.

While the Marmousi model has been an excellent test data
set for the industry, it is not sufficient for testing all migration
techniques. Its primary limitations are that the model is two di-
mensional, acoustic, and isotropic. Modern seismic-migration
techniques are developed to address data in three dimensions,
with the additional potential complexities of anisotropy and
elasticity. Although no synthetic three-dimensional model with
Marmousi’s level of stratigraphic detail has been produced,
there are a few three-dimensional prestack structural model
data sets, e.g., the SEG-EAGE salt model shown in Figure 3
(Aminzadeh et al., 1994). We need three-dimensional mod-
els because extending our migration techniques, especially
prestack, from two to three dimensions is nontrivial—not just

FIG. 1. (a) The overthrust model, expressed as seismic traces.
The values on the traces are the derivatives of the velocities.
(b) Exploding-reflector synthetic seismic data from the over-
thrust model. (c) Reverse-time migration of the data. The mi-
gration has imaged the structure nearly perfectly; the minor
artifacts appearing on the image are due to inaccuracies in the
modeling program. (From Baysal et al., 1983.)
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a simple matter of adding an extra program loop to handle the
action of migration away from a single plane of acquisition.

We also need anisotropic models in order to test the ability
of our migration and velocity-estimation techniques to handle
anisotropy. To date, very few anisotropic model data sets have
been publicly released. One anisotropic model, which is meant
to investigate the behavior of seismic waves around a thrus-
ted shale layer (as encountered frequently in the Canadian
Foothills), has appeared both as a physical model data set
(Leslie and Lawton, 1998) and a F-D synthetic data set (Fei
et al., 1998). Figure 4 shows images of the synthetic data set
migrated using isotropic and anisotropic migration algorithms.
Although the anisotropy (tilted-axis transverse isotropy) in
this model is rather weak, neglecting it, as in the isotropically
migrated image in Figure 4a, can lead to an incorrect structural
interpretation beneath the thrust sheet.

TIME MIGRATION, DEPTH MIGRATION

A frequent query regarding migrations asks, “Is this a time
migration or a depth migration?” We take the view that,
roughly speaking, “time migration” refers to migration algo-
rithms that pay no attention to ray bending, and “depth mi-
gration” refers to algorithms that do honor ray bending. The
distinction between time and depth migration is actually more
vague than that, for some consider v(z) migrations such as
phase-shift migration (Gazdag, 1978), which honors ray bend-
ing, to be time migration, while others consider time migration
followed by image-ray conversion (Larner et al., 1981) to be a
depth migration process. In practice there is a sizeable “gray
area” between time and depth migration. In some ways, the
distinction between them is artificial, but in other ways, it is
very real. Both have their uses. The true earth coordinates are
of course in depth, not time. Even so, interpreters often need
data in time coordinates, because the standard interpretation
systems, log synthetics, and seismic-attribute techniques work
with time and frequency, not depth and wavelength.

The most apparent (and superficial) difference between time
and depth migration occurs in the final display of migrated
traces. Time migration produces a time section that interpreters
can compare relatively easily with unmigrated time sections.
On the other hand, time migration can be converted to depth
using velocity information, and depth migration can be dis-

FIG. 2. The Marmousi velocity model. (From Versteeg and Grau, 1991.)

played using a vertical traveltime coordinate system. Funda-
mentally, though, geologists and engineers think in depth and
prefer to see a seismic section displayed in depth in order
to compare with geologic structure. Often, stretching the mi-
grated traces is enough to convert from time to depth, but
in regions with lateral velocity variation, a simple stretch is
not enough. In fact, it is often necessary to perform both time
migration and depth migration on the same survey, for they
both provide useful (though sometimes apparently conflicting)
information.

The greatest real difference between the actions of time and
depth migration lies in how they use velocity. Time migration,
following the tradition of NMO and stack, uses an imaging ve-
locity field, i.e., one that best focuses the migrated image at
each output location. This velocity field is free to change from
point to point, so that time migration, in essence, performs
a constant-velocity migration at each image point, where the
constant changes from point to point. This potentially incon-
sistent treatment of the velocity field makes time migration

FIG. 3. The salt body and several reflecting horizons from
the SEG/EAEG three-dimensional salt model. (Courtesy
SEG/EAGE 3D-modeling committee.)
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appear puzzling, or even nonsensical, from the point of view
of migrating surface-recorded reflection data to points inside
the earth using the wave equation. By pursuing the analogy
with NMO/stack, however, we can view time migration as a
valid imaging process, as long as we don’t place too much
faith either in its ability to migrate events to their correct lo-
cations or in the “velocities” that we derive. In fact, we can
view time migration, performed before stack, as the general-
ization of NMO/stack that includes all dips, not just flat ones,
while also collapsing diffraction energy. This is true in the sense
that a prestack time-migration program restricted to imaging
only flat dips at source-receiver midpoint locations will yield
an image that is identical to a stacked, unmigrated section. As
with NMO/stack, the imaging velocity field used for time mi-
gration is not required to relate to the true geological velocity
field in any way. In fact, assuming that the imaging velocities
are actually root-mean-square (rms) velocities and using Dix’s
equation (Dix, 1955) to invert these to interval velocities often
produces physically impossible values for velocity. This incon-
sistency should not concern us; the goal of time migration is to

produce an image, not a geologically valid velocity field!

Depth migration, in contrast, uses an interval velocity field,
i.e., a model of the earth’s subsurface. The interval velocities
used are averages of the actual earth velocities, where the aver-
age is taken over some characteristic distance such as a wave-
length. This allows depth migration to model seismic wave
behavior within the earth much more accurately than time mi-
gration can. In particular, it allows us to use depth migration,
especially depth migration before stack, as a velocity estima-
tion tool.

FIG. 4. (a) Isotropic prestack-migrated image of data from an
anisotropic F-D model of a thrust sheet. The incorrect han-
dling of the weak velocity anisotropy within the thrust sheet
has caused the appearance of a false structure beneath the
sheet. (b) Anisotropic prestack-migrated image of the same
data. The false structure has been removed by accounting for
anisotropy within the (Kirchhoff) migration algorithm. (Im-
ages courtesy of Veritas DGC Inc. Synthetic data used as input
to the migration courtesy of BP.)

The usual technique is to perturb the velocity field until
a model is obtained that looks “geologically plausible” and
produces a good stacked migrated image, with events in the
prestack-migrated common-image-point gathers as flat as we
care to make them. The velocity updates may be made us-
ing simple velocity semblance scans, more sophisticated to-
mographic velocity analysis techniques, manually (driven by
a geological model), or (most often) some combination of all
of these. Unfortunately, an incorrect velocity model may still
produce a good image with flat gathers (Stork, 1992). And,
for migration (as opposed to migration/inversion), if the ve-
locity field lenses rays, causing multipathing, even the correct
velocity model may not produce uniformly flat gathers (Nolan
and Symes, 1996). In practice, geological information should be
used to guide the velocity-estimation process, helping to ensure
that the final result will be “geologically plausible.” Depth mi-
gration can be as much of an interpretative process as it is a
computational exercise.

