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1   Introduction

This article deals with the seismic response of 
a caisson-supported bridge pier, with a rectangular 
or square base. The soil is considered as a single 
homogeneous layer underlain by an elastic half space. 
The system is excited by vertical harmonic S-waves, 
specifi ed through the “rock outcrop” motion. Analyses 
are performed in the frequency domain. The problem 
geometry is shown in Fig. 1.

Caisson foundations embedded in soft soil have 
been widely used to support major structures, especially 
bridges. In contrast to piles, which are relatively slender 
structural elements in lateral loading, caisson foundations 
are subjected to vertical shear tractions at their periphery 
and shear tractions at their base, in addition to the lateral 
soil reaction. Fig. 2 shows these tractions for a caisson 
with a rectangular cross section.

2   System and methods of analysis

2.1    Analysis  model 

The Winkler type model used for the solution of 
the problem is shown in Fig 3. The superstructure is 
modeled as a two degree-of-freedom (DOF) system, with 
a mass on the top of the column possessing rotational, in 
addition to translational, inertia.  A complex modulus of 
elasticity simulates the damping in the structure.

To measure the soil reaction to displacement of the 
caisson, the dynamic Winkler multi-spring-and-dashpot 
model, developed by Assimaki (1998), Chantzigiannelis 
(1999) and Gerolymos & Gazetas (2007), is used.  The 
model incorporates distributed translational (lateral) 
and rotational springs and dashpots along the caisson 
shaft, as well as concentrated translational (shear) and 
rotational (rocking) springs and dashpots at the base of 
the caisson. These four types of springs and dashpots are 
related to the resisting forces acting on the caisson shaft 
and base, as follows:

• The distributed lateral springs kx and dashpots cx
are associated with the resulting horizontal soil reaction 
px on the circumference (shaft) of the caisson per unit 
depth:

px = (kx + i cx) ux (1)

• The distributed rotational springs k  and dashpots 
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c  are associated with the moment m produced by the 
vertical shear tractions on the circumference of the 
caisson:

m = (k + i c ) c (2)

•  The resulting base shear translational spring Kx and 
dashpot Cx are associated with the horizontal shearing 
force on the base of the caisson: 

Q = (Kx + i Cx) ub (3)

• The resulting base spring K  and dashpot C
are associated with the moment produced by normal 
pressures on the base of the caisson: 

M = (K  + i C ) c (4)

The dashpot coeffi cients refl ect the combined 

radiation and hysteric “dissipation” of energy in the 
soil.

The elastic response of the bridge-foundation system 
is obtained by referring to the superposition theorem, 
along with decomposing the problem into kinematic and 
inertial responses (Whitman, 1972; Kausel & Roesset, 
1974).

2.2  Response

The method of analysis is explained with the help 
of Fig. 4, for a perfectly rigid caisson of mass mc and 
mass moment of inertia about its center of gravity Jc.
The depth of embedment is D, while the thickness of the 
soil layer is H.

First, the response to S-waves of the free-fi eld elastic 
soil layer over elastic bedrock is obtained from the well 
known equation (Kramer, 1996):  

Fig. 1   The bridge caisson-soil system

Fig. 2  Displacements of square caisson and mobilized soil 
reactions (Gerolymos&Gazetas, 2007; Assimaki et al ., 
2001)

Fig. 3   The proposed model. The soil reactions are provided 
with four types of springs and dashpots, the mass 
is concentrated at the top of the pier, excited by the 
displacement profi le of the 1-D computed free-fi eld

Fig. 4   Modeling of the kinematic interaction
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where ug is the amplitude of the harmonic displacement 
at the elastic rock, k is the complex wave number given 
by k V= +/ s si1 2 and  is the complex soil-to-rock 
“impedance ratio”:
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The caisson block performs a rigid-body steady-
state oscillation when the supports of its interacting 
Winkler springs and dashpots are subjected to the free 
fi eld motion given by Eq. (5). This motion is determined 
by the amplitude of displacement of the base ub and 
the amplitude of rotation c. At an arbitrary elevation z
measured from the base, the caisson displacement equals 
ub + cz.

The equations of dynamic equilibrium (horizontal 
translation and rotation) of the displaced caisson are 
written as:
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where
uff1(x,t) = uff [z- (H - D)]                       (9)

and uc = uc(t) is the displacement of the caisson at its 
center of gravity (uc = ub + c D/2).

