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1 Introduction

1.1 Motivation

One of the most common and challenging problems in seismology is the prediction of

source-receiver paths taken by seismic energy in the presence of lateral variations in

wavespeed. The solution to this problem is required in many applications that exploit

the high frequency component of seismic records, such as body wave tomography, migra-

tion of reflection data and earthquake relocation. The process of tracking the kinematic

evolution of seismic energy also brings with it the possibility of computing various other

wave-related quantities such as traveltime, amplitude, attenuation, or even the high fre-

quency waveform, which can then be compared to observations.

The difficulties associated with locating a two point path arise from the non-linear re-

lationship between velocity and path geometry. Fig. 1, which shows a fan of ray paths
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Fig. 1. Trajectories followed by a uniform fan of 100 rays emitted by a source point (grey

dot) in a smoothly varying heterogeneous medium. Although the angular distance between

all adjacent paths at the source point is identical, this relationship is not preserved as the

rays track through the medium.

propagate from a point source in a strongly heterogeneous medium, provides useful insight

into this non-linearity. If the medium had been homogeneous, then the paths would simply

have been straight lines emitting at uniform angular distance from the source. However,

the focusing and defocusing effects of the velocity heterogeneity have imposed strong and

varying curvature to the paths. In addition to the extremely non-linear distribution of rays

along the boundaries of the medium, the phenomenon of multi-pathing, which equates to

wavefront self-intersection, can also be observed. Thus, the already difficult problem of

locating a valid path which connects two points has been further complicated by the fact

that there may well be more than one path.

Over the past few decades, the growing need for fast and accurate prediction of high

frequency wave properties (most commonly traveltime) in complex 2-D and 3-D media

has spawned a prolific number of grid and ray based solvers. Traditionally, the method

of choice has been ray tracing (Julian and Gubbins, 1977; Červený, 1987; Virieux and

Farra, 1991; Červený, 2001), in which the trajectory of paths corresponding to wavefront

normals are computed between two points. This approach is often highly accurate and

2



efficient, and naturally lends itself to the prediction of various seismic wave properties.

However, it is non-robust, and may fail to converge to a true two-point path even in

mildly heterogeneous media. In addition, it usually provides no guarantee as to whether

a located path corresponds to a first or later arrival.

Grid based schemes, which usually involve the calculation of traveltimes to all points of a

regular grid that spans the velocity medium, have become increasingly popular in recent

times. They are often based on finite difference solution of the eikonal equation (Vidale,

1988; Qin et al., 1992; Hole and Zelt, 1995; Kim and Cook, 1999; Popovici and Sethian,

2002; Rawlinson and Sambridge, 2004a) or shortest path (network) methods (Nakanishi

and Yamaguchi, 1986; Moser, 1991; Cheng and House, 1996), both of which tend to

be computationally efficient and highly robust, a combination which makes them viable

alternatives to ray tracing. Wavefronts and rays can be obtained a posteriori if required

by either contouring the traveltime field or following the traveltime gradient from receiver

to source, respectively. Disadvantages of these schemes include that in most cases they

only compute the first-arrival traveltime, and their accuracy is generally not as high as

ray tracing. In addition, it is difficult to compute quantities other than traveltime without

first extracting ray paths.

The aim of this review paper is to describe a variety of ray and grid based solvers for lo-

cating ray paths, or implicitly or explicitly tracking wavefronts, in laterally heterogeneous

media. The profusion of different schemes that can be found in the literature means that

it is not possible to provide a comprehensive review; instead, we focus on methods that

have been successful in practical applications. In addition, we only look at the kinematic

component of the problem i.e. ray trajectory and wavefront evolution, rather than the dy-

namic component, which is required for computing various quantities such as amplitudes

or waveforms. After providing some introductory background material on asymptotic ray

theory and geometric optics, the review proceeds with a description of various shooting

and bending methods of ray tracing. This is followed by eikonal solvers and shortest path
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methods.

In recent years, there has been an increase in the development of new methods aimed at

tracking all arrivals in heterogeneous media. These schemes can be used to predict more of

the seismic wavefield when multi-pathing of seismic energy results in more complex wave-

trains. One possible use of these schemes is in seismic tomography, where the exploitation

of multi-arrivals may result in improved images. A detailed description of several recently

developed grid and ray based schemes for predicting multi-arrivals is included in Section

4.

1.2 The eikonal equation

All ray and grid based methods we consider in this review are subject to the so-called “high

frequency approximation”; that is, the wavelength of the propagating wave is substantially

shorter than the seismic heterogeneities that characterise the medium through which they

pass. Under this assumption, the full elastic wave equation can be greatly simplified, and

the problem of computing the seismic wavefield made much more tractable. For a seismic

P-wave in an isotropic medium, the elastic wave equation can be written (Chapman, 2004)

∇2Φ − 1

α2

∂2Φ

∂t2
= 0, (1)

where Φ represents the scalar potential of a P-wave, α is P-wavespeed and t is time. If we

assume that the solution of Eq. 1 has the general form

Φ = Aexp[−iω(T (x) + t)],

where A = A(x) is amplitude, ω is angular frequency and T is a surface of constant phase,

then the Laplacian of the scalar potential is

∇2Φ =∇2Aexp[−iω(T + t)] − iω∇T · ∇Aexp[−iω(T + t)]

−iω∇A · ∇T exp[−iω(T + t)] − iωA∇2T exp[−iω(T + t)]

−ω2A∇T · ∇T exp[−iω(T + t)]
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and the second derivative of Φ with respect to time is

∂2Φ

∂t2
= −ω2Aexp[−iω(T + t)].

Substitution of the above two expressions into Eq. 1 yields

∇2A− ω2A|∇T |2 − i[2ω∇A · ∇T + ωA∇2T ] =
−Aω2

α2
, (2)

which can be divided into real and imaginary parts. If we take the real part and divide

through by Aω2, then

∇2A

Aω2
− |∇T |2 =

−1

α2
.

Application of the high frequency approximation (ω → ∞) then yields the eikonal equa-

tion

|∇T | = s, (3)

where s = 1/α is slowness. T (x) is a time function (the eikonal) which describes surfaces

of constant phase (wavefronts) when T is constant. If we now take the imaginary part of

Eq. 2 and divide through by ω, we obtain the transport equation

2∇A · ∇T + A∇2T = 0 (4)

which can be used to compute the amplitude of the propagating wave. Substitution of the

appropriate general S-wave vector potential into the elastic wave equation for an S-wave

leads to identical expressions for the eikonal and transport equations; thus, Eq. 3 and 4

are valid for any high frequency body wave with slowness s. In fully anisotropic media

(Červený, 2001), the eikonal and transport equations have a slightly more complex form

due to the presence of the elastic tensor c.

1.3 The kinematic ray tracing equations

Rather than directly solve the eikonal equation, one can instead consider its character-

istics, which are the trajectories orthogonal (in isotropic media) to the wavefront. If r
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represents the position vector of a point on a wavefront, and l the pathlength of the curve

traced out by this point as the wavefront evolves (see Fig. 2), then

dr

dl
=

∇T
s

(5)

since both dr/dl and ∇T/s are unit vectors parallel to the path. The rate of change of

traveltime along the path is simply the slowness, so

dT

dl
= s (6)

and by taking the gradient of both sides (noting the commutation of d/dl and ∇)

d∇T
dl

= ∇s. (7)

Eq. 5 and 7 can be combined in order to remove ∇T which gives

d

dl

[

s
dr

dl

]

= ∇s. (8)

Eq. 8 is the kinematic ray equation and describes the trajectory of ray paths in

smoothly varying isotropic media. It will be shown later how Eq. 8 can be reduced to

forms suitable for initial and boundary value ray tracing. The kinematic ray equation can

also be derived using the calculus of variations, because Fermat’s principle of stationary

time states that ray paths correspond to extremal curves of the integral

T =
∫

L
sdl (9)

where L represents the path. In this case, Eq. 8 turns out to be the corresponding Euler-

Lagrange equation.

In the presence of wavespeed discontinuities, Eq. 8 cannot be used because ∇s is not

defined. Instead, Snell’s law can be applied, which in its simplest form can be expressed:

sin θi

vi
=

sin θo

vo
(10)

where θi and vi are the angle and wavespeed of the incoming ray, and θo and vo are the

angle and wavespeed of the outgoing ray. For reflected rays, v1 = v2 so θ1 = θ2, which
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Fig. 2. Variables used to describe wavefronts and rays. T is traveltime, r is the position

vector of a point on the wavefront, l is ray path length and s(x) is slowness.

in general will not be the case for transmitted rays provided a wavespeed discontinuity

exists.

The derivation of Eq. 8 is relatively straightforward, due largely to the assumption of

isotropic media. However, if we also wish to include anisotropy, then a more general ap-

proach is required. A commonly used treatment in this case is the Hamiltonian formalism

of classical mechanics (Chapman, 2004; Červený, 2001). In this case, rays are equivalent

to the characteristic curves of the Hamiltonian, which may be expressed in various ways.

In isotropic media, the Hamiltonian is often written (Chapman, 2004)

H(x,p) =
p2

2s2
(11)

or (Virieux and Farra, 1991)

H(x,p) =
1

2
[p2 − s2], (12)

where p = ∇T . Setting H = 1/2 in Eq. 11 or H = 0 in Eq. 12 results in characteristic

curves which satisfy the eikonal equation. The Hamilton equations, which describe the

characteristic curves of the Hamiltonian, can be written (Chapman, 2004)

dx

dt
=
∂H

∂p
and

dp

dt
= −∇H (13)

which is a coupled system of six ordinary differential equations. These equations can be

integrated forward in time from given initial conditions using standard numerical solvers

such as the Runge Kutta method (e.g. Kreyszig, 1993). The Hamilton equations need not

be written in the form of Eq. 13 with time as the independent variable; for example, one
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could also use path length (see Červený, 2001, for more details).

In anisotropic media, Eq. 13 remains valid, but an alternative form of the Hamiltonian,

which takes into account the 21 independent elastic parameters ci,j,k,l (where i, j, k, l =

1, ..., 3) and density ρ, is required. The presence of anisotropy means that we can no longer

treat P- and S-waves as equivalent, with only their propagation speeds being different.

Instead, there will be three distinct wave types, a quasi-compressional wave qP, and two

quasi shear waves qS1 and qS2. It turns out that the behaviour of these waves can be

described by finding the eigenvectors and eigenvalues corresponding to the solution of the

equation (see Červený and Firbas, 1984):

(Γ − I)w = 0 (14)

where the 3 × 3 matrix Γ = {Γjk} = piplcil/ρ (note implied summation over i and l) is

the so-called Christoffel matrix and w is the three component displacement vector. Eq. 14

can be derived by seeking the asymptotic solution to the full elastic wave equation. The

eigenvalues Gm (m = 1, ..., 3) satisfy:

det[Γ− IGm] = 0 (15)

and the eigenvectors gm satisfy:

[Γ − IGm]gm = 0 (16)

noting that m is not used as an implied summation variable. Eq. 14 is satisfied provided

any of the eigenvalues Gm = 1 (m = 1, ..., 3). Each Gm corresponds to the eikonal equation

for a different wave type, and the associated eigenvectors gm describe the direction of

particle motion imposed by the wave. It turns out (Červený and Firbas, 1984) that the

eigenvalues can be written in terms of the eigenvectors as

Gm = gT
mΓgm =

piplg
T
mcilgm

ρ
. (17)

In isotropic media, G1 = α2p · p and G2 = β2p · p, where α and β are the P and S
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wavespeeds respectively.

For general anisotropic inhomogeneous media, the Hamiltonian can therefore be written

as

Hm(x,p) =
1

2
Gm(x,p) =

1

2
gT

mΓgm = 1. (18)

Substitution of these expressions into the Hamilton equations (Eq. 13) allows ray paths for

any of the three different wave types to be traced using an appropriate numerical solver.

For mildly anisotropic media, Červený and Firbas (1984) derive a linearisation procedure

which allows anisotropic traveltimes to be computed using paths provided by an isotropic

ray tracer. If an interface is located within an anisotropic media, then up to three reflected

and three transmitted waves can be generated. Although Eq. 10 is still valid, it strictly

applies to phase angle and phase velocity; thus, in order to correctly propagate rays in

the presence of interfaces, additional constraints are required (see Slawinski et al., 2000).

In this section, we have only touched on kinematic ray theory; later, we will explore the

more practical aspects of implementation. For further details on the underlying theory, the

interested reader is referred to the comprehensive texts of Červený (2001) and Chapman

(2004), which cover various aspects of kinematic and dynamic ray theory, ray amplitudes

and synthetic seismograms.

1.4 Common model parameterisations

When rays or wavefronts are tracked through 2-D or 3-D laterally heterogeneous media,

a formal description or parameterisation of the spatial variations in seismic properties is

required. There are many ways that this can be done, and the final choice can depend on a

variety of factors including the types of seismic structures that are present, the prediction

scheme that is to be applied, and the dataset that is being simulated. For example, if

the dataset was very large, then a fast and robust prediction scheme would be desirable;

if the dataset contained refraction and reflection phases, then a layered medium would
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be required and the prediction scheme would need to account for discontinuities. On the

other hand, if the preferred prediction scheme was based purely on numerically solving

Eq. 8, then only isotropic structures described by continuous variations in wavespeed

would be permitted. However, if one was trying to predict phases in the presence of

complex structures such as salt domes, subduction zones or heavily faulted sedimentary

basins, then this class of prediction scheme would not be appropriate.
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Fig. 3. General schemes for representing structure. (a) Laterally continuous interfaces sepa-

rating layers within which wavespeed vi(x, z) varies smoothly, (b) more flexible framework

based on an aggregate of irregular blocks within which wavespeed vi(x, z) varies smoothly.

In laterally heterogeneous media, the most general type of parameterisation needs to allow

for both velocity and interface variation. This variation would need to be almost arbitrary

if one wanted to represent all possible types of Earth structure, but in practice, a number

of acceptable assumptions can usually be made. In seismic tomography (Nolet, 1987;

Iyer and Hirahara, 1993; Rawlinson and Sambridge, 2003a), for example, it is common

practice, when interfaces are required, to represent the medium by layers, within which

wavespeed varies continuously, separated by sub-horizontal interfaces which vary in depth

(e.g. Chiu et al., 1986; Farra and Madariaga, 1988; Williamson, 1990; Sambridge, 1990;

Wang and Houseman, 1994; Zelt, 1999; Rawlinson et al., 2001a) as shown in Fig. 3a.

The relative simplicity of this representation makes it amenable to fast and robust data

prediction, and it also allows a variety of later arriving phases to be computed. However, in

exploration seismology, where data coverage is usually dense, and near surface complexities

(particularly faults) often need to be accurately represented, this class of parameterisation
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can be too restrictive.

An alternative approach is to divide the model region up into an aggregate of irregularly

shaped volume elements (see Fig. 3b), within which material property varies smoothly,

but is discontinuous across element boundaries (e.g. Pereyra, 1996; Bulant, 1999). This

allows most geological features such as faults, folds, lenses, overthrusts etc. to be faithfully

represented. However, in the presence of such complexity, the data prediction problem

becomes much more difficult to resolve, and reconciling data observations with these

predictions (e.g. via seismic tomography) would be extremely challenging in the absence

of accurate a priori information.