Using depth migration to estimate velocity has turned out to
be one of the hardest problems facing geophysicists, which is
one reason why so many geophysicists prefer time migration.
Several years ago, prestack depth migration was expected to
improve the accuracy and reliability of velocity estimation to
the point that typical velocity errors would be 5% or less. This
has not yet generally happened, which is disappointing because
industry is still plagued by persistent misties, both horizontally
and vertically, for wells drilled into structural targets. Improper
treatment of velocity anisotropy has certainly been part of the
problem (Banik, 1984), and improved estimation of anisotropic
velocities may yet improve the situation. Given the correct ve-
locities, depth migration ought to be able to produce an ac-
curately positioned structural image. Its frequent inability to
predict accurate target locations in practice does not represent
an inherent failure of the method, but rather a shortcoming
in our ability to perform velocity estimation. Even given an
imperfect velocity field, depth migration’s underlying physical
basis enables it to produce images that are more structurally
correct than time migration is capable of (see Figure 5 for an
example). Depth migration’s use of physically meaningful ve-
locities also provides a quality check for depth migration that
is unavailable with time migration.

Depth migration is more ambitious than time migration, and
it hasn’t always lived up to expectations. With its twin objectives
of imaging and velocity estimation, depth migration is inher-
ently more difficult than time migration, which can usually pro-
duce acceptable imaging results fairly quickly. However, depth
migration is a more powerful interpretive processing tool, and
its results can give us greater confidence in both the geologic
structure and the velocity field than the results of time migra-
tion can.

MIGRATION METHODS

In this section, we describe some of the major migration
methods. The theory of all these methods has been presented
elsewhere (Gardner, 1985; Yilmaz, 1987; Whitmore et al.,
1988), especially for poststack migration. Instead of rehashing
the theory, we concentrate on describing the range of practical
problems faced by these methods, especially in their prestack
implementations. We also emphasize the development of the
methods in depth rather than time.
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FIG. 5. (a) Prestack time-migrated image of a Gulf of Mexico salt body, showing the effects of the high-velocity salt on the image
quality and structure location of the underlying lower velocity sediments. (b) Prestack depth-migrated image from the same location
showing improvements in image quality and structure location. (From Young et al., 1999. Images courtesy of Veritas DGC Inc.)

Kirchhoff migration

The easiest method to describe kinematically is Kirchhoff
migration. Given a source location and a receiver location
(both on the earth’s surface), a sample at time t on a primaries-

only unmigrated trace might contain energy reflected from any
point in the earth for which the total traveltime from source to
reflector to receiver is t . In a constant-velocity earth, this locus
of points is the bottom half of an ellipsoid in three dimensions
(or an ellipse in two dimensions) with a focus at the source and
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a focus at the receiver. In the further special case of a coincident
source-receiver pair, the ellipsoid becomes a sphere (and the
ellipse becomes a circle). These are the only candidate reflec-
tor locations. With only this information (a single spike on an
unmigrated trace), migration has no choice but to spread out
the spike over the locus of all possible reflection points—the
bottom half of the ellipsoid. Figure 6 shows an example. Given
a different sample, perhaps on a different unmigrated trace,
migration would similarly spread that sample onto an ellipsoid
of its own. Kirchhoff migration works by repeating this process
for all samples on all input unmigrated traces, summing each
resulting ellipsoid’s contributions into the output image as it
goes.

Of course, there is much more to Kirchhoff migration than
this. Schneider (1978) provided a firm wave-equation basis for
Kirchhoff migration, and Bleistein (1987) extended that theory
to include the ability to solve for reflectivity, thus paving the
way for parameter estimation after migration. But kinemati-
cally, the above is an accurate description of constant-velocity
migration [embodied mathematically in equation (1) below],
and many migration algorithms do work this way.

It is also possible to consider each image point as a pos-
sible diffractor of seismic energy. This is the wave-equation-
based successor to the classical diffraction stack method (Miller
et al., 1987). In this formulation (the one more commonly
used in practice), the algorithm constructs its output one image
point at a time, calculating for each input unmigrated trace at
what time a diffraction from a hypothetical scatterer located
at that image point would have arrived. The data sample with
that arrival time is then summed into the output image point.
Accumulating the sum over all the traces within the migration
aperture completes the calculation for that image point. In the
2-D zero-offset constant-velocity case, each output image point

FIG. 6. Migration principle based on smearing. (a) An unmi-
grated zero-offset section, consisting of a single nonzero sam-
ple on the central trace. (b) Migrated section, showing that the
spike gets smeared onto the locus of possible reflection points
(for this constant-velocity zero-offset 2-D example, a semicir-
cle). (From Yilmaz, 1987.)

requires a summation over a hyperbolic trajectory through the
data—the familiar curve of a point diffractor. Figure 7 shows
an example.

Computationally, the heart of the constant-velocity Kirchhoff
migration program requires each input (unmigrated) trace to
visit each output (migrated) sample within a migration aper-
ture exactly once. This fact allows us to estimate fairly accu-
rately the number of additions that will be performed in the
migration program—simply the number of output samples
multiplied by the number of input traces. If we find that this
number of additions is larger than acceptable, we have the
option to reduce either the number of output samples or the
number of input traces.

Kirchhoff migration is conceptually simple, and it is very ver-
satile. These properties alone do not guarantee that Kirchhoff
migration will be accurate. However, it has proven to be re-
markably accurate in a wide variety of imaging applications,
despite its obvious theoretical shortcomings, two of which we
describe next.

First, almost all implementations of Kirchhoff migration
make use of an asymptotic approximation that is valid only
for large values of ω times t , where ω is angular frequency and
t is traveltime. This range of validity means that diffractors
within several wavelengths of source or receiver locations will
not be imaged correctly. At the very least, this high-frequency
approximation casts doubt on our ability to image accurately in
the near surface. In practice, only the shallowest depths, within
a few wavelengths of the source and receiver locations, are af-
fected by this approximation. Usually, even these locations are
reasonably well imaged, albeit with some degradation of the
amplitude and phase.

FIG. 7. Migration principle based on diffraction summation.
(a) An idealized cross section, consisting of a single point scat-
terer in an otherwise homogeneous earth. (b) The zero-offset
response to the cross section, consisting of a single diffraction
curve (for this constant-velocity zero-offset 2-D example, a hy-
perbola). Kirchhoff migration performs a weighted sum of the
amplitudes along the diffraction curve and places the sum at
the scatterer location. (From Yilmaz, 1987.)
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The second weakness of Kirchhoff migration, which arises
when the velocity is not constant, is related to the first. Be-
cause of the high-frequency approximation, propagation dis-
tances between diffractors and sources or receivers are limited
to be large, i.e., more than a few wavelengths. We are not
permitted to take the wavefield observed at the receivers and
continue it a short distance into the earth; we may only con-
tinue it a large distance. However, there are many possible
travelpaths for seismic energy to take as it travels a large dis-
tance from one location to another, and no implementation of
Kirchhoff migration has yet accounted with complete success
for the problem of an unlimited number of travelpaths. Instead,
all Kirchhoff migration programs assume that energy propa-
gates along at most a few travelpaths (usually one) between
any two points. Figure 8 illustrates this multipathing problem
in two dimensions.

