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ABSTRACT 

Seismic response analysis of base-isolated structures with high damping elastomeric bearings is 

described. Emphasis is placed on the adaptation of a nonlinear constitutive model for the 

isolation bearing together with the treatment of foundation embedment for the soil-structure-

interaction analysis. The constitutive model requires six input parameters derived from bearing 

experimental data under sinusoidal loading. The characteristic behavior of bearing, such as the 

variation of shear modulus and material damping with the change of maximum shear 

deformation, can be captured closely by the formulation. In the treatment of soil embedment a 

spring method is utilized to evaluate the foundation input motion as well as soil stiffness and 

damping. The above features have been incorporated into a three-dimensional system response 

program, SISEC, developed at Argonne National Laboratory. Sample problems are presented to 

illustrate the relative response of isolated and unisolated structures. 
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INTRODUCTION 

Seismic base isolation is certainly one of the most significant earthquake engineering 

innovations in recent years [1] due to its significant capability of protecting structures from 

earthquake damage. One main concept in base isolation is to reduce the fundamental frequency 

of structural vibration to a value lower then the energy-containing frequencies of earthquake 

ground motions. The other purpose of an isolation system is to provide a mechanism for energy 

dissipation and to reduce the transmitted accelerations to the superstructure. In other words, by 

using base-isolation devices at the foundation of a structure, the structure is essentially decoupled 

from ground motion during earthquakes. 

One type of seismic isolation systems currently being considered for nuclear facilities is 

the laminated elastomer bearing that uses high-damping elastomer layered between metallic plates 

(shims). This design is attractive because it combines the restoring and dissipating functions of 

an isolator into one compact, maintenance-free unit. 

In order to produce an effective seismic isolation system and an efficient tool for 

analyzing the isolated structure, a design and analysis program of isolated structure is being 

established at Argonne National Laboratory (ANL). The detailed objectives of this program are: 

(1) to develop a material research and quality control program to characterize the large strain 

viscoelastic response of selected elastomers as well as to assure that the manufactured bearings 

meet the design specification, and (2) to develop three-dimensional computer codes to evaluate 

detailed isolator characteristics and the response of various isolated structure systems, including 

the effect of soil-structure interaction [2]. 
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As part of the analytical development, a three-dimensional program SISEC (Seismic 

Isolation System Evaluation Code) is being developed at ANL for calculating the global response 

of isolators and isolated structures. The basic code utilizes beam, nonlinear spring and plate 

elements to model the isolated structure together with an elastic half space approach to evaluate 

the impedance functions of the soil domain [2]. 

Recently significant improvements have been made to the SISEC code. First, to closely 

simulate the bearing behavior, a nonlinear viscoelastic constitutive model by Simo and Taylor 

[3-5] has been modified [6,7] and implemented into the SISEC code. This formulation requires 

six input parameters derived from sinusoidal experimental data. The characteristic behavior of 

the isolation bearing, such as the variation of shear modulus with maximum shear deformation 

and material damping, are captured rather closely by the formulation. In the constitutive model, 

the material degradation is affected by a function which depends on the Eulerian norm of the 

deviatoric strains. Volumetric strains are considered to be entirely elastic. The resultant 

analytical model simulates the bearing behavior rather realistically. 

Secondly, since structural response also depends significantly on the input acceleration 

time histories acting on the foundation level, a soil analysis is performed first to evaluate the 

foundation input motion as well as the stiffness and damping of the soil deposits. The analysis 

further accounts for isolator non-linearities, foundation embedment, inertia and kinematic 

interactions between the soil and structure. 

In this paper, analytical developments of high damping elastomer bearings and improved 

soil structure interaction model are briefly described. The constitutive model was validated first 

against experimental data of PRISM bearing. System response analyses of based-isolated 
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structures are carried out with the time history method. Relative response of isolated and 

unisolated structures are also investigated. 

2. ANALYTICAL DEVELOPMENTS 

2.1 Nonlinear Viscoelastic Constitutive Model 

The constitutive relation for viscoelastic material usually involve the deformation gradient 

denoted by F. This is a matrix which arises when the spatial coordinates are differentiated with 

respect to the material coordinates. By polar decomposition the deformation gradient in turn can 

be directly related to the right Cauchy-Green tensor C as follows: 

C = F'^F , (1) 

where the superscript T designates the transpose of a matrix. This tensor, also called the right 

stretch tensor, measures pure deformation. It also reduces to a unit matrix in the undeformed 

state. Similarly, the volume-preserving right Cauchy-Green tensor is given as 

C = CJ-2/3 , (2) 

where J is the determinant of F (or det F). 

