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Abstract

The potential importance of soil structure interaction effects on the seismic
response of structures has been long recognized. The nature of the interaction
phenomena, including the modification of the seismic waves by the
foundation's geometry (kinematic interaction) and the increase in the
structure's effective flexibility due to the foundation and the surrounding soil
(inertial interaction) have also been detailed in a number of papers. The
possibility of having a reduction of the seismic motions for embedded
foundations has been, however, a subject of continued controversy. The
general topic of soil structure interaction for structures with embedded
foundations is revisited in this paper, reviewing the basic concepts with some
emphasis on approximate solutions which allow to develop a better feeling for
the behavior of the solution.

1 Introduction

The interaction between a structure and its underlying soil under seismic
excitation has been the subject of considerable interest and controversy for
over 25 years. The effect is particularly important when dealing with massive
and stiff structures, such as nuclear power plants, supported on relatively soft
soils. It is not surprising, therefore, that most of the research conducted on
this topic was in fact related to the seismic design of nuclear power plants.
Two general approaches were developed for seismic soil structure interaction
analyses: a direct solution in which the complete soil-structure system is
modeled and solved in a single step, and a three step or substructure approach.
In the direct solution it is necessary to determine first a motion at the base of
the soil model consistent with the desired (design) motion at the free surface
of the soil or at any other location (for example a hypothetical rock outcrop).
This motion is normally determined using a deconvolution process. In the
substructure approach it is necessary to: 1) determine the seismic motion of
the foundation without any structure, and in most cases without any mass; 2)
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determine the dynamic stiffnesses of the foundation as functions of frequency
for a steady state harmonic excitation; 3) perform the dynamic analysis of the
structure supported on the dynamic stiffness matrix computed in the second
step and subjected to the motions obtained in the first. Step 1 is often referred
to as the kinematic interaction analysis. It represents the change in the
characteristics of the base motion due to the geometry of the foundation. The
modification of the dynamic characteristics of the structure due to the
flexibility of the foundation (the addition of the foundation's stiffness matrix)
is referred to as the inertial interaction. Once the dynamic analysis of the
combined structure-foundation system is performed the motion at the base of
the structure will be different from that used as input The modification is due
to the additional deformations of the soil caused by the base shears, axial
forces and overturning moments resulting from the inertia forces in the
structure.

When using the direct approach kinematic and inertial interaction
effects are automatically combined and it is not possible to isolate their
individual contributions to the final results. This combination is necessary
when trying to account for nonlinear effects (nonlinear material behavior of
the soil or nonlinear contact between the foundation and the soil). It is
possible in the substructure approach to bypass the computation of the
foundation motions without structure (step 1) computing instead the motions
at the interface of the foundation in the free field (without any excavation for
an embedded foundation) and a second dynamic stiffness matrix relating
forces and displacements at selected points along that interface (also without
excavation). It is, however, much more meaningful to carry out step 1 as
outlined above, computing the foundation motions and inspecting them for
correctness.

In this paper, kinematic and inertial interaction effects are considered
separately in order to assess their relative importance for structures on
embedded foundations. This implies a linear solution with the superposition
of the different effects. Nonlinear soil behavior must be simulated through the
use of equivalent material properties consistent with the expected level of
strains. There are now a number of computer programs available for linear
dynamic soil structure interaction analyses with any desired degree of
accuracy. The use of approximate solutions for the actual design and final
analyses of important structures is therefore very hard to justify. Approximate
methods are, however, of value in preliminary designs, to assess the
importance of interaction effects and thus the need for more sophisticated or
rigorous analyses, and for parametric studies to better understand the behavior
of the solution. They will be used for this last purpose in this paper.