Common parameterisations used to describe wavespeed variations (or other seismic prop-

erties) in a continuum include constant velocity (or slowness) blocks (e.g. Aki et al., 1977;

Nakanishi, 1985; Williamson, 1990; Saltzer and Humphreys, 1997), triangular/tetrahedral

meshes within which velocity is constant or constant in gradient (e.g. White, 1989; Sam-

bridge and Faletic, 2003), and grids of velocity nodes which are interpolated using a

predefined function (e.g. Thomson and Gubbins, 1982; Thurber, 1983; Červený et al.,

1984; Virieux and Farra, 1991; Zhao et al., 1992; Neele et al., 1993, etc.). Constant ve-

locity blocks are conceptually simple, but require a fine discretisation in order to subdue

the undesirable artifact of block boundaries. These discontinuities also have the potential

to unrealisticly distort the wavefield and make the two-point ray tracing problem more

unstable. Triangular/tetrahedral meshes are flexible and allow analytic ray tracing when

velocity is constant or constant in gradient within a cell; however, like constant veloc-

ity blocks, they usually require a fine discretisation, and can also destabilise the data

prediction problem.

Velocity grids which describe a continuum using an interpolant offer the possibility of

smooth variations with relatively few parameters, but are generally more computation-

ally intensive to evaluate. In addition, analytic solution of the ray tracing equations is

usually not possible. However, for many practical applications, the benefits of smooth-
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Fig. 4. Examples of cubic B-spline parameterisation for (a) velocity structure (b) interface

structure.

ness outweigh these considerations. One of the simplest and most popular interpolants is

pseudo-linear interpolation, which in 3-D Cartesian coordinates is:

v(x, y, z) =
2
∑

i=1

2
∑

j=1

2
∑

k=1

V (xi, yj, zk)
(

1 −
∣

∣

∣

∣

x− xi

x2 − x1

∣

∣

∣

∣

)

(

1 −
∣
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∣

∣

∣
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y2 − y1

∣
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∣

∣

∣

)

(

1 −
∣

∣

∣

∣

z − zk

z2 − z1

∣

∣

∣

∣

)

(19)

where V (xi, yj, zk) are the velocity (or slowness) values at eight grid points surround-

ing (x, y, z). For Eq. 19, velocity is continuous, but the velocity gradient is not (i.e. C0

continuity). Despite this feature, pseudo linear interpolation has been frequently used in

problems which require traveltime prediction (Eberhart-Phillips, 1986; Zhao et al., 1992;

Scott et al., 1994; Steck et al., 1998).

Higher order interpolation functions are required if the velocity field is to have continuous

first and second derivatives, which is usually desirable for schemes which numerically solve

the ray tracing or eikonal equations. There are many types of spline functions that can
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be used for interpolation, including Cardinal (Thomson and Gubbins, 1982; Sambridge,

1990), Bezier (Bartels et al., 1987), B-splines (Farra and Madariaga, 1988; Virieux and

Farra, 1991; Rawlinson et al., 2001a) and splines under tension (Červený et al., 1984;

Smith and Wessel, 1990; VanDecar et al., 1995). Cubic B-splines are particularly useful

(Virieux and Farra, 1991; Rawlinson et al., 2001a) as they offer C2 continuity, local control

and the potential for an irregular distribution of nodes. For a set of velocity values Vi,j,k on

a 3-D grid of points pi,j,k = (xi,j,k, yi,j,k, zi,j,k), the B-spline for the ijkth volume element

is

BBBi,j,k(u, v, w) =
2
∑

l=−1

2
∑

m=−1

2
∑

n=−1

bl(u)bm(v)bn(w)qi+l,j+m,k+n, (20)

where qi,j,k = (Vi,j,k,pi,j,k). Thus, the three independent variables 0 ≤ u, v, w ≤ 1 de-

fine the velocity distribution in each volume element. The weighting factors {bi} are the

uniform cubic B-spline functions (Bartels et al., 1987). Fig. 4a shows a 2-D velocity field

described by a mosaic of cubic B-spline elements.

Rather than use velocity grids in the spatial domain to describe smooth media, one could

also exploit the wavenumber domain by employing a spectral parameterisation. These are

often popular for global applications e.g. spherical harmonics (Dziewonski et al., 1977),

but can also be used for problems on a local or regional scale. For example, Wang and

Pratt (1997) use the following Fourier series to describe a 2-D slowness distribution in

their inversion of reflection amplitude and traveltimes

s(r)= a00 +
N
∑

m=1

[am0 cos(k · r) + bm0 sin(k · r)]

+
N
∑

m=−N

N
∑

n=1

[amn cos(k · r) + bmn sin(k · r)], (21)

where r = xi + zj and k = mπk0i + nπk0j are the position and wavenumber vector

respectively, and amn and bmn are the amplitude coefficients of the (m,n)th harmonic term.

Although Eq. 21 is infinitely differentiable, it is globally supported in that adjustment of

any amplitude coefficient influences the entire model. Spectral parameterisations have

been used in a number of studies which require traveltime prediction (Hildebrand et al.,
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1989; Hammer et al., 1994; Wiggins et al., 1996).

Interfaces are often described using equivalent parameterisations to those used for veloc-

ity. For example, linear segments (2-D volume), triangular meshes (3-D volume) or nodes

with a specified interpolant are common. In 2-D, piecewise linear segments have been

used in several studies (e.g. Zelt and Smith, 1992; Williamson, 1990), but the discontinu-

ities in gradient between adjacent segments can have a destabilising effect on traveltime

prediction schemes - for example, two ray paths with similar trajectories which impinge

on an interface at either side of a discontinuity may reflect at very different angles. Zelt

and Smith (1992) overcome this problem by applying a smoothing filter to the interface

normals which are required by Snell’s law. Cubic B-splines in parametric form have been

used by a number of authors (Farra and Madariaga, 1988; Virieux and Farra, 1991; Rawl-

inson et al., 2001a) to describe interface structure for the data prediction problem. For

interface surfaces, Eq. 20 becomes

BBBi,j(u, v) =
2
∑

k=−1

2
∑

l=−1

bk(u)bl(v)pi+k,j+l, (22)

where pi,j = (xi,j , yi,j, zi,j) is a set of control vertices on a topologically regular grid. Eq. 22

has the same desirable properties as its velocity counterpart (Eq. 20), and thanks to its

parametric representation, allows multi-valued surfaces to be represented. Fig. 4b shows

a complex interface surface that has been parameterised using cubic B-splines.

Finally, it is worth noting that irregular parameterisations have been used for both ray

based and grid based schemes. In the case of grid based schemes which solve the eikonal

equation, irregular grids have the potential to improve computational efficiency by varying

grid resolution in response to wavefront curvature (e.g. Kimmel, 1998; Qian and Symes,

2002). Another motivation for adopting irregular grids comes from seismic tomography;

for many large seismic datasets, path distribution can be highly heterogeneous, resulting in

a spatial variability in resolving power. The ability to “tune” a parameterisation to these

variations using some form of irregular mesh has a range of potential benefits, including
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increased computational efficiency (fewer unknowns), improved stability of the inverse

problem, and improved extraction of structural information (Michelini, 1995; Curtis and

Snieder, 1997; Vesnaver et al., 2000; Spakman and Bijwaard, 2001; Rawlinson and Sam-

bridge, 2003a; Sambridge and Faletic, 2003; Sambridge and Rawlinson, 2005). Completely

unstructured meshes, such as those that use Delaunay tetrahedra or Voronoi polyhedra

(Sambridge et al., 1995), offer high levels of adaptability, but have special book-keeping

requirements when solving the forward problem of data prediction. Sambridge et al. (1995)

and Sambridge and Gudmundsson (1998) describe techniques for locating points within

these meshes, which allows ray tracing to be performed efficiently.

2 Ray tracing schemes

In this section, we describe a number of practical ray tracing schemes for solving the

boundary value problem of locating source-receiver ray paths in various classes of media

(2-D, 3-D, with and without discontinuity). There are two broad categories - shooting

and bending - which exploit different formulations of the ray tracing equations (Eq. 8).

2.1 Shooting methods

Shooting methods of ray tracing are conceptually simple; they formulate Eq. 8 as an initial

value problem which allows a complete ray path (with appropriate application of Snell’s

law in the presence of any interface) to be traced given an initial trajectory of the path.

The two point problem of finding a source-receiver path then becomes an inverse problem

in which the unknown is the initial direction vector of the ray, and the function to be

minimised is a measure of the distance between the ray end point and receiver. The main

challenge that faces this class of method is the non-linearity of the inverse problem, which

tends to increase dramatically with the complexity of the medium (as Fig. 1 testifies).
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2.1.1 The initial value problem

The appropriate form of the equation required to solve the initial value problem depends

largely on the choice of parameterisation. In a medium described by constant velocity

(slowness) blocks, the ray path is simply described by a piecewise set of straight line

segments; all that is required to solve the initial value problem is repeated application

of Snell’s law at cell boundaries. This can be accomplished with high computational effi-

ciency (e.g. Williamson, 1990). Analytic ray tracing can also be applied to other param-

eterisations; for example, triangular or tetrahedral meshes in which the velocity gradient

is constant (e.g. White, 1989). The expression for ray trajectory in a medium with a

constant velocity gradient can be expressed in various ways, including parametrically as

(Rawlinson et al., 2001a)

x =
v(z0)

k

[

a0(c− c0)

1 − c20
,
b0(c− c0)

1 − c20
, 1 −

√

1 − c2

1 − c20

]

+ x0, (23)

where x0 is the origin of the ray segment, [a, b, c] is a unit vector tangent to the ray path,

[a0, b0, c0] is a unit vector tangent to the ray path at x0, k is the velocity gradient, and

v(z0) is the velocity at z0. The associated traveltime is then given by

T =
1

2k
ln
[(

1 + c

1 − c

)(

1 − c0
1 + c0

)]

+ T0, (24)

where T0 is the traveltime from the source to x0. For application to tetrahedra (or triangles

in 2-D), it is simply a matter of rotating the coordinate system so that the velocity gradient

is in the direction of the z-axis. A number of other velocity functions yield analytic ray

tracing solutions, such as the constant gradient of ln v, and the constant gradient of the

nth power of slowness 1/vn (Červený, 2001).

Although analytic ray tracing is possible for a few special cases, in general one needs

to solve Eq. 8 using numerical methods. This usually requires Eq. 8 to be reduced to a

convenient first order initial value system of equations, which can be done in a variety of
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ways. For example, by considering the following unit vector in the direction of the ray

dr

dl
= [sin θ cosφ, sin θ sin φ, cos θ], (25)

where θ is the inclination of the ray with the vertical (z-axis), and φ is the azimuth of the

ray (angle between ray and positive x-axis in xy plane). Substitution of this expression

into Eq. 8 and application of the product rule yields:

∂s

∂x
= s cos θ cosφ

dθ

dl
− s sin θ sinφ

dφ

dl
+ sin θ cosφ

ds

dl

∂s

∂y
= s cos θ sinφ

dθ

dl
+ s sin θ cosφ

dφ

dl
+ sin θ sinφ

ds

dl

∂s

∂z
= −s sin θ

dθ

dl
+ cos θ

ds

dl







































































(26)

These three equations can be rearranged to remove the ds/dl term and produce expres-

sions for dθ/dl and dφ/dl, which together with Eq. 25 produce the following system of

equations

dx

dl
= sin θ cos φ

dy

dl
= sin θ sinφ

dz

dl
= cos θ

dθ

dl
=

cos θ

s

[

cosφ
∂s

∂x
+ sinφ

∂s

∂y

]

− sin θ

s

∂s

∂z

dφ

dl
=

1

s sin θ

[

cosφ
∂s

∂y
− sin φ

∂s

∂x

]







































































































































. (27)

Thus, given some initial position and trajectory, a ray path can be obtained by solving this

coupled system of equations e.g. using a fourth order Runge-Kutta scheme (e.g. Kreyszig,

1993).

The initial value formulation of the kinematic ray tracing equations given by Eq. 27
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uses path length l as the independent variable. However, it is often more convenient to

use traveltime t, since this parameter is usually required in addition to path geometry.

Conversion of Eq. 27 into a form that uses t as the independent variable and velocity

v instead of slowness s (the use of slowness or velocity is often a matter of convention,

but it can have practical implications for certain classes of problem, e.g. Rawlinson and

Sambridge, 2003b) can be achieved using the following simple set of relationships

dθ

dl
= s

dθ

dt
,

dφ

dl
= s

dφ

dt
,

dx

dl
= s

dx

dt
,

∂s

∂x
= − 1

v2

∂v

∂x
, (28)

which result in the following system of equations

dx

dt
= v sin θ cos φ

dy

dt
= v sin θ sinφ

dz

dt
= v cos θ

dθ

dt
= − cos θ

[

cosφ
∂v

∂x
+ sinφ

dv

dy

]

− sin θ
∂v

∂z

dφ

dt
=

1

sin θ

[

sinφ
∂v

∂x
− cosφ

∂v

∂y

]







































































































































. (29)

This system of equations has a similar form to Eq. 27, and therefore can be solved using

the same class of technique. The nine ray paths shown in Fig. 5 were computed by solving

Eq. 29 using a 4th order Runge Kutta method (with constant φ). This procedure is very

efficient; for example, tracing 10,000 ray paths using a time step of 0.1 s from the same

source point to the edge of the medium only takes 6 s on a 1.6 GHz Opteron PC running

Linux.

Rather than use ray inclination and azimuth to describe ray trajectory, one could also use

the components of the ray direction (or slowness) vector p = ∇T . A system of first-order

equations can then be simply derived from Eq. 8 by using this vector as the substitution
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Fig. 5. A fan of nine ray paths traced from a source point in a complex 2-D medium

described by a mesh of cubic B-spline functions. A fourth order Runge Kutta scheme is

used to solve Eq. 29 in this case.

variable i.e. ∇T = sdr/dl. This results in

dr

dl
= vp

dp

dl
= ∇1

v







































, (30)

which is a system of six equations. The independent variable s can be replaced by trav-

eltime t in the same way as before to produce

dr

dt
= v2p

dp

dt
= −1

v
∇v







































. (31)

This is the same set of equations that would result from substituting Eq. 11 into the

Hamilton equations 13. Although Eq. 29 has one less dependent variable to compute than

Eq. 31, it contains trigonometric functions which, from a computational point of view, are

less desirable. The 6D vector (r,p), which uniquely describes the position and trajectory

of a ray in 3-D space, is sometimes referred to as the phase space vector (Chapman,

2004), while its 5-D counterpart (r, θ, φ) is sometimes referred to as the reduced phase
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space vector (e.g. Osher et al., 2002).

It is worth emphasising that a variety of other first order formulations of the kinematic

ray tracing equations in isotropic media can be derived - for more details, see Červený

(1987, 2001). In general anisotropic media, a system of six first-order equations can be

obtained by substituting the Hamiltonian defined by Eq. 13 into the Hamilton equations,

which results in (Červený and Firbas, 1984; Chapman, 2004)

dxi

dt
=
∂Gm

∂pi

=
cijklpkg

j
mg

l
m

ρ

dpi

dt
= −∂Gm

∂xi
= −1

2

∂[cjklm/ρ]

∂xi
pjpmg

k
mg

l
m







































. (32)

Although much more computationally expensive to solve than its isotropic equivalent,

initial value anisotropic ray tracing in 2-D or 3-D media does not pose a significant

challenge for modern computers.