In the viscoelastic constitutive formulation proposed by Simo and Taylor [3,4,5] the 

volumetric response of the material is assumed to be purely elastic; the viscoelastic effects are 

embodied by the deviatoric component. Their formulation is related to the second Piola-

Kirchhoff stress tensor o. The basic constitutive model is expressed as a convolution integral 

of the form 
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o(t) = K In J + I ' n(t-s) Ti[e(s),(pJ ds , (3) 

where the first term on the right side of the equation represents the volumetric component of 

stress and the second term stands for the deviatoric component. The bulk modulus K and the 

determinant of F (or det F) finalize the volumetric expression of the stress formulation. 

The deviatoric part is composed of non-linear functions of the strain deviator and the 

damage variable cpj. Here the more conventional approach of strain rate is replaced by the rate 

of non-linear function of the strain. The term /((t) is the relaxation function and Jt[e(t),cpt] is a 

non-linear function of the strain history and the damage variable cpj. The relaxation function /u.(t) 

is taken to be of conventional form as an exponential function 

V^it) = G„ H- (G„ - G„) e-vv , (4) 

where G^ and Ĝ  are the long-term and short-term shear moduli of the material, respectively; v 

is the time constant and t is time. The first three parameters are determined from experimental 

data. 

The strain history function can be expressed as a product of two other functions, one 

dependent cpj and the other on deviatoric strain and cp,: 

'i[e(t),(Pt] = g(<Pt) • Y[e(t),9t] > (5) 

where g((pt) is referred to as the "loading function" and Y[e(t),cpt] is the "damage function". Both 

terms can be related to the physical behavior of the material. The loading function g((pt) is 

analogous to that encountered in plasticity formulations, which has reference to limiting stress. 

In this context the g(cpt) function relates the experimental variation of storage and loss moduli of 
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the material with respect to the damage variable cpj. Simo and Taylor found that g(cp,) could be 

represented by 

g(^t) = % P + (1-p) 1-e 
- 9 / 0 

(pja 
(6) 

where a and p are input parameters and can be referred to as the damage exponent and damage 

limit, respectively. The derivative of this function with respect to the damage parameter in turn 

represents the variation of the moduli as derived from experimental data. 

The strain history damage function vL̂ CO'̂ t] ™ust satisfy the conditions as 

||Y[e(t).<pJ|| = 1 iff ||e(t)l| ^ q>̂  . 

tr{Y[e(t).<pJ} = 0 (7) 

Y[e(t),(Pt]| = 0 

The simplest function which satisfies all the above conditions is 

Y[e(t),<Pt] 
<Pt 

(8) 

The product of the selected functions g((pj and Y[e(t),cp(] terms make up the history function 

representing the degradation of the material. 
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The integral expression of the deviatoric part can then be related to the following stress 

integral 

a(t) = K hi J + r* n(t-s) Tt(s) ds , (9) 
Jo 

where Jt(s) is a deviatoric "effective" Lagrangian strain defined as follows: 

7r(s) = P + (1-P) 
1-e " devC(5) , (10) 

and % can also be expressed in terms of the same variables, i.e., 

(p̂  = maxl|devC(s)|| . (H) 

In physical terms (p̂  is simply the maximum value attained by the norm of devU(s) during the 

past history of loading. 

In order to numerically integrate the constitutive equation, it is convenient to evaluate the 

convolution integral through a recurrence relation. By employing a generalized mid-point rule 

and the mean value theorem the following algorithm results for calculating the Cauchy stress TQ+I 

which with minor modifications is taken from Refs. [3-5]. Thus, starting from the deformation 

gradient F̂ ^̂ : 

C — Tt"^ T? 
^n+1 ^n+1 ^n+1 » 

C„.: = C„,, C T , where J„,, = det F„,, (12) 
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|devC„,J| = {devC„,, • [devC„J^ , 

<Pn.i = max{||devC„,J|,<p„} , 

I t n + l P + (1-P) 
1-e "Pn.l/" 

<Pn.l/« 
devC„,i , 

^ ^ n . l = • ^ n . l - •"« ' 

Ah„.i = (e-^"^ - 1) 
G - G 

h - ° At/V 
Alt n+l 

(12 Cont'd) 

Kl = hn + ^n.l ' 

<^„.l = 0„ + K Aln J„, j + Ah„,, + G„ATt„^j , 

^n.i = PetF„,i)-^ F„+i< „̂.iFn!i • 

The last expression converts the second Piola-Kirchhoff stress to the Cauchy stress. It 

is observed that if the constitutive relation is devoted to pure (or simple shear) then certain 

simplifications apply. Specifically, the volumetric component does not need to be calculated, for 

it is set to be zero. Furthermore, the second Piola-Kirchhoff stress then will accurately represent 

the stress and the last step of the algorithm table need not be calculated. 
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The original Simo-Taylor (S-T) constitutive model [3-5] can Theologically be represented 

by a series combination of a damper and a non-linear spring, similar to the conventional Maxwell 

chain model. The damping pertains to the effect of the relaxation function with the time 

parameter and the variable resistance is associated with the non-linear shear modulus. In the 

modified S-T relation the original S-T model is set in parallel with another non-linear resistance 

of the S-T model as shown in Fig. 1. The weight ratio of the original S-T model to the non­

linear resistance is the sixth parameter C required as input. This modified S-T constitutive 

relation was found to possess certain advantages in the representation of the bearings in shear. 