2 Formulation

Let us consider a homogeneous or layered half space without any excavation
and the same soil profile once the excavation has taken place, as shown in Fig.
1. Assume that the surface of the excavation (bottom surface and sidewalls) is
discretized using either boundary elements, finite elements, or any other
discretization scheme, and let the subscript i refer to a generic node along the
surface. Assume further that the same surface, discretized mesh and nodes are
drawn on the free field (half space without excavation). Let then,
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MO (*,;y, z) represent the vector of displacements (M,V,W) at any point (x,y,z)
along the future excavation's surface in the free field, due to seismic
waves propagating at any angle of incidence from the bottom of the soil
deposit

VJQ be the vector of corresponding displacements at node /

fQ(%,y,z) represent the vector of tractions acting on the surface of the future
excavation at any point in the free field, due to the same train of waves

F/o be the vector of equivalent nodal forces at node i

Let finally VQ and FQ denote the vectors of displacements and
equivalent forces at all the nodes / along the surface of the future excavation
in the free field. VQ and FQ would be obtained from standard analyses of
wave propagation in layered media.

If V f are the corresponding displacements along the nodes / of the

excavation, once this has been performed and Sf is the dynamic stiffness

matrix of the soil for the excavation (relating forces and displacements at the
various nodes /), Vj- are the results of the kinematic interaction analysis for
an infinitely flexible foundation. Expressing the condition that the tractions
along the free surface of the excavation, and thus the resulting nodal forces
F , must be zero

0 (1)
leading to

Vf=VQ-S?FQ (2)
For an infinitely rigid (but massless) foundation, there could be

nonzero tractions and forces Ff between the foundation and the excavation
surface but their resultants should vanish. Letting c denote the point of
reference for the motions (three translations and three rotations in the general
case) and forces (three force components and three moments) acting on the
foundation one can define a rigid body transformation matrix relating the
displacements of any node i to those of point c.

" 1 0 0 0 (z,-z,) -(yi-y

4=0 1 0 -(z,-zj 0 (xt-Xc

0 0 1 (%-%) -(xt-Xc) 0
Then,

Vi=LiV< (4)
and for the complete set of nodal displacements,

y = iy, (5)
where L is a 3/ix6 matrix if n is the number of nodes. L is the result of
assembling the L± matrices.

(3)
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Figure 1 Free Field and Excavation

CONSISTENT TRANSMITTING
BOUNDARY

FLEXIBLE LATERAL WALLS -̂

RIGID SLAB

- LAYERED SUBGRADE

ROCK

Figure 2 Finite Element Model
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Similarly, the net forces on the foundation are

&=^F (6)
where F results from the assembly of the nodal forces.

The condition is now 7^ = 0 with

VQ) (7)
Then,

Z/> = Z/>o + l?Sf(LVc - VQ) = 0 (8)
or,

(i/ŝ y, = f/s/yo - ̂ (9)
and calling

Kf=I?SfL (10)
the dynamic stiffness matrix of the rigid (massless) foundation,

Vc=Kf*l7SfVo-Kf*I?FQ (11)
indicating that one can compute the motions of a rigid embedded foundation
knowing the displacements VQ and forces FQ from free field wave

propagation analyses and the dynamic stiffness matrix of the excavation Sf.

The dynamic stiffness matrix of the rigid foundation Kf can be obtained
fromeq. (10).

In the case of a flexible foundation, one can either incorporate the
model of the foundation with that of the structure letting the nodes i represent
the contact points between the foundation and the soil, or consider the
foundation by itself as a structure supported on the dynamic stiffness matrix
Sf and subjected to the motions Vf. This latter alternative represents an

intermediate step which offers no computational advantages and therefore the
former is generally preferred.

An approximation to the above procedure to compute the consistent
motions of a rigid embedded foundation was suggested by Iguchi [1] as

