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ABSTRACT

We present an imaging method that creates a map of re-

flection coefficients in correct one-way time with no con-

tamination from internal multiples using purely a filtering

approach. The filter is computed from the measured reflec-

tion response and does not require a background model. We

demonstrate that the filter is a focusing wavefield that fo-

cuses inside a layered medium and removes all internal mul-

tiples between the surface and the focus depth. The

reflection response and the focusing wavefield can then

be used for retrieving virtual vertical seismic profile data,

thereby redatuming the source to the focus depth. Decon-

volving the upgoing by the downgoing vertical seismic pro-

file data redatums the receiver to the focus depth and gives

the desired image. We then show that, for oblique angles of

incidence in horizontally layered media, the image of the

same quality as for 1D waves can be constructed. This step

can be followed by a linear operation to determine velocity

and density as a function of depth. Numerical simulations

show the method can handle finite frequency bandwidth data

and the effect of tunneling through thin layers.

INTRODUCTION

From the late 1960s to the early 1980s, much work has been done

on 1D exact inversion methods for scalar wave problems for appli-

cations in geophysics (Ware and Aki, 1969; Burridge, 1980; Coen,

1981). Most derivations use stretching and scaling of the wave

equation to write it in a form resembling the Schrödinger equation

for which the exact inversion method originally was developed

(Agranovich and Marchenko, 1963; Lamb, 1980). The interest

was briefly revived when Rose (2002) showed how 1D focusing

can be achieved with the Marchenko equation, and he used an iter-

ative solution method to demonstrate it. Recently, Broggini et al.

(2012) used the idea to retrieve a virtual vertical seismic profile

(VSP) with the virtual source inside the layered medium at any

depth location and the receivers at the surface. The virtual VSP

was retrieved from surface reflection data and the method was

extended to 3D data-driven redatuming (Wapenaar et al., 2012).

Wapenaar et al. (2013a) derived a new Newton-Marchenko scheme

in 3D to image reflectors without creating ghosts images from in-

ternal multiples. In that sense, such schemes are distinctly different

from known methods that aim to remove internal multiples using

the inverse scattering series (Zhang and Weglein, 2009; Weglein

et al., 2012) or to predict and subtract internal multiples (Jakubo-

wicz, 1998; ten Kroode, 2002) from the reflection data at the sur-

face. Imaging schemes that use Marchenko-type equations focus the

wavefield inside a heterogeneous medium, use the internal multi-

ples to construct correct image amplitudes, and do not create ghost

reflectors because the internal multiples are handled correctly.

Direct inversion using reflection data measured at one side of the

target in 1D is possible for infinite bandwidth data, which is not

available in measured seismic data. Imaging can be achieved with

a limited frequency bandwidth as available from seismic data with a

penalty on the achievable resolution. Similar to the work of Wape-

naar et al. (2013a), our aim is to form an image using only reflection

data measured at one side of the target. By investigating how down-

going and upgoing waves in a layered medium can be focused at a

chosen depth level, we derive an exact imaging scheme. To create

an image of only primary reflection events from measured data at

the surface, it is necessary to redatum the sources and receivers to

the image location. This should be done in a data-driven way. Di-

rection is important, and we keep upgoing and downgoing waves

separated.

In this paper, we follow a different route than Wapenaar et al.

(2013a) by first finding out what is the incident field that creates

a focus just below the bottom interface of a layered medium; we
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call this the focusing wavefield. We then find two relations between

the focusing wavefield, the surface impulse reflection response, and

VSP responses for a source at the focus depth inside a layered

medium. From these relations, we derive an imaging scheme and

show how the image can be used to determine the medium proper-

ties and layer thickness in case waves at several oblique angles of

incidence are used. With a numerical example, we investigate the

effects of finite bandwidth and of tunneling waves on the perfor-

mance of the imaging scheme. In Appendix A, we give a math-

ematical derivation of the results with the aid of the acoustic

reciprocity theorems of the time-convolution and time-correlation

types.

FOCUSING A WAVEFIELD JUST BELOW

A LAYERED MEDIUM

This section is dedicated to finding expressions for the focusing

wavefield. Later, we will investigate how we can retrieve the focus-

ing wavefield from the measured impulse reflection response. For a

normal incidence plane wave, we assume to have measured the

acoustic pressure pðz0; tÞ below the source, but just above the first

reflector, which we denote as the surface. We can describe the

acoustic pressure as the sum of downgoing pþðz; tÞ and upgoing

p−ðz; tÞ waves as pðz; tÞ ¼ pþðz; tÞ þ p−ðz; tÞ, where z is depth

and t is time. We start with a medium containing three layers

and the two interfaces separating them are located at depth levels

z0 and z1 > z0. The densities and velocities in the three layers are

denoted ρi, ci, with i ¼ 0; 1; 2, respectively. The thickness of the

second layer is given by d1 ¼ z1 − z0 and the corresponding

one-way traveltime is denoted t1 ¼ d1∕c1. For a downgoing pres-

sure wave incident on an interface at depth level zi, the local reflec-

tion and transmission coefficients are given by ri, τ
þ
i , and for an

upgoing incident wave by −ri, τ
−
i . The two-way transmission co-

efficient is given by τ2i ¼ τþi τ
−
i . First, we send a normal incidence

plane downgoing acoustic pressure wave from above and the up-

going field just above z0 consists of an infinite number of events.

The first two are primary reflections followed by a series of multiple

reflections as indicated in Figure 1a. We call the total upgoing field

the impulse reflection response Rðz0; tÞ. The position z0 in the argu-
ment indicates that source and receiver are at the same depth level,

hence p−ðz0; tÞ ¼ Rðz0; tÞ. In the third layer, the downgoing wave-

field consists of a direct arrival followed by multiples. We call this

the transmission response Tþðz1; z0; tÞ, measured at z1 and gener-

ated by the source at z0, hence pþðz1; tÞ ¼ Tþðz1; z0; tÞ. We can

write these upgoing and downgoing pressure fields in the frequency

domain, with radial frequency ω, as

p̂þðz0;ωÞ ¼ 1; p̂−ðz0;ωÞ ¼
r0 þ r1 expð−2iωt1Þ

1þ r0r1 expð−2iωt1Þ
;

(1)

p̂þðz1;ωÞ ¼
τþ0 τ

þ
1 expð−iωt1Þ

1þ r0r1 expð−2iωt1Þ
; p̂−ðz1;ωÞ ¼ 0;

(2)

where the diacritical hat denotes a quantity in frequency domain and

p̂ðz0;ωÞ, p̂ðz1;ωÞ denote the acoustic pressure just above z0 and

just below z1. This notion is used throughout the paper. By expand-

ing the denominator, the infinite number of events are obtained that

belong to the reflection and transmission responses.

