¹ Seismic slip on an upper plate normal fault

2 during a large subduction megathrust rupture

3 Stephen P. Hicks* and Andreas Rietbrock

- 4 Liverpool Earth Observatory, University of Liverpool
- 5 Address: Jane Herdman Laboratories, 4 Brownlow Street, Liverpool, L69 3GP
- 6 Email: s.hicks@liverpool.ac.uk

7 Summary

Quantification of stress accumulation and release during subduction zone seismic cycles 8 9 requires an understanding of the distribution of fault slip during earthquakes. Reconstructions 10 of slip are typically constrained to a single, known fault plane. Yet, slip has been shown to 11 occur on multiple faults within the subducting plate¹ due to stress triggering², resulting in phenomena such as earthquake doublets³. However, rapid stress triggering from the plate 12 13 interface to faults in the overriding plate has not been documented. Here we analyse seismic data from the magnitude 7.1 Araucania earthquake that occurred in the Chilean subduction zone 14 15 in 2011. We find that the earthquake, which was reported as a single event in global moment tensor solutions^{4,5}, was instead composed of two ruptures on two separate faults. Within 12 16 seconds, a thrust earthquake on the plate interface triggered a second large rupture on a normal 17 fault 30 km away, in the overriding plate. This configuration of partitioned 18 19 rupture is consistent with normal-faulting mechanisms in the ensuing aftershock sequence. We conclude that plate interface rupture can trigger almost instantaneous slip in the overriding plate 20 21 of a subduction zone. This shallow upper plate rupture may be masked from teleseismic data, 22 posing a challenge for real-time tsunami warning systems.

23 Main body

A recent succession of large $(M_w > 8)$ earthquakes in circum-Pacific subduction zones has 24 25 focussed attention on the relationship between physical properties and stress distribution along 26 the megathrust plate interface. Seismic ruptures along the megathrust can be viewed as smooth and spatially varying patches of slip on a single fault; in this case, the subducting plate 27 interface⁶. The fault geometry used in early coseismic slip models is underpinned by centroid 28 29 moment tensor (CMT) solutions often reported by earthquake monitoring agencies. Although more sophisticated slip inversions use curved faults based on regional subduction geometry⁷, 30 31 slip is nearly always assigned to a single fault.

32 An alternative rupture configuration is slip occurring on separate faults due to static or dynamic triggering processes², resulting in phenomena such as doublets³. A doublet is the occurrence of 33 two nearby earthquakes with similar magnitude. The time delay between ruptures can range 34 from months³ to seconds¹. Many documented cases of subduction zone doublets involve 35 triggering between the subducting plate interface and deep-rooted faults in the downgoing 36 plate^{3,8}. Although the implications for tsunami hazard are significant, there are no reported cases 37 38 of rapid triggering from the plate interface to the upper plate, where there are complex faulting networks^{9,10}. To resolve triggered faulting in such cases, dense local seismic observations are 39 40 needed.

A region with a suitably dense network of seismometers is the central Chile subduction zone following the M_w 8.8 Maule earthquake in 2010. The ensuing aftershock sequence was captured in detail by the International Maule Aftershock Deployment¹¹. Here, we focus on the largest interplate aftershock of the Maule sequence: the M_w 7.1 Araucania earthquake that occurred on 2 January 2011 at 20:20:18 UTC. Based on CMT solutions derived from teleseismic waveforms, the Araucania earthquake appears to be a 'straightforward' plate interface thrusting 47 event^{4,5}. Its epicentre (Supplementary Note 1, Supplementary Table 1) lies in a region that acted 48 as a barrier during the 1960 M_w 9.5 Valdivia¹² and 2010 M_w 8.8. Maule^{6,11} earthquakes (Fig. 1). 49 Moreover, the upper plate in this region is heavily faulted^{6,10}. Therefore, the Araucania 50 earthquake is an ideal candidate to examine possible interactions between the plate interface 51 and upper plate faults.

We employed a multiple point-source inversion of regional seismic data^{13,14}. Compared to conventional slip inversions along pre-defined fault planes⁶ and single point-source CMT inversions⁵, we can retrieve centroid times of sub-events and permit multiple faulting styles on a grid of trial point-sources. A detailed understanding of 3-D crustal velocity structure^{15,16} ensures robust waveform inversion. Synthetic tests (Supplementary Note 2) show that we can accurately resolve a range of extended source configurations involving offshore rupture using the available station distribution.