Vc=B-*ll7uo-K?ll7tQ (12)
where the integrals extend over the complete surface of the foundation- soil
interface, UQ and % are the free field displacements and tractions as defined
earlier, Kf is the dynamic stiffness matrix of the rigid foundation and the

rigid body transformation matrix L is as L± in eq. (3) replacing the

coordinates of node i, %,)% by the coordinates of a generic point xy z. The
superscript T denotes the transposed matrix. The main advantage of
expression (12) is that it does not require the knowledge of the excavation

stiffness matrix Sf . It can be seen that the second term representing the
correction due to the condition of zero forces is essentially the same as in
expression (11). The main difference is in the first term (averaging of the

motions due to the rigid foundation) where the expression K̂ lJSf has

been replaced by B~̂ ll where
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B = IL?L (13)
An alternative to the use of equations (11) and (12) is the direct

solution of the soil structure interaction problem for a rigid or flexible
foundation, with or without mass, using any type of discretization. Figure 2
illustrates for example a possible finite element model for a circular
foundation using finite elements under the base and sidewalls of the
foundation and the consistent boundary matrix of Waas [2] and Kausel [3] to
reproduce the far field. One could have used equally a hyperelement under
the foundation as described by Tassoulas [4]. The base of the model (at any
desired depth) can be considered fixed with the motion at the level in the free
field specified as input or can be modeled with viscous dashpots to simulate a
half space under the action of a plane train of waves with a specified angle of
incidence. This viscous boundary can be selected to reproduce correctly the
radiation of the waves in the freefield but will not absorb exactly the scattered
(or diffracted) waves due to the geometry of the excavation. It must be placed
therefore at a sufficient depth (depending on the amount of internal soil
damping) to minimize the effects of possible reflections. When using this
bottom boundary the input motions should be those expected at a hypothetical
outcropping of the half space below the model.

3 Kinematic Interaction

Using this model, with a rigid base, Morray [5] conducted a number of
parametric studies determining the motions (horizontal translation in the x
direction and rotation around the v axis) of embedded circular foundations
subjected to trains of vertically propagating shear waves in the x - z plane
(with the z axis vertical). He considered ratios of the total layer thickness H
(depth from the free surface to base rock) to the radius of the foundation R
varying from 1.5 to 2.5 and ratios of the embedment depth E to the radius R
from 0.5 to 1.5. Both rigid foundations and a foundation typical of a nuclear
power plant's containment building with the properties of concrete were
investigated. The results obtained were the horizontal translation and the
rotation of the foundation as well as the horizontal motion at the free surface
of the soil. From these results the transfer functions from the soil surface to
the foundation were obtained. These transfer functions are expressed as the
ratio of the horizontal translation of the center of the foundation to the
horizontal translation of the free surface (top of the soil deposit) and the ratio
of the vertical displacement of the edge of the foundation (rotation of the base
multiplied by the radius in case of a rigid foundation) to the horizontal
displacement of the free surface. The transfer functions will be complex
functions of frequency indicating that there will be both a change in the
amplitudes of the motions and in their phases. In this paper the results
presented will be only the amplitudes of the transfer functions. Both
amplitude and phase are needed, however, for SSI analyses.

Considering a train of vertically propagating shear waves in a
homogeneous soil the free field motions would be given by

u = A[exp(z/?z) + exp(-/pz)]exp(/Qf) (14)
where

(15)
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p is the mass density of the soil, G its shear modulus and D the internal soil
damping. A value of D of 0.05 (5%) was used. Q is the frequency of the
excitation in rad/sec. The term exp(iOt) will be omitted from all the
following expressions since it is the same for all.

The motion at the free surface would then be given by u = 2A and at

the foundation level in the free field by u = A[e\p(ipE) + exp(-ipE)] or, if

there is no damping u = 2AcospE. One could also define in the freefield a
pseudo-rotation given by the difference in the horizontal motions divided into
the distance E. Thus <p = 2A(l- cos pE)/E. The transfer functions for the
ID solution would be cospE (for the horizontal translation) and