Taking ü = - 2u and the form of the displacements 
of the caisson into consideration, Eqs. (7) and (8) can be 
written in the following matrix form 
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where the mass matrix is
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The complex stiffness matrix is 
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where, K  = K + i C, and P is the vector of effective 
loading
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The dynamic impedance matrix S at the top of the 
caisson, obtained by a coordinate transformation, is 
given by 

S =
⎛

⎝
⎜

⎞

⎠
⎟ =

−
− −

S S
S S

K K DK
K DK K DK

x x

x

xx x xx

x xxr 2 xx xx+
⎛

⎝
⎜

⎞

⎠
⎟D K2

(14)
where K K Kxx x, ,  are the elements of the stiffness 
matrix of Eq. (12).

In the same way, the mass matrix of the top of the 
caisson is given by the following equation
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2.3  Inertial and total response 

The method of analysis (Mylonakis et al., 1997) is 
schematically illustrated in Fig 5. As previously mentioned, 
the mass of the superstructure is concentrated at the top 
of the pier, and the pier is modeled as a beam. The soil-
caisson interaction is reproduced through the dynamic 
impedances computed in the previous subsection. 

For the steady-state harmonic response in the 
frequency domain, the differential equations of motion 
reduce to:
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where Kss, Ksb, Kbs and Kbb are the four stiffness 
submatrices corresponding to the superstructure and the 
foundation; mss, msb, mbs and mbb are the relevant mass 
submatrices.

3    Calibration of springs and dashpots 

Evidently, the reliability of the method depends 
on a proper choice of the dynamic spring and dashpot 
“constants” as function of frequency.

Analytical expressions for these “constants” were 
obtained by calibrating the model against the closed-
form expressions presented by Gazetas (1991) for 
rectangular foundations of L/B = 1-6, embedded in a 
homogeneous half space at depth D 2B, as depicted 
in Fig 6. These expressions had been based on the 
results of rigorous boundary-element and fi nite-element 
elastodynamic analysis, as well as on other available 
solutions from the literature. For a rectangle of width 2B

and length 2L (L> B) in a homogeneous half space, the 
dynamic impedances are expressed (with respect to the 
center of the base mat) in the form 

K K Cemb emb emb i= +( ) ( )              (17)

where Kemb is the static stiffness of the embedded 
foundation and emb( ) is frequency dependent  dynamic 
stiffness coeffi cient. C ( ) is the frequency dependent 
damping coeffi cient (encompassing both the radiation 
and the material damping of the system). The parameters 
which enter in the springs and dashpots are:

• Gs, Vs, VLa and  denote, respectively, the shear 
modulus of elasticity, the shear wave velocity, the 
apparent propagation velocity of compression-extension 
waves, and Poisson’s ratio of the soil.

• B, L and D denote, respectively, the semi-width, 
the semi-length and depth of the embedment.

Gazetas and Tasoulas (1987a) developed the 
following expression for the horizontal static stiffness 
in the longitudinal (x)-axis of an orthogonal caisson 
embedded in a homogeneous soil:
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The dynamic coeffi cient emb is presented in chart form 

Fig. 5   Analysis model for the inertial interaction. the model parameters (left) and the response (right) in terms of absolute 
              displacements and rotations
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(Gazetas and Tasoulas, 1987a) in terms of D/B and L/B
as a function of the dimensionless parameter a0(= b/Vs).

For a square caisson, the dynamic stiffness coeffi cient 
emb( ) is given by the following equation
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The corresponding static rocking stiffness (Gazetas, 
1991) is 
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The dynamic stiffness:

,emb 1 - 0.3 0 (21)

The dashpots are given by the following general 
expression

C C Ktot radiation= + 2                      (22)

For the horizontal translational, the radiation dashpot 
coeffi cient (Gazetas and Tasoulas, 1987b) is 

C V BLc V LD V DBxx x= + +4 4 4s s La         (23)

where ch is given in chart form in Gazetas (1991)
In rocking oscillation, the radiation damping 

(Fotopoulou et al., 1989) is expressed as 
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The non-diagonal terms of the complex stiffness matrix 
is

K DKx ≈ 1
3

                           (27)

Thus, the stiffness matrix of the caisson at the base of the 
caisson has been calculated as
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To determine the distributed springs and dashpots, the 
diagonal terms of the matrices in Eqs. (28) and (12) are 
equated as
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For a square caisson and an orthogonal caisson with 
L/B=2 and static lateral loading, the distributed springs 
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For the case of an elastic soil layer underlain by a 
homogeneous half space, the base coeffi cient (for 

Fig. 6   Geometry of a rigid orthogonal foundation embedded 
             in a homogeneous elastic half space
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horizontal translation and rotation) is
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where, the factor k models the different  “pressure bulb” 
under static loading. 