From Figure 1a, it is clear that if we are able to eliminate the

second downgoing event just below the reflector at z0, only one

event reaches depth level z1. This would constitute a focused wave-

field at z1. It is achieved by sending in a new downgoing wave with

amplitude r0r1 that reaches depth level z0 at t ¼ t1 as indicated in

Figure 1b. In the figure, all incident waves are time advanced by the

one-way traveltime t1 of the second layer such that the focus occurs

at t ¼ 0. Notice that, by focusing the wavefield at depth level z1, all

internal multiples have been eliminated. Another interesting feature

is that the reflection response in Figure 1b has only two events and

both have the correct local reflection amplitudes of the two reflec-

tors. To create a unit amplitude focus, the inverse of the transmis-

sion response has to be sent in. We denote this downgoing focusing

wavefield fþ1 ðz0; z1; tÞ. The upgoing part is the corresponding re-

flection response, and we denote it f−1 ðz0; z1; tÞ. The argument z1 is

inserted to indicate the depth level just below which the pressure

wavefield is focused. These two wavefields together form the focus-

ing wavefield. By looking at equations 1 and 2, we can see that at z0
the focusing wavefield can be written as

f̂
þ
1 ðz0; z1;ωÞ ¼

1

T̂
þðz1; z0;ωÞ

¼
eiωt1 þ r0r1e

−iωt1

τþ0 τ
þ
1

; (3)

f̂
−
1 ðz0; z1;ωÞ ¼

R̂ðz0;ωÞ

T̂
þðz1; z0;ωÞ

¼
r0e

iωt1 þ r1e
−iωt1

τþ0 τ
þ
1

: (4)

Because time-reversed solutions satisfy the same wave equation,

we investigate the result of sending in the time-reversed reflection

response f−1 ðz0; z1;−tÞ. This is depicted in Figure 2, where the

incident wavefield is the time-reversed reflection response of

Figure 1b given by r1δðtþ t1Þ þ r0δðt − t1Þ. The corresponding re-
flection response is also shown in Figure 2. The first event in

the reflection response, r0r1δðtþ t1Þ, is the time-reverse of the sec-

ond incident wave of the focusing wavefield. The first term in the

a)

b)

Figure 1. Reflection and transmission responses (a) and the focus-
ing wavefields (b).
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second reflection event, δðt − t1Þ is the time-reverse of the first

incident wave of the focusing wavefield. The second term,

−τ20τ
2
1δðt − t1Þ, can be interpreted as minus the direct arrival from

an upgoing source wavefield generated just below z1 and received at

z0. The source strength is equal to the product of the local trans-

mission coefficients. The third term in the reflection event,

τ20τ
2
1r0r1δðt − 3t1Þ, can be interpreted as the first multiple of the

transmission response of the same source at z1 and receiver at

z0. Because all later terms will just be multiples inside the second

layer, we can conclude that sending in the time-reversed reflection

response of the focusing wavefield, f−1 ðz0; z1;−tÞ, results in a new

reflection response that is equal to the time-reverse of the incident

focusing wavefield, fþ1 ðz0; z1;−tÞ, minus the pressure field Green’s

function Gp;−ðz0; z1; tÞ that belongs to an upgoing source at z1 and

pressure field receiver at z0. In the frequency domain, we can ex-

press this as

½f̂þ1 ðz0; z1;ωÞ�
�
− Ĝ

p;−ðz0; z1;ωÞ

¼ Rðz0;ωÞ½f̂
−
1 ðz0; z1;ωÞ�

�
; (5)

and equation 5 can be interpreted as a VSP-type Green’s function

expression in terms of the focusing wavefield and the impulse re-

flection response. The fact that this is only for the upgoing part of

the source wavefield is indicated by the minus-sign in the super-

script with the Green’s function. The superscript p indicates that

it is the pressure field. Notice that, in the time domain, the focusing

wavefield and the Green’s function in the left-hand side of equation

5 are nonzero in mutually exclusive time windows except for the

overlapping time instant t ¼ t1 of the first arrival of the Green’s

function and the last arrival of the time-reversed downgoing focus-

ing wavefield (see Figure 2).

The above focusing result can be used for any number of inter-

faces in the 1D model. In the frequency domain, the reflection and

transmission responses for any layered medium can be written in the

fractional form used above and their denominators are always the

same (Goupillaud, 1961). This means that the focusing wavefield

for a medium with interfaces from z0 to zi can be written as

f̂
þ
1 ðz0; zi;ωÞ ¼ ½T̂þðzi; z0;ωÞ�

−1
; (6)

f̂
−
1 ðz0; zi;ωÞ ¼ R̂ðz0;ωÞ∕T̂

þðzi; z0;ωÞ; (7)

f̂
þ
1 ðzi; zi;ωÞ ¼ 1; (8)

f̂
−
1 ðzi; zi;ωÞ ¼ 0: (9)

As an example, we extend the model with a third interface at z2,

with z2 > z1. Figure 3 shows seismic pressure reflection responses

to a layered medium with the values for the velocities and densities

of the first four layers in Table 1. In this model, density contrasts are

stronger than velocity contrasts. In the figure, z0 ¼ 75 mmeans that

the source and receiver are 75 m above the first interface,

z1 ¼ 192 m, and z2 ¼ 291 m. The interfaces are indicated in the

plots by horizontal black lines. For all plots, t ¼ 0 is chosen such

that it coincides with first arrival at z2, which is the depth level

where we want to focus the wavefield. Figure 3a shows the acoustic

pressure in this layered medium for a single incident pressure wave.

Figure 3b shows the response for an impulse followed by a second

incident wave. In this case, the upward traveling reflection from z1
arrives at z0 at the same moment the new incident waves arrives at

z0 and together they create only an upgoing wave. At this moment,

the wavefield is focused at depth level z1 as in the first example, but

because the focused wave continues to travel downward it creates

new reflections from the interface at z2 and those waves interact

with all the interfaces. Figure 3c shows the same as 3b, but now

with a third incident wave that is taken such that it arrives at z1
at the same moment that the upcoming reflection from z2 arrives

at z1 and again such that no downgoing wave is created at z1. This

third incident wave creates an extra reflection at z0, which has very

small amplitude and is barely visible in the plot. Figure 3d shows

the final result where the wavefield is focused at z2 and a fourth

incident wave is taken such that it arrives at z0 at the moment that

the upgoing reflected wave from z2 arrives at z0. The incident wave

is again such that no downgoing wave at z0 is created. Now the

wavefield is focused at z2 and no other events occur at that depth

level. The mathematical details of the waves shown in Figure 3d are

given in Appendix A.

It can be seen from Figure 3 that, to focus the wavefield at the

bottom reflector, a finite number of waves have to be sent in from

the first layer. Comparing this result with the result from the pre-

vious example with two interfaces shows that, to focus the wave-

field at the bottom reflector, the number of waves we need to send

into a layered medium is doubled for every reflector that is added.

The corresponding reflection response has the same number of

waves. If we replace z1 by zi in equation 5, the equation is still valid.

We conclude that this is a valid equation for an arbitrarily layered

model and a general derivation is given in Appendix A.

Now we know what the focusing wavefield looks like. The

downgoing focusing wavefield incident on a layered medium

with interfaces from z0 to the focus depth zi has 2i waves and

the reflection response has the same number of waves. At the level

z0, the focusing wavefield exists in the time domain between

−tdðzi; z0Þ ≤ t ≤ tdðzi; z0Þ, tdðzi; z0Þ ¼
P

i
n¼1 dn∕cn being the

one-way traveltime across the layered medium. We also know that,

at the focus time, the upgoing part at the receiver level contains the

local reflection coefficient ri scaled by the product of local trans-

mission coefficients. This will be useful for imaging if we are able

to make three more steps. First, we should be able to use this focus-

ing wavefield to focus inside a layered medium. Second, we

must find the way to determine this focusing field from the mea-

sured reflection data, and as third step we must formulate an imag-

ing scheme. Each step is carried out in the three subsequent

sections.