R(l - cospE)/E for the rotation times the radius.
When considering a 3D, cylindrical, rigid foundation embedded in a

soil stratum (or a half space) the vertically propagating shear waves will
produce both a horizontal translation of the base and a rotation. Figure 3
shows the transfer function of the translation for the case with E = R and
H = 2R. The results from the one dimensional solution (motion at the level
of the foundation in the free field) are also shown. The 3D solution follows
very closely the ID motion up to roughly 0.75 of the first natural frequency in
shear of the embedment layer /% . After that the 3D solution oscillates around
a mean value with only moderate amplitudes while the ID motion exhibits
much more significant oscillations. Because of this the ID solution would
severely underestimate the amplitudes of the motions around the natural
frequencies of the embedment layer, while overestimating them at the
midpoints between these frequencies. From inspection of the results for the
various cases considered it appeared (Elsabee and Morray [6]) that a
reasonable approximation could be obtained defining the transfer function for
the horizontal translation (amplitude) by

jcos#/2/i for /̂  0.7/i

| 0.453 for / %0.7/i
with /i = Cf/4E the fundamental frequency of the embedment layer and c$
the shear wave velocity of the soil.

Figure 4 shows the amplitude of the transfer function for the rotation
multiplied by the radius of the same foundation (E = R, H = 2R). Shown in
the same figure is the transfer function for the ID pseudo-rotation multiplied
by the scaling factor 0.257. The agreement is very good in the low frequency
range but it deteriorates again for higher frequencies with the ID solution
exhibiting much larger oscillations than the true 3D rotation. From inspection
of the figures for the various cases studied it appeared that a reasonable
approximation could be provided by the expression

o.257 for />/,

with /i as above defined. In these studies, the rotation was considered
positive in the clockwise direction.

Figure 5 shows for the same foundation the effect of assuming elastic
sidewalls with the properties of concrete while still maintaining a rigid base.
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Figure 5 Effect of Flexibility of Sidewalls on Transfer Functions
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Figure 6 Effect of Base Rotation on
Amplified Response Spectra

Figure 7 Effect of Approximate Rules for
Motion on Amplified Response
Spectra
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It can be seen that the effect on the horizontal translation is negligible. The
amplitude of the base rotation is reduced on the other hand by about 20%. In
the limiting case, if there were no sidewalls the foundation would still have a
rotation but of opposite sign. The actual conditions of the backfill would also
influence the magnitude of the rotation as well as the fact that some slippage
could take place between the sidewalls and the soil during vibration. Thus
while the approximate expressions would yield results consistent with those
obtained performing a direct (one step) solution of the combined soil-structure
system, in practice the rotations might be expected to be somewhat smaller.

It is important to notice that the rotation is an integral and important
part of the foundation motion. Ignoring it, while deamplifying the
translational component, may lead to important errors on the unconservative
side. To illustrate this point, Figure 6 shows the results of a SSI analysis
performed on a structure with characteristics similar to those of typical
containment buildings in nuclear power plants using both components of
motion and only the translation. The characteristics of the motions at the base
and at the top of the structure (including inertial interaction effects) are
depicted in terms of their response spectra. It can be seen that the results of
both analyses are very similar at the base of the structure, where the rotation
has very little effect (the small differences are due to the coupling terms in the
stiffness matrix). At the top of the structure, however, the results accounting
for the base rotation are almost twice those considering only the translation.
Figure 7 shows the results using the estimates of the translation and the
rotation provided by the approximate rules suggested above. The agreement
with the more rigorous solution also shown in the figure, is remarkably good,
particularly at the top of the structure.

In these analyses the dynamic stiffness matrix of the foundation,
needed for the dynamic solution of the complete system, was computed using
the same finite element model with consistent transmitting boundaries
employed for the kinematic interaction studies and shown schematically in
Figure 2. The solution was carried out in the frequency domain, then
converted to time domain using the Fast Fourier Transform.

The effect of embedment on the foundation motions was further
investigated by Dominguez [7] who considered square and rectangular
foundations embedded in a homogenous half space and used the boundary
element method for the formulation. Dominguez considered trains of waves
at arbitrary angles of incidence. Typical results for a square foundation with
side 2B and angles of incidence of 0, 45 and 90 degrees with respect to the
horizontal axis are shown in Figure 8. An angle of incidence of 90 degrees
corresponds to vertically propagating waves in this case, fi is again the
fundamental natural frequency of the embedment layer in shear. The results
were obtained in this case over a smaller range of frequencies. For vertically
propagating waves the results are similar to those reported by Morray over
this reduced frequency range. It can be seen, however, that for other angles of
incidence the rotational component decreases significantly while a torsional
component of motion appears.