Based on results of circular and strip foundations 
(Gazetas, 1983), the following two equations for the 
factor k can be derived, using an equivalent circular 
foundation for a square foundation.
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And roel is given in Gazetas (1991) in chart form in 
terms of L/B and H/B as a function of a0.

Taking Eq. (33) into account, the diagonal terms of 
the stiffness matrix are:
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A cut-off frequency exists (for radiation damping) 
in this case. To simulate this phenomenon, the method 
of linear interpolation is used. For frequencies smaller 
than (4/3) fs, the radiation damping coeffi cients are 
zero. For frequencies greater than 1.33 fs, the damping 
coeffi cients of the homogeneous half space are used. For 
intermediate values, linear interpolation is used.
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where c is the radiation damping for  = 1.33 Vs / (2H).
The linear interpolation method must be used only in the 
inertia response step.

4  Comparison with 3D fi nite-element (FE) 
      analysis and other solutions

To evaluate the accuracy of the proposed model, a 
comparison is performed between results from fi nite-
element method (FEM) analysis, and other solutions 
from the literature. The geometry used in the FEMs is 
depicted in Fig. 7.

The problem studied with the FEM is a rigid caisson 
with 2B=4m, D/B=4 or 6, and H/B=10m. Shear modulus 
and mass density are constant with depth: G=50000kPa,
=0.3, and s=1.8mg/m3. The following numerical 

model is developed with ABAQUS. Both the caisson 
and the soil are modelled with 3D elements. The mass of 
the superstructure is assumed to be lumped at the top of 
the pier. The elastic bedrock is modelled with dashpots. 
The side boundaries are assumed to be free, thus above 
the cut-off frequency. A different radiation, compared to 
the conditions of the proposed model, will occur due to 
the refl ections in the side boundaries. For the kinematic 
response, Rayleigh damping is used (constant and equal 
to 0.05 at the fi rst two modes) and an elastic model 
( =0%) is assumed for the inertia response.

In Fig. 8, the proposed model for the kinematic 
interaction is compared to a solution given by the FEM. 
According to Fig (9), there is a good correlation in the 
fi rst two modes. This has occurred for the following 
three reasons. Firstly, the springs and dashpots, which 
are used to calibrate the model, are developed in a region 
of 0-2 for the dimensionless frequency a0. Secondly, the 
damping in the FE model is not-constant for all the 
eigenmodes. Finally, the different boundary conditions 
for the side boundaries in the two models; in the 
proposed Winkler-model, these boundaries are extended 

Fig. 7   An intersection of the fi nite element model. The caisson 
and beam elements are shown with deep grey colour, 
the surrounding soil with soft grey. The elastic rock 
halfspace is simulated with dashpots
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to infi nity but in the FEM model, they are very close to 
the caisson (the whole model is a 20m×20m×20m box).

In Fig. 9 the proposed model for the inertia 
interaction is compared with a solution given by the 
FEM. Note that there is a good correlation for the period 
of the system.

Finally, the eigenperiod, which is taken from the 
model, is compared with the solution given by Veletsos 
(1977) and Bielak (1975) as shown in Fig. 10. The 
dimensionless parameters given in these fi gures are 
explained in the following section.

5   Results of parametric  studies

5.1   Kinematic  interaction

While long piles follow more or less the seismic 
motion of the ground, a rigid caisson substantially 
modifi es the soil deformation. As a result, the incident 
seismic waves are scattered and the seismic excitation 
to which the caisson is effectively subjected may differ 
considerably from the free fi eld motion. To present the 
analysis results, the following dimensionless parameters 
are defi ned:

• the ‘effective’ displacement ratio at the top of the 
caisson

eff
kin

ff

( ) ( )
( , )

= u
u H

                       (39)

• the ‘effective’ rotation at the top of the caisson 

eff
kin

ff

( ) ( )
( , )

= D
u H

                     (40)

• the amplifi cation ratio at the top of the soil layer

Aff( ) = uff(H, ) / uff(0, )               (41)

• the amplifi cation at the top of the caisson

Acc( ) = ukin( ) / uff(0, )                 (42)

Two dimensionless frequency parameters facilitate 
the presentation of results: c H V0 = / s  is a parameter 
with respect to the thickness of the deposit, and 

0 = D V/ s
 is a parameter with respect to the depth 

of embedment. It has been proven that the response 
is governed for each frequency by the following 
two parameters: the soil layer depth to the depth of 
embedment ratio H/D and the shear modulus ratio 
Gs/Gr.

Figure 11 shows the infl uence of the fi rst parameter 
upon the behavior of the caisson. Apparently, the 
deep caissons do not follow the soil motion at higher 
frequencies.

