
Seismic time-frequency spectral decomposition by matching pursuit

Yanghua Wang1

ABSTRACT

A seismic trace may be decomposed into a series of wave-

lets that match their time-frequency signature by using a

matching pursuit algorithm, an iterative procedure of wavelet

selection among a large and redundant dictionary. For reflec-

tion seismic signals, the Morlet wavelet may be employed,

because it can represent quantitatively the energy attenuation

and velocity dispersion of acoustic waves propagating

through porous media. The efficiency of an adaptive wavelet

selection is improved by making first a preliminary estimate

and then a localized refining search, whereas complex-trace

attributes and derived analytical expressions are also used in

various stages. For a constituent wavelet, the scale is an im-

portant adaptive parameter that controls the width of wavelet

in time and the bandwidth of the frequency spectrum. After

matching pursuit decomposition, deleting wavelets with ei-

ther very small or very large scale values can suppress spikes

and sinusoid functions effectively from the time-frequency

spectrum. This time-frequency spectrum may be used in turn

for lithological analysis—for instance, detection of a gas res-

ervoir. Investigation shows that the low-frequency shadow

associated with a carbonate gas reservoir still exists, even

high-frequency amplitudes are compensated by inverse-Q

filtering.

INTRODUCTION

Matching pursuit has been used recently in seismic signal analysis

�Wang and Pann, 1996; Castagna et al., 2003; Liu et al., 2004; Liu

and Marfurt, 2005�. It decomposes a seismic trace into a series of

wavelets that belong to a comprehensive dictionary of functions, in-

cluding Gabor functions. Such wavelets are called time-frequency

atoms in the wavelet transform. In this paper, we employ Morlet

wavelets as atoms in the matching pursuit decomposition because it

is appropriate for seismic waves with energy attenuation and veloci-

ty dispersion �Morlet et al., 1982a, b�.

The development of matching pursuit aims to overcome the short-

coming of both the window Fourier transform and the wavelet trans-

form �Mallat and Zhang, 1993; Qian and Chen, 1994�. A window

Fourier transform is not able to describe signal structures with vary-

ing size, because all wavelets have a constant scale ��� that is pro-

portional to the window size. On the contrary, a wavelet transform

decomposes a signal over time-frequency atoms of varying scales.

However, because a wavelet family is built by restricting its frequen-

cy parameter to be inversely proportional to the scale �, the expan-

sion coefficients in a wavelet frame do not provide precise estimates

of the frequency content of waveforms whose Fourier transform is

well localized, especially at high frequencies. In matching pursuit,

signal structures are represented by wavelets that match their time-

frequency signature. This flexible representation is therefore well

adapted to signal analysis �Rebollo-Neira and Lowe, 2002; Capobi-

anco, 2003; Andrle et al., 2004; Andrle and Rebollo-Neira, 2006�.

In the matching pursuit procedure, in order to properly represent a

constituent wavelet, we need to use the following five parameters:

the amplitude �a�, the time delay �u�, the scale ���, the mean fre-

quency ��m�, and the phase ���.Aconventional matching pursuit al-

gorithm is an expensive iteration procedure, selecting these parame-

ters appropriately among a large and redundant dictionary �Mallat

and Zhang, 1993�. Using complex-trace attributes and derived ana-

lytical expressions in various stages improves efficiency. The proce-

dure may be divided into three stages. In stage 1, first exploit the at-

tributes from complex-trace analysis to obtain three parameters

�u,�m,�� out of five �Barnes, 1993; Liu and Marfurt, 2005�, and then

search for the fourth parameter ���. Once we obtain preliminary es-

timates of these four parameters, we refine them in stage 2 by a local

optimization within a certain range �Gribonval, 2001�. In stage 3, es-

timate the amplitude of the wavelet �a�. Moreover, we derive some

analytical expressions that are employed in stage 1 to efficiently

search for the fourth parameter, in stage 2 to refine processing and in

stage 3 for amplitude estimation.