The restriction to one or a few travelpaths also provides
Kirchhoff migration with one of its greatest strengths. It allows
Kirchhoff migration with a laterally varying velocity field to run

FIG. 8. (a) Propagation paths (raypaths) from the recording
surface to an image location. Although there may be several
raypaths between a surface location and an image location,
most Kirchhoff migration programs use only a few (usually
one). (b) Propagation paths from the recording surface through
intermediate points to an image point. Here, many paths join a
surface location and the image point. Wavefield continuation
methods account for all these propagation paths, making them
generally more accurate than Kirchhoff migration. (From Gray
and May, 1994.)

considerably faster than other methods, at least in most cases,
while preserving its flexibility. The most popular competing
methods that can handle lateral velocity variations accurately
are the wavefield continuation methods. By their very nature,
these methods take the wavefields from the source and the re-
ceivers and extrapolate them, one depth step at a time, into the
earth. These methods are recursive, because they recompute
the wavefield at each depth, based on the wavefield at the previ-
ous depth. By contrast, Kirchhoff migration is nonrecursive, be-
cause it computes the wavefield (or image) at all depths directly
from the wavefield at the recording surface. Figure 8 illustrates
this point. Although wavefield-continuation methods account
for all possible propagation paths within their cone of propaga-
tion validity, which tends to be dip limited, their operation also
tends to be more time-consuming than Kirchhoff migration.

The major advantages of Kirchhoff migration over other
methods are its flexibility and its ability to handle lateral
velocity variations with relative efficiency. Its ability to han-
dle lateral velocity variations accurately is another matter. We
have seen that Kirchhoff migration can be no more accurate,
at least for moderate dips, than the wavefield-continuation
methods. Surprisingly, there is also a fairly wide range of ac-
curacy for different implementations of Kirchhoff migration.
This is a result of the many types of traveltime solvers cur-
rently used, ranging from simple solutions of the eikonal equa-
tion (e.g., Vidale, 1988) to amplitude- and phase-preserving
dynamic raytracing. Audebert et al., (1997) give a good sum-
mary of those approaches and, applying them to the Marmousi
model, present several imaging comparisons.

In addition to its theoretical shortcomings, Kirchhoff migra-
tion has two major practical disadvantages relative to other
methods. The first, described above, is its relative lack of ac-
curacy, and the second is its susceptibility to operator aliasing.
The problem of operator aliasing arises naturally for Kirchhoff
migration, which images by passing a diffraction surface over
data without regard for their frequency content. As Abma
et al. (1999) explain, the steep part of a diffraction surface
can easily undersample the seismic wavelet as it passes over a
flat portion of the unmigrated data. To overcome this problem,
Gray (1992) and Lumley et al. (1994) proposed reducing the
frequency content of the data encountered by the steep part
of the diffraction surface. This approach works well (Figure 9),
but it adds a certain amount of complexity and expense to the
migration.

The first problem, that of accuracy, has been attacked with
some success by several approaches that maintain the flexi-
bility of Kirchhoff migration. We mention two of these ap-
proaches. Gaussian beam migration (Hill, 1990, 2001) performs
local decompositions of the source and receiver wavefields into
“beams,” and directs those beams back into the earth using
extremely accurate ray tracing. Several beams can emanate
from a given surface location, with the different beams re-
ferring to different initial propagation directions. Each beam
propagates independently of all the others, guided by an in-
dividual ray tube (Figure 10). The ray tubes can overlap, so
that energy can travel between image locations and source and
receiver locations by more than one path. This allows Gaussian
beam migration to address the multipathing problem. Figure 11
shows a Marmousi image produced by this method. This image
is clearly superior to every published single-arrival Kirchhoff-
migrated image from the same data set.
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Bevc (1997) proposes a different solution of the multipathing
problem. This method begins by applying standard Kirchhoff
migration (nonrecursively) down to a depth many wavelengths
below the recording surface. Within that restricted depth range,
the method assumes that multipathing has not yet become a
severe problem, so that Kirchhoff migration has performed
accurately. At that depth, the method computes a downward-
continued wavefield, also by Kirchhoff methods (Berryhill,
1984), and that wavefield is used for Kirchhoff migration within

FIG. 9. (a) Kirchhoff-migrated image of a steeply dipping salt
flank. No attempt has been made to suppress the artifacts due
to operator aliasing. (b) The same image, with operator aliasing
effects suppressed. (From Gray, 1992.)

FIG. 10. The contribution of the region around a single raypath
to a poststack-migrated image in Gaussian beam migration.
(From Hill, 1990.)

the next restricted range of depths. After several of these com-
bined operations of migration and downward continuation, the
process is complete. This method allows for multipathing by
cascading together several steps of single-path propagation.
However, it has proven practical to date only in two dimensions.

In building a new migration program to be used perhaps
thousands of times on large volumes of data, one must decide
which algorithm to use. Before writing a Kirchhoff migration
program, one must weigh its advantages against its disadvan-
tages, and decide whether the savings gained from its repeated
use exceeds the value of the time spent writing a detailed, com-
plicated computer program containing accurate amplitude and
traveltime calculations and effective anti-aliasing. As computa-
tion speed increases, improving the economics of other migra-
tion methods relative to Kirchhoff migration, these decisions
are becoming much harder than they were a few years ago.

Finite-difference migration

Most Kirchhoff migrations form the image at output loca-
tions by summing data over input locations. Mathematically,
this can be expressed as a spatial convolution. For example,
constant-velocity 3-D poststack Kirchhoff migration gives the
migrated image P at a point (x, y, z) as

P(x, y, z, t = 0) =

∫

W (x − x ′, y− y′, z)

× P ′(x ′, y′, z= 0, t = r/v) dx ′dy′. (1)

In equation (1), W is a weight function, v is the half velocity, r
is the distance between the surface location (x ′, y′, 0) and the
image location (x, y, z), and the prime on the surface- recorded
wavefield P indicates time differentiation. Using equation (1),
we can compute the image at whatever image locations we
choose. As previously noted, however, equation (1) is not an
exact expression for the migrated wavefield; it lacks a term that
rapidly decays relative to the derivative P ′ as the migration
depth increases away from the recording surface. Figure 8(a)
indicates the convolution of equation (1) schematically in two
dimensions; each point in the image is directly calculated in a
single global summation over the data recorded at the surface.

Figure 8(b) analogously indicates the operation of a wave-
field-continuation method, explicit finite-difference migration

FIG. 11. Gaussian beam migrated image of the Marmousi data
set. (From Hill, 2001.)
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(Berkhout, 1984). As can be seen from the figure, this method
is based on repeated application of a local convolution:

p(x, y, z + �z, ω)

=

∫

w(x − x ′, y− y′, �z)p(x ′, y′, z, ω) dx ′dy′, (2)

where p(ω) is the temporal Fourier transform of the wavefield
P(t). Equation (2) is an expression for downward continuing
a single frequency component of a wavefield, one either gen-
erated by a source or recorded by receivers. The velocity is
contained in the weight function w, which is the Green’s func-
tion for wavefield extrapolation in depth. The method is recur-
sive, using equation (2) to compute the wavefield at each depth
z+ �z from the wavefield at the previous depth z. As can be
seen from Figure 8(b), this incremental approach naturally al-
lows for multiple travelpaths between a possible diffractor at
depth and each source or receiver.