Figure 2. The time-reverse of the reflection response generated by
the focusing wavefield of Figure 1b incident on the same medium.
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FOCUSING THE WAVEFIELD INSIDE

A LAYERED MEDUM

We extend the layered model further by introducing an arbitrary

number of reflectors below zi, but use zi as focus depth. Figure 4

shows the situation with four downgoing arrows at z0 indicating

waves that are sent into the medium and four solid upgoing arrows

indicating the reflection response. The wavefield focuses at zi at

t ¼ 0, but because the focusing wavefield continues to travel down,

it will generate new up- and downgoing waves indicated by the

dashed arrows in Figure 4. These waves arrive at z0 after the last

arrival of the focusing wavefield. They all start as a unit amplitude

downgoing wave just below zi as if there was a downgoing source

just below zi, and hence all waves that are generated and recorded at
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Figure 3. (a) The impulse reflection response of a four-layered medium where the layer boundaries inside the plot are indicated by three black
horizontal lines labeled on the right side by z0, z1, z2, (b) the reflection response of (a) but now with an extra incident wave that cancels the
downgoing field at the first interface; (c) the reflection response of (b) but now with an extra incident wave that cancels the downgoing wave at
the second interface; (d) the reflection response of (c) but now with an extra incident wave that cancels the downgoing wave at the first interface
generated by the reflected wave from the bottom interface.
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z0 correspond to part of a VSP measurement that is complementary

to what we saw in the previous section. In the frequency domain,

this pressure Green’s function can be written as Ĝp;þðz0; zi;ωÞ and
it corresponds to the events indicated by the dashed lines in Figure 4,

whereas the focusing wavefield corresponds to the solid lines. The

impulse reflection response, R̂ðz0;ωÞ, generated by a downgoing

unit amplitude pressure wavefield and measured at z0 in the

whole layered medium is related to the focusing wavefield and

the downgoing Green’s function by (see Appendix A for general

derivation)

f̂
−
1 ðz0; zi;ωÞ þ Ĝ

p;þðz0; zi;ωÞ ¼ R̂ðz0;ωÞf̂
þ
1 ðz0; zi;ωÞ:

(10)

Equation 10 is the wavefield retrieval equation for the wavefield

generated by a downgoing source at zi and received at z0. It is ob-

tained from the measured impulse reflection response and the func-

tions f̂
�
1 . This equation can be interpreted as follows. If the

wavefield fþ1 ðz0; zi; tÞ is sent into the layered medium, the reflec-

tion response at z0 is given by Rðz0; tÞ � f
þ
1 ðz0; zi; tÞ where the �

denotes temporal convolution. Equation 10 says that this response is

equal to f−1 ðz0; zi; tÞ plus the Green’s function Gp;þðz0; zi; tÞ cor-

responding to a downgoing source at the focusing level and a pres-

sure receiver at the original receiver level. This is illustrated in

Figure 5 where the model consists of seven layers and the values

for velocity, density, and layer thickness are taken from Table 1. The

source and receiver are at 75 m above z0. The depth levels of the

interfaces are indicated by black lines in the figure. The focusing

time is again t ¼ 0 at the moment where the first arrival reaches the

focus depth z2 ¼ 291 m. From the figure, it can be seen that

f�1 ðz0; zi; tÞ and Gp;þðz0; zi; tÞ are well-separated in time as indi-

cated above the figure. Equation 5 is also valid when the focusing

depth level is inside a layered medium,

½f̂þ1 ðz0; zi;ωÞ�
�
− Ĝ

p;−ðz0; zi;ωÞ ¼ R̂ðz0;ωÞ½f̂
−
1 ðz0; zi;ωÞ�

�
:

(11)

In equation 5, the Green’s function is the transmission response of a

layered medium with a source below and a receiver above a layered

medium. Equation 11 retrieves the wavefield Ĝ
p;−ðz0; zi;ωÞ at

receiver level z0 that is generated by an upgoing plane wave at

the source level zi inside the layered medium, from the measured

impulse reflection response R̂ðz0;ωÞ and the functions f̂
�
1 . This

equation says that the convolution of the time-reversed upgoing fo-

cusing wavefield and the impulse reflection response is equal to the

time-reversed downgoing focusing wavefield minus the Green’s

function for an upgoing source just below zi and the pressure

receiver just above z0. It is illustrated in Figure 6 for the same con-

figuration and focus depth as used for Figure 5. In this figure, events

that belong to the focusing wavefield are indicated above the figure

as f−1 ðz0; zi;−tÞ þ fþ1 ðz0; zi;−tÞ. In this wavefield, there are no up-
down reflections. The only up-down reflections occurring in the

time window of the focusing wavefield come from the upgoing

wavefield after reflection at the boundary at z2 as indicated by

the arrows. This is part of the Green’s function as indicated above

the figure with Gp;−. Because the upgoing part of the Green’s func-

tion is emitted at t ¼ 0, which is the focusing time-instant for the

focusing wavefield, they overlap along the direct travel path from

the focus depth to the surface as indicated above the figure. For the

rest, the focusing wavefield and the Green’s functions are separated

in time. In the next section, we show that the focusing wavefield can

be computed from the measured reflection data and equations 10

and 11. From these, virtual VSP data and a subsurface image

can be constructed as is shown in the next two sections. Knowing

the up- and downgoing Green’s function is important because they

are related to the impulse reflection response at the focus level

through

Ĝ
−;qðzi; z0;ωÞ ¼ R̂ðzi;ωÞĜ

þ;qðzi; z0;ωÞ; (12)

where R̂ðzi;ωÞ denotes the impulse reflection response for the

medium that is layered below zi and homogeneous above that depth

level. The Green’s functions are the reciprocal version of the ones in

Table 1. Values for velocity, density, and layer thickness in
the layered model.

Layer number Velocity (m∕s) Density (kg∕m3) Thickness (m)

1 1700 1430 ∞

2 1900 2250 117

3 2100 1750 99

4 1700 1430 85

5 2100 1750 111

6 3250 1930 15

7 2100 1500 123

8 2100 2110 151

9 2500 2110 163

10 2750 2250 221

11 2900 2300 ∞

Figure 4. The focusing wavefield incident on a medium withmþ 2
layers that focuses at zi yields a reflection response that is equal to
the focusing field reflection response, as indicated by the solid ar-
rows, followed by the Green’s function for a downgoing source at zi
indicated by dashed arrows.
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equations 10 and 11. Here, the sign in the superscripts refers to the

direction of the wavefield at the receiver level zi and the superscript

q refers to a monopole point source at the source level z0. The local

reflection coefficient ri can be extracted in the time domain from

Rðzi; tÞ around t ¼ 0.

COUPLED MARCHENKO-TYPE EQUATIONS

AND GREEN’S FUNCTION RETRIEVAL

The time-domain functions f�1 are not causal, whereas G� and R

are. This can be exploited to find f�1 from the time-domain equiv-

alents of equations 10 and 11. Two coupled Marchenko-type equa-

tions are obtained in whichG� do not occur and from which f�1 can

be found given the measured impulse reflection response Rðz0; tÞ.

Once f�1 are found, time-domain versions of equations 10 and 11

can be used to compute the up- and downgoing wavefields gener-

ated by a downhole source and measured at the surface. Hence, for

any depth zi, we can create a virtual VSP data set from the measured

impulse reflection response (Newton, 1981; Broggini and Snieder,

2012; Wapenaar et al., 2012).

Transforming equations 10 and 11 to the time domain results in

Gp;þðz0; zi; tÞ ¼ −f−1 ðz0; zi; tÞ

þ

Z

t

t 0¼−tdðzi;z0Þ
fþ1 ðz0; zi; t

0ÞRðz0; t − t 0Þdt 0;

(13)

Gp;−ðz0; zi; tÞ ¼ fþ1 ðz0; zi;−tÞ

−

Z

t

t 0¼−tdðzi;z0Þ
f−1 ðz0; zi;−t

0ÞRðz0; t − t 0Þdt 0:

(14)

The integration intervals of equations 13 and 14 are finite because

the two functions in the integrands are nonzero only in a subin-

terval. The impulse reflection response Rðz0; t − t 0Þ is causal and
therefore zero-valued for t 0 > t, putting the upper limits at

t 0 ¼ t. In the previous section, we have seen that f�1 ðz0; zi; tÞ ¼

0 for jtj > tdðzi; z0Þ because all internal multiples are eliminated

between the depth levels z0 and zi and this defines the lower inte-

gration limit of equations 13 and 14. We can write the downgoing

wavefield as

fþ1 ðz0; zi; tÞ ¼ T −1
i δðtþ tdðzi; z0ÞÞ þMþðz0; zi; tÞ; (15)

where in our 1D model the first arrival of the transmission response

has amplitude T i ¼
Q

i
j¼0 τ

þ
j andMþðz0; zi; tÞ denotes the coda fol-

lowing the first arrival; Mþðz0; zi; tÞ ¼ 0 for t ≤ −tdðzi; z0Þ. Be-

cause Mþðz0; zi; tÞ ¼ 0 and f−1 ðz0; zi; tÞ ¼ 0 for jtj ≥ tdðzi; z0Þ
and G� ¼ 0 for t < tdðzi; z0Þ, we can write in the interval