The scale parameter � is one of the important parameters for con-

stituent wavelets, as it controls frequency bandwidth and also the

width of a wavelet in time. However, this free parameter was not

considered by spectral decomposition methods based on the win-
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dowed Fourier transform or the Gabor transform. It was not consid-

ered even by some of the matching pursuit implementations—for

example, Liu and Marfurt �2005�, in which the width of a wavelet

was a function of the central frequency, as is the case in a conven-

tional wavelet transform. Taking � as a free parameter not only

means a reduced residual �because an additional degree of freedom

will reduce the residual�, it also means that many more wavelets in

the dictionary are considered by matching pursuit. After matching

pursuit, by removing wavelets with either very small or very large �

values, we can suppress spikes or sinusoid functions effectively

from the time-frequency spectrum. Therefore, we refer to it as a �

filter, or sigma filter.

The time-frequency spectrum of a seismic trace is a useful at-

tribute in geophysical analysis and lends itself to gas reservoir detec-

tion. Castagna et al. �2003� showed compelling examples that gas

reservoirs could be identified by low-frequency shadows in a time-

frequency spectrum. We conduct an investigation that reveals the ex-

istence of the low-frequency shadow associated with a carbonate gas

reservoir, even after we have applied an inverse-Q filter to the seis-

mic data to compensate for the high-frequency amplitudes.

MATCHING PURSUIT WITH MORLET WAVELETS

Three-stage matching pursuit

Matching pursuit expands a signal over a series of wavelets or at-

oms, selected from a dictionary composed of Gabor wavelets, sup-

plemented with a canonical basis of discrete Dirac functions and the

discrete Fourier basis of complex exponentials �Mallat and Zhang,

1993�. A Gabor wavelet is a complex function in the time domain,

represented as a product of a complex sinusoid function by a Gauss-

ian envelope �Gabor, 1946�. To efficiently evaluate the phase shift �,

we also include it in the following complex-valued Gabor wavelet as

g��t� = w� t − u

�
�exp�i���t − u� + ��� , �1�

where w�t� is a Gaussian window, u is the time delay �translation�, �

is the spread in the time axis �scale�, � is the center �angular� fre-

quency �modulation�, and � is the phase shift. Thus, we characterize

a Gabor wavelet by a set of four parameters, � = �u,�,�,��.
Matching pursuit is implemented iteratively, and each iteration

adaptively extracts an optimal form of wavelet g�
n
, where n is the it-

eration number. After N iterations, a seismic trace f�t� is expanded

into the following form:

f�t� = 	
n = 0

N−1

ang�n
�t� + R�N�f , �2�

where an is the amplitude of the nth wavelet g�
n
, R�N�f is the residual,

with R�0�f = f . In the nth iteration of the decomposition, we adopt

our three-stage procedure. In stage 1, we estimate the four parame-

ters �n = �un,�n,�n,�n� efficiently, but approximately. In stage 2, we

update these four parameters for an optimal wavelet g�
n
. Finally, in

stage 3, we estimate the amplitude an. This three-stage procedure is

repeated through all iterations.

In stage 1, estimate three parameters �un,�n,�n� by exploiting

complex-trace analysis. For a real seismic trace, perform the Hilbert

transform to compose a complex trace, and then derive complex-

trace attributes �Taner et al., 1979�. Inspired by Liu and Marfurt

�2005�, we set the time of the maximum envelope of the complex

trace to be the time delay un, the instantaneous frequency to be the

center frequency �n, and the instantaneous phase to be the phase �n.

Then, we search for the fourth parameter �n, the spread in the time

axis, using the following equation:

g�n
�t� = arg max

g�n
�D


�R�n�f ,g�n
�


g�n


, �3�

where D = �g��t����� is a comprehensive dictionary of the constitu-

ent wavelets, � f ,h� denotes inner product of functions f and h, and

g�
n
 = ��g�

n
,g�

n
� normalizes wavelet g�

n
. We use equation 3 to

search for the optimal parameter �n over a group of preselected, uni-

formly distributed � values with fixed un, �n and �n values.

Note that in stage 1 above, we estimate the complex-trace at-

tributes at discrete sampling time and � with discrete value as well.

In stage 2, we optimize these four parameters by searching within a

subdictionary using equation 3. The searching range around a pa-

rameter � is �� − ��,� + ���, where �u is the time-sampling inter-

val, �� is the sampling interval used for �, �� is the frequency-sam-

pling interval, and �� is 5 degrees. This stage of processing is com-

putation-intensive.