The derivation of the input parameters can best be accomplished by means of a short 

computer program especially written for that purpose. Two (a,p) out of the six parameters are 

derived from experimental plots of the storage and loss moduli. These moduli are derived in the 

process of normalizing both plots onto a single fit. The next two parameters (Gg and G„) are 

the shear stiffness at very small strain and the stiffness at very large strain; they are read off from 

an experimentally derived plot showing the variation of shear stiffness with maximum strain. 

The remaining two constants (the so-called time parameter v and C parameter) are best 

derived by the above-mentioned simple computer program. These two parameters are varied as 

input in the program to reproduce the experimentally recorded hysteresis loops of the bearing 

material. The computer program analytically subjects the material coupon to sinusoidal 

displacement and calculates the corresponding stress. The results are plotted in the form of 

hysteresis loops. The values of time parameter v and C constant are properly determined when 

the resulting hysteresis loops correspond to those derived experimentally. Naturally, the most 

9 



important factor in the proper matching is the area within the hysteresis loop, which is the 

measure of material damping. 

2.2 Soil-Structure Interaction 

Since a base-isolated structure may have a highly nonlinear rubber bearing at its base and 

its foundation is embedded in a layered soil deposit, the suitable soil-structure interaction (SSI) 

analysis should be able to capture these important factors. Here, a three-step spring method [8] 

is adapted for the soil analysis. This method is illustrated in Fig. 2. Briefly, it consists of three 

major steps. The first step calculates the foundation input motions (translation and rotation) from 

the site specific free-field motion. The calculation is based on the theory of elastic wave 

propagation in combination with the assumption that the motion is composed of the vertically 

propagating body waves. The second step evaluates the impedance functions for the embedded 

foundation. The third step is using the foundation input motion and impedance function as input 

to the SISEC code to perform the detailed SSI analysis. 

Due to the foundation embedment and the inability of the rigid foundation to conform to 

the free-field motion, the foundation experiences not only the horizontal translation motion but 

also the rocking motion for a purely horizontal free-field motion. These horizontal and rocking 

motions, denoted by Xi(t) and cpi(t), respectively, are obtained by applying the transfer functions 

[8] to the free-field motion and are given by: 

Xi(t) = IFT 
X/co) cos 

V2 fn, 
iff^0.7f 

"̂  (13) 

Xg(w)[0.453] if f>0.7 f̂  
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and (13) 

^i(t) = IFT-
Xio)) 0.257 

/ 

1 -
\ 

\ 
Jt f 

- COS 
2 f„ V 

/R 

Xg((o)[0.257/R] 

if fsO.l f 

if f>0.7 f 

where IFT stands for Inverse Fourier Transformation; Xg((o) is the Fourier transform of the 

horizontal acceleration at the free surface in the free field, and 4 is the fundamental shear 

frequency of the embedment region. Here the descrete Fourier transformation and the fast 

Fourier transformation algorithms are employed to compute the foundation input motions. 

To evaluate the impedance functions we assume the structural foundation is embedded 

in a homogeneous stratum. Let F and M be the horizontal force and rocking moment at the 

interface of the foundation and soil, X and ^ be the corresponding lateral and rocking 

displacements, the force-displacement relationship can be written as 

^x* ^ H 

(14) 

where K^ K,^, and K^ are the impedance functions. In frequency domain, these functions are 

conveniently expressed in the following form: 

K., = K^(ki, - iaoC,J(l . 2ip) . 

K,4> = K°^(ki2 + iaoCi2)(l + 2ip) (15) 
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K H = ^1^2 ^ aoC22)(l -̂  2ip) 

in which ao = a dimensionless frequency parameter defined by 

and Vj is the shear wave velocity of the soil deposit [8]. In general, K^, K̂ ^ are functions of 

the soil shear modulus, radius of the foundation, depth of the embedment, and the depth of 

bedrock, soil Poisson's Ratio, etc.; the damping coefficients C^, C ĵ, and C22 depend on the 

hysteretic damping of soil, the soil dilational wave velocity, and fundamental shear and dilatation 

frequencies of the stratum. For detailed expressions of these stiffness and damping coefficients 

one should refer to Ref. [8]. 