Similar studies to those performed by Morray were carried out using a
wider range of embedment ratios. As a result of these studies, it was
recommended to extend the original formulas as

costf/2/i for fzafi

for f>af,
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Figure 8 Motions of Embedded Foundation for
Various Angels of Incidence

Figure 9 a,/? Coefficients
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with a and ft functions of the embedment ratio E/R as shown in Figure 9.

4 Foundation Stiffnesses

Using the same finite element model with consistent lateral boundaries shown
schematically in Figure 2, Elsabee [6, 8] conducted parametric studies
determining the dynamic stiffness matrix of embedded rigid circular
foundations with different ratios of the embedment depth to the radius and of
the layer thickness to the radius. For each foundation, results were obtained
using three different finite element meshes with elements of square cross
section and sides equal to one-quarter, one-eighth and one- sixteenth of the
radius. The results from these three meshes were then extrapolated (a linear
extrapolation with respect to element size) to obtain an improved estimate.

The stiffness matrix for an embedded, rigid, circular foundation
considering only two degrees of freedom (horizontal translation and rotation)
will be of the form

The terms K̂ K̂ K̂  = K^ and K^ will be complex functions of

frequency. It is common to write them in the form
K = KQ(l + 2iD)[k + ioQc] (21)

where KQ is the static value (corresponding to zero frequency), D is the
internal soil damping (assumed to be of a linear hysteretic nature), k and c
are the dynamic stiffness coefficients (functions of frequency) and OQ is a
dimensionless frequency equal to pR with p as defined in eq. (15). It should
be noticed that when there is internal damping, OQ will be complex with this
notation. Alternatively, one can use only the real part of 00, modifying
accordingly the values of k and c, which would become functions also of D.

Based on his studies Elsabee extended the formulas derived by Kausel
[3] for the static stiffness of circular foundations on the surface of a soil layer
of finite depth, to account for embedment. The expressions he suggested are

Figure 10 shows the variation of the stiffness coefficients k and c versus
frequency for the K^ and the K^ terms and a foundation with E = R and

H = 3R. The results are compared to those of a surface foundation on a layer
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of the same thickness H and those of a circular mat on the surface of a
homogenous half space. When dealing with a layer of finite depth the
coefficient c which represents the loss of energy by radiation of the waves
away from the foundation will be zero below a threshold frequency which is
the fundamental natural frequency in shear of the stratum for horizontal
translation and the vertical natural frequency in rocking if Poisson's ratio
v ̂  0.3. For larger values of Poisson's ratio it is a frequency intermediate
between the two. For the half space the term c starts with a nonzero value
from the beginning for the horizontal stiffness. It starts however at 0 for the
rocking term and a surface foundation. The real stiffness coefficient k has a
number of oscillations associated with the natural frequencies when dealing
with a soil layer of finite depth and is much smoother for a deep layer (if there
is some internal soil damping) or for a homogenous half space. It is also
smoother in rocking than for horizontal translation.

For a surface foundation on a half space the dynamic stiffness
coefficients k and c corresponding to horizontal translation are essentially
constant with values of 1 and 0.6 approximately (the value of c is a function
of Poisson's ratio). The same variations could be used for an embedded
foundation in a half space but the value of c would increase, depending on the
embedment ratio E/R. For E = R it can be seen that c = 0.9. For a finite
layer the value of k would have oscillations as mentioned above and the value
of c would have to be truncated below the threshold frequency. The values of
k and c are functions of frequency for the rocking case. Approximate
expressions for a surface foundation on a half space are

l- 0.2ao for %<2.5

0.5 for % > 2.5

and

(24)

More accurate expressions for these coefficients, function of Poisson's
ration were proposed by Veletsos and Verbic (9). One could again use the
same expressions for k in case of an embedded foundation, but the coefficient
0.35 in eq. (24) would increase with embedment (to 0.45 or so for E = R).