59 Using the observed data, we first investigated whether low-frequency waveforms (0.02–0.04 Hz) in the near-field could represent the earthquake as a single point-source. The optimal 60 regional CMT solution provides a good fit to the observed waveforms at most stations 61 62 (Supplementary Figure 2). The centroid lies close to our relocated epicentre; its mechanism is 63 consistent with the teleseismic GCMT and USGS solutions (Fig. 1), indicating thrusting along 64 the plate interface. A high double-couple percentage (%DC) indicated by the global (98%) and 65 our regional solutions (85%) suggests a simple faulting mechanism. When we increase the upper frequency limit to >0.06 Hz, waveform variance reduction (VR) sharply decreases and, 66 67 at the upper limit of 0.08 Hz, we notice two clear arrivals in the observed waveforms (Fig. 1b & Supplementary Figure 3). Therefore, the next step is to consider whether a complex source 68 69 can be resolved using higher frequency waveforms and a multiple point-source 70 parameterisation.

71 A two-point-source model is a logical progression; an $M_w \sim 7$ earthquake likely comprises no more than two to three patches of slip¹⁷. Compared with that of using the first source alone (VR 72 73 = 0.57), introduction of the second source significantly increases the waveform fit (Fig. 2a) by 30% (VR = 0.73), which is statistically significant to within the 99.5% confidence interval 74 75 (Supplementary Note 3). Mechanisms at each trial point-source position are very consistent, 76 with sharp correlation maxima (Fig. 2b). Based on our results, we can confidently identify the 77 following sequence of events, which can be regarded as a closely-spaced doublet (CSD), both 78 in time and space. Following nucleation, Event I (M_w 6.8) ruptured the megathrust beneath the 79 coast. No more than twelve seconds later, Event II (M_w 6.7) ruptured to the southwest at a 80 shallower depth and with an oblique normal faulting mechanism (Fig. 2).

81 Locations and mechanisms of aftershocks (Supplementary Note 4) that followed the Araucania 82 earthquake support this CSD configuration. From our 44 relocated events, it is clear that there 83 are two distinct groups of aftershocks (Fig. 3a). One group is located in the coastal region 84 (hereafter, Group A); the other 30–40 km to the southwest (hereafter, Group B). Group B aftershocks have shallower depths, located within the marine forearc, up to 9 km above the 85 86 plate interface (Fig. 3b). We obtained 19 robust CMT solutions from this aftershock sequence (Fig. 3), all of which have depths in agreement with their hypocentral location, based on a 3-D 87 velocity model and ocean-bottom observations¹⁵. Normal faulting mechanisms dominate 88 89 aftershock Group B. Group A aftershocks comprise mixed mechanisms, but interplate thrust 90 faulting is most common.

A puzzling location discrepancy between Event II and aftershock Group B (Supplementary
Figure 4) leads us to assess location bias in the multiple point-source inversion. So far, we have
computed synthetic seismograms by calculating Green's functions in a 1-D velocity model.
However, in the shallow regions of subduction zones, there are strong lateral velocity gradients
(Figs. 3 & Supplementary Figure 5), particularly in S-wave velocity. Therefore, a more realistic

96 velocity model can improve waveform fits and make source inversions more stable. To account for lateral velocity variations, we simulated waveforms in a 3-D velocity model^{15,16} using the 97 spectral element code SPECFEM3D¹⁸. We used 3-D synthetics based on our two-point-source 98 99 solution as input to a multiple point-source inversion using 1-D Green's functions. While the 100 position of Event I remains stable, we find that the inversion shifts Event II 12 km to the south 101 (from position 16 to 15; Supplementary Figure 6). Similarly, when we simulate the waveforms 102 from Event II at the location of aftershock Group B (position 17), we find a similar southward 103 shift, as implied from the real data inversion. Therefore, it is likely that Event II occurred ~12 104 km northward with respect to the formal inversion result of Fig. 2b (Supplementary Table 5). 105 This result demonstrates the importance of 3-D structural models to obtain accurate source 106 parameters of offshore subduction earthquakes.