Explicit F-D prestack migration is a two-step process. First,
the wavefields from the source (modeled from the known
source geometry) and from the receivers (the recorded seis-
mic data) are downward continued to all depths in the earth
via equation (2). (Note the extrapolation operators are slightly
different for the source and receiver wavefields. For the source,
the extrapolation proceeds in the direction the waves traveled;
for the receivers, it is opposite to the direction the waves trav-
eled.) At each depth, the downward-continued wavefields are
then combined to produce an image, using the principle that the
source wavefield excites a corresponding time-coincident re-
ceiver wavefield at a reflector (Docherty, 1991). By carefully ac-
counting for such factors as geometrical spreading and source
and receiver illumination in the imaging condition, it may also
be possible to improve the calculated amplitudes. How best to
accomplish “true-amplitude migration,” however, will depend
both on the survey geometry and practical considerations.

A few words about the practical implementation of explicit
F-D migration are in order. The convolution in equation (2)
takes place, in principle, over an infinite spatial range. Truncat-
ing this aperture, as we must do in practice, easily leads to nu-
merical instability. A careless implementation can yield images
that are accurate down to depths of some tens of wavelengths,
but with errors that grow exponentially below that. There are
ways around this problem, of course, or the method would not
be viable (Holberg, 1988; Hale, 1991a), but the stability comes
at the price of limiting the method’s ability to image the steep-
est dips.

In practice, we always approximate w in equation (2) with
a constant-velocity Green’s function, using the velocity at the
center of each extrapolating fan, v(x, y, z), as the “constant ve-
locity” for that extrapolation. Fortunately, explicit F-D migra-
tion usually works quite well in practice despite the mathemat-
ically inconsistent treatment of velocities this approximation
implies; the wavefield effectively “heals over” the local irreg-
ularities thus introduced. For strong lateral velocity contrasts,
however, even the “guaranteed stable” versions of the method
can become unstable and fail, so some care should be taken
when generating the velocity field before migration (Etgen,
1994).

The term “explicit” suggests there should also be “implicit”
F-D wavefield-continuation migration methods. In fact, the
first digital wave-equation-based migration method was im-

plicit F-D migration (Claerbout and Doherty, 1972). There
are both time-domain and frequency-domain versions of this
method. Mathematically, “explicit” and “implicit” merely re-
fer to different techniques for numerically solving differential
equations, but in the migration literature the terms also refer to
the type of wave equation being solved. Instead of starting from
the actual acoustic or elastic wave equation and then approxi-
mately solving it (the approximations being necessary to avoid
instability), implicit methods solve an approximate “one-way”
wave equation that supports only inherently stable solutions
by design (Yilmaz, 1987). One-way wave equations are all-
pass filters, with no evanescent regions. For waves propagating
downward or close to downward, one-way wave equations and
the exact wave equation behave similarly, but their behaviors
progressively deviate for propagation at steeper dips.

Both the implicit and the explicit finite-difference methods
are accurate for a restricted range of dips, and their accuracy
can be improved at steep dips (though not to vertical dips)
with a certain amount of extra work. They are both wavefield-
continuation methods, lacking the flexibility of Kirchhoff mi-
gration, but supporting multipathing. Are they cheaper or more
expensive than Kirchhoff migration? It is impossible to an-
swer that question definitively in all cases, because the answer
depends on the application (2-D versus 3-D, prestack versus
poststack).

The expense of any migration method depends on many
factors, including frequency content of the seismic data and
the maximum dip to be imaged. For example, clearly the ex-
pense of frequency-domain methods is proportional to the
number of frequencies involved, because each frequency com-
ponent of the wavefield is imaged separately. Less obvious is the
fact that the expense of Kirchhoff migration also depends on
the frequency content. Roughly speaking, the cost of Kirchhoff
migration is linearly proportional to the maximum frequency,
because the maximum frequency helps to determine the depth
resolution of the image, and hence the maximum depth-step
size allowed. This fact is also true of frequency-domain migra-
tions, however, so the expense of frequency-domain migrations
depends in two ways on the frequency content, making its de-
pendence on maximum frequency quadratic, not linear. That
is just one example of the subtle difficulties in determining the
relative expense of migration methods.

A more striking difference between standard Kirchhoff mi-
gration and wavefield-continuation methods [specifically F-D
migration, but also including integral methods such as Bevc’s
(1997) algorithm] can be seen in their treatment of migration
aperture. Summing input traces over a diffraction curve or
smearing input samples onto an output aperture is the major
action of Kirchhoff migration. If a larger aperture is needed,
an individual trace swings into more output traces. F-D migra-
tion, on the other hand, continues entire wavefields downward
from the recording surface. If a larger aperture is needed, this
aperture must be included as part of the entire calculation. In
other words, the migration must include the aperture (output
traces) at all depths, even if no energy is present at the record-
ing surface at those trace locations. For example, in common-
shot migration, the source wavefield is excited at a single lat-
eral location, but the downward continuation of that wavefield
spreads the energy into many lateral locations. Traces at these
locations must be included in the downward continuation, even
though no energy is present at those locations at shallow depths
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(Figure 12). This simple fact typically results in an enormous
number of extra calculations for F-D migration, and has so far
made 3-D prestack migration of marine streamer data by F-D
methods economically uncompetitive compared to Kirchhoff
methods.

For 3-D poststack migration, the situation is quite different.
The problem of padding extra traces to fill out the migration
aperture doesn’t exist, and F-D migration, at least out to mod-
erate dips, is typically cheaper than Kirchhoff migration. One
explicit F-D method, Hale-McClellan migration (Hale, 1991b),
can even be cheaper than Kirchhoff methods for imaging mod-
erate to steep dips. Li (1991) has improved the accuracy and
performance of 3-D implicit F-D migration, and this improve-
ment can be adapted for explicit migration as well (Etgen and
Nichols, 1999). (Once again, we emphasize the subtle issues
in estimating migration cost. We cannot say categorically that
every 3-D Hale-McClellan poststack migration will be cheaper
than the corresponding 3-D Kirchhoff migration; we can only
give the cost comparison for a wide range of typical migration
jobs.)

Reverse-time migration

Another method uses finite differences to solve the wave
equation, but instead of extrapolating in depth (requiring
choosing whether the waves being extrapolated are upgoing
or downgoing), it solves the full (two-way) acoustic or elas-
tic wave equation by extrapolation in time, allowing waves to
propagate in all directions. This method is called reverse-time

FIG. 12. (a) A single finite-difference-migrated shot record
from the Marmousi data set. Although the input record is
localized in space, the migration aperture is much larger,
increasing the cost of the migration. (b) Stack of all the
finite-difference-migrated shot records from Marmousi. (From
Ehinger et al., 1996.)

migration. We described reverse-time migration briefly in the
section on seismic modeling: reverse-time migration is just F-D
wave-equation modeling run in reverse (Figure 13). Baysal
et al. (1983) and McMechan (1983) present the method in detail
and describe its ability to image all dips with great accuracy.