Finally, Figs. 12(a) and (b) show the variation of 
the eff and the eff with dimensionless frequency ( 0),
respectively.

5.2   Inertia interaction

he effective period of the system is controlled by 
the following three dimensionless parameters:

(1) Slenderness ratio, h/B
(2) Ratio of  masses of the bridge and the caisson, 

mstr / mc
(3) Relative stiffness of the fi xed base structure and 

the soil, strh/Vs
 Figure 13 shows the infl uence of the slenderness 

ratio on the effective period of the system. For small 
slenderness ratios, the effective period has a greater 
increase than for higher slenderness ratios. This can be 

Fig. 8   Comparison of amplifi cation factors from the proposed 
model & solutions of FEM for kimematic interaction 
( =0.085, =0.05, D/B=6, H/B=20)

Fig. 9   Inertia interaction: comparison with FE solution. 
(G=50MPa, =0.085, B=2m, E=30GPa, Ix=64m4,
mstr=1200Mg, h=30m)
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explained by the fact that in tall, slender structures, the 
predominant displacement is the rotation against which 
a caisson behaves very rigidly.

 Figure 14 shows the infl uence of the ratio of the 
masses. The effective period of the system increases 
monotonically with the mass ratio. When the ratio tends 
to zero, the mass of the caisson is very big compared to 
the mass of the bridge, thus the superstructure acts as if 
it is founded on a fi xed base.

Figure 15 shows the infl uence of the term strh/Vs on 
the effective period of the system. As the ratio increases 
(the structure may be based on a soft soil), the period 
also increases.

The following equation is proposed for the effective 
period of the system compared to the fi xed-base period 
of the superstructure.

T
T

h
B

m
m

h
V

sys

str

str

c

str

s

≈ + ⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

−

1
0 5 0 613 1 18. . .

       (43) 

The damping ratio encompasses the hysteric 
damping in the soil, the radiation damping and the 
structural damping.

The frequency of the system is given by the 
following equation

sys,dam
sys=
−1 2                              (44)

and

A =
−

1
2 1 2

                         (45)

Fig. 10   Comparison of  the structure periods from the 
proposed model & that proposed by Veletsos 
(1977), (mstr / mc=0.28, h/b =4)

Fig. 11  Comparison of the transfer functions between top 
(z=H) and base (z=0) displacement amplitudes, for 
the free fi led (Aff) and the caisson (Acc).  Square 
caisson with D/H=0.2, 0.4 and 0.6.(  = 0.08, s = 0.05)

Fig. 12   Variation of eff and eff with dimensionless frequency 0 for square  caisson with slenderness ratio D/B=3,4, and 6.(  = 0.083, 
D/ H = 0.16 )

7

6

5

4

3

2

1

0
0           2          4          6           8          10        12         14

c0= H/Vs

D/H=0.2
D/H=0.4
D/H=0.6
Aff

A cc
 a

nd
 A

ff

2.0

1.8

1.6

1.4

1.2

1.0

T sy
s/T

st
r

Proposed solution
Veletsos (1977)

0                    1                    2                     3                    4
strh/Vs

1.5

1.0

0.5

0

ef
f

0               2                4               6                8               10
0= D/Vs

D/B=3
D/B=4
D/B=6

D/B=3
D/B=4
D/B=6

0               2                4               6                8               10
0= D/Vs

2.5

2.0

1.5

1.0

0.5

0

ef
f

(a) Normalized ‘effective’ displacement of the top of the caisson (b) Normalized ‘effective’ rotation of the caisson



No.1                             C. Tsigginos et al.: Seismic response of bridge pier on rigid caisson foundation in soil stratum                             41

Solving Eq. (45)  for , one obtains

=
− −1 1

2

2A
A                          (46)

where A is defi ned as 

A u
u h

=
+

str

kin kin

                         (47)

The results, which follow, are given for a constant 
hysteric damping equal to 5% for both the soil and the 
structure.

Three different types of soil are examined. The fi rst 
two soil cases are extreme conditions, where the cut-off 
frequency tends to zero and infi nity, respectively. 

The infl uence of the slenderness ratio on the damping 

ratio for two different  soil conditions is shown in Fig. 
16. For tall, slender structures, the damping ratio is equal 
to the structural damping ratio, and for structures with a 
ratio h/B<10, the damping ratio increases. This can be 
explained by the fact that tall and slender structures are 
more prone to structural deformation and rotation than to 
lateral caisson displacement.

Figure 17 shows the infl uence of the mass ratio on 
the effective damping. As the mass ratio decreases, the 
periphery of the caisson increases, thus more seismic 
waves are emitted from the periphery. Therefore, the 
radiation damping plays a signifi cant role in the behavior 
of the superstructure.