107 Based on our aftershock analyses and 3-D waveform simulations it is now clear that Event II 108 ruptured on a normal fault near the base of the overriding crust (Figs. 3 & 4). Group B 109 aftershocks are located close to the prominent Mocha-Villarrica fault zone (Fig. 3). This fault 110 may be related to strong velocity contrasts in the marine forearc beneath Isla Mocha, where 111 Group B aftershocks are located (Figs. 3 & 4). Crustal faulting in the region is pervasive and may extend through the entire $crust^{10,19}$; it is plausible that the geometry of fault networks 112 113 becomes more complex at the base of the forearc with possible conjugate faulting (Fig. 4). We 114 speculate that these faults are compressional during the interseismic period, but a stress inversion following the Maule earthquake²⁰ may favour post-seismic extension. Based on 115 approximate fault areas from scaling relations²¹, the two fault planes of Events I and II likely 116 117 do not intersect. There are several possible mechanisms for the triggering of a rupture by a preceding earthquake. Dynamically triggered rupture of the normal fault is likely the dominant 118 119 failure mechanism given that Event II's centroid time coincides with the passage of highamplitude S-wave arrivals from Event I (Supplementary Figure 7). However, we cannotcompletely rule out static stress transfer acting as a partial trigger.

122 To our knowledge, these results provide the first documented case of plate interface thrusting 123 instantaneously activating a large rupture in the overriding plate through dynamic triggering. 124 Past subduction zone doublets have been identified by high non-double components in their 125 CMT solutions⁸. Conversely, in the case of the Araucania earthquake, the low-frequency single 126 point-source solutions of both the global and regional CMT solutions did not yield a low %DC 127 (Fig. 1). This discrepancy is also evidenced by our synthetic tests. It is possible that the short 128 time delay and small distance between Events I and II masks rupture complexity in teleseismic 129 CMT solutions. Therefore, CSDs may be completely hidden from global networks. CSDs may, 130 however, be detected from a greater proportion of high frequency radiation in regional 131 waveforms (Supplementary Note 5, Supplementary Figure 8), although this character may 132 depend on several other source parameters, such as rupture duration. CMT solutions provided 133 by global reporting agencies are accepted by the seismological community and form the basis 134 of slip inversions and examinations of the stress field. CMTs are, therefore, a pillar of 135 earthquake science, yet our results recommend their careful use in the case of slip on multiple 136 fault planes.

137 The precedent set by this study also presents a new perspective for tsunami hazard assessment 138 in subduction zones. Reverse faults as well as normal faults could theoretically be immediately 139 triggered by megathrust slip, causing large seafloor displacement. A wide variety of upper plate 140 faults are present in many subduction zones. For example, steeply-dipping normal faults have been imaged in the upper plate along the N. Chile and S. Peru margins⁹. Furthermore, a large 141 upper-plate reverse faulting event preceded the 2014 M_w 8.2 Pisagua, N. Chile earthquake²² and 142 backthrust faults are widespread in the Sumatra subduction zone²³. An M_w 7.0 rupture in the 143 144 upper plate could result in substantial vertical seafloor displacement of 1.2 m (Supplementary

145 Note 6). If this scenario were scaled up to a larger rupture ($M_w \sim 7.5$), slip on the forearc fault 146 could cause a localised tsunami on the continental shelf, although the upper limit of rupture size 147 is controlled by the geometry and frictional properties of these faults (Fig. 3). A tsunami may be caused by static vertical displacement or through submarine landslides (Fig. 4), which have 148 occurred locally in the past²⁴. Yet without local strong-motion instruments, GPS networks, or 149 150 close inspection of regional waveforms, near-field triggered ruptures will be difficult to detect. 151 We speculate that the lack of evidence for Event II in single-source CMT solutions may result 152 in part from the short timing between the two sources. Therefore, we recommend that the 153 capability of teleseismic CMT inversions to resolve different doublet configurations is given a 154 full assessment. Furthermore, there is a need to re-evaluate CMT solutions for large earthquakes 155 using local and regional waveforms in subduction zones globally to examine whether CSDs involving the upper plate are ubiquitous. 156