Reverse-time migration has the same problems with stabil-
ity and numerical dispersion that finite-difference modeling
has; it is straightforward (but expensive) to control these prob-
lems. The cost of reverse-time migration is also easy to deter-
mine. For each shot gather, it is proportional to the product
Nt × Nx × Ny × Nz × N f d , where Nt is the number of time steps
taken, Nx × Ny × Nz is the number of grid points on which the
wave equation is being solved, and N f d is the number of points
used in the local F-D operator. To properly sample the wave-
field, the size of the grid cells must decrease as the maximum
frequency of the data increases. For stability reasons, the size
of the time steps must decrease as the size of the grid cells
decreases. For 3-D problems, the cost is thus proportional to
the fourth power of the maximum frequency. Just as 3-D F-D

FIG. 13. The principle of reverse-time migration. The wave-
field recorded at the surface is fed back into the earth using
the wave equation with time running backwards. Snapshots at
earlier times show the wavefield closer to its initiation in time
and space and, for poststack migration, the snapshot with time
equal to zero shows an image of the exploding reflectors. (From
McMechan, 1983.)
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shot-record modeling is extremely expensive, 3-D reverse-time
shot-record migration is also. Prestack reverse-time migration
also has the same drawback of having to pad the recorded
traces out to the full migration aperture, greatly increasing the
expense if the required aperture is large.

Still, reverse-time migration is potentially the most accurate
method in the sense of faithfully honoring the wave equation,
and all other methods eventually fall short of it in their ap-
proximations. It is legitimate to ask whether the accuracy of
reverse-time migration is ever needed, especially given typical
uncertainties in migration velocities. Reverse-time migration’s
greater accuracy does demand correspondingly greater care in
its use. These concerns are all the more valid given (1) the very
high accuracy of the other F-D migration methods, and (2) the
potential of generating unwanted artifacts, for example, inter-
nal multiples from locations of sharp impedance contrasts.

Frequency-wavenumber migration and its extensions for later-

ally varying velocity

So far, we have discussed methods that operate in space and
time (Kirchhoff and reverse-time), and in space and frequency
(explicit F-D and some implementations of implicit F-D). Next,
we describe methods that operate in wavenumber and fre-
quency, and some of their extensions that can handle lateral
velocity variations.

Stolt (1978) and Gazdag (1978) introduced two poststack mi-
gration methods that are strictly valid for vertical velocity varia-
tions at most. They make up for their lack of flexibility by being
extremely fast, and they have become workhorses. Both meth-
ods begin by Fourier transforming the input traces from their
original space and time coordinates (t, x, y) into monochro-
matic plane-wave components (ω, kx , ky). This is a useful trans-
formation, because in the Fourier domain the constant-velocity
wave equation becomes a simple algebraic identity relating
the temporal frequency ω and the wavenumber components
kx , ky , and kz of the monochromatic plane waves. Stolt migra-
tion uses this relationship to move the amplitude and phase
at each (ω, kx , ky) to their corresponding (kz, kx , ky) location,
downward continuing and imaging in a single step. After inter-
polation onto a regular grid, inverse Fourier transformation to
(z, x, y) then produces the desired space-domain image.

Gazdag’s phase-shift migration is slightly more compli-
cated, performing a separate downward continuation of each
(ω, kx , ky) component from one depth to the next. The down-
ward continuations have the form of phase rotations, and are
given by

p̃(kx , ky, z+ �z, ω)

= p̃(kx , ky, z, ω) exp

{

i�z

√

ω2

v2
−

(

k2
x + k2

y

)

}

, (3)

where p̃ is the spatial and temporal Fourier transform of the
wavefield P , and v is the velocity between depths z and �z.
Because of its recursive design, phase-shift migration naturally
honors Snell’s law, with the plane wavefronts changing dip as
they propagate through the v(z) earth. This makes phase-shift
migration an extremely powerful tool for accurately imaging
steep-dip intrusions in sedimentary basins such as the Gulf of
Mexico. In fact, phase-shift migration has been extended to im-

age greater than vertical dips in areas with a laterally invariant
background velocity (Claerbout, 1985, 272–273). Figure 14,
from Hale et al. (1992), shows clearly imaged overhung salt
faces from a 3-D survey using this method.

Clearly, (ω, kx , ky) methods that can efficiently produce im-
ages such as Figure 14 are extremely powerful. They have be-
come the basis for many poststack and prestack time-migration
methods in common use where it is more important to see an
image than to be able to pinpoint the exact location of all its fea-
tures. These methods are limited in their applicability as depth
migrations, though, because of their inability to handle later-
ally varying velocities. Two extensions of phase-shift migration
have seen a great deal of use as poststack depth migrations,
however. Both use Fourier transforms to go back and forth be-
tween the wavenumber and space domains, and a large part of
their expense is taken up by these transforms.

First, Gazdag and Sguazzero (1984) developed a method
called phase-shift-plus-interpolation (PSPI) migration.
This method downward continues and images a Fourier-
transformed wavefield just as phase-shift migration does,
except that PSPI does each downward continuation from
depth z to depth z+ �z multiple times for a range of dif-
ferent velocities v. Each of these wavefields is then inverse
Fourier transformed from frequency-wavenumber (ω, kx , ky)
to frequency-space (ω, x, y). A single wavefield at the depth
z+ �z is then constructed by interpolating between the
available constant-velocity extrapolations, using the velocity
at each (x, y) location to guide the interpolation. This single
combined wavefield is then transformed back to wavenumber,
and the downward continuation continues. The more velocities
used in the phase-shift downward continuations, the greater
the accuracy of PSPI will be, and the more expensive it will
be [because of the cost of the inverse Fourier transforms from
(ω, kx , ky) to (ω, x, y)]. Typically, this is a very expensive,
very accurate depth migration method. Patching together
constant-velocity solutions is still an approximation, however,
and if the lateral velocity variation is strong enough, PSPI can
become noticeably unstable as a result (Etgen, 1994).

Next, split-step migration (Gazdag and Sguazzero, 1984;
Stoffa et al., 1990) is a more efficient, but somewhat less accu-
rate, alternative to PSPI for 3-D depth migration. Like phase-
shift migration, split-step migration extrapolates the Fourier-
transformed wavefield from one depth level to the next using

FIG. 14. Three-dimensional phase-shift-migrated image of a
salt dome, showing overturned salt faces. (From Hale et al.,
1992.)
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one laterally invariant velocity. Unlike phase-shift migration,
it then perturbs this result to account for lateral velocity vari-
ations by inverse Fourier transforming the wavefield to space,
where it applies a residual phase shift at each (ω, x, y). The
magnitude of the phase shift depends on the difference be-
tween the actual velocity at (x, y) and the constant reference
velocity used to perform the downward continuation. It com-
pletes the split-step extrapolation from z to�z by Fourier trans-
forming the perturbed wavefield back to wavenumber again.
Split-step migration requires at most two (one forward and
one inverse) spatial Fourier transforms of the wavefield at each
depth; this represents a significant efficiency improvement over
PSPI. In typical depth migration applications, where the migra-
tion velocity is not known with precision, this method repre-
sents a reasonable compromise between speed and accuracy,
with fair ability to image steep dips. Split-step migration is an
example of a screen method (De Hoop et al., 1999). These
have been used since the 1970s to describe the behavior of
sound waves in the ocean and electromagnetic waves in the
atmosphere.