In the presence of smooth velocity variations, the kinematic ray tracing equations provide

the required solution, but as soon as velocity discontinuities are introduced, two additional

problems need to be solved: (1) locate ray-interface intersection point; (2) find trajectory

of departing ray path. The first problem can be difficult to solve, particularly if both ray

paths and interfaces are described by non-linear functions. If a medium is divided up into

cells, then a first level of refinement can be achieved by simply knowing which cells contain

an interface; thus when a ray enters a cell, one knows whether or not an intersection is

possible. Sambridge and Kennett (1990) devise a boundary value ray tracing scheme

for 3-D media which contain discontinuities; rather than exactly locate the ray-interface

intersection point, the time step length used in Eq. 29 is iteratively adjusted in the vicinity

of an interface based on a linear update procedure. The iteration process ceases when the

distance between the ray end point and interface satisfies a tolerance criteria.

In an alternative approach, Virieux and Farra (1991) exploit the convex hull and subdi-

vision properties of B-splines. The first property states that the B-spline surface must lie
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Fig. 6. Reflection paths from two source points in the presence of a complex multi-valued

interface described by cubic B-splines. Path trajectories are obtained by solving an initial

value problem until the ray impinges on the surface z = 0. Note that it is decided a priori

that all rays impinging on the interface will reflect. Thus, rays trapped inside complex

features of the model keep reflecting until they finally emerge and intersect with the

surface.

within the convex volume defined by the control points; the second property allows the

same surface to be described by larger numbers of control points. Thus, the approximate

location of a ray-interface intersection point can be found by determining whether the

ray (locally linear in this case) intersects a paralleliped containing the convex volume; if

it does, then the convex volume can be subdivided and the simple ray-paralleliped prob-

lem can be resolved for each of the new, smaller, parallelipeds. Repetition of this process

allows all possible intersection points to be found. This scheme is very robust, but can be

computationally expensive; as a result, Virieux and Farra (1991) switch to a more efficient

local search method once it is considered a unique intersection point is being targeted by

the subdivision scheme.

Like Virieux and Farra (1991), Rawlinson et al. (2001a) also use cubic B-splines in para-
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metric form to represent interface surfaces, but adopt a different approach to finding

ray-interface intersection points. In this case, rays are defined by circular arc segments.

Rather than exploit the convex hull property of B-splines, an initial intersection point is

found by approximating the surface by a mosaic of triangular patches, for which analytic

solution of the ray-interface intersection problem is possible. Once a preliminary inter-

section point is found, an iterative non-linear scheme based on the generalised Newton

method is used to target the true intersection point. Although computationally efficient,

the procedure may fail to locate some intersection points, particularly if the trajectory

of the ray is nearly parallel to the interface when intersection occurs. Another possible

problem is that the local method converges to the incorrect intersection point. However, in

practice the scheme is effective, as demonstrated in 2-D by Fig. 6, which shows reflection

paths propagating through a highly complex interface structure. As well as demonstrating

the robustness of the intersection scheme, this example also illustrates the power of initial

value ray tracing: given virtually any structure, it is possible to trace ray paths of almost

any specified initial trajectory.

The second problem that needs to be solved when a ray impinges on an interface is to find

the trajectory of the departing ray path. In 2-D, a simple application of Snell’s law (Eq. 10)

can produce up to four departing paths (transmission, reflection, converted transmission,

converted reflection) for isotropic media. In 3-D, the same class of paths can be generated,

but in addition to Snell’s law, the continuity of projection of the incident ray must also

be considered. This is equivalent to requiring that the incident path, departing path and

normal to the interface at the intersection point, all lie in the same plane. By combining

this constraint with Snell’s law, the slowness vector pr of the reflected or refracted ray

path can be defined by (Červený, 1987; Sambridge and Kennett, 1990):

pr = pi +







κ

[

1

v2
r

− 1

v2
i

+ (pi · n)2

]1/2

− pi · n






n (33)

where pi is the slowness vector of the incident path, n is a normal vector to the interface

at the intersection point, and vi and vr are the wavespeeds of the incident and departing
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rays. κ = sign(pi · n) and equals +1 if pi makes an acute angle with n and −1 otherwise.

When unconverted reflected waves are required (vi = vr), Eq. 33 reduces to:

pr = pi − 2(pi · n)n (34)

For general anisotropic media, up to three reflected and three transmitted waves can be

generated for a single incident path - see Slawinski et al. (2000) for details on how they

can be calculated.

2.1.2 The boundary value problem

Shooting methods of ray tracing usually solve the boundary value problem by probing the

medium with initial value ray paths and then exploiting information from the computed

paths to better target the receiver. Fig. 7 illustrates this basic concept in 2-D. If a ray
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Fig. 7. Principle of the shooting method. In this case, an initial path trajectory is updated

until it converges at the receiver.

emanates from a source point in a 3-D medium with take off angles θo and φo, and the

aim is for the ray end point (xe, ye) on the receiver plane (z = constant) to coincide with

the receiver location (Xr, Yr), then the boundary value problem amounts to finding the
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(θo, φo) that solve the two non-linear simultaneous equations

xe(θo, φo) = Xr

ye(θo, φo) = Yr































. (35)

Given that (xe, ye) cannot be expressed explicitly as a function of (θo, φo) for most velocity

fields, it is usually the case that the boundary value problem is posed as an optimisation

problem, with the misfit function to be minimised expressed as some measure of the

distance between the ray end point and its intended target. Since the optimisation problem

is non-linear, a range of iterative non-linear and fully non-linear schemes can be applied.

Julian and Gubbins (1977) propose two iterative non-linear schemes for solving Eq. 35.

The first of these is Newton’s method, which amounts to a simple linearisation:
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. (36)

Thus, given some starting initial trajectory θ0
o , φ

0
o, solution of Eq. 36 provides an updated

initial trajectory θ1
o , φ

1
o, and the process is repeated until an appropriate tolerance criterion

is met. The success of this scheme depends largely on two factors: (1) accurate calculation

of the partial derivative matrix, and (2) obtaining an initial guess ray that will converge to

the correct minimum under the assumption of local linearity. Both of these requirements

can be difficult to satisfy, particularly in complex media. One approach to estimating the

partial derivatives involves fitting two planes through the end points of a cluster of three

ray paths with different initial projection angles (i.e. one plane through all three xo(θo, φo)

and the other plane through all three yo(θo, φo)). The gradient of these planes in the θo and

φo directions provide estimates of the four partial derivatives in Eq. 36. This approach is

actually equivalent to the method of false position, which is the second iterative non-linear

scheme proposed by Julian and Gubbins (1977). The method of false position is unlikely
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to be first-order accurate like a true Newton method, and therefore will converge more

slowly and possibly with less stability. However, it will be faster at each iteration, and

Rawlinson et al. (2001a,b) found it to be sufficiently robust to use in solving the forward

step of large 3-D tomographic inverse problems. Fig. 8 shows two-point paths through a

3-D laterally heterogeneous structure that were computed using this scheme.

(a)

(b)

Fig. 8. Two-point paths computed through a 3-D layered model using the shooting scheme

of Rawlinson et al. (2001a). (a) Refracted paths, (b) reflected paths.

Sambridge and Kennett (1990) directly compute the partial derivatives in Eq. 36 by

exploiting wavefront curvature information at the end point of the ray. This can be done

by differentiating Eq. 29 with respect to the initial take-off angles (θo, φo) and reversing

the order of differentiation, resulting in an additional set of 10 first-order equations which

must be solved together with the original set of five. The computed variables are closely

related to the derivative terms in Eq. 36, and allow the Newton scheme to be applied

with first order accuracy. Note that the additional equations now contain second-order

derivatives of velocity, which means that the velocity field must have C2 continuity.

The second requirement of a successful iterative non-linear shooting method is a suffi-

ciently accurate initial guess ray. This can be obtained in various ways, including shooting

a broad fan of rays in the general direction of the receiver array, and then (if necessary)

shooting out increasingly targeted clusters of rays towards zones containing receivers un-
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til a suitably accurate initial ray is obtained (Virieux and Farra, 1991; Rawlinson et al.,

2001a). Another approach is to use the correct two-point ray for a laterally averaged

version of the model as the initial guess ray (Thurber and Ellsworth, 1980; Sambridge,

1990). It is worth noting that the two-point problem in ray tracing is not the only type of

boundary value problem; for example, one may wish to compute paths from an incident

teleseismic wavefront below the crust or lithosphere to a receiver array on the surface.

In this case, rays that end at a receiver begin at specific points along the wavefront sur-

face. Fig. 9 shows a solution to this class of boundary value problem obtained using the

iterative non-linear shooting scheme of Rawlinson and Houseman (1998).

Fig. 9. A boundary value problem involving teleseismic wavefronts rather than point

sources can also be solved using shooting methods of ray tracing.

Shooting methods of ray tracing are widely used in seismology due to their conceptual

simplicity, and potential for high accuracy and efficiency. One area in which they en-

joy frequent application is seismic tomography, where 2-D or 3-D variations in seismic

properties are imaged by matching data observations with data predictions using inver-

sion techniques (e.g. Cassell, 1982; Benz and Smith, 1984; Langan et al., 1985; Farra and

Madariaga, 1988; White, 1989; Sambridge, 1990; Zelt and Smith, 1992; VanDecar et al.,

1995; McCaughey and Singh, 1997; Rawlinson et al., 2001b).
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2.1.3 Paraxial Ray Tracing

An important field of ray theory that is yet to be mentioned is the paraxial ray approxi-

mation (Červený and Pšenčik, 1983; Červený and Firbas, 1984; Červený, 1987; Farra and

Madariaga, 1988; Virieux and Farra, 1991; Červený, 2001; Červený et al., 2006), which is

widely employed by the seismology community for various aspects of data prediction. It

essentially involves using first order perturbation theory to deduce characteristics of the

wavefield in the neighbourhood of a reference ray. Thus, given some reference path with

position and slowness vector y0(t) = [r0(t),p0(t)]
T, a paraxial ray can be defined by the

first-order approximation

y(t) = y0(t) + δy(t) = [r0(t) + δx(t),p0(t) + δp(t)] . (37)

To obtain the paraxial ray tracing equations, consider the linearisation of the kinematic

ray tracing equations ṙ = ∇pH and ṗ = −∇rH (equivalent to Eq. 13 with (̇) denoting

differentiation with respect to t), which can be written as

δṙ =
∂ṙ

∂r
δr +

∂ṙ

∂p
δp

δṗ =
∂ṗ

∂r
δr +

∂ṗ

∂p
δp







































, (38)

or in more compact form as

δẏ = Aδy where A =

















∇r∇pH ∇p∇pH

−∇r∇rH −∇p∇rH

















. (39)

The paraxial ray tracing equation has six independent solutions in 3-D and four in 2-D.

Since we can write that

y(t) = y(t0) +
dy(t)

dt
δt = y(t0) +

∂y(t)

∂y(t0)

dy(t0)

dt
δt, (40)
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it is common to express the solution to Eq. 39 in terms of a ray propagator matrix P (t, t0)

(see Červený, 1987; Virieux and Farra, 1991)

δy(t) = P (t, t0)δy(t0) where P (t, t0) =





















∂x(t)

∂x(t0)

∂x(t)

∂p(t0)

∂p(t)

∂x(t0)

∂p(t)

∂p(t0)





















, (41)

which has the initial condition that P (t = t0, t0) = I, the identity matrix. The power

of paraxial rays is that they allow information about the wavefield in the vicinity of

a reference ray to be used, for example to detect caustics in two-point ray tracing. In

fact, the shooting method of Sambridge and Kennett (1990) described in the previous

section, which makes use of wavefront curvature information in the vicinity of a ray to

compute partial derivatives for an iterative non-linear update scheme, is an example of

using paraxial ray theory in two-point ray tracing. Virieux and Farra (1991) describe a

similar scheme, and in fact there are many shooting schemes of ray tracing which exploit

the paraxial ray approximation (e.g. Červený and Firbas, 1984; Farra and Madariaga,

1988; Bulant, 1996). For more details on paraxial ray theory and its many other potential

applications, refer to Červený and Pšenčik (1983); Červený and Firbas (1984); Červený

et al. (1984); Červený (1987); Farra and Madariaga (1987); Klimeš (1989); Bulant (1996);

Červený (2001); Červený et al. (2006).

2.1.4 Fully non-linear shooting methods

Shooting methods which use an iterative non-linear approach to solve the boundary value

problem are often very efficient in mildly heterogeneous media, but generally become less

robust as the complexity of the medium increases. Fig. 10 illustrates why this is the case by

showing the relationship between ray inclination angle and distance from a receiver for two

velocity models of different complexity. In the first model (Fig. 10a), velocity increases

linearly with depth but has random velocity fluctuations with a standard deviation of

0.4 km/s superimposed. These velocity perturbations are sufficient to cause some mild
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focusing and defocusing of the wavefront, as reflected by the variable density of ray paths

along the surface. This effect is also manifest in the corresponding plot of ray end point

to receiver distance vs. initial ray inclination; the plot is asymmetrical about 0◦ (vertical

initial inclination) and contains significant variations in curvature. Despite these non-

linearities, it is likely that any iterative non-linear shooting scheme will converge to the

correct solution using a starting ray with initial angle in the range −45◦ → 45◦, although

the initiation of a triplication several kilometres to the right of the receiver (Fig. 10a)

may cause some difficulties (it appears as a small region of near zero gradient in the ray

inclination vs. distance plot at about −4◦).
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Fig. 10. Demonstration of the non-linear relationship that exists between initial ray trajec-

tory and distance from ray end point to receiver. (a) Mildly heterogeneous medium with

lateral velocity standard deviation of 0.4 km/s; (b) strongly heterogeneous medium with

lateral velocity standard deviation of 1.4 km/s. The source is denoted by a grey circle and

the receiver by a grey triangle. Note that while 100 ray paths are shown in each of the ray

tracing plots (top), the corresponding ray end point vs. initial ray inclination diagrams

(bottom) were generated using 1,000 rays.

The second model (Fig. 10b) is identical to Fig. 10a except that the random velocity

fluctuations now have a standard deviation of 1.4 km/s, which results in significant lat-

eral heterogeneity. Note that the pattern of anomalies is identical to the first model; it is
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only their amplitude which has changed. The effect of the increased amplitude on the ray

distribution is dramatic, with several triplications of the ray field now evident. The cor-

responding distance vs. ray inclination plot reveal these multi-pathing effects as extrema.

Clearly, at least three arrivals are detected by the receiver. If one was to use an iterative

non-linear shooting method in this situation with a starting ray in the initial inclination

range of −45◦ → 45◦, then it is possible that a two point path will be located, but it is

also possible that the scheme will become trapped in a local minimum. Shooting a broad

fan of rays, and then increasingly more targeted clusters based on previous sampling of

the wavefield, may provide sufficiently accurate initial rays (e.g. Rawlinson et al., 2001a)

to locate one or more global minima. Ultimately, though, there will be a trade-off between

computing time and the number of two-point paths found, and one must always make a

decision as to which point along this trade-off curve is adequate for the problem at hand.