158 **References**

- Lay, T., Duputel, Z., Ye, L. & Kanamori, H. The December 7, 2012 Japan Trench intraplate doublet (Mw 7.2, 7.1) and interactions between near-trench intraplate thrust and normal faulting. *Phys. Earth. Planet. Inter.* 220, 73–78 (2013).
- 162 2. Freed, A. M. Earthquake triggering by static, dynamic, and postseismic stress transfer.
 163 Annu. Rev. Earth Planet. Sci. 33, 335–367 (2004).
- Ammon, C. J., Kanamori, H. & Lay, T. A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands. *Nature* 451, 561–565 (2008).
- 4. United States Geological Survey National Earthquake Information Center. M7.2 Araucania, Chile. (2011). at
 http://earthquake.usgs.gov/earthquakes/eventpage/usp000hsfq#scientific tensor
- 169 5. Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010:
 170 Centroid-moment tensors for 13,017 earthquakes. *Phys. Earth. Planet. Inter.* 200-201, 1–9 (2012).
- Moreno, M. *et al.* Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile
 earthquake. *Earth Planet. Sci. Lett.* 321–322, 152–165 (2012).
- 174 7. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1. 0: A three- dimensional model of global
 175 subduction zone geometries. *J. Geophys. Res.* 117, B1 (2012).
- 176 8. Lay, T. *et al.* The 2009 Samoa-Tonga great earthquake triggered doublet. *Nature* 466, 964–
 177 968 (2010).
- Audin, L., Lacan, P., Tavera, H. & Bondoux, F. Upper plate deformation and seismic
 barrier in front of Nazca subduction zone: The Chololo Fault System and active tectonics
 along the Coastal Cordillera, southern Peru. *Tectonophysics* 459, 174–185 (2008).
- Melnick, D., Bookhagen, B., Strecker, M. R. & Echtler, H. P. Segmentation of megathrust
 rupture zones from fore-arc deformation patterns over hundreds to millions of years,
 Arauco peninsula, Chile. J. Geophys. Res. Solid Earth 114, B01407 (2009).
- 184 11. Rietbrock, A. *et al.* Aftershock seismicity of the 2010 Maule Mw= 8.8, Chile, earthquake:
 185 Correlation between co-seismic slip models and aftershock distribution? *Geophys. Res.* 186 Lett. 39, L08310 (2012).
- 12. Moreno, M. S., Bolte, J., Klotz, J. & Melnick, D. Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. *Geophys. Res. Lett.* 36, L16310 (2009).
- 190 13. Sokos, E. & Zahradnik, J. A Matlab GUI for use with ISOLA Fortran codes. Users' guide
 (2006).
- 14. Zahradnik, J., Serpetsidaki, A., Sokos, E. & Tselentis, G.-A. Iterative Deconvolution of Regional Waveforms and a Double-Event Interpretation of the 2003 Lefkada Earthquake, Greece. *B. Seismol. Soc. Am.* 95, 159–172 (2005).
- 15. Hicks, S. P., Rietbrock, A., Ryder, I. M. A., Lee, C.-S. & Miller, M. Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography. *Earth Planet. Sci. Lett.* 405, 142–155 (2014).
- 16. Haberland, C., Rietbrock, A., Lange, D., Bataille, K. & Dahm, T. Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake

- traveltime tomography. J. Geophys. Res. 114, B01317 (2009).
- 201 17. Zahradnik, J. & Sokos, E. The Mw 7.1 Van, Eastern Turkey, earthquake 2011: two-point
 202 source modelling by iterative deconvolution and non-negative least squares. *Geophys. J.* 203 *Int.* 196, 522–538 (2014).
- 18. Komatitsch, D., Erlebacher, G., Göddeke, D. & Michéa, D. High-order finite-element
 seismic wave propagation modeling with MPI on a large GPU cluster. *J. Comput. Phys.*206 229, 7692–7714 (2010).
- 19. Hicks, S. P., Nippress, S. E. & Rietbrock, A. Sub-slab mantle anisotropy beneath southcentral Chile. *Earth Planet. Sci. Lett.* 357, 203–213 (2012).
- 20. Hardebeck, J. L. Coseismic and postseismic stress rotations due to great subduction zone
 earthquakes. *Geophys. Res. Lett.* 39, L21313 (2012).
- 21. Blaser, L., Krüger, F., Ohrnberger, M. & Scherbaum, F. Scaling Relations of Earthquake
 Source Parameter Estimates with Special Focus on Subduction Environment. *B. Seismol.*Soc. Am. 100, 2914–2926 (2010).
- 214 22. González, G. *et al.* Upper plate reverse fault reactivation and the unclamping of the
 megathrust during the 2014 northern Chile earthquake sequence. *Geology* G36703.1
 (2015).
- 217 23. Singh, S. C. *et al.* Evidence of active backthrusting at the NE Margin of Mentawai Islands,
 218 SW Sumatra. *Geophys. J. Int.* 180, 703–714 (2010).
- 24. Geersen, J., Völker, D., Behrmann, J. H., Reichert, C. & Krastel, S. Pleistocene giant slope
 failures offshore Arauco Peninsula, Southern Chile. J. Geol. Soc. London 168, 1237–1248
 (2011).
- 222 25. Quintero, R., Zahradnik, J. & Sokos, E. Near-regional CMT and multiple-point source
 223 solution of the September 5, 2012, Nicoya, Costa Rica Mw 7.6 (GCMT) earthquake. J. S.
 224 Am. Earth Sci. 55, 155–165 (2014).
- 26. Sokos, E. & Zahradnik, J. Evaluating Centroid- Moment- Tensor Uncertainty in the New
 Version of ISOLA Software. *Seismol. Res. Lett.* 84, 656–665 (2013).
- 227 27. Casarotti, E. *et al.* in *Proceedings of the 16th International Meshing Roundtable* 579–597
 228 (Springer Berlin Heidelberg, 2008).
- 229 28. Frohlich, C. Triangle diagrams: ternary graphs to display similarity and diversity of
 230 earthquake focal mechanisms. *Phys. Earth. Planet. Inter.* **75**, 193–198 (1992).
- 231 29. Hayes, G. P. *et al.* Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule,
 232 Chile earthquake sequence. *Geophys. J. Int.* 195, 1034–1051 (2013).
- 30. Melnick, D. & Echtler, H. P. in *The Andes* 565–568 (Springer Berlin Heidelberg, 2006).
 doi:10.1007/978-3-540-48684-8_30
- 235

236 Supplementary information

237 Supplementary information is linked to the online version of the paper at238 www.nature.com/nature.

239 Acknowledgments

We are grateful to all field crews from partner organisations who participated in the deployment and servicing of seismic instruments used in this study. We thank Jiří Zahradník and Efthimios Sokos for their assistance in setting up the ISOLA code. S.P.H. is funded by a NERC studentship NE/J50015X/1.

244 Author contributions

S.P.H. carried out the single and multiple point-source inversions, as well as the moment tensor
inversion and aftershock relocations. S.P.H. wrote the manuscript, interpreted the results, and
generated all figures. A.R. carried out the 3-D full waveform simulations, wrote the manuscript,
and interpreted the results.

249 Author information

250 Reprints and permissions information is available at www.nature.com/reprints.

251 The authors declare no competing financial interests.

252 Correspondence and requests for materials should be addressed to S.P.H
253 (s.hicks@liverpool.ac.uk) or A.R. (a.rietbrock@liverpool.ac.uk).

Figure Captions

Fig. 1: Location and single source solution. a) Location map. Stations used for CMT inversion are labelled with station codes. Other stations are for hypocentre relocation only (Supplementary Note 1). Shading indicates rupture areas of great earthquakes in 1960¹² and 2010⁶. Inset: Regional tectonic setting. b) Double-couple percentage (%DC) and variance reduction (VR) of the single point-source versus frequency. A transition occurs at 0.057 Hz, where VR suddenly decreases because the waveforms cannot be explained by a single source alone. This change is illustrated by representative waveforms at low and high frequencies (see Supplementary Figure 2 & Supplementary Figure 3 for details).

256

Fig. 2: Two-point-source solution. a) Observed (black) and synthetic (red) waveforms for the optimum highfrequency (0.02–0.08 Hz) solution. Station names are labelled. Numbers alongside each waveform component denote VR. Blue and green shading denotes the contribution from each event. b) Waveform correlation for each event as a function of trial point-source position (numbered). The optimum time shift of Event I and II is shown. Black beach balls are solutions that lie within 90% of the optimum solution's (red beach ball) VR. The red star denotes the earthquake's epicentre. c) Resulting moment-rate function obtained using the NNLS method.

Fig. 3: Aftershock analysis. (a) Map and (b) cross-section showing locations and focal mechanisms of aftershocks (Groups A and B) and mainshock events (labelled EV-I and EV-II). Faulting style is classified on principal stress orientations²⁸ and minimum rotation angle with respect to plate interface thrust faulting²⁹, accounting for plate interface geometry (black line)^{15,16}. We plot the revised location of Event II, based on 3-D waveform modelling. Mapped faults are shown^{10,30}; MVFZ = Mocha-Villarrica fault zone. The cross-section background is from P-wave velocity tomography models^{15,16}. The star denotes the hypocentre of the Araucania earthquake; the triangle shows the coastline.

