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Seismic Tomography Using Variational Inference
Methods

Xin Zhang1 and Andrew Curtis1,2

1School of Geosciences, University of Edinburgh, Edinburgh, UK, 2Department of Earth Sciences, ETH Zürich,

Zürich, Switzerland

Abstract Seismic tomography is a methodology to image the interior of solid or fluid media and is
often used to map properties in the subsurface of the Earth. In order to better interpret the resulting
images, it is important to assess imaging uncertainties. Since tomography is significantly nonlinear, Monte
Carlo sampling methods are often used for this purpose, but they are generally computationally intractable
for large data sets and high-dimensional parameter spaces. To extend uncertainty analysis to larger
systems, we use variational inference methods to conduct seismic tomography. In contrast to Monte Carlo
sampling, variational methods solve the Bayesian inference problem as an optimization problem yet still

provide fully nonlinear, probabilistic results. In this study, we applied two variational methods, automatic
differential variational inference and Stein variational gradient descent, to 2-D seismic tomography
problems using both synthetic and real data, and we compare the results to those from two different Monte
Carlo sampling methods. The results show that automatic differential variational inference provides a
biased approximation because of its implicit transformed-Gaussian approximation, and it cannot be used
to find generally multimodal posteriors; Stein variational gradient descent produces more accurate
approximations to the results of Monte Carlo sampling methods. Both methods estimate the posterior
distribution at significantly lower computational cost, provided that gradients of parameters with respect
to data can be calculated efficiently. We expect that the methods can be applied fruitfully to many other
types of geophysical inverse problems.

1. Introduction

In a variety of geoscientific applications, scientists need to create maps of subsurface properties in order to
understand both the heterogeneity and the processes taking place within the Earth. Seismic tomography
is a method that is widely used to generate those maps. The maps of interest are usually parameterized in
some way, and data are recorded that can be used to constrain the parameters. Tomography is therefore a
parameter estimation problem, given the data and a physical relationship between data and parameters;
since the physical relationships usually predict data given parameter values but not the reverse, seismic
tomography involves solving an inverse problem (Curtis & Snieder, 2002).

Tomographic problems can be solved either using the full, known physical relationships or through a lin-
earized procedure which involves creating approximate, linearized physics that is assumed to be accurate
close to a particular chosen reference model. In the linearized procedure one seeks an optimal solution by
perturbing the model so as to minimize the misfit between the observed data and the data predicted by
the linearized physics. The physics is then relinearized around this new reference model, and the process
is iterated until the perturbations are sufficiently small. Since most tomography problems are underdeter-
mined, some form of regularization must be introduced to solve the system (Aki & Lee, 1976; Dziewonski &
Woodhouse, 1987; Iyer & Hirahara, 1993; Tarantola, 2005). However, regularization is usually chosen using
ad hoc criteria, which introduce poorly understood biases in the results; thus, valuable information can be
concealed by regularization (Zhdanov, 2002).Moreover, in nonlinear problems it is almost always impossible
to estimate accurate uncertainties in results using linearized methods. Therefore, partially or fully nonlin-
ear tomographic methods have been introduced to geophysics, which require no linearization and which
provide accurate estimates of uncertainty using a Bayesian probabilistic formulation of the parameter esti-

mation problem. These include Monte Carlo (MC) methods (Bodin & Sambridge, 2009; Galetti et al., 2015,

2017; Mosegaard & Tarantola, 1995; Malinverno & Leaney, 2000; Malinverno, 2002; Malinverno & Briggs,

2004; Sambridge, 1999; Zhang et al., 2018) andmethods based on neural networks (Devilee et al., 1999; Earp

& Curtis, 2019; Käufl et al., 2013, 2015, Meier et al., 2007a, 2007b; Röth & Tarantola, 1994; Shahraeeni &

Curtis, 2011; Shahraeeni et al., 2012).
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Bayesianmethods use Bayes' theorem to update a prior probability distribution function (pdf—either a con-

ditional density function or a discrete set of probabilities) with new information from data. The prior pdf

describes information available about the parameters of interest prior to the inversion. Bayes' theorem com-

bines the prior pdf with information derived from the current data to produce the total state of information

about the parameters post inversion, described by a so-called posterior pdf—this process is referred to as

Bayesian inference. Thus, in our case Bayesian inference is used to solve the tomographic inverse problem.

MC methods generate a set (or chain) of samples from the posterior pdf describing the probability dis-

tribution of the model given the observed data; thereafter, these samples can be used to estimate useful

information about that pdf (mean, standard deviation, etc.). The methods are quite general from a theoret-

ical point of view so that in principle they can be applied to any tomographic problems. They have been

extended to transdimensional inversion using the reversible jump Markov chain Monte Carlo (rj-McMC)

algorithm (Green, 1995), in which the number of parameters (hence the dimensionality of parameter space)

can vary in the inversion. Consequently, the parameterization itself can be simplified by adapting to the

data, which can improve results on otherwise high-dimensional problems (Bodin & Sambridge, 2009; Bodin

et al., 2012; Burdick & Lekić, 2017; Galetti et al., 2015, 2017; Galetti & Curtis, 2018; Hawkins & Sambridge,