Given the potential pitfalls of using an iterative non-linear solver in two point shooting

methods, it would appear that fully non-linear solvers would be at least worthy of in-

vestigation. However, there are relatively few examples in the literature, perhaps due to

the recent proliferation of grid based and wavefront construction type schemes that are

designed to overcome these limitations (these schemes will be discussed later in some de-

tail). Velis and Ulrych (1996) describe a fully non-linear shooting method of ray tracing

that uses simulated annealing to locate the global minimum path. Simulated annealing

(e.g. Kirkpatrick et al., 1983) is based on an analogy with physical annealing in thermo-

dynamic systems to guide variations to the model parameters, in this case the initial ray

trajectories. Velis and Ulrych (2001) extend their method to heterogeneous 3-D velocity

models which can include variable thickness layers, faults, and complex structures such

as salt domes. The scheme exhibits several advantages compared to more conventional

ray tracing schemes; in particular increased robustness for locating the global minimum

solution. However, it does not appear to be practical for finding all multipaths, and tends

to be more computationally expensive than iterative non-linear solvers.

30



2.2 Bending methods

The principle of the bending method of ray tracing is to iteratively adjust the geometry

of an initial arbitrary path that joins source and receiver until it becomes a true ray path

(i.e. it satisfies Fermat’s principle of stationary time) - see Fig. 11. A common approach

to implementing the bending method is to derive a boundary value formulation of the

kinematic ray tracing equations which can then be solved iteratively. There are many

ways that this can be done; here, we describe a scheme that was first devised by Julian

and Gubbins (1977). The traveltime T of a ray path between source S and receiver R can

in general be expressed by the integral

T =
∫ R

S
sdl, (42)

where s is slowness and l is path length. The ray path can be described parametrically by

a monotonic function λ, the normalised path length (λ = l/L, where L is the total path

length of the ray), in which case r = r(λ). A perturbation in path length can therefore

be written as

dl

dλ
=

√
ṙ · ṙ =

√

ẋ2 + ẏ2 + ż2 = F, (43)

where (̇) denotes differentiation with respect to λ, and the use of normalised path length

means that F = L and dF/dλ = 0. Using this expression, Eq. 42 can be rewritten as

T =
∫ R

S
sFdλ. (44)

The ray tracing equations can be obtained by extremizing this integral using the calculus

of variations (e.g. Jeffreys and Swirles, 1966). For any integrand G(λ, r(λ), ṙ(λ)) the Euler-

Lagrange equations are

∂G

∂r
− d

dλ

[

∂G

∂ṙ

]

= 0. (45)

In our case, the integrand is G = sF = s
√

ṙ · ṙ, and substitution into Equation Eq. 45

yields

sr̈ + (ṙ · ∇s)ṙ − (ṙ · ṙ)∇s = 0. (46)
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Fig. 11. Principle of the bending method. In this case, an initial two point path is perturbed

until it satisfies Fermat’s principle.

It is easy to show that only two of these equations are independent (Julian and Gubbins,

1977), and that one may be ignored without loss of generality. This leaves two equations

with three unknowns r = (x, y, z); a final constraint comes from dF/dλ = 0 (so (ṙ·r̈) = 0).

Thus, a system of three independent non-linear second order differential equations can be

explicitly written (Julian and Gubbins, 1977)

sẍ+ syẏẋ+ sz żẋ− sx(ẏ
2 + ż2) = 0

sÿ + sxẋẏ + sz żẏ − sy(ẋ
2 + ż2) = 0

ẋẍ+ ẏÿ + żz̈ = 0







































































, (47)

where ∇s = (sx, sy, sz). The boundary conditions for this problem are r(0) = rS and

r(1) = rR, and an iterative non-linear solution approach is possible given some initial

estimate of the path r(λ)0, so that in general r(λ)n+1 = r(λ)n+δr(λ)n. Substitution of this

expression into Eq. 47 and linearising the resulting equations for δr(λ)n allows solutions

to be obtained using, for example, second order finite difference techniques (Julian and
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Gubbins, 1977). The iterative process can be continued until some suitable convergence

criterion, based on the path perturbation integrated along the ray, is satisfied.

Pereyra et al. (1980) devise a similar technique to that described above for ray bending,

but extend it to allow for the presence of interfaces. This can be achieved by considering a

separate system of differential equations in each smooth region, and coupling them using

the known discontinuity condition at each interface that is traversed by the ray path.

The order in which the interfaces are intersected by the ray path needs to be known

in advance, which may be a drawback in complex structures. This scheme is developed

further in very complex 3-D models by Pereyra (1996), who also implements shooting to

obtain an initial guess ray. This helps to overcome the problem of knowing a priori the

correct path sequence.

2.2.1 Pseudo-bending methods

Pseudo-bending methods are similar in principle to the bending scheme described above,

but avoid direct solution of the ray equations. One of the first of these schemes was

developed by Um and Thurber (1987), and is based upon the ray path being represented

by a set of linearly interpolated points. Given some initial arbitrary path, the aim is to

sequentially adjust the location of each point so that the path better satisfies the ray

equations. This can be accomplished quite efficiently by locating the direction of the ray

path normal and then directly exploiting Fermat’s principle of stationary time. If we

denote mt and mn as vectors tangent and normal to the ray path respectively at some

point r (see Fig. 12a), then

mt =
dr

dl
and mn =

dmt

dl
, (48)

where mt is a unit vector. By using Eq. 5, mn can be written

mn =
d

dl

(∇T
s

)

=
1

s

d∇T
dl

+ s∇T d

dl

(

1

s

)

. (49)
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mn can be expressed completely in terms of s and mt by making use of Eq. 7, so that

mn =
∇s
s

+ ∇T d

dr

(

1

s

)

· dr

dl
=

1

s
(∇s− (∇s ·mt)mt) . (50)

If we now let n represent the anti-normal unit vector to the ray path at r, and substitute

velocity v for slowness s, then

n =
∇v − (∇v · mt)mt

|∇v − (∇v · mt)mt|
(51)

which is equivalent to the expression derived by Um and Thurber (1987). The vector n

thus defines the direction of ray path curvature.

R

L
Ln

m

mt

n
r

Ray path
segment

(a) (b)

v

ri
new
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old

rmid

ri+1

ri−1

n

Fig. 12. Schematic representation of parameters used in the pseudo bending method. (a)

Definition of ray tangent mt, ray normal mn and antinormal unit vector n at a point r

along a ray path; (b) stencil for the three point perturbation scheme.

A three-point perturbation scheme is devised by Um and Thurber (1987) to sequentially

update points along a path. Consider Fig. 12b, which shows three points ri−1, ri and ri+1.

The aim is to replace the initial guess point rold
i with an improved estimate rnew

i . The

improved estimate is obtained by considering a perturbation to the point rmid, which lies

at the midpoint between ri−1 and ri+1. The vector mt can then be simply approximated

by

mt =
ri+1 − ri−1

|ri+1 − ri−1|
(52)

and the anti-normal unit vector n, which specifies the bending direction, is computed

from Eq. 51. The next step is to find the distance R in the direction n which results in
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an improved estimate of the path. An approximate analytic expression for the traveltime

T (R) between ri−1 and ri+1 can be obtained using the trapezoidal rule

T (R) =
√
L2 +R2

[

1

vnew
i

+
1

2

(

1

vi−1

+
1

vi+1

)]

. (53)

The appropriate value for R can be obtained by appealing directly to Fermat’s principle

of stationary time, which in this case equates to setting dT/dR = 0. Therefore,

dT

dR
=

√
L2 +R2

d

dR

(

1

vnew
i

)

+

(

1

vnew
i

+ c

)

R√
L2 +R2

= (L2 +R2)
dvnew

i

dR
− Rvnew

i (cvnew
i + 1) = 0







































, (54)

where c = (1/vi−1 + 1/vi+1)/2. The quantity vnew
i is unknown, but a first-order accurate

(in R) estimate based on the velocity and velocity gradient at rmid can be made

vnew
i ≈ vmid + (n · ∇vmid)R. (55)

Substitution of this expression into Eq. 54 results in

[c(n · ∇vmid)
2]R3 − [2cvmid(n · ∇vmid)]R

2 − [vmid(cvmid + 1)]R+ (n · ∇vmid)L
2 = 0. (56)

Um and Thurber (1987) ignore the cubic term of R, which results in a quadratic equation

with two roots. The solution which produces real positive traveltimes is

R =
−vmid(cvmid + 1) +

√

v2
mid(cvmid + 1)2 + 8cvmid(n · ∇vmid)2L2

4cvmid(n · ∇vmid)
. (57)

The update procedure for pseudo bending as outlined above is very simple and computa-

tionally efficient, as it only requires two relatively simply equations to be solved (Eq. 51

and 57). In practice, Um and Thurber (1987) apply the update scheme simultaneously

from both end points of the ray path to the central point. This process is repeated until

a convergence criterion is met. An initial path can be approximated in various ways, but

one simple option is to begin with a three point ray joining source and receiver. Once

the central point has been perturbed, two new points are introduced that bisect each
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line segment. The central three points can then be relocated, before four new points are

introduced in the same way as before (see Fig. 13). This process can be continued until a

suitably accurate path is obtained.

Final

Initia
l

4

1

2

3

v(x,z)

Source Receiver

Fig. 13. Principle of the pseudo-bending method of Um and Thurber (1987). In this

schematic example, an initial guess ray is defined by three points. The center point is

perturbed to satisfy Fermat’s principle of stationary time. The number of path segments

is then doubled and the process repeated.

Despite the relatively crude approximations made in pseudo bending, Um and Thurber

(1987) find it to be much more computationally efficient than conventional bending

schemes; consequently, it has become quite popular for problems which require large trav-

eltime datasets to be predicted, e.g. 3-D local earthquake tomography (Eberhart-Phillips,

1990; Scott et al., 1994; Eberhart-Phillips and Reyners, 1997; Graeber and Asch, 1999).

Zhao et al. (1992) modify the three point perturbation scheme of Um and Thurber (1987)

to allow for the presence of interfaces. In this case, the sequence of points which discretely

defines the path includes points which lie on each interface traversed by the ray. When the

update scheme reaches these points, they are perturbed along the interface (with adjacent

points on either side of the interface held fixed) until Snell’s law is satisfied. Koketsu and

Sekine (1998) devise a similar scheme in a 3-D spherical coordinate system.

36



2.2.2 Other bending schemes

Two classes of bending method have been described above. In the first, the ray equation

is linearised and iteratively solved as a boundary value problem with fixed end points.

The second approach - pseudo bending - applies a simple perturbation scheme based on

a direct application of Fermat’s principle of stationary time, to a ray path described by a

sequence of points. Although these are the two principal methods, several other schemes

have been developed which warrant a brief mention.

Prothero et al. (1988) develop a 3-D bending scheme based on the simplex method of

function minimisation. An initial path is obtained by using an exhaustive search method

to find the minimum-time circular path between source and receiver. Perturbations to

this path, described by a sum of sine-wave harmonics, are then made using the simplex

method, which searches for the amplitude coefficients that produce the path of least time.

Although the method appears to be more robust than pseudo-bending, it is significantly

slower.

Like ray shooting, ray bending can also be carried out using fully non-linear update

schemes. Sadeghi et al. (1999) develop a method which uses genetic algorithms (GAs)

to globally search for the minimum time ray path between two fixed points. The scheme

is similar to pseudo-bending in that paths are described by a set of linearly interpolated

points, which are perturbed until a convergence criterion is satisfied. However, in this case,

a population of multiple two-point paths join source and receiver, and the GA drives the

bending of paths until the traveltime converges to a minimum. When this occurs, all two

point rays within the population should follow almost identical paths.

Dȩbski and Ando (2004) develop a so-called “spectral ray tracer”, which bares some re-

semblance to the scheme of Prothero et al. (1988), except that ray paths are parameterised

as a series of Chebyshev polynomials. The bending problem can then be formulated as one

of function minimisation, in which the decomposition coefficients of the Chebyshev poly-

37



nomials become the variables to be adjusted until the two point traveltime is minimised.

Instead of adopting a linearised approach to the optimisation problem, Dȩbski and Ando

(2004) use a genetic algorithm to generate and select the decomposition components.

Most schemes for solving the boundary value problem in ray tracing can usually be char-

acterised as either shooting or bending. However, other schemes do exist, most notably

those that are based on structural perturbation (Červený, 2001). In this type of scheme, a

known two point path exists in a reference medium, and the aim is to locate the equivalent

two point path in a medium that is slightly modified from the reference medium. Solution

of this class of problem can be achieved using ray perturbation theory, which is described

in various papers including Farra and Madariaga (1987); Snieder and Sambridge (1992);

Pulliam and Snieder (1996). Snieder and Spencer (1993) show that ray bending and ray

perturbation theories can in fact be combined into a single perturbation theory.

3 Grid based schemes

An alternative to tracing rays between source and receiver is to compute the traveltime of

the evolving wavefront at all points of a grid which spans the medium. The complete trav-

eltime field implicitly contains the wavefront location as a function of time (i.e. isochrons

of T (x)) and all possible ray path trajectories (specified by ∇T ). Compared to conven-

tional shooting and bending methods of ray tracing (Julian and Gubbins, 1977; Cassell,

1982; Um and Thurber, 1987; Virieux and Farra, 1991; Koketsu and Sekine, 1998), grid

based traveltime schemes have a number of clear advantages: (1) Most are capable of com-

puting traveltimes to all points of a medium, and will locate diffractions in ray shadow

zones; (2) the non-linearity of both ray shooting and bending means that they may fail

to converge to a true two-point path, whereas most grid based schemes are highly stable

and will find the correct solution even in strongly heterogeneous media; (3) grid based

schemes can be very efficient in computing traveltime and path information to the level of
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accuracy required by practical problems. Ray tracing schemes can be inefficient if solution

non-linearity is significant; (4) most grid-based schemes consistently find first-arrivals in

continuous media. It is often difficult to ascertain with ray tracing whether the located

path is a first or later arrival.

Despite these advantages, grid based schemes have a number of limitations which should

be considered prior to application. These include: (1) accuracy is a function of grid spacing

- in 3-D halving the spacing of a grid will increase computation time by at least a factor

of 8. Thus, computation time may become unacceptable if highly accurate traveltimes

are required; (2) most practical schemes compute first-arrivals only - thus, features such

as wavefront triplications cannot be predicted; (3) quantities other than traveltime (such

as amplitude) are difficult to compute accurately without first extracting path geometry

and applying ray based techniques. Two grid-based schemes - finite difference solution of

the eikonal equation and shortest path methods - have emerged in the last few decades

as popular alternatives to conventional ray tracing, and are described below.