Fig. 4: Schematic interpretation of the Araucania earthquake rupture. Plate interface thrusting (Event I) triggered a rupture along an extensional fault in the overriding plate (Event II). It is likely that two great earthquakes in 1960 and 2010 brought both faults closer to failure. As shown by ancient submarine landslide deposits in the area, a larger-scale rupture in the overriding plate has the potential to act as a tsunamigenic earthquake. Beach balls represent the focal mechanisms of both events from Fig. 3. The inset shows the interpreted structure of conjugate normal faulting with the background colour representing v_p/v_s ratio¹⁵.

261 Methods

262 Data selection and processing

263 For the waveform inversion of the Araucania earthquake, we used broadband and strong-motion 264 stations that were located onshore within an epicentral distance of 200 km from the Araucania 265 earthquake. We only used waveforms from stations that have a high signal-to-noise ratio (> 10) 266 in the frequency range 0.01–0.10 Hz (Supplementary Figure 9). Due to the close proximity of 267 some stations to the earthquake, we excluded waveform records that were either clipped, had 268 long period disturbances, or instrument tilt effects. These quality-control checks resulted in a 269 set of seven stations (including two strong-motion stations) located north and east of the 270 Araucania earthquake (Fig. 1a).

271 Source inversion algorithm

Iterative deconvolution (ID)¹⁴ is used for the multiple point-source inversion of deviatoric 272 273 moment tensors. ID works by inverting for the optimum focal mechanism and timing of sources 274 for a prescribed set of points to minimise the L2 misfit between observed and synthetic 275 waveforms. A grid search is then performed to select the source position that produces the 276 highest correlation between observed and synthetic waveforms. The first inversion explains the 277 full waveforms using a single source, the synthetics of which are then subtracted from the 278 observed waveforms. The remaining waveforms are then used to invert for subsequent subevents¹⁴. After the retrieval of each sub-event, VR is calculated and manually assessed to ensure 279 280 that additional sub-events are required by the data and the waveforms are not just fitting correlated noise. For moment tensor inversion, we use the software package, ISOLA¹³, which 281 282 can be accessed athttp://seismo.geology.upatras.gr/isola/. In the inversion, the moment-rate of 283 the source is prescribed; it is found by manually searching for the source length that produces 284 the maximum VR. If the moment-rate of the source is shorter than the minimum inverted period,

285 then the source can be represented by a delta function. To negate artifacts produced by the ID 286 method, we also test the stability of our multiple point-source solution using a non-negative least squares (hereafter, NNLS) inversion method¹⁷. In the NNLS approach, the double-couple 287 focal mechanism at each source is prescribed. At each trial point-source position, the moment 288 289 rate is represented by a set of shifted triangles. The weight of each triangle is then inverted for 290 using NNLS. In this paper, we use one-second triangle shifts. The moment of each source can be constrained, which stabilises the inversion, although the exact value of total moment does 291 292 not dramatically influence source timings or positions²⁵.

293 The inversion is performed on bandpass-filtered displacement waveforms. The effect of different 1-D velocity models was tested; the final solutions were calculated using a velocity 294 295 model appropriate for the coastline of south-central Chile (Supplementary Figure 10). We 296 analysed the effect of data errors and imperfect Green's functions by systematically removing 297 pieces of data from the inversion (jackknifing). Where subsurface structure is complex, removal 298 of certain stations may have a large effect on the final solution²⁶. Based on the analysis of signal 299 to noise ratio (Supplementary Figure 9), we used a lowermost frequency limit of 0.02 Hz 300 throughout this paper. The upper frequency limit was dependent on the source parameterisation 301 used (single or multiple source).

302 Single point-source inversion strategy

Guided by preliminary inversions and the anticipated fault size²¹, we used a trial point-source grid with a spacing of 12 km in the down-dip and along-strike directions (Fig. 2b). At this stage, we wanted to resolve the simplest possible source, so the maximum frequency was kept well below the corner frequency (approximately 0.1 Hz for an $M_w \sim 7$ earthquake). Therefore, we chose an upper frequency limit of 0.04 Hz and assumed a delta moment-rate function. We tested the robustness of the solution by jackknifing stations and their individual components. The 309 source position changes slightly when varying the dataset, but by no more than 17 km 310 (Supplementary Figure 2); the largest shifts occur if the closest stations are removed from the 311 inversion. The zone of maximum correlation is not particularly sharp, corresponding to the 312 possible source locations from the jackknifing analysis (Supplementary Figure 2). These tests 313 show that the source location is reasonably stable and its mechanism is consistent throughout.