We end this section by describing a family of migration meth-
ods that promise to be very useful for 3-D prestack migration
of marine streamer data. Even if the streamer is feathered, the
azimuth and offset between any given source array and hy-
drophone in a marine streamer survey often remain relatively
constant as the boat moves along, allowing us to sort marine
streamer data into constant-azimuth constant-offset volumes.
If the velocity is also laterally invariant, then for each volume
the whole problem becomes laterally invariant, making it pos-
sible to perform the required migration convolutions efficiently
in the wavenumber domain (Etgen, 1998).

Dubrulle (1983) first pointed out that Gazdag’s v(z) phase-
shift migration, originally described for zero-offset wavefields,
can be extended to operate on individual common-offset sec-
tions, even though such sections are not themselves wavefields.

FIG. 15. An impulse migrated using a common-offset phase-shift migration that allows lateral velocity variations.
This migration operator is kinematically identical to a Kirchhoff time-migration operator. For constant velocity,
the impulse response would be an ellipse with foci at ±0.5 km. The low-velocity zone (blue) causes a pronounced
deviation from that shape. (From Dai and Marcoux, 1999, courtesy of Veritas DGC.)

Ekren and Ursin (1999) later showed how Dubrulle’s al-
gorithm, simplified, becomes an efficient 2-D v(t) prestack
common-offset time-migration method. Dai and Marcoux
(1999) then extended the method to 3-D time migration of
constant-offset, constant-azimuth volumes. Their method also
allows for a laterally varying imaging-velocity field by apply-
ing the procedure multiple times nonrecursively at each time
level, using a number of different constant velocities. After
inverse Fourier transformation, the imaging velocity at each
(x, y, t) location then guides an interpolation between the
computed constant-velocity images, producing a single output
time-migrated image for that time level. This method is anal-
ogous to PSPI but, unlike PSPI time migration, it is not recur-
sive. The several spatial Fourier transforms to be performed at
each output migrated time level do not depend on the Fourier
transforms performed at previous time levels. The cost of this
method is several times the cost of a single phase-shift migra-
tion of a common-offset, common-azimuth volume. Figure 15
shows a 2-D migrated impulse calculated using this method.

Migration amplitudes

One general aspect of migration deserves mention, namely
its ability to preserve the amplitudes of reflection coeffi-
cients, to be used in subsequent amplitude-variation-with-
offset (AVO) analysis. This ability is common to all migra-
tion methods to some degree, and its use is becoming more
widespread. Clearly, if we handle amplitudes incorrectly in any
processing step, our ability to interpret the amplitudes emerg-
ing from the final step will be compromised. It is therefore im-
portant to apply migration very carefully in order to preserve
amplitudes, and to pay close attention to amplitude preserva-
tion in the processing steps leading up to and following mi-
gration as well. A large theoretical and practical effort has
been invested in producing amplitude-preserving migration



Seismic Migration Problems and Solutions 1635

algorithms and processing flows (e.g., Mosher et al., 1996; Gray,
1997). If we wish to follow through on the promise of deter-
mining rock and fluid properties from seismic data, or hope to
use migration amplitudes as another source of “ground truth”
in the management and development of reservoirs, it will be-
come even more important to continue to assess and improve
the accuracy of the amplitude treatment in our seismic migra-
tion methods.

To date, “true-amplitude” migration (or migration/inversion)
has been applied successfully only in areas with a relatively sim-
ple background velocity model (see, e.g., Sollid, 2000). In com-
plicated areas, it is unknown whether any migration method is
faithful enough in obeying all the laws of seismic wave prop-
agation to provide trustworthy amplitude behavior. This fact
does not permit us to ignore amplitudes when we apply mi-
gration to complicated areas. In such areas, although we might
not benefit directly by paying careful attention to amplitudes,
by ignoring them we run the risk of introducing subtle arti-
facts into our image that are capable of causing misinterp-
reted structure.

VELOCITY ESTIMATION

Migration needs velocity. In order to place a reflection event
that arrived at time t on a seismic record at a particular subsur-
face location, migration must somehow use velocity, relating
the time to the distance. We never know the velocity perfectly
below a few tens of meters beneath the earth’s surface or more
than a few meters away from a wellbore inside the earth, so we
rely on estimates for the velocities inside the earth. Estimat-
ing velocities for migration ranges from trivially easy in the
simplest geologic settings to extremely difficult in complex ge-
ologic structures. Correspondingly, the tools used to estimate
velocities range from very simple to very complicated. Here,
we discuss some velocity estimation tools that are derived from
migration itself.

As we already described, time migration does not need a ge-
ological model of velocity in the earth. Instead, an imaging ve-
locity used in time migration, which is completely analogous to
the velocity used to stack traces in an unmigrated CMP gather,
can be regarded as a kind of average of the interval velocities
inside an inverted cone spreading upwards from an image loca-
tion to encompass the migration aperture. The physics that de-
scribes this averaging is complicated in areas of dip and lateral
velocity variation, making it dangerous to call time-migration
imaging velocities rms velocities (as we customarily do). Doing
so does allow us to use simple stacking-velocity-analysis tools
to estimate interval velocities, however.

Two such tools are stacking semblance analysis, used to find
the velocity that optimally stacks migrated traces in a migrated
common-depth-point (CDP) gather, and stack panels, which
allow a processor to pick a velocity at a location that focuses
the migrated stack better than any other velocity. One migra-
tion method particularly well suited for both of these velocity-
analysis tools is due to Gardner et al. (1986) and Forel and
Gardner (1988). This Kirchhoff variant arranges the migration
operations to output CDP gathers without an NMO correc-
tion; in other words, it requires velocity awareness only in the
final step. One can then pick imaging velocities at any migrated
location using stacking semblance analysis. Alternatively, one
might choose to stack all the migrated gathers using a suite

of different functions at each location (say, percentages of a
particular function) and analyze the stack panels.

For depth migration, velocity analysis is inherently much
more complicated than it is for time migration. Fortunately, if
our goal is simply to produce an image, we can always use resid-
ual moveout and stack to improve the final depth-migrated
result. In this way, prestack depth migration can produce im-
ages that are comparable in quality to prestack time-migrated
images, even when the interval velocities are not well deter-
mined. The depth-migration interval-velocity model should not
contain more structural detail than the quality of the velocity
analysis supports, however. Even after residual moveout and
stack, spurious structure in the velocity model will generate
false structure in the depth-migrated image. This is a pitfall that
time migration avoids, but only because it makes no attempt to
include structural information in the migration process in the
first place.