3.1 Eikonal solvers

One of the first grid schemes based on finite difference solution of the eikonal equation

was proposed by Vidale (1988). From a given source point, traveltimes are progressively

computed outwards along an expanding square in 2-D (see Fig. 14). Traveltimes to points

which lie in the initial square around the source point are computed as follows. The

four points (i ± 1, j) and (i, j ± 1) have traveltimes estimated by the formulae Ti±1,j =

δx/2(si±1,j+si,j) and Ti,j±1 = δz/2(si,j±1+si,j), where s is slowness and δx and δz are grid

spacing in x and z. The remaining four points are computed by appealing to the eikonal

equation (Eq. 3); in particular, the ∇T term can be approximated in the cell defined by
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Fig. 14. The expanding square method for progressive calculation of traveltimes throughout

a gridded velocity field.

points (i, j), (i+ 1, j), (i, j + 1) and (i+ 1, j + 1) by

∂T

∂x
=
Ti,j + Ti,j+1 − Ti+1,j − Ti+1,j+1

2δx

∂T

∂z
=
Ti,j + Ti+1,j − Ti,j+1 − Ti+1,j+1

2δz







































. (58)

Substitution into Eq. 3 produces the following quadratic equation

(Ti,j + Ti,j+1 − Ti+1,j − Ti+1,j+1)
2

δx2
+

(Ti,j + Ti+1,j − Ti,j+1 − Ti+1,j+1)
2

δz2
= 4s̄2, (59)

where s̄ is the average slowness of all four points defining the cell. This equation can

easily be solved for Ti+1,j+1. If h = δx = δz (Vidale, 1988), then the solution to Eq. 59 has

the simple form Ti+1,j+1 = Ti,j +
√

2(hs̄)2 − (Ti,j+1 − Ti+1,j)2. Vidale (1988) also defines a

solution stencil for a locally circular wavefront. This allows a mixed scheme to be devised,

which uses the locally circular assumption in regions of high wavefront curvature (e.g. in

the source neighbourhood), and Eq. 59 when the wavefront is more planar.

As the computational front evolves outward from the source, points within the square
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Path 1

Path 2

High velocity zone

Expanding square

Fig. 15. Schematic illustration of how the expanding square method can fail. In this ex-

ample, path 1 would be computed by the expanding square, but path 2 actually arrives

first.

band cannot have traveltimes computed in arbitrary order; causality at least requires

that new traveltimes be computed using only those traveltimes from surrounding points

of lesser value. Vidale (1988) devises a scheme which sweeps through each of the four sides

of the square in order to locate the minimum time solution at each point. The resulting

computational scheme is both fast and accurate, with CPU time being approximately

proportional to the number of points defining the grid. The method is readily extendable

to 3-D, as demonstrated by Vidale (1990).

The use of an expanding square formalism to define the shape of the computational front

cannot always respect the direction of flow of traveltime information through the medium.

This is demonstrated in Fig. 15, which shows how the expanding square can fail if the

first-arriving path to a point inside the square needs to sample structure outside the

square. As a consequence, first-arrivals are not always guaranteed, which can ultimately

lead to instability. Nevertheless, the basic scheme proposed by Vidale (1988) remains

popular, and its stability has been improved upon by introducing new features to the
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finite difference stencil and evolution of the computational front. Both Hole and Zelt

(1995) and Afnimar and Koketsu (2000) introduce special headwave operators to better

deal with the presence of strong velocity contrasts, and Hole and Zelt (1995) implement an

iterative post-sweeping scheme to help account for the non-causal nature of the expanding

square. van Trier and Symes (1991) use entropy-satisfying first-order upwind difference

operators to improve the computational efficiency of the method and better deal with

wavefront discontinuities. Comparable improvements are made by Podvin and Lecomte

(1991), who systematically apply Huygen’s principle in the finite difference approximation

in order to account for all possible modes of propagation.
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Fig. 16. Illustration of how post-sweeping can correct for errors due to the use of an

expanding box strategy for computing traveltimes. Wavefronts for WENO-DNO denoted

by dashed lines; wavefronts for WENO-DNO-PS denoted by solid lines.

More recently, Essentially Non-Oscillatory (ENO) finite difference schemes developed in

the field of computational mathematics (Shu and Osher, 1988, 1989) have been used to

solve the eikonal equation within an expanding square framework. The attraction of ENO

schemes is that they can be readily extended to very high orders of accuracy, yet remain

stable. Kim and Cook (1999) present a scheme, which they describe as ENO-DNO-PS,

to efficiently compute first-arrival traveltime fields. DNO (or down ’n’ out) refers to the

expanding box scheme first introduced by Vidale (1988), and PS refers to post-sweeping,

which is an iterative correction strategy applied to the traveltime field computed by
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ENO-DNO in an attempt to deal with causality breaches introduced by the expanding

box. This correction scheme is similar in principle to the one used by Hole and Zelt (1995).

Fig. 16 demonstrates the importance of post-sweeping in complex models; the expanding

box results in the overestimation of traveltimes in various regions of the model (dashed

lines), which appear to be corrected by the post-sweeping step (solid line). A third-order

WENO-DNO-PS solver is used in this example, which is slightly different to that used

by Kim and Cook (1999). Weighted Essentially Non-Oscillatory or WENO schemes have

a number of advantages over ENO including computation time and stability (Liu et al.,

1994; Jiang and Shu, 1996; Jiang and Peng, 2000).

Other authors to use ENO-type schemes for seismic traveltimes include Qian and Symes

(2002), who implement a WENO scheme with adaptive gridding, and Buske and Kästner

(2004), who use an ENO scheme in polar coordinates; in both cases, the computed trav-

eltimes are sufficiently accurate to solve the transport equation (Eq. 4) and obtain am-

plitudes.

Rather than use an expanding square as the computational front for traveltimes, it is

also possible to use the expanding wavefront itself (Qin et al., 1992; Cao and Greenhalgh,

1994). In the case of Qin et al. (1992), the finite difference stencil proposed by Vidale

(1988) is retained, and traveltimes to the first band of points surrounding the source are

computed in the same way. However, thereafter the point of global minimum traveltime

along the perimeter of points computed so far is used as the next source to locally expand

the solution region. This approach ensures that the shape of the computational front con-

forms to that of the first-arriving wavefront, which minimises the possibility of computing

arrivals other than the first. The need to locate the global minimum traveltime along the

computational front requires an ordered storage of traveltimes (e.g. heap sorting), which

is less efficient than the expanding box regime.

Eikonal solvers have been used in a variety of seismological applications, and are par-

ticularly useful for those classes of problems that require large traveltime datasets to be
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predicted, such as seismic imaging. For example, they have been frequently used in 3-D

refraction/reflection tomography (Hole, 1992; Zelt, 1996; Riahi et al., 1997; Zelt and Bar-

ton, 1998; Zelt, 1999; Zelt et al., 2001; Day et al., 2001) and in the migration of coincident

reflection sections (Gray and May, 1994; Bevc, 1997; Buske, 1999a,b).

3.1.1 The Fast Marching Method

One of the more recently developed grid based eikonal solvers which is both highly robust

and computationally efficient is the so called Fast Marching Method (Sethian, 1996, 1999;

Popovici and Sethian, 2002) or FMM. It was originally developed in the field of com-

putational mathematics for solving various types of interface evolution problems, and to

date has been applied in numerous areas of the physical sciences including optimal path

planning, medical imaging, geodesics, and photolithographic development (Sethian, 1999,

2001). In seismology, FMM has been used in the migration of coincident reflection profiles

(Popovici and Sethian, 2002) and teleseismic tomography (Rawlinson et al., 2006a,b).

A common feature of first-arrival traveltime fields, particularly in complex media, is that

they are not spatially differentiable at every point (i.e. the ∇T term in Eq. 3 is not

defined everywhere). This can lead to instability in schemes that do not implicitly or

explicitly recognise this behaviour (e.g. Vidale, 1988; Qin et al., 1992). When a wavefront

self-intersects (i.e. multipathing occurs), the first-arrival wavefront will contain a kink or

discontinuity which would normally be spanned by the later arriving wavefront. How-

ever, since only first-arrival traveltimes are computed, this information is discarded, and

to ensure stability, it becomes important not to use traveltimes from both sides of the

discontinuity in the same finite difference stencil to compute new traveltimes. One way

to overcome this problem is to solve the viscous version of the eikonal equation, which

smooths out discontinuities; the limit of smooth solutions is a weak solution that corre-

sponds to the first arriving wavefront. It turns out that the viscous limit solution can also

be obtained by solving Eq. 3 using upwind entropy-satisfying operators which take into
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account the direction of flow of information when evaluating ∇T .

A commonly used entropy-satisfying upwind scheme (e.g. Sethian and Popovici, 1999;

Chopp, 2001; Popovici and Sethian, 2002) may be expressed as follows
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f T, 0)2





























1

2

ijk

= si,j,k, (60)

where (i, j, k) are grid increment variables in any orthogonal coordinate system (x, y, z),

and the integer variables a, b, c, d, e, f define the order of accuracy of the upwind finite

difference operator used in each of the six cases. For example, in a Cartesian coordinate

system, the first and second order operators for D−xTi are

D−x
1 Ti,j,k =

Ti,j,k − Ti−1,j,k

δx

D−x
2 Ti,j,k =

3Ti,j,k − 4Ti−1,j,k + Ti−2,j,k

2δx

, (61)

where δx is the grid spacing in x. First order accurate schemes only use D1 operators

and second order accurate schemes preferentially use D2 operators. Strictly speaking, the

second order method is really mixed order because it will use first order approximations

when causality does not permit the use of the required operator. For example, if we

implement a second order method and Ti−1 > Ti−2, then the operator used would be

D−x
2 Ti; while if Ti−1 < Ti−2 we would have to resort to D−x

1 Ti. Mixed schemes which use

D3 or even higher order operators could also be devised, but in practice, the need to resort

to D1 operators on occasion means that improvements in overall accuracy are usually not

substantial (Rawlinson and Sambridge, 2004b). It should also be noted that the first order

FMM scheme has been proven to be unconditionally stable (Sethian, 2001), but no such

proof exists for higher order schemes.

Fig. 17 schematically illustrates why the entropy-satisfying upwind finite difference stencil

of Eq. 60 preserves stability in the presence of a wavefront discontinuity. In this case,
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Fig. 17. Discontinuities in first-arrival wavefronts usually arise from discarding later-ar-

riving information. (a) Formation of a swallowtail from an initial wavefront (dashed line);

(b) the first-arrival wavefront contains a discontinuity; (c) the upwind entropy-satisfying

finite difference stencil properly respects the flow of information by considering solutions

from each quadrant.

the complete wavefront includes a swallowtail, but this is discarded and the first-arrival

wavefront propagates with a discontinuity. The solution of Eq. 60, in 2-D media with

first-order operators, can be obtained by considering each quadrant of Fig. 17c, where the

aim is to compute Ti,j from known traveltimes at surrounding points. In Q1 and Q2, the

only approximations that can be made are Ti,j = Ti−1,j + δxsi,j and Ti,j = Ti+1,j + δxsi,j

respectively, which are not even first-order accurate. However, in Q3 and Q4, which both

have two known traveltimes, true first-order accurate traveltimes can be obtained. In the

case of Q3, the quadratic equation is

(

Ti+1,j − Ti,j

δx

)2

+
(

Ti,j − Ti,j−1

δz

)2

= (si,j)
2. (62)

Of the two possible solutions, the larger one corresponds to the correct local plane wave

approximation. Similarly in quadrant Q4, the quadratic equation is

(

Ti,j − Ti−1,j

δx

)2

+
(

Ti,j − Ti,j−1

δz

)2

= (si,j)
2, (63)

where again the larger solution corresponds to the correct local plane wave approximation.

Of the four possible solutions that have been identified, the one with minimum traveltime

is correct; in this case, it is the plane wave solution from Q3. The extension to 3-D and

higher-order operators is straightforward, although the number of candidate solutions

obviously increases.
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Fig. 18. Narrow band (NB) evolution scheme used for the ordered update of grid points.

Close points have trial traveltimes computed using Eq. 60 (using appropriate operators

for polar coordinates in this case). The narrow band locally advances from the close point

with minimum traveltime.

The FMM stencil encapsulated in Eq. 60 describes how to calculate new traveltimes using

known traveltimes from neighbouring grid points, but in order to populate a grid of nodes

with traveltime values, the order in which nodes are updated must be consistent with

the direction of flow of information; that is, from smaller values of T to large values of

T . FMM achieves this by systematically constructing traveltimes in a downwind fashion

from known values upwind by employing a narrow band approach. This is illustrated in

Fig. 18. Alive points have their values correctly calculated, close points lie within the

narrow band and have trial values computed using Eq. 60 with alive points only, and far

points have no values calculated. The narrow band is evolved by identifying the close point

with minimum traveltime, tagging it as alive and then updating any adjacent close or far

point, the latter being re-tagged as close. Using this approach, the shape of the narrow

band approximates the shape of the first-arrival wavefront, and the idea is to propagate

the band through the grid until all points become alive. This basic approach is similar to

that advocated by Qin et al. (1992). In fact, looking back at the literature produced by

the seismology community on grid-based eikonal solvers, it is evident that all the ideas on

which FMM is based have been considered at one time or another, but had not previously

been combined in this particular way.

The use of a heap sort algorithm to identify the node with global minimum traveltime

within the narrow band means that FMM has an operation count of O(M logM), where

M is the total number of grid points. Thus, in order to achieve greatest efficiency in

47



1 2 3 4 5 6 7 8 9

110˚

110˚

120˚

120˚

130˚

130˚

140˚

140˚

150˚

150˚

160˚

160˚

−40˚ −40˚

−30˚ −30˚

−20˚ −20˚

−10˚ −10˚

velocity (km/s)

Fig. 19. Wavefronts implicitly computed by FMM in a complex velocity field. Note the

formation and propagation of wavefront discontinuities. Wavefronts are contoured at 20 s

intervals, and the synthetic model is in spherical shell coordinates.

practical applications (particularly in 3-D), it is important to choose the largest grid

spacing permitted by the uncertainty in the data.

The stability of FMM is demonstrated by Fig. 19, which shows the evolution of a wavefront

in a highly complex medium. In this case, FMM has been solved in spherical shell coor-

dinates using the appropriate spherical form of ∇T in Eq. 3 with constant radius r. This

particular implementation would be useful for tracking the evolution of higher frequency

surface waves e.g. for surface wave tomography using ambient seismic noise (Shapiro et al.,

2005; Yao et al., 2006). The velocity variations shown in Fig. 19 are somewhat pathologi-
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cal, but the example seeks to demonstrate the robustness of FMM. Discontinuities in the

first-arriving wavefront clearly develop, but are successfully evolved without the intro-

duction of instabilities. Further FMM examples and detailed analysis of computational

efficiency and accuracy can be found in Rawlinson and Sambridge (2004b,a); de Kool

et al. (2006).

3.1.2 Improving accuracy in the source neighbourhood

A point source is an upwind singularity of the traveltime field and can be a major con-

tributor to the overall error of finite difference eikonal solvers due to high wavefront

curvature in the source neighbourhood. Schemes that use regular traveltime grids often

poorly approximate this curvature, and the resulting error is carried forward in subsequent

calculations. This problem has been recognised and addressed in a variety of ways. As

alluded to earlier, Vidale (1988) formulates two finite difference stencils, one that is most

accurate for locally plane wavefronts, and one that is most accurate for locally circular

wavefronts. Using the circular finite difference scheme in the source vicinity would largely

address this problem, although it is difficult to gauge the stability of this approach.