Novak [10] had proposed an alternative simplified procedure to
compute approximately the dynamic stiffnesses of circular foundations
embedded in a half space. In this approach the stiffness terms are assumed to
consist of the contribution of the base (with a stiffness equal to that of a
surface foundation) and the sidewalls (reproduced by a series of frequency
dependent springs and dashpots obtained from the study of a rigid disk
vibrating in a plane). The values of the springs and dashpots can be expressed
in closed form in terms of modified Bessel functions. Studies by Chen [11]
have shown that the real part of the stiffnesses (the terms K$k) predicted by
Novak's approach tend to be smaller than the results of finite element analyses
especially in rocking. On the other hand the values of the imaginary parts of
the stiffnesses (the terms #0̂ 0) predicted by Novak's approximation are in
excellent agreement with the finite element results for a half space. They are
also a very good approximation for a foundation embedded in a layer of finite
depth above the threshold frequency. Below this frequency Novak's solution
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DYNAMIC STIFFNESS COEFFICIENTS, u = 1/3, 0 = 0.05
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would predict nonzero values of the imaginary terms, which should be zero.
Once the dynamic stiffness matrix of the foundation is known, the

third and final step of the SSI analysis obtaining the response of the structure
on a flexible foundation to the motions computed accounting for kinematic
interaction is straightforward particularly when performed in the frequency
domain. Some complications arise, however, when attempting to use more
traditional methods of structural dynamics in the time domain, such as modal
analysis or especially modal spectral analysis. It is particularly important that
the structural model be able to account for both translational and rotational
motions for an embedded rigid foundation or for independent, different
motions of the various contact points for flexible foundations.

The main effects of the inertial interaction, which have been
extensively discussed in the literature, are the modification in the natural
period of the structure (an elongation of the period due to the added flexibility
of the foundation) and a change in the effective damping of the system which
is in most cases an increase (when there is radiation damping). The
importance of these effects depends on the relative stiffness of the structure
with respect to the soil. As embedment increases so do the foundation
stiffnesses and therefore the inertial interaction effects tend to decrease in
importance at least in relation to the change in the effective natural period.
The effective damping decreases because of the reduced interaction but
increases due to the larger values of the coefficient c.

For any given earthquake record the effect of the change in period can
be beneficial or detrimental depending on the value of the initial period (on a
rigid base) and the characteristics of the seismic motion (as represented for
instance by the response spectra). For a smoothed design spectrum the effect
tends to be beneficial at least for nuclear power plants. The increase in
effective damping, if there is an increase, will always be beneficial.

5 Final Considerations

Soil structure interaction effects are often associated only with the inertial
interaction phenomena (elongation of the effective natural period and change
in the effective damping). These are indeed the only effects when considering
the dynamic response of a structure subjected to external loads applied
directly on the structure (wind loads, wave loads, or machine vibrations). For
the seismic case, however, one must also consider kinematic interaction
effects. When dealing with structures on surface foundations the effects of the
kinematic interaction tend to be small unless one has very long and rigid
foundations. Inertial interaction effects tend to be then the predominant ones.
For embedded foundations, on the other hand, kinematic interaction effects
can become important and much more so than inertial interaction.

The approximate methods discussed in this paper, in combination with
the formulas available in the literature to compute the inertial interaction
effects for an equivalent single degree of freedom system, allow to conduct
preliminary analyses and estimate the relative importance and significance of
the various effects. Because kinematic interaction will result in a seduction in
the amplitudes of the translational motion, which can be significant for deeply
embedded foundations, there has been a controversy about accepting it. Two
mistakes which have complicated further the issue are the confusion between
the transfer functions for the motions of an embedded foundation (3D
solution) and the ID solution for the motion at the foundation level in the free
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field (which has much larger oscillations), and ignoring the rotational
component of motion. It is true on the other hand that the values of the
translational and rotational components of motion are a function of the angle
of incidence of the waves but for soft soils where the effects are important the
waves in the embedment region should be traveling almost vertically.
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