Finally, in stage 3, we estimate the amplitude of the optimal wave-

let g�
n
by

an =

�R�n�f ,g�n

�


g�n
2

. �4�

For the current iteration of decomposition, R�n�f = ang�
n

+ R�n+1�f ,

where g�
n

is orthogonal to R�n+1�f , we have R�n�f2 = 
�R�n�f ,g�
n
�
2/

g�
n
2 + R�n+1�f2. For the orthogonal projection �equation 3�, we

choose g�
n
with a maximum 
�R�n�f ,g�

n
�
/g�

n
 such that the residual

R�n+1�f2 is minimized. Therefore, equation 4 satisfies the minimum

residual condition

�an,�n� = arg min
an,�n��

R�n+1�f�t�2. �5�

The final minimum residual R�N�f�t�, after N iterations, is regarded as

the data noise.

Matching pursuit with Morlet wavelets

For seismic reflection signal analysis, Morlet et al. �1982a, b� used

the complex Gabor wavelet �1� as a basic signal model, involving

possible time delay because of velocity dispersion and high-fre-

quency attenuation based on a frequency independent-Q model.

This Morlet wavelet is suitable for energy and frequency quantifica-

tion of seismic data and, particularly, is appropriate for attenuation

and resolution studies of acoustic waves propagating through porous

media.

AMorlet wavelet m�t� centered at the abscissa u can be defined as

�Morlet et al., 1982b�

m�t� = exp�− � ln 2

�2 ��m
2 �t − u�2

�2 �exp�i��m�t − u� + ��� ,

�6�

where �m is the mean angular frequency, and � is a constant value,

which controls the wavelet width. The Morlet wavelet has a constant

shape ratio, �diameter/mean period = constant�, where the diameter

or duration is measured at half of the maximum amplitude of the

wavelet envelope, or −6 dB in logarithmic scale.
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The Fourier transform of m�t� is given as follows:

M��� =
1

2�
�

−	

+	

exp�−
ln 2

�2

�m
2

�2
�t − u�2

− i�� − �m��t − u� − i��u − ���dt . �7�

Using the following definite integral

�
−	

+	

exp�− a
 2 − b
 − c�d
 = ��

a
exp� b2

4a
− c� , �8�

we may obtain the frequency spectrum as

M��� =
1

2
� �

ln 2

�

�m

exp�− � �2

4 ln 2
��2�� − �m�2

�m
2 �

�exp�− i��u − ��� , �9�

where �m �0 is assumed. Note that the Morlet wavelet also has a

constant shape ratio �bandwidth/mean frequency = constant� in the

frequency domain as well.

From expressions 6 and 9 above, we can estimate the time and fre-

quency extents of a wavelet with mean angular frequency �m and

width �. Half of the time window length and half of the frequency

window length are estimated as

�t = 1.28�


�

�m

, and �� = 0.18�


�m

�
, �10�

where  is the minimum amplitude in dB, which in the following ex-

amples is set as  = −120 dB. We can see from these expressions

that the width in time and in frequency are inversely proportional to

each other, and that the widths depend on �. The latter property will

be utilized in the next section to design a filter.

The time-frequency spectrum

After decomposing a signal f�t� into a series of wavelets g�
n
�t�, for

n = 0,1,2, . . . ,N − 1, we can have a clear picture of the energy dis-

tribution in the time-frequency plane. The energy density of signal

f�t� in the time-frequency plane is calculated by

Ef�t,�� = 	
n = 0

N−1
an

2

g�n
2

Wg�n
�t,�� , �11�

where Wg�
n
�t,�� is the Wigner distribution of a selected wavelet

g�
n
�t,��. Similarly, we define here the amplitude spectrum in the

time-frequency space as

Af�t,�� = 	
n = 0

N−1
an

g�n

�Wg�n

�t,�� . �12�

For the Morlet wavelet m�t� given in equation 6, the Wigner distri-

bution in the time-frequency domain is defined by

Wg��t,�� =
1

2�
�

−	

+	

m�t +



2
�m̄�t −




2
�exp�− i�
 �d
 ,

�13�

where m̄�t� is the complex conjugate of m�t�. Using the definite inte-

gral 8 again, we obtain

Wg��t,�� = � �

2 ln 2

�

�m

exp�− � �2

2 ln 2
��2�� − �m�2

�m
2 �

� exp�− �2 ln 2

�2 ��m
2 �t − u�2

�2 � . �14�

We then have an analytic expression for the time-frequency ampli-

tude spectrum as

Af�t,�� = 	
n = 0

N−1
an

g�n

�� �

2 ln 2

�n

�n

�1/2

�exp�− � �2

4 ln 2
�� n

2�� − �n�2

�n
2 �

�exp�− � ln 2

�2 ��n
2�t − un�2

� n
2 � , �15�

where �n ��m,n is the mean frequency of the nth wavelet, and g�
n
 is

a normalization factor derived in the following subsection.