To reap the full benefits of depth migration and its ability
to position events in their true spatial locations, we have to
expend some effort on constructing a good interval-velocity
model (Versteeg, 1994). After prestack depth migration with
an incorrect velocity model, residual moveout at a particular
subsurface location is due to velocity errors somewhere above
the image location. Some velocity-estimation methods assume
that the velocity error is restricted to the vertical column di-
rectly above the analysis point. This is clearly an oversimpli-
fication, but methods that make this assumption are widely
used and are very effective in the absence of dip, structural
complexity, or significant lateral velocity variation.

Traveltime tomography (Bishop et al., 1985; Stork, 1992)
attempts to project the offset-dependent residual moveout
along raypaths joining the subsurface location and the source
and receiver locations. Tomography takes velocity estimation
a significant step beyond the simpler methods based on up-
dating the velocities vertically, but introduces complications
of its own. Back projecting residual information, in time or
depth, from a single location into its associated ray cone (see
Figure 16), and then repeating that operation for many anal-
ysis locations, creates a potentially enormous set of equations
to solve. Even after some fairly unrestrictive simplifying as-
sumptions are applied (such as raypaths not changing even as
the velocity changes), the resulting algebraic inverse problem
remains daunting. The system of equations to be solved for
the velocity updates, though sparse, is enormous in three di-
mensions, and often is overdetermined and underdetermined
at the same time. The overdetermination comes from the fact
that many cells of the interval velocity model are traversed
by several raypaths carrying possibly conflicting information
about residual moveout. The underdetermination comes from
the fundamental ambiguity in deciding whether to ascribe trav-
eltime differences along raypaths to a difference in velocity or
depth.

Understanding the velocity/depth ambiguity much better
than we did a decade ago, we now understand why we have
problems estimating interval velocities with average errors less
than 5%. To make this problem even worse, we now also rec-
ognize that velocity anisotropy is often a cause for velocity
errors that are 10% and more (Banik, 1984). Anisotropy, the
dependence of velocity at a particular location with propa-
gation direction, further complicates the velocity estimation
problem, particularly for depth migration. Even assuming a
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simplified form of anisotropy, namely weak transverse isotropy
(Thomsen, 1986), we are still left with a much larger estimation
problem than before, in the sense that we must estimate three
“velocity” fields and possibly one or two fields of angles that
define the anisotropic symmetry axes.

On the other hand, we often have physical measurements to
guide our estimation; that is, we can often use our knowledge
of the properties of the rocks being imaged to estimate the
anisotropic parameters. Thus, we are gaining a toehold in esti-
mating anisotropic velocities and, although the problem is usu-
ally significantly more difficult than that of estimating isotropic
velocities, it is not quite as impossible as we suspected a few
years ago. For example, given a knowledge of the rocks in the
anisotropic thrust sheet in Figure 4, we can estimate the sheet’s
anisotropy parameters to within a few percent, essentially re-
ducing the error in imaging the structure to our uncertainty
in estimating the sheet’s velocity in only one direction. In this
case, the velocity estimation problem including anisotropy is
not significantly harder than the isotropic problem.

THE FUTURE—STUCK ON KIRCHHOFF MIGRATION?

If one migration method generates controversy among geo-
physicists, surely that method is Kirchhoff migration. Some
geophysicists love Kirchhoff migration, because they can tell
it what to do and they know how it will respond to their com-
mands. If they want to see steep dips imaged, they increase the
migration aperture. If they want greater accuracy, they use a
more accurate traveltime solver. If they want to do parameter
testing or an intensive migration effort on a subset of the entire

FIG. 16. Ray diagram for seismic reflection tomography, show-
ing how changing the traveltime along two rays moves their
specular reflection point. Traveltime is the integral of slowness
along the raypath, so the velocity values along an entire raypath
joining the source and receiver with an image point influence
the image. When all source and receiver locations are consid-
ered, we see that the velocity values inside a cone joining the
image point with the recording surface can influence the image.
(From Stork, 1992.)

survey, they get windowed output at a greatly reduced cost. No
other migration method can promise this overall flexibility.

Other geophysicists hate Kirchhoff migration. No matter
how many traveltime branches are included, no matter what
amplitude function is used, it never seems to be as accurate
as other methods can be. [There is not complete agreement
even on the last statement, though. See Operto et al. (2000)
for a demonstration of the imaging improvement possible if
we use all the traveltime branches]. Indeed, while all migration
methods make some approximations, Kirchhoff migration re-
lies more heavily than any of the others on approximations in-
volving high-frequency asymptotics. Kirchhoff migration con-
sequently restricts seismic energy travelpaths to at most a few
raypaths between image locations and source or receiver lo-
cations. Real band-limited wavepaths are considerably more
complicated than this (Woodward, 1992).

Is one camp or the other completely right? Is Kirchhoff mi-
gration the best method or the worst method? Given the cur-
rent state of the seismic data processing industry, with the size
of our imaging problems growing at about the same rate as
computing capacity, we can’t envision the disappearance of
Kirchhoff migration and all its variants such as Gaussian beam
migration for some time. Its flexibility is just too great to give
it up in favor of methods that promise somewhat greater ac-
curacy given very precise knowledge of velocity. If our record
in estimating velocity were much better than it has been in the
past, there might be cause for dismissing Kirchhoff migration
as a tool for the second millennium. In fact, velocity estimation
remains a fundamental imaging problem, especially given our
relatively recent awareness of anisotropic effects. Kirchhoff-
migrated images are usually as useful as, and much cheaper
to obtain than, images from competing methods when velocity
uncertainty remains on the order of 5% or more.

On the other hand, there are imaging problems for which
Kirchhoff migration is simply not good enough. Although it is
true that, given incorrect velocities, no migration method will
produce images good enough to map the detailed structure and
stratigraphy of subsalt fault blocks, for example, it is also true
that standard implementations of Kirchhoff migration simply
cannot produce good images in such cases even given perfect
velocities.

Recent advances in marine acquisition technology have
demonstrated that this issue is of more than academic inter-
est. To date, 3-D marine surveys acquired with towed stream-
ers have been prestack migrated almost exclusively using
Kirchhoff techniques. This is because the wavefield continu-
ation methods are forced to pad outside the actual record-
ing spread, as already described. In this case, the pad consists
of extra zero traces placed at the end of the streamers to ac-
commodate the in-line migration aperture, plus several extra
streamers with zero traces to accommodate the cross-line mi-
gration aperture. The computational penalty of migrating all
these (initially zero) extra traces is enormous.

Fixed-cable acquisition permits wavefield-continuation me-
thods to avoid this penalty completely, giving hope for the rou-
tine use of non-Kirchhoff imaging methods for a large number
of marine surveys. Instead, we can migrate common-receiver
records, where the wavefield observed at any one of the fixed
receivers on (or tethered above) the bottom is sampled by
a spread of source locations. This wavefield is usually well
sampled and contains enough source locations to eliminate
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the need for padding with zero traces. Performing common-
receiver migration on these 3-D records using extremely accu-
rate wavefield-continuation methods is already feasible today
and might be commonplace within a few years (Krail, 1994;
Wyatt et al., 2000). Figure 17 compares subsalt-migrated depth
slices from a synthetic 3-D model using Kirchhoff and wave-
field migration (O’Brien and Etgen, 1998); wavefield migration
has imaged all the reflectors much more clearly than Kirchhoff
migration has.