2015; Malinverno & Leaney, 2000; Ray et al., 2013; Piana Agostinetti et al., 2015; Young et al., 2013; Zhang

et al., 2018, 2020). Although many tomographic applications have been conducted using McMC sampling

methods (previous references, Crowder et al., 2019; Shen et al., 2012, 2013; Zheng et al., 2017; Zulfakriza

et al., 2014), theymainly address 1-D or 2-D tomography problems due to the high computational expense of

MCmethods. Some studies usedMcMCmethods for fully 3-D tomography using body wave travel time data

(Hawkins & Sambridge, 2015; Piana Agostinetti et al., 2015; Burdick & Lekić, 2017) and surface wave dis-

persion (Zhang et al., 2018, 2020), but themethods demand enormous computational resources. Even in the

1-D or 2-D case, McMC methods cannot easily be applied to large data sets, which are generally expensive

to forwardmodel given a set of parameter values. Moreover, McMCmethods tend to be inefficient at explor-

ing complex, multimodal probability distributions (Karlin, 2014; Sivia, 1996), which appear to be common

in seismic tomography problems.

Neural network-based methods offer an efficient alternative for certain classes of tomography problems

that will be solved many times with new data of the same type. An initial set of MC samples is taken from

the prior probability distribution over parameter space, and data are computationally forward modeled for

each parameter vector. Neural networks are flexible mappings that can be regressed (trained) to emulate

the mapping from data to parameter space by fitting the set of examples of that mapping generated by MC

(Bishop, 2006). Since for each input data vector the neural network only produces one parameter vector,

trade-offs between parameters are not clearly represented in the mapping from data to model parame-

ters. Nevertheless, the trained network interpolates the inverse mapping between the examples and can be

applied efficiently to any new, measured data to estimate corresponding parameter values. The first geo-

physical application of neural network tomography was Röth and Tarantola (1994), but that application did

not estimate uncertainties. Forms of networks that estimate tomographic uncertainties were introduced to

Geophysics byDevilee et al. (1999) andMeier et al. (2007a, 2007b) and have been applied to surface and body

wave tomography in 1-D and 2-D problems (Earp & Curtis, 2019; Meier et al., 2007a, 2007b). Unfortunately

neural networks still suffer from the computational cost of generating the initial set of training examples.

That set may have to include many more samples than are required for standard Bayesian MC, because the

training set must span the prior pdf, whereas standard applications of MC tomography sample the posterior

pdf which is usuallymore tightly constrained. Neural networks have the advantage that the training samples

need only be calculated once for any number of data sets, whereas MC inversion must perform sampling

for every new data set. However, in high-dimensional problems the cost of sampling may be prohibitive for

both MC and neural network-based methods due to the curse of dimensionality (the exponential increase

in the hypervolume of parameter space as the number of parameters increases; Curtis & Lomax, 2001).

Variational inference provides a different way to solve a Bayesian inference problem: Within a predefined

family of probability distributions, one seeks an optimal approximation to a target distribution, which in

this case is the Bayesian posterior pdf. This is achieved byminimizing the Kullback-Leibler (KL) divergence

(Kullback & Leibler, 1951)—one possible measure of the difference between two given pdfs (Blatter et al.,

2019), in our case the difference between approximate and target pdfs (Bishop, 2006; Blei et al., 2017). Since

the method casts the inference problem into an optimization problem, it can be computationally more effi-

cient than eitherMC sampling or neural networkmethods and provides better scaling to higher-dimensional
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problems.Moreover, it can beused to take advantage ofmethods such as stochastic optimization (Kubrusly&

Gravier, 1973; Robbins &Monro, 1951) and distributed optimization by dividing large data sets into random

minibatches—methods that are difficult to apply for McMCmethods since they may break the reversibility

property of Markov chains, which is required by most McMC methods.

In variational inference, the complexity of the approximating family of pdfs determines the complexity of

the optimization. A complex variational family is generally more difficult to optimize than a simple family.

Therefore, many applications are performed using simple mean-field approximation families (Bishop, 2006;

Blei et al., 2017) and structured families (Hoffman & Blei, 2015; Saul & Jordan, 1996). For example, in Geo-

physics the method has been used to invert for the spatial distribution of geological facies given seismic data

using a mean-field approximation (Nawaz & Curtis, 2018, 2019).

Even using those simple families, applications of variational inference methods usually involve tedious

derivations and bespoke implementations for each type of problem, which restricts their applicability

(Bishop, 2006; Blei et al., 2017; Nawaz & Curtis, 2018, 2019). The simplicity of those families also affects the

quality of the approximation to complex distributions. To make variational methods easier to use, “black

box” variational inference methods have been proposed (Kingma & Welling, 2013; Ranganath et al., 2014,

2016). Based on these ideas, Kucukelbir et al. (2017) proposed an automatic variational inference method,

which can easily be applied to many Bayesian inference problems. Another set of methods has been pro-

posed based on probability transformations (Liu &Wang, 2016; Marzouk et al., 2016; Rezende &Mohamed,

2015; Tran et al., 2015); these methods optimize a series of invertible transforms to approximate the target

probability and in this case it is possible to approximate arbitrary probability distributions.