An efficient implementation

To speed up the computation, we derive an analytic expression for

the module g�
n
2.

For the decomposition of a real seismic trace, we use a real-valued

wavelet in matching pursuit:

g��t� = w� t − u

�
�cos���t − u� + �� . �16�

For such a real wavelet, we formulate the module g�
n
2 in terms of

the following two integrations,

D0 = �
−	

	 �w� t − u

�
��2

dt , �17�

D1��� = �
−	

	 �w� t − u

�
��2

exp�i2���t − u� + ���dt , �18�

where equation 18 is a discrete Fourier transform plus phase shift,

and we calculate it by

g�n
2 =

1

2
�D0 + Re�D1����� . �19�

Considering a real-valued Morlet wavelet in the form of

m�t� = exp�− � ln 2

�2 ��m
2 �t − u�2

�2 �cos��m�t − u� + �� ,

�20�

we may now derive an analytical expression for the module g�
n
2.

Starting from the two integrations 17 and 18,

D0 =
��

�n

� �

2 ln 2
, �21�

D1��n� =
��

�n

� �

2 ln 2
exp�−

�2�2

2 ln 2
+ i2�� , �22�

we obtain the following analytical expression,
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g�n
2 =

�

2
� �

2 ln 2

�

�n

�1 + exp�−
�2�2

2 ln 2
�cos �� . �23�

This expression may be calculated efficiently and quickly for equa-

tions 3 and 4, and for analytical expression 15 as well.

SCALE SIGMA AND SIGMA FILTERING

Matching pursuits provide extremely flexible signal representa-

tions, with the properties given explicitly by the amplitude, time,

scale, frequency, and phase values of the selected wavelets. From a

synthetic example shown in Figure 1, we can see that a wave pack-

age at about 300 ms in the synthetic trace in fact is composed of three

wavelets with mean frequencies around 40, 45, and 50 Hz, respec-

tively.Awave package centered at about 900 ms also is composed of

a number of wavelets with different mean frequencies, but the one

centered at 1600 ms is indeed a single isolated wavelet.

For a comparison, Figure 2 displays the time-frequency spectra

generated by a windowed Fourier transform or Gabor transform pre-

sented in Wang �2006�, in which a Gaussian win-

dow w�t� is defined by

w�t − u� =
2

T��
exp�− 4� t − u

T
�2� , �24�

where T is the �half� window length. The input is

the same synthetic trace of Figure 1. But we can

see from Figure 2 that the Gabor-transform spec-

tra strongly depend on the window size given for

the transform. In Figure 2, the window size used

in each panel from left to right is �2T = � 100,

200, and 400 ms, respectively. In addition, the

resolution is lower than the one in Figure 1, gen-

erated from matching pursuit. For example, the

same wave package centered at 1600 ms appears

to be different in the time-frequency spectra with

different window size. Between 400 and 600 ms,

a wavelet at 500 ms and a 15-Hz sinusoid cannot

be separated properly by the Gabor transform us-

ing either short or long window size.

In our matching pursuit scheme, the scale pa-

rameter � that controls the width of a wavelet

�and the frequency band� is selected adaptively.

Therefore, it can even extract spikes and sinuso-

ids. For example, in Figure 1, the time-frequency

spectrum displays a sinusoid of 15 Hz within the

100–1500 ms time window. The time-frequency

spectrum can separate neighboring wavelets that

are impossible to distinguish from the signal

trace. The three wavelets around 300 ms can be

clearly identified from the spectrum. One is an el-

lipse and two are band-limited spikes.

The amplitude distribution of wavelets is visi-

ble as vertical lines for cosine functions, horizon-

tal lines for spike �Dirac ��, or ellipses with axes

proportional to time and frequency spread for Ga-

bor functions. Therefore, based on the time-fre-

quency spectrum, we may design a filter to reject

certain wavelets, such as the cosine functions,

and spikes. We propose to filter decomposed

wavelets or the time-frequency spectrum based

on the � value, the so-called sigma filter.