We also find that as the upper frequency bandpass cut-off increases, %DC gradually decreases. This trend continues until around 0.057 Hz, above which, the full waveforms can only be explained using Events I and II, and %DC becomes very high (Fig. 1b).

317 Multiple point-source inversion strategy

318 We first carried out a multiple point-source inversion using ID, in which the deviatoric moment 319 tensor mechanisms of both sources were allowed to vary. The grid of point-sources was kept 320 the same as for the single point-source inversion. For the source-time function, we found that 321 with increasing length of the triangle, the total moment gradually increases, while VR and %DC 322 of each source reaches a maximum at 18 s (Supplementary Figure 11). We therefore fixed the 323 triangle length of each source to 18 s for the ID multiple point-source inversion, although the 324 point-source mechanisms remain consistent for different triangle lengths, suggesting a stable 325 solution.

We used the NNLS method to test the robustness of the solution obtained by ID. To search for the best-fitting source configurations, we performed two inversions: one in which total moment was constrained by the ID solution; the other in which moment was allowed to vary. We tested a number of source positions and faulting styles for Events I and II using the NNLS method, but we found that the highest VR came from the two-point-source configuration found using the ID method. Using the mechanisms given by the ID solution, we then performed a gridsearch over all possible combinations of the two-point-source locations using the NNLS method. As expected, the moment-constrained inversion is most similar to the ID solution
(Supplementary Figure 12). Nevertheless, both inversions produce results consistent with the
ID solution. Importantly, the resulting source-time function obtained by NNLS shows that both
events have a similar time function to the 18 s triangle source used in ID (Fig. 2c). In summary,
we find no bias in the results caused by the inversion method.

As a further test of solution stability, we perform jackknifing tests by removing one station at a time from the inversion. The results of these tests are shown in Supplementary Table 6 and demonstrate remarkably consistent centroid positions and focal mechanisms for Events I and II. The jackknifing test therefore indicates that the optimum multiple point-source solution is not dependent on one single waveform. Furthermore, a three-point-source approximation did not meaningfully improve the waveform fit (VR = 0.76; 3% increase in VR compared with two-point-sources).

Since the ID method inverts for the first point-source before subsequently calculating the 345 346 second source, we carried out a test to determine whether Event II is dependent on the chosen 347 location and mechanism of Event I. Normally, we accept the source position that produces the 348 highest waveform correlation. However, for this test, we fixed the position of Event I and chose 349 the corresponding best-fitting mechanism. We carried out this test at all trial point-sources 350 adjacent to Position 33 (the optimum position of Event I). The results of this test are shown in 351 Supplementary Table 7. For all but one position of Event I, the position, timing, and mechanism 352 of Event II remain consistent with the optimum solution. When Event I is fixed to Position 25, 353 the MT solution of Event II appears less stable. However, Position 25 is directly adjacent to 354 Position 16 (the optimum location of Event II from ID; Fig. 2b), so this discrepancy is expected 355 because the inversion tries to explain both events at this position with a single source. In 356 summary, we find that the Event II solution is stable with respect to the exact position and mechanism of Event I. 357

358 Mesh design for the 3-D waveform simulation

For the wave propagation simulations, we constructed a hexahedral unstructured mesh using 359 the GEOCUBIT software package²⁷. The lateral resolution at the surface is 5 km, coarsening at 360 a refinement layer (45 km depth, which is an average Moho depth for the region 15,16). The mesh 361 362 honours surface relief and bathymetry to ensure that topographic effects on waveform propagation are accurately simulated. Our mesh does not contain dipping geological 363 364 discontinuities in the subsurface, such as the oceanic Moho, due to the lack of constraints on its geometry. This mesh has been designed for simulations that are accurate up to ~ 0.3 Hz, well 365 366 above the maximum frequency of our waveform inversions, ensuring numerically stable simulations. The Mesh used is shown in Supplementary Figure 13. 367