 Figure 18 gives the infl uence of the term strh/Vs
on the effective damping. As the ratio increases, the 
damping ratio also increases. Note that large values of 
the relative stiffness are related to soft soils.

Finally, the infl uence of D/B on the damping ratio 

Fig. 13   Effect of slenderness ratio on the effective period of 
the system (Js=0, mstr /mc=4.2)

Fig. 14  Effect of the relative mass ratio on the effective                
                period of the system. (Js=0, str h/Vs=4.2)

Fig. 15  Effect of the relative stiffness of soil and structure,   
str h/Vs, on the effective period of the system

Fig. 16  Effect of the slenderness ratio on the total damping 
(radiation plus hysteric and structural damping) for 
two different soils (Js=0, mstr / mc =0.28, D/B=4)
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is given in Fig. 19. As the D/B increases, the damping 
ratio increases. This can be explained by the fact that 
increasing this ratio under a constant relative mass ratio, 
the perimeter of the caisson also increases, which leads 
to an increase of the radiation damping.

The effective damping for soils in total cut-off 
conditions is approximately the same as the structure 
damping, as shown in Fig. 20.

Figure 21 shows the importance of radiation damping 
in the behavior of the system. 

In the fi nal type of soil, there are three distinct 
regions for the radiation damping:

• When sys soil/ .< 0 8 , no radiation damping 
develops,

•   When sys soil/ .> 1 2 , the full radiation damping 
of the homogeneous half space develops, and 

• When 0 8 1 2. ./< <sys soil , radiation damping 
takes intermediate values.

Fig. 17   The effect of the relative mass ratio on the total 
damping, radiation plus hysteric and structural 
damping, for three different slenderness ratio. 
(Js=0, strh / Vs=4.2, D/B=4)

Fig. 18   The effect of the relative stiffness of the soil and 
the structure, on the effective damping, for three 
different slenderness ratios. (Js=0, mstr / mc =0.28, 
D/B=4)

Fig. 20   The effective damping for a soil with total cut-off 
conditions (f<fc). The effective damping is 
approximately the structural damping.( mstr / mc = 
0.28, D/B=2)

Fig. 21   The importance of different amounts of radiation 
damping on the resonant peak.( strh / Vs=1.75,
mstr/mc=0.82, h/B=5, D/B=4)
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Fig. 19   The effect of the D/B  on the total damping,radiation 
plus hysterical and structural damping, for two 
different slenderness ratios.( strh/Vs=4.2, mstr/ mc
= 0.277)
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6   Conclusions 

An analytical method to study the seismic response 
of a bridge pier supported on a rigid caisson foundation 
embedded in a deep soil stratum is developed. The 
method reproduces the kinematic and inertial response. 
Closed-form solutions are given in the frequency 
domain for vertical harmonic S-wave excitation. From 
the comparison with results from fi nite element (FE) 
analysis and other available solutions, the reliability 
of the proposed model is verifi ed and the following 
conclusions can be drawn.

(1) The proposed model yields satisfactorily results 
in the fi rst and second eigenmodes; in other words, for 
values of dimensionless frequency a0 less than 2. 

(2) The modifi cation of the seismic waves is more 
intense in caissons with small values of the soil layer 
depth and the caisson embedment depth ratio H/D.

(3) The increase of the period of the structure due 
to soil-caisson-structure interaction is controlled by the 
slenderness ratio, the relative masses and the relative 
stiffness of the structure and the soil, and the increase can 
be very signifi cant for stiff structures with small values 
of the slenderness ratio. Even for fl exible structures with 
the slenderness ratio greater than ten founded in soft 
soils, the period of the system can be increased by 50%.  

(4) The increase of the damping ratio of the 
system is due to the radiation damping. Specifi cally, 
this increase is controlled by the slenderness ratio, the 
relative masses, the relative stiffness of the structure 
in a fi xed base condition and the soil, and the depth 
of embedment. The most important parameter is the 
slenderness ratio, because for high values of this ratio, 
the radiation damping tends to be zero. Furthermore, 
a relatively large mass of the caisson compared to the 
mass of the superstructure leads to an increase in the 
radiation damping.

In the case of a ‘real’ soil layer with a depth of H,
the period of the system infl uences its damping ratio. If 
the period of the system is smaller than the period of the 
soil layer, the damping ratio will be the damping of the 
homogenous soil condition. Conversely, if the period of 
the soil layer is smaller than the period of the structure, 
the damping ratio will be equal to the structural 
damping.
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