Figure 3 displays a real seismic trace that might

be a good representative for land seismic data, de-

composed wavelets, and the time-frequency do-

main amplitude spectrum, in which we see spikes

and sinusoid functions. In the central panel

above, the frequency value on the top axis is the

central frequency of a frequency range. For ex-

ample, the 50-Hz trace consists of wavelets with

mean frequencies between 47.5 and 52.5 Hz.
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Figure 1. A synthetic seismic trace, decomposed wavelets, and associated amplitude
spectrum in the time-frequency domain. In the spectrum, the three wavelets around
300 ms can be clearly separated in time. Note also a group of wavelets centered at 900 ms
with different mean frequencies. The spectrum suggests at least four wavelets next to
each other, which are impossible to distinguish from the seismic trace. However, the
spectrum of the wave package centered at 1600 ms clearly indicates that it is indeed a sin-
gle wavelet isolated from others.
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Figure 2. Gabor-transform spectra with different Gaussian window size. The input is the
same synthetic trace shown in Figure 1, but the time-frequency spectrum generated by a
Gabor transform strongly depends on the given window size. From left to right, the win-
dow size used is 100, 200, and 400 ms, respectively. In addition, the resolution in general
is lower than the one generated from matching pursuit �shown in Figure 1�.

V16 Wang

Downloaded 21 Jan 2010 to 155.198.96.201. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



The two expressions in equation 10 suggest

that for a small � value, the wavelet represents a

spike that has a broad frequency band and short

duration in time; and for a large � value, it repre-

sents a sinusoid function that has a narrow fre-

quency band and long duration in time. There-

fore, in this example, we reject wavelets with �

�0.4 and wavelets ��10 and produce the result

shown in Figure 4: the time-frequency amplitude

spectrum, corresponding wavelets with different

mean frequencies, and reconstructed seismic

trace after sigma filtering. Using sigma filtering,

we may clean up the time-frequency spectrum for

the geophysical analysis, such as gas reservoir

detection.

APPLICATION TO

A GAS RESERVOIR

Now we apply the adaptive time-frequency de-

composition method to a real seismic data exam-

ple with a target carbonate gas reservoir. Figure 5

shows a velocity inversion profile of the target

reservoir between 2.55 and 2.90 s in time. It has a

strong heterogeneity with a spatial coverage be-

tween 6.5 and 9.5 km. Because we know where

the gas reservoir is, we do expect to see a so-

called low-frequency shadow underneath the res-

ervoir. What we try to investigate here is whether

the low-frequency shadow would still exist if we

apply an inverse-Q filter to the seismic data be-

fore performing time-frequency spectral analy-

sis.

Figure 6a displays the seismic section without

inverse-Q filtering. We can see that reflection

wavelets are lengthened gradually along with in-

creased traveltime or depth in this original seis-

mic section because of the attenuation of high-

frequency plane waves. Inverse-Q filtering tech-

niques may compensate for the amplitude dissi-

pation of high-frequency plane waves and correct

the phase distortion resulting from frequency dis-

persion, by which high-frequency plane waves

travel faster than low-frequency waves �Wang,

2002, 2006�. In Figure 6b, the seismic section af-

ter inverse-Q filtering, we do see an improvement

on the seismic resolution. After inverse-Q filter-

ing, the width of reflected wavelets becomes con-

sistent from shallow to deep. The resolution im-

provement also leads to the clear appearance of

many subtle faults in the profile. The subtle faults

appear above and beneath the target reflection,

but the latter is clearly a continuous reflection,

and a perfect seal for a gas reservoir. The velocity

inversion profile shown in Figure 5 was inverted

from the inverse-Q filtered seismic section.