−tdðzi; z0Þ < t < tdðzi; z0Þ equations 13 and 14 as two coupled

equations as

f−1 ðz0; zi; tÞ ¼ T −1
i Rðz0; tþ tdðzi; z0ÞÞ

þ

Z

t

t 0¼−tdðzi;z0Þ
Mþðz0; zi; t

0ÞRðz0; t − t 0Þdt 0;

(16)

Mþðz0; zi;−tÞ ¼

Z

t

t 0¼−tdðzi;z0Þ
f−1 ðz0; zi;−t

0ÞRðz0; t − t 0Þdt 0;

(17)
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Figure 6. The time-reverse of the reflected focusing wavefield in-
cident on a medium with six interfaces, indicated with black lines;
the first arrival of the upgoing Green’s function coincides with the
last upgoing wave of the time-reversed downgoing focusing wave-
field because both are generated simultaneously at the third inter-
face. In the overlapping time window with the focusing wavefield,
the upgoing Green’s function wavefield causes up-down reflections
as indicated by the arrows.
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Figure 5. The wavefield incident on a medium with six interfaces,
indicated with black lines, that focuses at the third interface and its
reflection response; the downgoing wavefield below the third inter-
face propagates down and causes reflections from the medium be-
low it that interact with the whole medium.
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which are coupled Marchenko-type equations (Lamb, 1980) valid

on the interval −tdðzi; z0Þ < t < tdðzi; z0Þ. These can be solved for

the functions Mþðz0; zi; tÞ and f−1 ðz0; zi; tÞ from the measured im-

pulse reflection response Rðz0; tÞ when the amplitude of the first

arrival of the transmission response, T i, is known. A straightfor-

ward way to solve equations 16 and 17 is to discretize them and

solve the resulting matrix inversion problem. We can also solve

the coupled system with an iterative procedure and start by taking

f−1;0ðz0; zi; tÞ ¼ T −1
i Rðz0; tþ tdðzi; z0ÞÞ; (18)

and for n ≥ 0 evaluate the nth iteration as

Mþ
n ðz0; zi;−tÞ ¼

Z

t

t 0¼−tdðzi;z0Þ
f−1;nðz0; zi;−t

0ÞRðz0; t− t 0Þdt 0;

(19)

f−1;nþ1ðz0; zi; tÞ ¼ f−1;0ðz0; zi; tÞ

þ

Z

t

t 0¼−tdðzi;z0Þ
Mþ

n ðz0; zi; t
0ÞRðz0; t− t 0Þdt 0;

(20)

for −tdðzi; z0Þ < t < tdðzi; z0Þ. This scheme always converges be-

cause the underlying Neumann series expansion of the Green’s

function integral equation converges unconditionally (Lamb,

1980). Solving equations 16 and 17 using an iterative scheme is

not necessary, but will often prove computationally advantageous.

Once the functions f�1 ðz0; zi; tÞ are found in their time window,

equations 13 and 14 can be used to compute the Green’s functions

and thereby the virtual VSP is retrieved. The image can be con-

structed from the VSP Green’s functions using equation 12. In

the next section, we first find a more direct route to the image.

IMAGING

To use equations 16 and 17 for imaging, we observe that our ini-

tial estimate of the scaled delta function is always correct in arrival

time because in a 1D model it is half the two-way traveltime. But,

the amplitude T i is not known, nor the actual depth level zi. The 1D

image can therefore be constructed as a time image when there is no

additional information on the layered medium. We can scale the

downgoing coda and the upgoing wavefield by the same factor T −1
i ,

Mþðz0; zi; tÞ ¼ T −1
i hþðz0; zi; tÞ; (21)

f−1 ðz0; zi; tÞ ¼ T −1
i h−ðz0; zi; tÞ: (22)

Using these definitions in equations 16 and 17 we find a scheme in

which the unknown factor T i is absent. Figure 1b shows the sol-

ution to equations 16 and 17 with substitution of equations 21 and

22 for our example model with three layers. The example showed

that sending a unit amplitude impulse in time at −tdðz1; z0Þ and the

coda of the scaled downgoing focusing wavefield leads to a re-

flected signal at tdðz1; z0Þ, with the desired local reflection coeffi-

cient r1 of the interface at depth level z1. These scaled downgoing

and upgoing wavefields can be recognized from equations 20

and 22 as hþðz0; z1; tÞ and h−ðz0; 6z1; tÞ. By evaluating the

time-domain equivalent of equation 10 we find that h−ðz0; zi; tÞ ¼
riδðt − tdðzi; z0ÞÞ for tdðzi; z0Þ − ϵ < t < tdðzi; z0Þ þ ϵ, where ϵ is

an arbitrarily small time instant. Hence, for an arbitrary depth level

zi inside a layered medium, the upgoing field that arrives at

t ¼ tdðzi; z0Þ has an amplitude that is equal to the local reflection

coefficient of depth level zi, and tdðzi; z0Þ is the known one-way

traveltime to depth level zi. We can therefore take the amplitude

of the upgoing field at the focus time as the imaging condition

to obtain an image I containing the local reflection coefficient

at the one-way traveltime

Iðtdðzi; z0ÞÞ ¼ ri ¼

Z

tdðzi;z0Þþϵ

t 0¼tdðzi;z0Þ−ϵ
h−ðz0; zi; t

0Þdt 0: (23)

Equations 16 and 17 with substitution of equations 21 and 22 to-

gether form the imaging scheme and equation 23 is the imaging

condition. This is the most direct route to imaging local primary

reflection coefficients and simultaneously eliminating effects from

internal multiples. We have not used any knowledge of the layered

medium, but we have constructed an image containing the local re-

flection coefficient as a function of one-way traveltime. In case the

acoustic impedance is known in the first layer, the impedance could

be found as a function of one-way traveltime. With one-dimensional

waves at normal incidence, there are no independent ways to de-

termine a velocity model. This can be done by using several angles

of incidence for plane waves, which is discussed in the next section.

PLANE WAVES AT OBLIQUE INCIDENCE

The above results for normal incidence plane waves rely on the

fact that the local refection coefficients are independent of fre-

quency. To include oblique angles, a spatial Fourier transformation

can be performed on measured data yielding the impulse reflection

response in the wave number frequency domain. Newton (1981)

used the wave number domain where the wave numbers are just

parameters, but then the reflection coefficients become fre-

quency-dependent. He therefore continued with the assumption that

the wave numbers are small and can be neglected. Coen (1981)

showed that, in the intercept-time slowness domain, slowness is just

a parameter representative of the angle of incidence. He had to ex-

clude waves that are evanescent between the depth levels z0 and zi.