Other schemes for addressing near-source error include using spherical grids centered on

the source point (Alkhalifah and Fomel, 2001), and local grid refinement in the source

neighbourhood (Kim and Cook, 1999). In the latter case, grid spacing is progressively

increased away from the source as wavefront curvature decreases. Adaptive gridding with

grid refinement and coarsening based on a posteriori error estimation (Qian and Symes,

2002) has also been successfully used to minimise near source error. Another approach is

to solve the eikonal equation in the so-called celerity domain. Celerity is defined as the

distance from the source divided by the traveltime from the source, and transformation

of the problem into this domain can significantly reduce source error (Zhang et al., 2005).

In the context of FMM, Rawlinson and Sambridge (2004a) develop a grid refinement
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Fig. 20. Implementation of source-grid refinement when the computational front approx-

imates the first-arrival wavefront. When the narrow band impinges on the edge of the

refined grid, it is mapped onto the underlying coarse grid before continuing to evolve.

strategy that significantly improves the CPU time versus accuracy trade-off. The scheme

is similar to that of Kim and Cook (1999), except that only a single level of refinement is

used, and the edge of the refined grid ultimately conforms to the shape of the first-arrival

wavefront. This latter property ensures that the stability of the scheme is not compro-

mised. Fig. 20 schematically illustrates how the computational front evolves through the

refined grid, then is mapped back onto the coarser grid as soon as the wavefront reaches the

edge of the refined region. Rawlinson and Sambridge (2004a) show that in 2-D, accuracy

can be improved by an order of magnitude with little increase in computing time.

3.1.3 Reflections and transmissions

Grid-based eikonal solvers have largely been used to compute first-arrival traveltime fields

in continuous media, and in fact, most methods cannot be naturally extended to track later

arrivals, as they achieve their efficiency by only computing a single valued traveltime field.

However, it is possible to compute reflection and transmission phases, thereby allowing

much more of the complete wavefield to be simulated. Podvin and Lecomte (1991) and

Riahi and Juhlin (1994) find reflections by tracking first-arrival traveltime fields from both

source and receiver to the entire interface. Fermat’s principle of stationary time can then
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be applied to locate reflection points along the interface. Although this scheme has the

advantage that multiple reflection paths can be found for a single interface, traveltime

fields need to be computed for all sources and receivers. Hole and Zelt (1995) overcome

this problem by explicitly applying Snell’s law in a local plane wave approximation in the

neighbourhood of an interface.

Fig. 21. An adaptive triangular mesh can be used to locally suture the irregular interface

nodes to the regular nodes of the velocity grid (grey dots). To aid visualisation, the grid is

coarser than would be used in practice. Refer to Rawlinson and Sambridge (2004b,a) for

more details.

In an alternative approach, Li and Ulrych (1993) compute reflected and refracted trav-

eltimes in two dimensions by using a local regridding technique to decompose a cell

containing an interface into several rectangular and triangular cells so that the true in-

terface shape is better represented by the computational grid. The incident traveltime

field is computed using the scheme of Vidale (1988), and the reflected traveltime field is

obtained by reinitialising the computational front from the point of minimum traveltime

on the interface. The multi-stage FMM scheme of Rawlinson and Sambridge (2004b,a)

is similar in principle to the Li and Ulrych (1993) approach, but has been successfully

applied to much more complex velocity models, and allows paths composed of any number
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of reflection and transmission segments to be tracked. Two main difficulties need to be

overcome when reflection and refraction phases are computed: (1) accurate description of

the embedded interface; (2) correct propagation of refracted and reflected wavefronts. In

a heterogeneous layered media, interfaces vary with depth, and therefore do not conform

to the regular distribution of grid nodes used by the velocity field (of course, completely

irregular meshes could be used, but ease of implementation and computational cost can

suffer). This can be overcome by using a locally adaptive mesh of triangles which sutures

regular velocity nodes to irregular interface nodes, as illustrated in Fig. 21. Within the

irregular mesh, a first-order accurate scheme for triangular elements is used to update

traveltimes; elsewhere, the usual regular scheme (e.g. Eq. 60) can be applied.

Evolving narrow band

Evolving narrow band

Narrow band of Close points

Wavefront tracked to interface

traveltime surface

Source

Reflected wavefront initialized from

traveltime surface
Transmitted wavefront initialized from

Set to Alive for transmissionSet to Far for reflection

Set to Far for transmissionSet to Alive for reflection

(a)

(b)

(c) (d)

Fig. 22. Principle behind the multi-stage FMM scheme. Each layer represents a separate

computational domain in which FMM is initialised either from a source or a layer boundary.

(a) Incident wavefront generated from a point source; (b) narrow band defined by a set of

interface nodes; (c) reflected wavefront tracked; (d) refracted wavefront tracked.
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Leading wavefront

velocity (km/s)
(a)

(c)

Leading wavefront

(b)

Fig. 23. A reflection multiple computed using the multi-stage FMM scheme of Rawlinson

and Sambridge (2004a). (a) A two point ray path corresponding to the reflection multiple,

computed after the completion of the multi-stage FMM; (b) snapshot of the evolving

wavefront. Isochrons are contoured at 0.4 s intervals, and the leading wavefront is shown

in blue; (c) same as (b) but at a later point in time.

To understand how more than one arrival can be tracked with FMM, consider Fig. 22a,

which shows a wavefront propagating through a layer from a point source and imping-

ing on an interface. Rather than continuing to evolve the narrow band, the wavefront

is tracked only as far as the interface, which is treated as one of the four boundaries
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of the computational domain. Once all points on the interface become alive, the FMM

process is terminated. The next step is to track a reflected or transmitted wavefront into

the top or bottom layer respectively; it turns out that this can be done with first-order

accuracy by using only the traveltime values of nodes which lie on the interface, with no

explicit application of Snell’s law. Thus, in order to track a reflection, all nodes in the

top layer are set to far and all interface nodes are set to close. Therefore, the starting

narrow band conforms to the shape of the interface, and FMM can be reinitialised. Using

a starting narrow band that does not conform to the shape of the first-arriving wavefront

is acceptable provided it is understood that the wavefront cannot reflect from or trans-

mit through the interface more than once. A refracted wavefront can be tracked in the

same way, although in this case all nodes in the bottom layer are set to far. This basic

procedure can be applied iteratively to track phases comprising any number of reflected

and transmitted phases in media of virtually any complexity. It should be noted, how-

ever, that the arrival found in each case is the absolute first-arrival of the specified phase,

and is therefore likely to have small amplitude, particularly if it has experienced multiple

interactions with complex interfaces and velocity gradients.

Fig. 23 shows an example of a reflection multiple tracked in the presence of a highly het-

erogeneous velocity model. As in Fig. 19, the velocity variations are pathological relative

to real earth structure, but the purpose of the example is to demonstrate the robustness

of the method. The two-point ray-path (Fig. 23a) favours fast regions of the model and

preferentially reflects from convex regions of the interface; this is due to the fact that the

first-arrival of this class of phase is tracked. The wavefront becomes more complex as it

evolves (Fig. 23b,c) in response to strong velocity contrasts and interface geometry, but

the multi-stage FMM remains stable. This stability is highly desirable in many applica-

tions including seismic tomography and non-linear earthquake relocation, which typically

require many data prediction steps in order to obtain a solution.

In a recent paper, de Kool et al. (2006) extend the multi-stage FMM scheme to 3-D
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Fig. 24. Ray paths from local earthquake and teleseismic sources, computed using the

multi-stage FMM scheme of de Kool et al. (2006), in the presence of a subduction zone.

Receivers are denoted by blue spheres and local earthquake sources by red diamonds.

P-wave paths are blue, and S-wave paths are green. S to P conversions occur at the upper

interface of the dipping slab for the local earthquake sources.

spherical coordinates. The new implementation shares many of the basic principles used in

the 2-D Cartesian version of Rawlinson and Sambridge (2004a), but several improvements

have been implemented. These include discarding the explicit irregular mesh used to

suture interface nodes to neighbouring velocity nodes; in 3-D one would need to use an

irregular tetrahedral mesh, which can get complicated, particularly for interfaces with high

curvature. Instead, a procedure based on testing all combinations of nodes (up to three at

a time) adjacent to the node to be updated (interface node or velocity node adjacent to

the interface) is used. Each combination of nodes allows a plane wave approximation to

be made, and the one that yields the minimum traveltime is chosen. Another procedure

built into the new 3-D method allows later-arriving reflections such as the global PP

phase to be tracked. This is done by initiating FMM from both source and receiver and

matching reflection points using Fermat’s principle of stationary time. The flexibility

of the new scheme is demonstrated in Fig. 24, which shows ray paths from teleseismic
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and local earthquake sources (extracted from traveltime fields computed using the multi-

stage FMM) in a subduction zone setting. [The 3-D FMM software is freely available to

download from http://rses.anu.edu.au/seismology/fmmcode.]

3.2 Shortest path ray tracing

Shortest path ray tracing or SPR is another popular method for determining first-arrival

traveltimes at all points of a gridded velocity field (Nakanishi and Yamaguchi, 1986;

Moser, 1991; Fischer and Lees, 1993; Cheng and House, 1996; Zhao et al., 2004; Zhou

and Greenhalgh, 2005). Rather than solve a differential equation, a network or graph is

formed by connecting neighbouring nodes with traveltime path segments. Dijkstra-like

algorithms can then be used to find the shortest path between a given point and all other

points in the network. According to Fermat’s principle of stationary time, the shortest

time path between two points corresponds to a true ray path.

A BO

C

D

(a) (b)

Fig. 25. Shortest path network built on a grid of constant velocity cells (Nakanishi and

Yamaguchi, 1986; Moser, 1991). In this example, two network nodes are placed on the edge

of each cell boundary. (a) All allowable path connections between nodes. Thick dashed grey

lines highlight the connections from a single node; (b) shortest paths between node O and

a selection of surrounding nodes in a homogeneous medium.

Shortest path networks are commonly defined in terms of either a cell or a grid centered
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framework. In a seminal paper by Nakanishi and Yamaguchi (1986), the velocity field

is defined by a set of constant velocity cells with network nodes placed on the interface

between each cell (see Fig. 25a). The advantage of this approach is that traveltimes

between each node pair can be easily evaluated as t = ds where d is the distance between

the two nodes and s is the slowness of the cell containing the ray segment. Accuracy

may be increased by either reducing cell size or increasing the number of nodes on cell

edges. Fig. 25b illustrates a selection of minimum time ray paths from one of the nodes to

several other nodes in a constant velocity medium. This example provides some intuitive

understanding of the sources of error inherent to this approach, as the true paths would be

straight lines. Paths such as OC and OD are relatively straight, but OB and in particular

OA are poor approximations due to the absence of connections between nodes on the

same cell surface.

(a) (b)

Fig. 26. Shortest path network built on a grid of velocity nodes (Moser, 1991). (a) A grid

of 25 nodes with at most 8 connections per node; (b) increasing the number of connections

allows smaller path deviations to be more accurately represented.

Another way of creating a network is to use a regular grid of velocity nodes and form

linear connections between adjacent velocity nodes (Moser, 1991), as shown in Fig. 26a.

The traveltime between two connected nodes A and B can be simply approximated by

t = d(sA + sB)/2 where sA and sB are the slowness at nodes A and B respectively. The

angular distance between branches emanating from a single node in Fig. 26b is 45◦, which

is relatively large. This can be reduced by increasing the number of node connections,
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as demonstrated in Fig. 26b. The connection stencil for a particular node is sometimes

referred to as the “forward star” (Klimeš and Kvasnička, 1994). In the case of Fig. 26a,

the forward star has 8 connections, while in Fig. 26b the forward star has 16 connections.

The advantage of a grid formalism for the shortest path network is that continuously

varying velocity fields can be more accurately represented, and interfaces are more easily

inserted.

Iteration 1 Iteration 2 Iteration 3

Fig. 27. Three iterations of a simple shortest path scheme using a forward star with 8

connections. Grey dots have known traveltimes, black dots have trial traveltimes, and

white dots are yet to have traveltime computed.

Once a network structure and method of traveltime determination between node pairs

has been chosen, the next step is to use a shortest path algorithm to compute the full

traveltime field and associated ray paths. The original network theory algorithm was

developed by Dijkstra (1959), for which computation time scales as O(M2), where M is

the number of nodes. The basic approach is conceptually simple, with nodes divided into

two groups: a set of P nodes with known traveltimes, and a set of Q nodes with unknown

traveltimes (Moser, 1991); initially, Q contains M elements and P is empty, with the

traveltimes of nodes in Q set to an arbitrarily large value. The scheme is initiated from a

source node by adding it to P , and then calculating traveltimes to all neighbouring nodes

as defined by the forward star (see Fig. 27). These constitute trial traveltime values, and

the method proceeds by choosing the trial node with minimum traveltime, adding it to P

and then computing trial times to all neighbouring nodes in Q. If the node in Q already

has a trial value from a previous iteration, then the one with minimum traveltime is
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selected. The complete traveltime field is found in exactly M iterations, and ray paths

are obtained by simply recording the update order of nodes.

The most time consuming part of the Dijkstra algorithm is locating the minimum trav-

eltime node, because in its traditional usage (Moser, 1991), the entire set of nodes in

Q is tested, even those with arbitrarily large values. Thus, the total operation count is

∑M
i=1 i = 1

2
M(M+1) → O(M2). However, it is possible to use much more efficient schemes

such as the heap sort, which has an operation count of O(M logM), due to the ordered

storage of trial traveltimes in a binary tree. Much work has been done to increase the com-

putational speed of shortest path algorithms by introducing increasingly efficient sorting

algorithms (Moser, 1991; Klimeš and Kvasnička, 1994; Cheng and House, 1996; Zhang

and Toksöz, 1998).

It is worth noting the similarity between SPR and eikonal solvers such as FMM, which

use the shape of the first-arrival wavefront as the computational front (cf. Fig. 27 and

Fig. 18). The only real difference is in the way traveltimes are updated to neighbouring

nodes. Errors in SPR are due to finite node spacing and the angular distribution of node

connectors. A coarse grid of nodes may poorly approximate the true velocity variations,

while a limited range of angles between adjacent connectors may not allow for an accurate

representation of the path. The accuracy of eikonal solvers is also a function of grid

spacing, and parallels can be drawn between the complexity of the forward star used in

SPR and the finite difference stencil used to solve the eikonal equation.

Although SPR methods can only be used to locate absolute first-arrivals in continuous

media, they can be adapted to track refracted and reflected waves in much the same

way as eikonal methods. Moser (1991) describes a constrained shortest path approach to

computing this class of phase in layered media, which requires that paths visit a specified

set of nodes that lie on an interface. In principle, the scheme is equivalent to the multi-

stage FMM described earlier, which separates the medium into different computational

domains. Thus, shortest paths are computed from the source node to all other nodes in
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the layer; the traveltimes at interface nodes are recorded and ordered in a heap; and then

the layer into which the wave propagates has all nodes placed in Q and P set to empty.

The evolution of the new time field will therefore be initiated from the interface node

with minimum traveltime. Like the multi-stage FMM, this scheme could be extended to

compute paths comprising any number of reflection and refraction branches.