3. Results and Discussions 

3.1 Validation of Viscoelastic Constitutive Equation 

A 1/4-scale test of an elastomeric bearing was performed by Professor J. M. Kelly at the 

Earthquake Engineering Research Center (EERC), University of California-Berkeley for the 

PRISM Liquid Metal Reactor Project [9-11]. In the test a sinusoidal shear loading is applied at 

the top of the isolator. A typical experimental hysteresis loop of the 1/4-scale bearing is shown 

in Fig. 3. Numerical simulation of the scale model test was accomplished by running a one-

element problem within the SISEC environment. The hysteresis loops of analytical model due 
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to pure sinusoidal input is given in Fig. 4. As can be seen, the agreement of force-displacement 

relationships between the experimental and analytical results is quite good. 

3.2 Response Analysis of Unisolated and Isolated Structures Under Horizontal Excitation 

The finite-element model of a nuclear island is shown in Fig. 5. Two lumped-mass sticks 

are used to model the reactor containment and reactor building, respectively. In this model, the 

reactor containment is approximated by twelve (12) nodes interconnected by eleven (11) beam 

elements. The reactor building is discretized into eleven (11) nodes connected by ten (10) beam 

elements. The mass of the major components such as the reactor vessel is appropriately added 

to its associated nodes. Two calculations are performed dealing with unisolated and isolated 

plants, respectively. For the unisolated plant, one foundation mat is utilized. On the other hand, 

the isolated plant has two concrete foundation mats, and the isolators are placed between these 

two mats. The design fundamental frequency of the isolators is 0.50 Hz. 

For calculation of the base-isolation structure, certain modeling techniques are required. 

In this calculation, beam elements are used for the super-structures. The isolators are modeled 

by two spring elements, one linear spring for simulating the large vertical stiffness and one 

nonlinear viscoelastic spring for modeling the relatively low stiffness in the horizontal direction. 

Thus, the vertical load-carrying capacity and necessary horizontal flexibility are appropriately 

modeled. The input to the horizontal nonlinear spring using the viscoelastic constitutive model 

was based on experimental data of 1/4-scale PRISM-type bearings given in the previous example 

whose hysteresis curve is shown in Fig. 3. The plot of bearing shear stiffness variations with 

maximum displacement (given in Fig. 6) was also utilized for determining the input values. The 

resulting input parameters required to generate the experimental curves are 

13 



GQ = 250, G„ = 55, V = 0.35, a = 0.10, p = 0.30, C = 0.55. 

The area of the full-size PRISM bearing is 2124 in .̂ A total of six hundred bearings is assumed 

for this illustration. For simplification of the analysis, only one composite isolator is used. This 

isolator represents the global effect of the estimated 600 isolators required for the frequency of 

0.50 Hz. The free-field artificial input acceleration history and its Fast Fourier Transform (FFT) 

shown in Fig. 7 is used for the numerical analyses which has a peak ground acceleration of 0.20 

g-

The horizontal acceleration time histories of node 1 (basemat), 23 (top of containment), 

and 43 (top of the reactor building) for the case of the unisolated structure are of special interest 

for studying the relative merits of the base-isolation system. Without the isolators, large 

accelerations are found, particularly at the top of the containment as illustrated in Fig. 8. The 

maximum accelerations at these three locations have values of 0.22 g, 0.43 g, and 0.33 g. The 

amplification factors at both the top of the containment and reactor building are 1.95 and 1.5, 

respectively. 

For the case of isolated structures, we have found that the accelerations at nodes 1 (upper 

basemat), 23 (top of containment), and 43 (top of reactor building) have the similar response 

shape but smaller peak values. The maximum response accelerations at these three locations are 

about 0.083 g, 0.0875 g, and 0.085 g, respectively. Note that because of the lower frequency and 

softness of the isolator bearings in response to the horizontal excitation, the peak accelerations 

at these three locations are much smaller than that of the input ground acceleration which has a 

value of 0.20 g. In other words, by using the high damping elastomeric bearings the 
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superstructure is basically decoupled from the ground motion during the earthquake. For 

illustration, the acceleration history at node 43 (top of the reactor building) is given in Fig. 9 

where the dominant frequency is about 0.50 Hz. 

Figure 10 shows the plot of relative displacement of the bearing under the imposed 

seismic excitation. The maximum displacement is about 3.68 in. Figure 11 displays the 

corresponding force-displacement hysteresis plots of the composite bearing. The energy absorbed 

by the bearing is shown in Fig. 12. 
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E3NL x-di£3. F.ELTQ ND 01 NODE-45(EUILCING • E^SE) 

TMAX,A,yAXTNUN.r.V.lN= 5.07 2.4630 1S.27 -3.5319 
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Fig. 10- Relative Displacement of the Elastomer Bearing 
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Fig. 11. Force-Displacement Hysteresis Loops of the 
Composite Bearing 
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D3SR ISOU^TOR ENERGY ABSORPTION 
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Fig. 12. Energy Absorbed by the Bearing 
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