In our case, this assumption is not necessary. We assume that the

waves propagate through the two boundaries at z0 and at zi, but they

can be evanescent at other depth levels. Only radial slowness pmat-

ters, and the local reflection coefficient becomes a function of slow-

ness, denoted riðpÞ. The depth level zi is still unknown, but the

intercept-time is the apparent two-way vertical traveltime as a func-

tion of angle and we need the one-way intercept time as the image

time. For depth level zi, we denote the one-way intercept time as

tdðzi; z0; pÞ. If we define the vertical slowness in layer n as

qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1∕c2n − p2
p

, the intercept time is given by tdðzi; z0; pÞ ¼
P

i
n¼1 qnðzn − zn−1Þ: We can write equations 16 and 17 with sub-

stitution of equations 21 and 22 as

h−ðz0;zi;t;pÞ¼Rðz0;tþtdðzi;z0;pÞ;pÞ

þ

Z

t

t0¼−tdðzi;z0;pÞ
hþðz0;zi;t

0;pÞRðz0;t−t0;pÞdt0;

(24)
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hþðz0;zi;−t;pÞ¼

Z

t

t 0¼−tdðzi;z0;pÞ
h−ðz0;zi;−t

0;pÞRðz0;t− t0;pÞdt0;

(25)

valid for −tdðzi; z0; pÞ < t < tdðzi; z0; pÞ. This leads to the angle-

dependent imaging condition similar to equation 23,

Iðtdðzi; z0; pÞ; pÞ ¼ riðpÞ

¼

Z

tdðzi;z0;pÞþϵ

t 0¼tdðzi;z0;pÞ−ϵ
h−ðz0; zi; t

0; pÞdt 0.

(26)

The image I is an image in the intercept-time slowness, or τ‐p,

domain. For every slowness value, the image contains the local re-

flection coefficients at the corresponding one-way intercept times

that we can call image times. Therefore, the image is an image

gather that can be understood as a “prestack” time image, where

prestack should be understood in the slowness-domain and each

time is the correct one-way traveltime corresponding to a particular

slowness value. Having slowness as a free parameter implies that

the local reflection coefficients in the image can be converted to

velocity and density values in each layer. This would constitute

an inversion step and after the velocities are found, the image times

can be converted to depth. Much work has been carried out on AVA

inversion (e.g., Raz, 1981), but here we have two advantages. The

first is that no multiples are part of the image and we can construct

local reflection coefficients as a function of angle without needing

any subsurface information. The second is that we have a nonrecur-

sive scheme and therefore no error accumulation with increasing

imaging depth. Imaging followed by inversion assumes that the

medium is horizontally layered and that the reflection response

can be obtained from the data, which requires knowledge of the

source signature, density, and velocity in the source layer, and re-

moval of free-surface related multiples (Verschuur et al., 1992; van

Dedem and Verschuur, 2005).

Finite frequency bandwidth

The above algorithm is formulated with impulse response func-

tions, which we don’t have in seismic data. For measured signals,

we need to deal with the finite frequency bandwidth of the data. Let

the finite bandwidth be represented by a zero-phase filter function,

or waveletWðtÞ, in the time domain, the functions f̄�1 and the mea-

sured reflection response R̄ can be written as the time convolution of

the functions f�1 and R as

f̄�1 ðz0; zi; t; pÞ ¼

Z

tdðzi;z0;pÞ

t 0¼−tdðzi;z0;pÞ
f�1 ðz0; zi; t

0; pÞWðt − t 0Þdt 0;

(27)

R̄ðz0; t; pÞ ¼

Z

tþtw

t 0¼0

Rðz0; t
0; pÞWðt − t 0Þdt 0; (28)

where f̄�1 ðz0; zi; t; pÞ ¼ 0 for jtj > tþd , t
þ
d ¼ tdðzi; z0; pÞ þ tw, and

tw denotes the half time window of the wavelet, while R̄ ≠ 0 for

t > −tw. Now, a time window has to be chosen instead of a single

time instant for the arrival time of the first arrival. We have to take

into account the finite bandwidth versions of equations 13 and 14

and we must use a smaller time window in which the band-limited

Green’s functions are zero, Ḡþðzi; z0; t; pÞ ¼ 0 for t < t−d with t−d ¼
tdðzi; z0Þ − tw and Ḡðzi; z0; t; pÞ ¼ 0 for t ≤ t−d . Then equations 16

and 17 can be written as

f̄−1 ðz0; zi; t; pÞ ¼ f̄−1;0ðz0; z0; t; pÞ

þ

Z

t

t 0¼−t−
d

M̄þðz0; zi; t
0;pÞRðz0; t− t 0;pÞdt 0;

(29)

M̄þðz0; zi;−t; pÞ

¼

Z

t

t 0¼−t−
d

f̄−1 ðz0; zi;−t
0; pÞRðz0; t − t 0; pÞdt 0; (30)

for t < t−d because the Green’s functions have to be zero, but

f� exist up to t ¼ �ðtdðzi; z0; pÞ þ twÞ. In the time window

−tþd < t < −t−d , the functions Mþðzi; z0;−t; pÞ and f−1 ðzi; z0; t; pÞ
cannot be updated because they overlap with the Green’s functions

that should remain zero for equations 29 and 30 to be valid. Waves

that have propagated or tunneled through thin layers and whose

multiples arrive within the time window of the wavelet around td
should be incorporated in f̄−1;0ðzi; z0; t; pÞ. Equation 18 should then

be modified to include a more general function T −1
d ,

f̄−1;0ðz0; zi; t;pÞ ¼

Z

−t−
d

t 0¼−tþ
d

T −1
d ðzi; z0; t

0;pÞRðz0; t− t 0;pÞdt 0;

(31)

in which T −1
d denotes the band-limited version of the first arrival in

the inverse transmission response of the medium that is layered be-

tween z0 and zi. Notice that information from below zi can leak into

T −1
d when there is a reflector close to but below zi. In that case, it

will lead to errors in imaging thin layers and it is part of the res-

olution problem associated with finite bandwidth data. Finally, from

the fact that R̄ is known from the data while R occurs in equations 29

and 30 we observe that the waveletW should be known. In case the

free-surface multiples are removed by a surface-related multiple re-

moval method, the source signature is often obtained as well, which

can then be made zero phase and used as the wavelet. In case the

reflection response is obtained through up-down decomposition and

deconvolution (van der Neut et al., 2011), the band-limited impulse

response is obtained and a desired shaping filter can be used. The

bandwidth and associated effects of thin layers are investigated in

the section with numerical examples.

When thin layer effects are absent, the band-limited versions of

equations 24 and 25 will produce an accurate image from equa-

tion 26. In case thin layer effects are severe, we have an alternative

for creating the image. We can compute the upgoing and down-

going Green’s functions. We can use the fact that the Green’s func-

tions are related through the reflection response R̄ðzi; t
0; pÞ of the

medium that is layered below zi and homogeneous above zi. We can

therefore write them in a similar form as equation 12, given by

Ḡ−;qðzi; z0; t; pÞ ¼

Z

t

t 0¼0

Rðzi; t − t 0; pÞḠþ;qðzi; z0; t
0; pÞdt 0:

(32)

From this equation, Rðzi; t; pÞ is found by deconvolution and the

image can be constructed. Another option is to pick a time above a
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reflection event, compute the reflection response, and image the

first reflector using inverse wavefield extrapolation. As a direct con-

sequence of our development here, we can state that a reflector at

depth level zi can be imaged using this scheme when the waves

propagate through this depth level, while they are allowed to be

evanescent between z0 and zi. It can be understood that signal-

to-noise ratios will determine the accuracy of such images, but

in principle our schemes can image interfaces below thin high-

velocity layers through which the waves have tunneled. We show

a numerical example later, but we can already understand from the

above scheme that when T d contains information on tunneling

waves, it can be important to have an accurate time-function esti-

mate of T −1
d because it is not updated. This can lead to small errors

in Mþ and f−1 that are not eliminated by the deconvolution pro-

cedure for imaging.

NUMERICAL EXAMPLES

For the examples, we take a medium with 11 layers separated by

10 interfaces. The velocities, densities, and thicknesses of the layers

are given in Table 1. The reflection data is computed in the fre-

quency-slowness domain for 36 slowness values corresponding

to for 36 angles of incidence from normal incidence to α ¼ 35°.