SPR has proven to be effective in a number of practical seismic applications that require

large datasets to be predicted in the presence of significant lateral heterogeneity. In their

original implementation of SPR, Nakanishi and Yamaguchi (1986) invert traveltimes from

local earthquakes for 2-D velocity structure. Zhang and Toksöz (1998) use an updated

version of the SPR scheme, which samples the wavefront with uniform angular coverage

and removes unnecessary nodes from the network, in a 2-D refraction tomography al-

gorithm. In 3-D, Toomey et al. (1994) invert refraction traveltimes for crustal structure

using a similar SPR scheme to that proposed by Moser (1991). More recently, Bai (2005)

use SPR in the inversion of local and regional earthquake traveltimes for the 3-D velocity

structure of Rabaul volcano in Papua New Guinea.

4 Multi-arrival wavefront tracking

Most of the ray and grid-based schemes described previously are only suitable for tracking

a single or limited number of arrivals between two points. In many cases, the presence

of velocity heterogeneity results in an evolving wavefront self-intersecting, a phenomenon

commonly referred to as multipathing, because it results in more than one ray path passing

through a given point. This behaviour is readily observed in Fig. 1. Eikonal and shortest

path methods will only provide the first-arrival in such cases; ray tracing schemes can

potentially provide more than one arrival, but the severe non-linearity of the two-point

problem makes reliability a major issue. The heterogeneity of Earth structure means that

multipathing commonly contributes to the complexity of a recorded waveform, and having
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a scheme that can efficiently predict all arrivals of significant amplitude has important

implications in various areas of seismology, such as seismic imaging. In particular, it

has already been noted that first-arrival traveltimes, which are commonly exploited in

seismic tomography, tend to avoid regions of low wavespeed. Later arrivals, which do

not necessarily exhibit such behaviour, could therefore provide better path coverage and

consequently result in improved imaging.

To date, a number of methods have been developed to solve the multi-arrival problem.

These include grid-based (Benamou, 1999; Steinhoff et al., 2000; Engquist et al., 2002;

Fomel and Sethian, 2002; Osher et al., 2002; Symes and Qian, 2003), ray-based (Vinje

et al., 1993; Lambaré et al., 1996; Vinje et al., 1996, 1999) and hybrid schemes (Benamou,

1996). Due to the relative infancy of this branch of seismology, many of the methods that

have been proposed so far are not sufficiently developed for practical application. Here,

several ray and grid based schemes are discussed.

4.1 Ray based schemes

One of the first ray-based schemes for computing multi-paths was proposed by Vinje

et al. (1993), and is commonly referred to as wavefront construction. The basic principle

underlying the method is that a wavefront can be evolved by repeated application of local

ray tracing from a set of points lying on the wavefront surface. Thus, for some given

time step δt, a new wavefront is defined by the end points of the rays traced from the

old wavefront, as illustrated schematically in Fig. 28. In order to avoid undersampling

of the wavefront as it evolves, new points are interpolated based on a distance criterion

between adjacent rays. Thus, in order to apply this scheme, all that is required is some

initial value formulation of the ray equation (e.g. Eq. 29), an interpolation criterion and an

interpolation method. From a practical implementation point of view, an efficient indexing

scheme for storing the path end points and their connectivity is also required.
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Fig. 28. Schematic diagram illustrating the principle behind the wavefront construction

scheme proposed by Vinje et al. (1993). At each iteration, a new wavefront is constructed

from the previous wavefront using local ray tracing and interpolation.

The basic 2-D scheme of Vinje et al. (1993) was subsequently extended to 3-D (Vinje

et al., 1996), and modified for media involving complex interface structures (Vinje et al.,

1999). The solution of the initial value ray tracing equations can be computed with high

accuracy, so the main source of error in the wavefront construction method comes from

interpolation. To decide whether a point needs to be interpolated, Vinje et al. (1993) uses

a distance criterion between adjacent nodes i.e. |ri+1 − ri| ≥ dn, where ri+1 and ri are

two adjacent points on the same wavefront and dn is the distance tolerance above which

a new point is interpolated. The problem with this interpolation criterion is that it does

not account for variations in wavefront curvature, so regions of high detail are likely to

be undersampled. This can be ameliorated to some extent by using a criterion based on

angular distance as well, but difficulties can still arise due to the presence of sharp corners,

which usually occur when a wavefront triplicates. Since most interpolation schemes are

best applied to smooth, differentiable functions, they may not produce satisfactory results.

An alternative approach to interpolation in physical (or “normal”) space is to instead per-
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Fig. 29. Representation of a circular wavefront in 3-D reduced phase space; the ray path

inclination θ is used as the third coordinate.

form it in phase space (Lambaré et al., 1996; Hauser et al., 2006). As noted earlier, phase

space is defined as (r,∇T ), where r is a point on the wavefront and ∇T is the traveltime

gradient, equivalent to the ray trajectory. If normal space is extended to higher dimen-

sional phase space by using ∇T as the other coordinate directions, then the wavefront

is “unfolded” into a smooth curve sometimes referred to as a “bicharacteristic strip” or

curve (Osher et al., 2002). Fig. 29 shows a circular wavefront in 2-D real space unfolded

into a spiral curve in 3-D reduced phase space.

Reduced phase space makes use of the relationship ∇T = f(θ, φ), where θ and φ are ray

inclination and azimuth respectively (see Eq. 29); thus, it is possible to transform 6-D

phase space into 5-D reduced phase space for problems in three dimensional normal space,

and 4-D phase space into 3-D reduced phase space for problems in two dimensional normal

space. The advantage of a reduced phase space representation is that when the wavefront

self intersects and contains sharp corners, its corresponding bicharacteristic curve in phase

space will be locally smooth and single valued, as demonstrated in Fig. 30.

In order to compute the distance between neighbouring points in reduced phase space, it

is necessary to scale the normal space coordinates so that they lie in the interval [−π, π];

for example, in 2-D Cartesian coordinates, −π ≤ x, y ≤ π. This scaling correlates the

metric distance with the angular distance. The criterion for adding a new point is then
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Fig. 30. A triplicating wavefront in normal space is represented by a smooth bicharacter-

istic curve in reduced phase space. Note that the intersecting segments in normal space no

longer intersect in phase space, and the sharp corner is unfolded into a smooth segment

of the bicharacteristic curve.

given by |xi+1 − xi| ≥ dp, where xi+1 and xi are adjacent points on the wavefront and dp

is the tolerance. The important difference compared to the criterion used by Vinje et al.

(1993) is that here x = (r, θ), rather than x = r. The smoothness of the bicharacteristic

curve in reduced phase space means that linear interpolation of x (five variables in 3-D,

three variables in 2-D) is often sufficient. However, it is relatively straightforward to use

higher-order interpolators. For example, in 3-D phase space, one could insert a new point

xm midway between xi+1 and xi using a weighted average defined by (Dyn et al., 1990)

xm =
−xi−1 + 9xi + 9xi+1 − xi+2

16
, (64)

which provides a smoother interpolation. As well as using interpolation to introduce new

points to the wavefront, it also makes sense to have a minimum distance criterion to
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allow the removal of points which become too close together as a result of wavefront

focusing. Properly applied, this can significantly improve computational efficiency without

degrading accuracy.
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Fig. 31. Wavefronts tracked through the smoothed Marmousi model using the wavefront

construction method of Hauser et al. (2006).

The robustness of wavefront construction in reduced phase space is demonstrated in

Fig. 31, which shows several snapshots of an evolving wavefront in the smooth version of

the Marmousi model. The Marmousi model is one of the most challenging benchmarks

for ray tracing and grid-based traveltime schemes, and is frequently used to test new

methods (e.g. Lambaré et al., 1996; Alkhalifah and Fomel, 2001). In the case of Fig. 31,

which uses the scheme of Hauser et al. (2006), the wavefront gradually develops multiple

self-intersections as it propagates, which is testament to the complexity of the underlying

model. However, the smoothness of the corresponding bicharacteristic curve in reduced

phase space ensures that the scheme remains well behaved. In this example, over 60 ar-

rivals from a single source are detected in some regions of the model.

A second wavefront construction example, which tracks a surface wavefront from an earth-

quake in northern Papua New Guinea through the southwest Pacific region, is shown in

Fig. 32. The phase velocity model (Fig. 32a) was constructed on the basis of five dispersion

curves for fundamental mode Rayleigh waves with a 15s period, with interpolation using
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Fig. 32. Surface wavefront propagation in the southwest Pacific. (a) Phase velocity model

for fundamental mode Rayleigh waves with a period of 15 s; (b) rays and wavefronts

computed using a fan shooting scheme. Wavefronts are visualised by placing red dots along

ray paths at predetermined intervals in time. Note that there are more red dots (10,000

per time step) than rays (500) because not all rays are plotted; (c) wavefronts plotted at

the same time increments as (b), but computed using the wavefront construction scheme

of Hauser et al. (2006); (d) ray paths between the source and a receiver located in New

Zealand, obtained from the wavefront construction solution.

average local topography to create the complete 2-D velocity field. At very low frequencies,

great circle path propagation is a reasonable approximation, but at higher frequencies,
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the effects of velocity variations on path geometry should be considered. Fig. 32b shows

the result of shooting a large fan of equally spaced rays (in azimuth) from the source.

The strong velocity gradients present in the model leads to significant multipathing, and

ray coverage is highly non-uniform. Using this approach, it is not possible to extract the

shape of the evolving wavefront with much fidelity. In contrast, the phase space wave-

front construction method of Hauser et al. (2006) appears to capture the full detail of the

wavefront (Fig. 32c), with many levels of triplications evident. All ray paths (41 in total)

from the source to a station located in the South Island of New Zealand are shown in

Fig. 32d. Clearly, the energy received by the station will have sampled a broad region of

the velocity model, which at the very least suggests that a great circle path approximation

for higher frequency surface waves would not be valid in this case.

Extension of the phase space wavefront reconstruction scheme to 3-D is not trivial, as the

connectivity between neighbouring points on a wavefront surface is not unique (unlike the

2-D case). Points could be connected using a triangular mesh, but a carefully considered

interpolation strategy would be required to properly target regions of the wavefront that

become undersampled. In addition, the use of higher order interpolation would be desirable

to minimise the number of points that are required to accurately represent the evolving

wavefront. One possibility is to use an edge splitting strategy that subdivides adjacent

triangles that have a common edge which exceeds some distance tolerance. The butterfly

subdivision scheme of Dyn et al. (1990) works along these lines, and allows for linear as

well as higher order interpolation.

Several wavefront construction schemes have already been devised for 3-D media, most

notably those of Vinje et al. (1996, 1999) and Lucio et al. (1996). Both use triangular

meshes to define the wavefront surface, although they use different interpolation strategies.

In the case of Vinje et al. (1999), wavefronts can also be tracked in so called “open models”

which may contain interfaces with holes. This allows multiple reflection and refraction

arrivals to be computed. The use of local ray tracing to evolve the propagating wavefront
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means that other ray-related variables such as amplitude may also be computed (Vinje

et al., 1993; Lambaré et al., 1996). Amplitude is a potentially important quantity when

multiple paths are considered, because it offers a means of discriminating between the

relative importance of each arrival.

Of all the multi-arrival schemes proposed so far, wavefront construction is by far the most

developed, and is perhaps the only one that is sufficiently robust and efficient for practical

problems. It has become a standard tool in the exploration industry via the NORSAR-3D

modelling package, which is based on the scheme of Vinje et al. (1999), and has been used

in various applications including coincident reflection migration (Xu and Lambaré, 2004;

Xu et al., 2004).

Another scheme for tracking multiple arrivals is “big ray-tracing” (Benamou, 1996; Ab-

grall, 1999), which is actually a hybrid method that attempts to combine initial value

ray tracing and finite difference solution of the eikonal equation in order to compute the

multi-valued traveltime field. The first step of the procedure is to use initial value ray

tracing to partition the traveltime field into single-valued regions via a fan shoot. The

second step involves computing traveltimes on an irregular grid of points that span each

adjacent pair of ray paths using an eikonal solver. This results in the complete traveltime

field spanned by the ray paths being found, and allows wavefronts and intermediate ray

paths to be extracted from the solution. However, the principal drawback of this scheme is

that the fan shoot, even with a large number of initial rays, is unlikely to properly sample

the evolving wavefront (as demonstrated previously in Fig. 32b); for example, the detail

contained in an evolving triplication is unlikely to be retained. Rietdijk (1999) discusses

the limitations of big ray-tracing in more detail.
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4.2 Grid based schemes

Compared to a ray-based technique such as wavefront construction, grid based schemes

are potentially attractive as they avoid the need for complex data structures to track

irregular ray geometries, and the use of interpolation to retain a uniform sampling of

the propagating wavefront. Over the last decade, a number of new grid-based methods

for tracking multi-valued wavefronts have been proposed, and new developments appear

regularly in the current literature.

One possibility for tracking multiple arrivals is to exploit the stability and efficiency of

first-arrival eikonal solvers by partitioning the multi-valued solution into a series of single

valued solutions in a way that is analogous to big ray-tracing. A detailed examination

of this approach is given by Benamou (1999); other papers on domain decomposition

methods include those by Symes and Qian (2003) and Bevc (1997). The main challenge

faced by these schemes is devising a robust splitting strategy, as the structure of the multi-

valued solution is not known a priori. Given that many levels of triplication can occur (e.g.

Fig. 31 and 32), it is difficult to envisage this approach becoming generally applicable.

Benamou (2003) provides an overview of a number of different splitting methods.

Fig. 33. Level set representation of an interface. In this example, the zero level set of the

signed distance function is a circle.
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Recently, a number of schemes have been proposed for tracking multi-valued wavefronts

using the level set method. Level set methodology was pioneered by Osher and Sethian

(1988) for the tracking of interfaces, and has been applied to various problems in the

physical sciences (Sethian, 1999; Osher and Fedkiw, 2003), perhaps most notably in fluid

dynamics for the evolution of interfaces between fluids and gasses (e.g. Mulder et al., 1992;

Sussman et al., 1994; Chang et al., 1996). The basic idea behind a level set formulation is

to represent an interface as the zero level set, or zero contour, of a function defined as the

signed distance from each grid point to the closest point on the interface (see Fig. 33).

This implicitly represented interface can then be evolved by finite difference solution of

a set of partial differential equations that explicitly describe the behaviour of the signed

distance function over time. In general, the level set method describes the evolution of

an m − 1 dimensional manifold in m dimensional space; thus, a curve is tracked on a

2-D grid of points, and a surface is tracked on a 3-D grid of points. Note that while the

FMM scheme presented earlier is also an interface tracking algorithm, it deals strictly

with monotonically advancing interfaces, which allows for a boundary value formulation

of the problem. Level set methods do not have this restriction, and consequently require

an initial value formulation.

If we denote the signed distance function by φ(x), then at some given point x = xA, φ(xA)

is the distance from xA to the closest point on the interface, and is negative if xA is inside

the interface, and positive if xA is outside the interface (Fig. 33). The propagation of the

surface implicitly described by φ(x) can be defined in space and time by φ(r(t), t) = 0,

where r(t) is the location of the zero level set in space at time t. The time derivative of

this expression is given by the chain rule as

φt + ∇φ(r(t), t) · rt(t) = 0, (65)

where φt and rt are time derivatives of φ and r respectively. If F is defined as the scalar

speed function in the outward normal direction to the evolving surface, then F = rt(t) ·n,

where the unit normal direction n = ∇φ/|∇φ|. The evolution equation for the signed
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distance function φ is therefore given by

φt + F |∇φ| = 0, (66)

with some given initial condition φ(x, t = 0). This is the level set equation that was

originally formulated by Osher and Sethian (1988). The signed distance function φ is well

behaved when |∇φ| = 1 at every grid point in the computational domain. When this

occurs, φt = −F , so when F > 0 the interface moves in the outward normal direction,

and when F < 0 the interface moves in the inward normal direction.