The Morlet wavelet properly represents the en-

ergy absorption and phase distortion of wave

propagation in porous media �Morlet et al.,

1982a, b� and thus is appropriate for acoustic

property analysis of gas reservoirs. In Figure 7,
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Figure 3. A real seismic trace, decomposed wavelets with mean frequency at different
ranges, and the corresponding amplitude spectrum in the time-frequency space. The fre-
quency value on the top axis is the center of a mean-frequency range. For example, the
50-Hz trace consists of wavelets with mean frequencies between 47.5 and 52.5 Hz.
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Figure 4. The result of sigma filtering. The time-frequency amplitude spectrum, corre-
sponding wavelets with mean frequency at different ranges, and reconstructed seismic
trace after the so-called sigma filter. In this example, the low cutoff is � = 0.4, and the
high cutoff is � = 10.
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Figure 5. Avelocity inversion profile shows the target carbonate gas reservoir with strong
heterogeneity at 2.55–2.90 s with a spatial coverage between 6.5 and 9.5 km.
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Figure 6. �a� The example seismic profile without inverse-Q filtering, and �b� the section after inverse-Q filtering. After inverse-Q filtering, the
width of reflected wavelets becomes consistently narrow from shallow to deep. Many subtle faults appear above and beneath the target reflec-
tion. But the latter clearly is a continuous reflection, a perfect seal for a gas reservoir.
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Figure 7. Constant-frequency profiles without inverse-Q filtering. The low-frequency shadow �at 3.0–3.4 s� underneath the carbonate gas reser-
voir appears in low frequency profiles �20 and 30 Hz� but gradually disappears from the high frequency profiles �40 and 50 Hz�.
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we display a group of constant-frequency sections for different fre-

quencies, obtained from the seismic data without inverse-Q filtering

�Figure 6a�. The gas shadow between 3.0 and 3.4 s, underneath the

carbonate gas reservoir, does appear in low-frequency profiles �20

and 30 Hz�, but gradually disappears in high-frequency profiles �40

and 50 Hz�. At 20 Hz, the amplitudes in the shadow are even stron-

ger than the amplitudes of the reservoir reflections on the top. As

pointed out by Castagna et al. �2003�, the shadow is not necessarily a

simple attenuation phenomenon because low-frequency energy

must have been added or amplified by some physical or numerical

process. Attenuation alone should simply decrease higher frequen-

cies, not boost lower frequencies. More examples for time-frequen-

cy decomposition can be found in Chakraborty and Okaya �1995�,

Castagna et al. �2003�, and Sinha et al. �2005�.

Figure 8 displays the constant-frequency profiles obtained from

the inverse-Q filtered seismic section �Figure 6b�. Inverse-Q filter-

ing will, in general, boost the amplitudes of high frequencies �Wang,

2002, 2006�. But even so, the so-called low-frequency shadow zone

still appears in the time-frequency spectrum. It suggests that the dis-

appearance of high frequencies around the shadow zone is not

caused by earth attenuation, whereas the strong low-frequency am-

plitudes could be caused by wave interference in a reservoir. Physi-

cal explanation of such a shadow zone is an unsolved research topic.

Recently, Korneev et al. �2004� tried to explain this low-frequency

shadow phenomena using a “frictional-viscous” model �Goloshubin

and Bakulin, 1998; Goloshubin and Korneev, 2000; Goloshubin et

al., 2001, Goloshubin et al., 2002�.

Note that it is possible that the disappearance of higher frequency

components for the event below the carbonate reservoir is not a

shadow effect, but simply results from different lithologies above

and below the reservoir. In the example shown here, we know of the

existence of a carbonate gas reservoir and then see the “shadow

zone” in the spectrum, but the investigation is not conclusive.

CONCLUSIONS

Matching pursuit for time-frequency decomposition is an adap-

tive but expensive iterative approach. We have improved its efficien-
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Figure 8. The constant frequency profiles of the inverse-Q filtered seismic section. The low-frequency shadow zone still exists, and the high-fre-
quency components within that zone were not boosted by amplitude compensation.

Seismic time-frequency spectral decomposition V19

Downloaded 21 Jan 2010 to 155.198.96.201. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



cy by using �1� complex-trace attributes for a preliminary estimation

of parameters for constituent wavelets and �2� derived analytical ex-

pressions for efficient computations on the fly. The scale � of a

wavelet is an important parameter that controls the width of a wave-

let and its frequency bandwidth. By selecting wavelets with different

� values, we can effectively filter out the unwanted spikes and sinu-

soid functions from the time-frequency spectrum.After the so-called

sigma filtering, the spectrum can be used in signal analysis.As an ex-

ample, we have applied it to a real seismic profile that shows the ex-

istence of a low-frequency shadow related to a carbonate gas reser-

voir, even after high-frequency amplitude compensation with in-

verse-Q filtering.
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