The data are computed using a reflectivity code and are then trans-

formed to the intercept-time slowness domain with source and

receivers at the same height of 75 m above the top interface. This

is equivalent to modeling a single shot gather in space-time and then

transforming the data to the τ‐p domain. The source signature is a

40-Hz Ricker wavelet. The sixth layer is a high-velocity thin layer.

The seventh and eight layers have no velocity contrast and the re-

flection coefficient of that interface is independent of incidence an-

gle. The eighth and ninth layers have no density contrast. The

incidence angle of 31.6° in the first layer becomes critical in the

high-velocity thin layer, which amounts to a critical angle of

40.25° at the top of the thin layer. At normal incidence, the fast thin

layer is just over one fifth of the wavelength at 40 Hz. We solve

equations 29 and 30 for each of the 36 angles of incidence using

the iterative scheme similar to the one described in equations 19 and

20 in which we use p ¼ sinðαÞ∕c0, c0 being the velocity in the first
layer. We use two different schemes solving equations 29 and 30.

First, we use the direct imaging method using the initial estimate of

equations 18, 21, and 22, all three extended as functions of p, in

combination with imaging condition of equation 26. Second, we use

the imaging by multidimensional deconvolution method, which re-

quires an initial estimate given by equation 31. Once the f�1 func-

tions are determined, the Green’s functions are computed using

equations 13 and 14, both extended as functions of p, from which

the reflection response is computed using equation 32 and the image

is constructed by standard wavefield extrapolation and imaging.

Angles reported in results and figures below refer to the incidence

angle in the first layer.

Imaging directly using equation 26

We solve equations 29 and 30, but the first term in the right-

hand side of equation 29 is replaced by R̄ðz0; tþ tdðzi; z0; pÞÞ and
we use equations 21 and 22, extended as functions of p, in com-

bination with the imaging condition of equation 26. The iterations

stop when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

ðf̄1;nðz0; zi; mΔt; pÞ − f̄1;n−1ðz0; zi; mΔt; pÞÞ2
r

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

ðf̄1;nðz0; zi; mΔt; pÞÞ2
r

∕1000; (33)

in which n is the iteration number and the discrete time steps are

given by t ¼ mΔt, Δt being the time step. For angles up to 25°, the

average number of iterations slowly rises from eight at normal in-

cidence to 11 at 25°, between 26° and 31° the number of iterations

rises from 12 to 17, and the scheme needs 21, 24, 28, and 31 iter-

ations for the last four angles where the first is just below and the

last three are beyond the critical angle for the high-velocity thin

layer. The data and the resulting image are shown in the intercept

time-slowness domain where slowness has been converted to in-

cidence angle in Figures 7 and 8. Figure 7 shows that it is hard to

discriminate multiples from primary reflections from 0.5 s onward.

In Figure 8, the expected model reflection coefficients are shown

in black solid lines and the image amplitudes are shown in red

dashed lines. From the figure, it can be seen that all multiple en-

ergy has been eliminated while all primary reflections are imaged

to their image times. The amplitudes and wave shapes of the first

four reflectors are constructed almost exactly. For later reflectors,

two types of errors occur. For all these arrivals, the phase changes

due to thin layer effects because multiples arrive within the time

window of the Ricker wavelet. Tunneling effects of waves trans-

mitted through the fast thin layer are visible in the last three traces.

To see the effect of the thin layer and of tunneling, we zoom in

and take a look at the image results of the first and last traces from

these data. Figure 9 shows the normal incidence image as a function

of image time. To create this image, only the solutions to equa-

tions 29 and 30 are computed, which requires no information other

than the earth reflection response and the wavelet. We observe that

the image inside the fast thin layer is quite accurate although the

amplitude has a very small error, which can only be seen when

the image is enlarged. The images of the last four interfaces show

some phase changes in the wavelet and the maximum amplitude is

not entirely correct. This is caused by the fact that in this scheme the

initial estimate is a scaled and band limited delta-function, which

ignores thin layer multiples overlapping with the first arrival. This is

an effect of the finite bandwidth and is a resolution issue. Still, the
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Figure 7. Reflection response data in the τ‐p domain as a function
of two-way intercept time and incidence angle in the first layer.
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amplitudes of the last four reflectors are quite accurate and we

would need to zoom in much further to make the errors visible.

The obtained reflection coefficient of the eighth interface, e.g.,

has an amplitude error of just over 1% and zero timing error.

Figure 10 shows the image from the data with a plane wave at 35°

incidence. For this angle of incidence, the waves tunnel through the

fast thin layer and all waves below this thin layer propagate again.

As it can be seen from the amplitude mismatch at 0.2 s, inside the

thin layer the imaging scheme does not give the correct amplitude

because waves that are evanescent at the imaging level are not prop-

erly treated by equation 25. For depth levels below the thin layer,

the remaining four interfaces can still be imaged. Because tunneling

waves show a phase shift due to the fact that the reflection coeffi-

cients of the top and bottom interfaces of the tunneling layer are

complex, the image times and amplitudes are incorrect. If we look

again at interface eight, the obtained reflection coefficient has an

amplitude error of 3% and a timing error of 2.5 ms. This result

can be improved by using a more accurate initial estimate and solve

equations 29 and 30. We then compute the up- and downgoing

Green’s functions and create the image by deconvolution using

equation 32. We show results of this approach below.

Imaging by MDD using equation 32

To correctly image inside and below thin layers, it can be neces-

sary to include some multiples in the initial estimate of T d because
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Figure 8. The image obtained as a function of one-way intercept
time and angle from the data shown in Figure 7.
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Figure 9. Normal incidence image.
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Figure 10. Image for 35° incidence angle.
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Figure 11. Depth image of the eighth interface as a function of in-
cidence angle.
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Figure 12. Reflection coefficient amplitude from the direct imaging
method and the MDDmethod of the eighth interface as a function of
incidence angle.
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this signal is not updated by the Marchenko-type scheme. Incorpo-

rating a good estimate of T d in the scheme also allows for imaging

interfaces below layers through which the waves have tunneled. To

show the improvement of incorporating multiples in thin layers and

the effect of tunneling, we take a close look at the eighth interface,

which is located 776 m below the source. We select incidence angle

dependent focus times at half the intercept times in the middle of the

eighth layer. For this particular focus time, we compute the first

arrival of the transmission event within the time window of the

Ricker wavelet around the focus time. When the model is unknown,

a smooth background model can be constructed in the same way as

it is normally done for migration. This background model can then

be used to generate the initial estimate. With this initial estimate, we

solve equations 29 and 30, and compute the directional Green’s

functions of the angle-dependent equivalents of equations 13 and

14. From those, we construct the reflection response of the medium

below the focus time with the aid of equation 32 and compute the

time image by inverse wavefield extrapolation. We converted focus

time to depth for display purposes. The result is given in Figure 11,

which shows the angle-dependent local reflection coefficient image

as a function of angle versus depth for the two imaging schemes.

The red dashed lines are the image events obtained by starting with

the correct first arrival followed by MDD and imaging. The blue

dash-dotted lines are taken from the direct image of Figure 8 con-

verted to depth. The black lines are obtained from modeling the

expected primary event with the amplitude of the local reflection

coefficient. Notice that the timing errors (displayed as depth errors)

in the direct image result start to be visible around 25° where the

wavelength at 40 Hz is almost nine times the thickness of the thin

layer. For all angles of incidence, the thin layer effect has disap-

peared when the correct first arrival is used in combination with

MDD. The reflection coefficient amplitude as a function of angle

is shown in Figure 12 for the maximum amplitudes obtained from

the time images that are displayed as depth images in Figure 11. The

black dashed and dash-dotted lines give the normalized errors of the

two numerical results shown in the dashed red and dash-dotted blue

lines, respectively. The direct image, obtained with a scaled delta-

function, is also very accurate for small angle of incidence. The er-

ror increases for angles larger than 20° due to neglecting the effect

of the thin layer on the finite resolution result in solving the Mar-

chenko-type equations. Still, the image amplitude errors remain

well below 5%, whereas the deconvolution image shows errors

around 1%. For comparison, the additional green solid line shows

the amplitude obtained by standard one-way migration using the

correct background velocity model. The large difference with the

true values is caused by transmission and internal multiple effects.