The signed distance function can become spatially discontinuous in gradient when points

exist which are equidistant to at least two points on the front. Thus, numerical methods

used for solving Eq. 66 must exhibit reasonable behaviour in the presence of gradient

discontinuities; fortunately, a large number of schemes, such as ENO and WENO, have

been developed for solving differential equations of this type (e.g. Osher and Shu, 1991;

Jiang and Peng, 2000).

Fig. 34. In 3-D reduced phase space, the bicharacteristic curve can be described by the

intersection of two zero level set surfaces. The projection of the bicharacteristic curve into

normal space produces a circular wavefront in this example.
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When the scalar speed function F is dependent on some vector velocity field v(x) defined

at the grid points, then F = v · n, so Eq. 66 becomes

φt + v(x) · ∇φ = 0. (67)

The strength of the level set method lies in its implicit representation of an interface;

topological changes like breaking and merging are handled naturally, and there is no need

for resampling of the wavefront as it evolves. However, the interface cannot self-intersect,

which at first appears to rule out using the method for multi-valued wavefronts. An

approach devised by Osher et al. (2002), which overcomes this limitation, is to consider

the problem in a reduced phase space, where the bicharacteristic curve is defined as the

intersection of two zero level set surfaces (see Fig. 34); these surfaces are perpendicular

along their line of intersection. The two surfaces can be separately evolved by solving the

following pair of level set equations

φt + v · ∇φ = 0

ψt + v · ∇ψ = 0































, (68)

where the velocity vector v is given by Eq. 29, and φ and ψ represent the two level set

functions. The bicharacteristic curve is thus implicitly defined by the curve φ = ψ = 0.

An example of a triplicating wavefront that is tracked using the level set approach de-

scribed above is shown in Fig. 35. The two zero level set surfaces of φ and ψ are per-

pendicular where they intersect, and the line of intersection describes the bicharacteristic

curve, which can be projected into normal space to obtain the wavefront. In this case,

the level set equations defined by Eq. 68 are solved using a fifth order WENO scheme in

space and a third order TVD Runge Kutta scheme in time (Hauser et al., 2006). Each

signed distance function is updated at each time step for the entire computational do-

main. When computed on a 51 × 31 × 51 grid using 70 time steps and a time increment

of 0.1 s, the CPU time is approximately 45 s on a 3.0GHz Intel Pentium 4 PC running

GNU/Linux; however, reducing the grid spacing by a factor of two (101×61×101 points)

72



Fig. 35. The evolution of a triplicating wavefront computed using a level set scheme. The

zero level set of φ is denoted by the magenta surface, and the cyan surface denotes the

zero level set of ψ. The bicharacteristic curve is defined by the intersection of these two

surfaces, and the projection of the line of intersection into (x, y) space yields the triplicating

wavefront. The initial plane wavefront enters the box at x = 0.

results in CPU time increasing to approximately 717 s. This increase can be explained by

two factors: first, halving the grid spacing in 3-D phase space will increase the number

of points by a factor of 8; second, the CFL criterion used (Hauser et al., 2006) requires

that a surface does not cross more than one grid cell per time step. Thus, halving the

grid spacing means that it is now necessary to use 140 time steps with a time increment

of 0.05s. Combined, these two factors result in a 16-fold increase in CPU time when grid

spacing is halved.

The relationship between grid spacing and CPU time is the main limitation of the level

set scheme of Osher et al. (2002). By comparison, wavefront construction schemes can

increase the resolution of a wavefront by a factor of two (doubling the number of rays)
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with only a factor of two increase in CPU time (Hauser et al., 2006). For strongly curved

wavefronts (e.g. Fig. 35), it is often necessary to have high resolution grids, as the zero

level set surfaces tend to become more tightly folded as the wavefront evolves; if a surface

overturns within several grid cells or less, then information will be lost and the wavefront

will be more poorly represented. Although this scheme can be extended to 3-D by tracking

the evolution of three surfaces in five dimensions (Osher et al., 2002), the computational

burden would be immense, because increasing grid resolution by a factor of two would

increase CPU time by a factor of 64.

Despite the apparent limitations of the level set approach described above, research in

this area is ongoing, with particular attention given to improving the efficiency of the

scheme. This can be done by using a local level set scheme which only updates the signed

distance functions within a narrow band about the bicharacteristic curve (Osher et al.,

2002; Osher and Fedkiw, 2003; Qian and Leung, 2006), and adaptive gridding, which

provides higher resolution only where it is required. Qian and Leung (2006) devise a local

level set scheme which uses a paraxial formulation of the ray equations in which the z

coordinate becomes the independent variable. For two dimensional problems, phase space

can therefore be defined by (x, θ) rather than (x, z, θ), which simplifies the problem, but

imposes limitations on path geometry (in this case, wavefronts can only move in the

positive z direction). Using a waveguide model similar to Fig. 35 and a 120 × 120 grid,

Qian and Leung (2006) show that CPU time (on a Pentium IV desktop) is 72 minutes for

a global level set method, but only 8 minutes for their local level set scheme, which is a

significant improvement. Other papers on level set based methods for wavefront tracking

in phase space include those by Leung et al. (2004), Qian and Leung (2004) and Cockburn

et al. (2005).

An alternative approach to computing multi-arrivals with a grid-based scheme has been

proposed by Fomel and Sethian (2002). Starting with the Liouville formulation of the ray

tracing equations, a system of time-independent PDEs (referred to as “Escape Equations”)
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are formulated which can be solved numerically on a grid in reduced phase space. The

solutions correspond to the arrival times at the boundary from every point in the phase

space domain. As a result, the computational efficiency of the scheme is O(M logM),

where M is the total number of grid points. Multi-arrival information such as wavefront

geometry and two-point traveltimes is extracted with post-processing. In comparison with

the level set method described previously, Osher et al. (2002) claims that the Fomel

and Sethian (2002) scheme is less computationally efficient at each update step (by a

factor of O(M1/2) in 2-D and O(M) in 3-D), but given that the Escape Equations are

boundary value PDEs, and therefore do not require solution at multiple time increments,

it is debatable which scheme is ultimately more efficient.

It is interesting to note that a number of new schemes for computing multi-arrivals using

a grid based (or “Eulerian”) framework in phase space appeared in the literature at

the same time. Two of these have been discussed above, but another, referred to as the

“segment projection” method (Engquist et al., 2002), which explicitly tracks a wavefront

in phase space, will also be mentioned. In three dimensional reduced phase space, the

bicharacteristic curve is represented by its projection onto the two-dimensional xy, xθ

and yθ planes. Each of these curves is subdivided into a contiguous set of single valued

line segments. The segments are then evolved by solving the relevant equations of motion,

with dynamic creation and elimination of segments used to retain the minimum number

of single-valued segments necessary to represent the wavefront. The method bares some

resemblance to wavefront construction in phase space, but uses an Eulerian framework.

It appears to be robust in the presence of strong velocity contrasts (such as a waveguide)

which cause multiple foldings of a wavefront, and Engquist et al. (2002) claim that it has

a similar level of computational complexity as ray tracing.

A final grid-based technique that is worth considering is Dynamic Surface Extension

or DSE (Steinhoff et al., 2000). DSE shares some similarities with the level set scheme

of Osher et al. (2002), except that the grid lies in normal space and the information
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carried by each grid point is the coordinate of the closest point on the wavefront rather

than the distance. The DSE algorithm proceeds in two steps; in the first, the location

of the wavefront is updated throughout the grid using a knowledge of the the wavefront

velocity; the second step updates the wavefront location information carried by the grid.

Self-intersecting wavefronts can be tracked, but not all types of wavefront behaviour can

be captured (Engquist et al., 2002). In addition, the method is not purely Eulerian as

interpolation is needed to maintain an even sampling of the wavefront on the grid.

Although a number of grid and ray based schemes for tracking multi-arrival wavefronts

has been described above, our coverage has not been exhaustive. For more information,

the interested reader is directed to two relatively recent review papers on the subject

(Benamou, 2003; Engquist and Runborg, 2003).

5 Concluding Remarks

In this review paper, we have described a variety of schemes for tracking the kinematic

evolution of high frequency seismic waves in heterogeneous 2-D and 3-D structures. Where

possible, we have focused on methods that have been used in practical applications; most of

these can be characterised as either ray based or grid based. Ray tracing has traditionally

been the method of choice in many seismic applications due to its high accuracy and

potential for computational efficiency. Common ray tracing schemes include shooting,

bending and pseudo bending. Shooting methods formulate the kinematic ray equation as

an initial value problem, which allows a complete ray path to be computed given an initial

projection vector. The boundary value problem of locating source-receiver trajectories

is typically solved using iterative non-linear strategies which exploit information from

nearby paths to update the projection parameters and better target the receiver. Bending

methods perturb the geometry of an initial path joining source and receiver, until it

becomes a true (stationary) path, by iteratively solving a boundary value formulation of
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the ray equations. Pseudo-bending schemes usually represent a path as a series of points

which are perturbed using a simple algorithm based directly on Fermat’s principle of

stationary time. All three methods are non-robust in the sense that the assumption of

local linearity is made even though it is not generally valid.

Grid based methods include those that solve the eikonal equation using finite differences

on a grid of points, and shortest path ray tracing, which uses Dijkstra-like algorithms to

find traveltimes and paths through a network of nodes with predetermined connectivity.

Both techniques are capable of computing traveltimes to all points of a medium in a

stable and computationally efficient manner. It was shown that eikonal solvers which use

the expanding wavefront as the computational front, such as the fast marching method,

share many similarities with SPR. Compared to ray tracing, advantages of these grid

based schemes include the ability to compute traveltimes to all points of the medium in

one pass, stability, and in many cases, computational efficiency. However, the fact that

they only compute the first arrival traveltime field in continuous media is a limitation,

and excessive computing time can become an issue if highly accurate traveltimes are

required. In addition, quantities other than traveltime are difficult to compute without first

extracting ray paths from the traveltime field and then resorting to ray based techniques.

In Section 4, a variety of ray and grid based schemes for tracking multi-arrival wavefronts

were presented. Although this area of research is arguably still in its infancy (particularly

with regard to grid-based methods), there has been a proliferation of new schemes ap-

pearing in the literature over the past decade. The most developed and practical scheme

to emerge so far has been wavefront construction, which uses local ray tracing and inter-

polation to advance a wavefront surface in discrete time steps. Of the grid-based solvers,

segment projection perhaps shows the most promise, although research is still ongoing.

The attraction of these techniques is that they are capable of computing all arrivals, which

may allow more of an observed seismic wavetrain to be predicted. However, from an ap-

plication point of view, there are still significant hurdles to be overcome. For instance, it
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is almost impossible to pick arrivals other than the first from a seismogram unless they

represent specific reflection or refraction phases. Thus, the issue of how to best exploit

the multi-arrival capability of these schemes is yet to be fully explored.

In practice, the most appropriate scheme for predicting an observational dataset depends

on a number of factors including computational efficiency, accuracy, robustness and the

type of information that is required. For very large datasets, computational efficiency

and robustness are crucial. In cases where there are many sources and few receivers or

vice-versa, then eikonal or SPR solvers should be considered. When lateral heterogeneity

is not particularly significant and true two-point paths do not deviate significantly from

those computed through a laterally averaged model, then shooting or bending methods

of ray tracing may be more appropriate. Global phases that penetrate deep into the earth

tend to fall into this category, which perhaps explains why ray based schemes are still

the preferred option with this class of dataset. Traditionally, ray tracing has always been

preferred in models that include interfaces, but recent developments in grid-based eikonal

solvers suggest that they can be just as effective for computing phases that experience

multiple refractions and reflections. In cases where multi-arrival information is required,

then a method like wavefront construction would be recommended.

In a paper by Leidenfrost et al. (1999), six different methods for calculating traveltimes

are compared. These include three different varieties of eikonal solver, SPR, wavefront

construction and a combined eikonal and Runge Kutta method. The first of the eikonal

solvers is essentially the Vidale (1988) method; the second adapts the same scheme to

polar coordinates with an expanding circle rather than square; and the third uses the

method of Podvin and Lecomte (1991). The combined eikonal and Runge Kutta method

solves the eikonal equation in polar coordinates by employing first-order finite differences

in θ and a fourth-order Runge-Kutta scheme in radius. The SPR method is that of Klimeš

and Kvasnička (1994) and the wavefront construction scheme is essentially that of Ettrich

and Gajewski (1996). All solvers were benchmarked in 2-D using both a simple model
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with analytic solutions and the Marmousi model. The tests show that the expanding

square eikonal solver offers the best compromise between speed and accuracy for models

that are not too complicated, while wavefront construction proved to be the most reliable

for the more complex Marmousi model. It is interesting to note that despite computing

multi-arrivals, wavefront construction was of the same order of accuracy as the expanding

square method and had computation times better than the SPR scheme.
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Fig. 36. Comparison of wavefronts computed using FMM (solid lines) and WENO-DNO-PS

(dashed lines) for the complex velocity model of Fig. 16. The WENO-DNO-PS scheme

clearly overestimates traveltimes in the neighbourhood of (x, z) = (80,−5) km.

In a separate study, Kim (2002) carry out a comparison between FMM, GMM and a

second order ENO-DNO-PS scheme using a 2-D smooth velocity model. GMM or the

“Group Marching Method” (Kim, 2001), is a variant of FMM which avoids the need

to sort narrow band traveltimes; hence computational cost scales as O(M) rather than

O(M logM), where M is the total number of grid points. As described previously, ENO-

DNO-PS is an eikonal solver which uses an essentially non-oscillatory finite difference

stencil, an expanding square framework, and post sweeping to repair causality breaches

introduced by the expanding square. Results using the same grid spacing suggest that

ENO-DNO-PS is approximately an order of magnitude more computationally efficient

than the other two schemes, yet produces more accurate results. However, it should be

pointed out that only first-order FMM and GMM schemes were used, and no source-grid
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refinement was implemented. Another factor in favour of ENO-DNO-PS was the use of

a relatively simple velocity field; in the presence of complex velocity structures, the use

of ad hoc post-sweeping may not always succeed. Fig. 36 shows a comparison between

the WENO-DNO-PS solution of Fig. 16 and a second-order FMM scheme with local

grid refinement. Although the solutions are very similar, WENO-DNO-PS significantly

overestimates the traveltimes in the region (x, z) = (80,−5). It is possible that a judicious

post-sweeping strategy may alleviate this problem, but in general, it is not clear that the

correct solution can always be guaranteed.
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Červený, V., 1987. Ray tracing algorithms in three-dimensional laterally varying layered

structures. In: Nolet, G. (Ed.), Seismic tomography: With applications in global seis-

mology and exploration geophysics. D. Reidel, Dordrecht, pp. 99–133.
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Červený, V., Klimes, L., Psencik, I., 2006. Seismic ray method: Recent developments.

Advances in Geophysics 48, in press.
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