A second way around the problem is to build new 3-D al-
gorithms that are better suited to migrating data from towed
streamers. Biondi and Palacharla (1996) have made one of
the first major steps in this direction, presenting a fairly ef-
ficient 3-D migration scheme designed for data acquired along
a single azimuth. This 3-D depth migration is an approxi-
mate wavefield-continuation method that maintains the orig-
inal (multiple 2-D line) geometry as it downward continues
the data. It uses as its kernel several 2-D applications of any
migration method that is more accurate than Kirchhoff migra-
tion. The single-azimuth data needed for this migration scheme
can be obtained by performing an azimuth-moveout (AMO)
transform (Biondi et al., 1998) on the towed streamer data
(even when there are fairly large azimuthal variations from
the near to far offsets because of multiple-cable acquisition).

FIG. 17. (a) Depth slice (4500 m) from a 3-D synthetic F-D
model showing subsalt reflectors. (b) Common-receiver
wavefield-migrated depth slice at 4500 m showing correctly
imaged reflectivity. (c) Common-receiver Kirchhoff-migrated
depth slice at 4500 m showing much less clarity in the subsalt
image than the wavefield-migrated image. (From O’Brien and
Etgen, 1998.) FIG. 17. (Continued).
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These methods make approximations that might compromise
their accuracy and they are still in early testing, but first re-
sults have been encouraging (Figure 18). If methods such as
this prove successful, then geophysicists will have a range of
choices for 3-D prestack migration of towed streamer data and
will be able to choose a method for a given data set based on
merit, not just economics.

CONCLUSIONS: THE NEAR-TERM FUTURE OF IMAGING

For many years migration was the culminating step of the
seismic processing flow, feeding directly into maps of structure
and stratigraphy. Nowadays, migration is much more likely to
be an intermediate step, feeding information into other seismic
processes. Migrated amplitudes are used for AVO analysis
and for other forms of seismic attribute analysis. Migrated
structural information is used in coherency analysis to delin-
eate small-scale as well as large-scale structure. The veloci-
ties obtained from prestack depth migration are used not only
to check the plausibility of the underlying geologic model,
but also to estimate quantities such as pore pressure in the
subsurface.

Perhaps the most-recognized application of migration is
for applying interpretational knowledge and skills during the
velocity-estimation process. Gradually over the past decade,
with the progression from poststack time migration to prestack
depth migration, building velocity models has increasingly be-
come a task for people with geologic knowledge to accompany
their processing skills—interpreters, in a word. Although initial
velocity model-building packages were relatively clumsy, and
present-day packages combining velocity estimation, model
building, and visualization still leave much to be desired, signif-
icant progress in speeding up the process of iterative prestack
depth migration has occurred in the past few years. In the near
future, velocity model-building tools will allow interpreters to
update velocity models interactively while viewing the effects

FIG. 18. (a) Wavefield-migrated profile from the SEG/EAGE
salt model. (b) The same profile migrated using Kirchhoff mi-
gration. Wavefield migration has produced a cleaner, more cor-
rect image. (From Biondi and Vaillant, 2000.)

of the updates on the migrated gathers or even the migrated
stacks. Interactive workstation technology has enabled this al-
ready to some degree (Murphy and Gray, 1999), and increased
communications bandwidth, visualization capability, and com-
putational speed will complete the task.

Migration has a greater amount of interaction with earlier
steps as well. Today, most seismic acquisition programs are de-
signed to include an appropriate aperture and spatial sampling
for migration. In processing, enhancing the signal for migra-
tion has always been paramount, but now some processes are
being used to enhance what used to be considered noise (e.g.,
multiples or converted-wave events) so that they can also be
migrated.

Converted-wave events are part of a larger wavefield than
has been routinely used for migration, namely the elastic wave-
field. Mathematically, the acoustic wave equation describes the
propagation of compressional waves (P-waves) in fluids (e.g.,
sound waves in air or water). All the migration methods de-
scribed in this paper have assumed acoustic wave propagation,
and this approximation is usually adequate if our goal is to
image P-waves in sedimentary basins. In reality, most of the
earth’s subsurface is solid, and so the elastic wave equation pro-
vides a more physically meaningful model of what happens in
seismic experiments. In some exploration environments, mak-
ing an effort to treat elastic propagation effects as signal instead
of noise can be worthwhile. Two such instances are (1) prop-
agation through relatively large bodies of weakly gas-charged
sediments (“gas clouds”), which tends to scatter and attenuate
P-waves in favor of energy propagating in a converted mode,
and (2) propagation in structurally complex settings, where the
P-wave critical angle is easily encountered and mode conver-
sion accounts for a large portion of the recorded seismic energy.

Situations such as these are not commonplace, but they are
increasing, and they require processing (including migration)
that accounts for mode conversions when they occur. If the
mode conversion takes place at reflection, converting incident
P-waves to reflected shear waves (so-called “C-waves”), it is
kinematically straightforward to perform prestack migration:
one merely uses P-wave velocities for the source wavefields,
and shear-wave velocities for the receiver wavefields (e.g., for
Kirchhoff migration, we would use P-wave velocities when cal-
culating source to image point traveltimes, but shear-wave ve-
locities when calculating image point to receiver traveltimes).
This kinematic approximation is the basis for current tech-
niques for migrating converted-wave data, even though it ig-
nores the true complexities of elastic-wave propagation in a
3-D heterogeneous earth. Also, in cases where mode conver-
sion can occur anywhere along the propagation path, not just
at reflection, the problem is much harder. It requires a solu-
tion that somehow allows for full elastic downward continua-
tion and imaging, such as reverse-time migration (Chang and
McMechan, 1994).

Along with an increased use of converted-wave and full elas-
tic migration comes an increase in the use of anisotropy, not
only as an extra velocity parameter but also for determining the
orientation of fractures in the rocks being imaged. At present,
our ability to estimate fracture orientation is very limited, but
the need for reliable placement of directional wells that exploit
our knowledge of fracture systems requires us to incorporate
this knowledge in, or derive the knowledge from, our imaging
methods.
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These few developments do not, by any means, represent all
the advances that will be made to our knowledge and prac-
tice of seismic migration in the next few years. Nor do they
begin to scratch the surface of what might take place in the
decades ahead. Since the early days of mechanical migration,
geophysicists have continued to innovate in bringing forward
the science and the technology of imaging the earth’s interior
in the search for hydrocarbons. These scientists and engineers
have borrowed freely from, and donated willingly to, the gen-
eral store of technical knowledge (medical, electromagnetic,
atmospheric, oceanic, and scattering, to name a few) in advanc-
ing the state of seismic imaging. They have also faced economic
hurdles over the past decade and more that have added an extra
burden to the technical task of discovering ever more elusive
hydrocarbon traps. Still, they continue to rise to the theoret-
ical and practical challenges of producing accurate, efficient
seismic imaging solutions.
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