DISCUSSION

The direct image is obtained by using a delta-function as initial

estimate for the transmitted first arrival at the focus time. This has

the advantage that the time-image can be formed without any

knowledge of the subsurface. It has the disadvantage that thin layer

effects and the effects of waves that tunnel above the image depth

are not always properly accounted for. This can create small ampli-

tude errors in the images of interfaces below thin layers, but it can

create substantial time-errors when the waves have tunneled

through a thin layer above the image depth. This is not a particular

drawback of the method because no imaging scheme based on one-

way propagation handles evanescent waves properly. In principle,

the constructed time image can be converted to depth by an inver-

sion step that would compute the density and velocity from the ob-

tained reflection coefficients as a function of incidence angle. In

practice, this inversion can be quite difficult because it is a nonlinear

process. Once the velocity of each layer is known, time-to-depth

conversion can be performed to construct the final depth image.

The construction of an accurate estimate of the direct transmis-

sion event at the focus time can be necessary for obtaining an image

that is better than the image obtained with a delta-function as first

arrival. This can be done in the same way that is used in standard

migration schemes by estimating a background model and use that

to compute the first arrival of the transmission response. The im-

portance of retrieving the Green’s functions is twofold. First, the

retrieved Green’s functions are the downward continued wavefields

from the measurement surface to the interior. These are retrieved

from the measured reflection response without any modeling. Sec-

ond, because the theory gives the upgoing and downgoing Green’s

function in the interior, one can immediately use these for imaging.

This can be achieved by multidimensional deconvolution (van der

Neut et al., 2011).

This is just a first step toward a new scheme for acoustic data

imaging and possibly inversion. The present scheme is formulated

in the intercept time-slowness domain, but it could have been for-

mulated in space-time domain. The product of the reflection re-

sponse and the upgoing and downgoing focusing functions as a

function of slowness would become 2D convolutions in space over

the horizontal coordinates of the receiver plane. The time instant of

the direct arrival would become a function of each point on the

receiver plane to the focusing point in the subsurface. We would

lose the advantage of being able to solve for the focusing functions

per slowness value, and for that reason we choose this option here.

Several open questions remain for further study, such as the effect

of inaccuracies in the determined source wavelet, in the initial es-

timate, the effect of noise in the recorded data, and the effect of

intrinsic losses in the earth. It is also important that this method

can be generalized to 3D by combining the 3D method presented

in Wapenaar et al. (2013a) and this scheme. This is not difficult in

theory, but it will also present new challenges that are beyond the

scope of the present study. We did see that the results are not exact

when the image depth is at locations where the waves did not propa-

gate and this will occur in a 3D settting in a more complicated way

than in a 1Dmodel. A second aspect is that a direct arrival time must

be estimated for every receiver point on the surface to the focusing

point, putting more conditions on the background model and com-

plications may occur in strongly lateral heterogeneous models. This

does not necessarily require more work than is done to build a back-

ground model for standard migration. Computing the total focusing

wavefield from a similar Marchenko equation has been shown to

work with computed 2D acoustic data (van der Neut et al.,

2013; Wapenaar et al., 2013b).

CONCLUSIONS

We present an algorithm to compute the up- and downgoing parts

of a focusing wavefield from the measured reflection response. This

is done under the assumption of a plane wavefield and a 1D earth

model. The focusing wavefield is then used together with the mea-

sured reflection response to compute the up- and downgoing VSP

Green’s functions representations. These two relations can be de-

rived from the reciprocity theorems of the time-convolution and
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time-correlation types. The focusing wavefield focuses at the depth

where the VSP Green’s function has its virtual source. The up- and

downgoing focusing wavefields are nonzero in a finite time window

where the Green’s functions are zero. Therefore, the focusing wave-

fields can be obtained from the reflection response by solving the

resulting two coupled Marchenko-type equations.

We have shown that the downgoing focusing wavefield in the

upper half space is the inverse of the transmission response. The

upgoing focusing wavefield is the reflection response to the down-

going wavefield in a model that is the same as the earth from the

surface to the focus depth, but is homogeneous below this focus

depth. Once the two focusing wavefields are found from finite fre-

quency bandwidth reflection data, a virtual VSP Green’s function

can be computed. We have shown that a subsurface image free from

effects of multiple reflections in the data can be found directly in the

upgoing part of the focusing wavefield or from performing multi-

dimensional deconvolution on the VSP Green’s functions.

The direct imaging method produces an image with accurate am-

plitudes, but small timing errors can occur for reflectors below a thin

layer. In our example, this occurred when the layer thickness is less

than one-eighth of the dominant wave length or when waves have

tunneled through the thin layer. In that case, an improved initial

estimate leads to a correct image using the MDD method.

APPENDIX A

WAVEFIELD FOCUSING AND GREEN’S

FUNCTION REPRESENTATIONS

Wavefields in a medium with three interfaces

Let us look at the expressions for the reflection response Rðz0; tÞ
for a source and receiver at z0 and the transmission response

Tþðz2; z0; tÞ for a source at z0 and a receiver at z2. In the frequency

domain, the corresponding reflection R̂ðz0;ωÞ and transmission

T̂
þðz2; z0;ωÞ responses generated by the unit amplitude plane wave

are given by (Goupillaud, 1961)

R̂ðz0;ωÞ ¼
r0 þ r1e

−2iωt1 þ r2e
−2iωðt1þt2Þ þ r0r1r2e

−2iωt2

1þ r0r1e
−2iωt1 þ r0r2e

−2iωðt1þt2Þ þ r1r2e
−2iωt2

;

(A-1)

T̂
þðz2; z0;ωÞ

¼
τþ0 τ

þ
1 τ

þ
2 e

−iωðt1þt2Þ

1þ r0r1e
−2iωt1 þ r0r2e

−2iωðt1þt2Þ þ r1r2e
−2iωt2

; (A-2)

where we notice that the denominators are the same for the reflec-

tion and transmission responses. Comparing the events in the reflec-

tion response shown in Figure A-1 with the numerator of the

reflection response of equation A-1 we can see that they are the

same. We conclude that sending in the inverse of the transmission

response of equation A-2 is exactly the necessary wavefield that

focuses to a unit amplitude at z2 and in the time domain at

t ¼ 0. In the frequency domain, the focusing wavefield is therefore

given by

f̂
þ
1 ðz0;z2;ωÞ¼

1

T̂
þðz0;z2;ωÞ

¼eiωðt1þt2Þ

×
1þr0r1e

−2iωt1 þr1r2e
−2iωt2 þr0r2e

−2iωðt1þt2Þ

τþ0 τ
þ
1 τ

þ
2

;

(A-3)

f̂
−
1 ðz0; z2;ωÞ ¼

R̂
þðz0;ωÞ

T̂
þðz0; z2;ωÞ

¼ eiωðt1þt2Þ

×
r0 þ r1e

−2iωt1 þ r0r1r2e
−2iωt2 þ r2e

−2iωðt1þt2Þ

τþ0 τ
þ
1 τ

þ
2

:

(A-4)

The four incident and four reflected wavefields are indicated in

Figure A-1.

Derivation of the Green’s function representations

Equation 10 can be derived from the reciprocity theorem of the

time-convolution type and equation 11 can be obtained from the

reciprocity theorem of the time-correlation type. For more informa-

tion about acoustic reciprocity theorems, see de Hoop (1995). In 1D

space and for a source free domain that is bounded by two depth

levels, z0 and zi, they are given in the frequency domain by

p̂Aðz0;ωÞv̂z;Bðz0;ωÞ − p̂Bðz0;ωÞv̂z;Aðz0;ωÞ

¼ p̂Aðzi;ωÞv̂z;Bðzi;ωÞ − p̂Bðzi;ωÞv̂z;Aðzi;ωÞ; (A-5)

p̂�
Aðz0;ωÞv̂z;Bðz0;ωÞ þ p̂Bðz0;ωÞv̂

�
z;Aðz0;ωÞ

¼ p̂�
Aðzi;ωÞv̂z;Bðzi;ωÞ þ p̂Bðzi;ωÞv̂

�
z;Aðzi;ωÞ; (A-6)

where the subscripts A and B refer to two independent states

and v̂zðz;ωÞ denotes the particle velocity related to pressure as

Figure A-1. The focusing wavefield incident on a medium with
three interfaces consists of four events and the corresponding reflec-
tion response contains the same number of events at the same times;
the wavefield focuses at the bottom interface.
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v̂zðz;ωÞ ¼ −ðiωρðzÞÞ−1∂zp̂ðz;ωÞ. We have assumed that no

sources are present for z0 ≤ z ≤ zi and that the media between

the two levels are identical in the two states. Equation A-5 is gen-

erally valid under these assumptions, whereas equation A-6 is a cor-

rect equation under the additional assumption that the medium

between the two depth levels is dissipation free. The pressure is

the sum of down- and upgoing wavefields as p̂ðz;ωÞ ¼ p̂þðz;ωÞ þ
p̂−ðz;ωÞ and the particle velocity can be written as v̂zðz;ωÞ ¼

−ðiωρðzÞÞ−1∂z½p̂
þðz;ωÞ þ p̂−ðz;ωÞ�: Substituting these decompo-

sitions in equations A-5 and A-6 and following a similar analysis as

in Wapenaar and Berkhout (1989) gives

ρ−10 lim
z↑z0

ðp̂þ
A ðzÞ∂zp̂

−
BðzÞ þ p̂−

Aðz0Þ∂zp̂
þ
B ðzÞÞ

¼ −ρ−1iþ1 lim
z↓zi

ðp̂−
BðzÞ∂zp̂

þ
A ðzÞ þ p̂−

BðziÞ∂zp̂
−
AðzÞÞ; (A-7)

ρ−10 lim
z↑z0

ð½p̂þ
A ðzÞ�

�∂zp̂
þ
B ðzÞ þ ½p̂−

AðzÞ�
�∂zp̂

−
BðzÞÞ

¼ −ρ−1iþ1 lim
z↓zi

ðp̂þ
B ðzÞ½∂zp̂

þ
A ðzÞ�

� þ p̂−
BðzÞ½∂zp̂

−
AðzÞ�

�Þ; (A-8)

where we have omitted ω in the arguments for brevity. We use equa-

tions A-5 and A-6 to a configuration in which state A corresponds to

the medium that is homogeneous below zi, whereas state B is the

actual medium. In state A, we use the functions f̂
�
1 that focus just

below depth level zi. Below the depth level zi, the focusing wave-

field is a unit amplitude downgoing wave that can be written as

fþ1 ðz; zi;ωÞ ¼ exp½−iωðz − ziÞ∕ciþ1�; because there is no upgoing

wave, we have f−1 ðz; zi;ωÞ ¼ 0. We then find

p̂�
A ðz0;ωÞ ¼ f̂

�
1 ðz0; zi;ωÞ; (A-9)

lim
z↓zi

∂zp̂
þ
A ðz;ωÞ ¼ −iω∕ciþ1; lim

z↓zi
∂zp̂

−
Aðz;ωÞ ¼ 0:

(A-10)

In state B, we take the actual configuration with a unit amplitude

incident wave above the depth level z0 given by p̂þ
B ðz;ωÞ ¼

exp½−iωðz − z0Þ∕c0� and the reflection response is given by

p̂−
Bðz;ωÞ ¼ R̂ðz0;ωÞ exp½iωðz − z0Þ∕c0�: We find

lim
z↑z0

∂zp̂
þ
B ðz;ωÞ ¼ −iω∕c0; (A-11)

lim
z↑z0

∂zp̂
−
Bðz;ωÞ ¼ iωR̂ðz0;ωÞ∕c0; (A-12)

p̂�
B ðzi;ωÞ ¼ Ĝ

�;qðzi; z0;ωÞ; (A-13)

where just below depth level zi, the wavefield is given by the up-

and downgoing field Green’s functions. Notice that, here, the sign

in the superscript of the Green’s function relates to upgoing and

downgoing waves just below the level zi, which is the receiver level

for this Green’s function. The superscript q indicates the wavefield

is generated by a monopole source just above z0. Substituting these

choices in equation A-7 and A-8 leads to

Z0

Ziþ1

Ĝ
−;qðzi; z0;ωÞ

¼ R̂ðz0;ωÞf̂
þ
1 ðz0; zi;ωÞ − f̂

−
1 ðz0; zi;ωÞ; (A-14)

Z0

Ziþ1

Ĝ
þ;qðzi; z0;ωÞ

¼ ½f̂þ1 ðz0; zi;ωÞ�
�
− R̂ðz0;ωÞ½f̂

−
1 ðz0; zi;ωÞ�

�
; (A-15)

where the impedance is given by Zi ¼ ρici. Equations A-14 and

A-15 are the wavefield retrieval equations for the scaled up- and

downgoing wavefields, respectively, at the receiver level zi that

is obtained from the measured reflection response and the functions

f̂
�
1 . Equation A-14 is equal to equation 10 and equation A-15 is

equal to equation 11 because the Green’s functions satisfy the reci-

procity relation

Z0Ĝ
∓;qðzi; z0;ωÞ ¼ Ziþ1Ĝ

p;�ðz0; zi;ωÞ; (A-16)

where Gp;�ðz0; zi;ωÞ are the Green’s functions of equations 10 and
11. The reason for the factors Z0 and Ziþ1 is that the Green’s func-

tions and the focusing functions have been defined according to the

transmission responses and the downgoing and upgoing pressure

transmission responses satisfy Z0T̂
þðzi; z0;ωÞ ¼ Ziþ1T̂

−ðz0; zi;ωÞ.
By adding equations A-14 and A-15 and using reciprocity of

equation A-16, we find an expression for the Green’s function cor-

responding to the virtual VSP as

Ĝðz0; zi;ωÞ − ½f̂2ðzi; z0;ωÞ�
� ¼ R̂ðz0;ωÞf̂2ðzi; z0;ωÞ:

(A-17)

Equation A-17 is the 1D equivalent of equation 9 in Wapenaar et al.

(2013a) with f̂2 ¼ f̂
−
2 þ f̂

þ
2 ¼ f̂

þ
1 − ½f̂−1 �

�
. Without going into the

details of this relation, the equation shows that if we send in the

focusing wavefield f2ðzi; z0; tÞ the response is equal to the differ-

ence of the time-reverse of this function f2ðzi; z0;−tÞ and the VSP

Green’s function.

Plane waves at oblique angles of incidence can be obtained by

transforming the wavefields from space-time domain to the inter-

cept-time slowness domain and the radial slowness p becomes a

parameter. For each slowness value, equation A-7 remains valid

and therefore also equation A-14 remains valid. Equation A-8

and therefore equation A-15 remain valid under the condition that

the waves propagate through the depth levels z0 and zi, whereas

they can be evanescent at depth levels between z0 and zi.

From this result, it would be a small step to deriving space-time

relations for media with 3D variations in velocity and density, but

this is beyond the scope of the current paper. Examples of such

schemes and results on data modeled for 2D heterogeneous subsur-

face models can be found in Wapenaar et al. (personal communi-

cation, 2014) and Broggini et al. (personal communication, 2014).
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