We apply automatic differential variational inference (ADVI; Kucukelbir et al., 2017) and Stein variational

gradient descent (SVGD; Liu &Wang, 2016) to a 2-D seismic tomography problem. In the following we first

describe the basic idea of variational inference and then the ADVI and SVGDmethods. In section 3we apply

the twomethods to a simple 2-D synthetic seismic tomography example and compare their results with both

fixed-dimensionalMcMC and rj-McMC. In section 4we apply the twomethods to real data fromGrane field,

North Sea, to study the phase velocity map at 0.9 s and compare the results to those found using rj-McMC.

We thus demonstrate that variation inference methods can provide efficient alternatives to McMCmethods

while still producing reasonably accurate approximations to Bayesian posterior pdfs. Our aim is to introduce

variational inferencemethods to the geoscientific community and to encouragemore research on this topic.

2. Methods
2.1. Variational Inference

Bayesian inference involves calculating or characterizing a posterior probability density function p(m|dobs)
of model parametersm given the observed data dobs. According to Bayes' theorem,

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
(1)

where p(dobs|m) is called the likelihoodwhich is the probability of observing data dobs conditional on model

m, p(m) is the prior which describes known information about the model that is independent of the data,

and p(dobs) is a normalization factor called the evidence, which is constant for a fixed model parameteriza-

tion. The likelihood is usually assumed to follow a Gaussian probability density function around the data

predicted synthetically from model m (using the known physical relationships), as this is assumed to be

a reasonable approximation to the pdf of uncertainties or errors in the measured data, and because noise

reduction is performed by stacking, which through the central limit theorem justifies the use of a Gaussian

distribution.

Variational inference approximates the above pdf p(m|dobs)using optimization. First, a family (set) of known
distributions  = {q(m)} is defined. The method then seeks the best approximation to p(m|dobs) within
that family by minimizing the KL-divergence:

KL[q(m)||p(m|dobs)] = Eq[log q(m)] − Eq[log p(m|dobs)] (2)

where the expectation is taken with respect to distribution q(m). It can be shown that KL[q||p] ≥ 0 and has

zero value if and only if q(m) equals p(m|dobs) (Kullback&Leibler, 1951). Distribution q*(m) thatminimizes

the KL-divergence is therefore the best approximation to p(m|dobs) within the family .
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Figure 1. An illustration of the workflow of ADVI. (a) An example of a posterior pdf in the original positive half-space of parametersm. (b) The posterior
pdf in the transformed real variable space 𝜃 (red) and an initial Gaussian approximation (blue). (c) The posterior pdf (red) and the standard Gaussian
distribution (blue) in standardized variable space 𝜂; gradients with respect to variational parameters are calculated in this space. (d) and (e) show the posterior
pdf (red) and the approximation obtained using ADVI (blue) in the unconstrained real variable space and the original space, respectively.

Combining equations (1) and (2), the KL-divergence becomes

KL[q(m)||p(m|dobs)] = Eq[log q(m)] − Eq[log p(m,dobs)] + log p(dobs) (3)

The evidence term logp(dobs) generally cannot be calculated since it involves the evaluation of a

high-dimensional integral, which takes exponential time. Instead, we calculate the evidence lower bound

(ELBO),which is equivalent to theKL-divergence up to anunknown constant and is obtained by rearranging

equation (3) and using the fact that KL[q||p] ≥ 0:

ELBO[q] = Eq[log p(m,dobs)] − Eq[log q(m)]

= log p(dobs) − KL[q(m)||p(m|dobs)]
(4)

Thus, minimizing the KL-divergence is equivalent to maximizing the ELBO.

In variational inference, the choice of the variational family is important because the flexibility of the vari-

ational family determines the power of the approximation. However, it is usually more difficult to optimize

equation (4) over a complex family than a simple family. Therefore, many applications are performed using

the mean-field variational family, which means that the parametersm are treated as being mutually inde-

pendent (Bishop, 2006; Blei et al., 2017). However, even under that simplifying assumption, traditional

variational methods require tedious model-specific derivations and implementations, which restricts their

applicability to those problems for which derivations have been performed (e.g., Nawaz & Curtis, 2018,

2019). We therefore introduce two more general variational methods: the ADVI and the SVGD, which can

both be applied to general inverse problems.

2.2. ADVI

Kucukelbir et al. (2017) proposed a general variational method called ADVI based on a Gaussian variational

family. In ADVI, a model with constrained parameters is first transformed to a model with unconstrained

real-valued variables. For example, the velocity modelm that usually has hard bound constraints (such as

velocity being greater than 0) can be transformed to an unconstrained model 𝛉 = T(m), where T is an

invertible and differentiable function (Figures 1a and 1b). The joint probability p(m,dobs) then becomes

p(𝛉,dobs) = p(m,dobs)|detJT−1 (𝛉)| (5)

where JT−1 (𝛉) is the Jacobian matrix of the inverse of T, which accounts for the volume change of the trans-

form, and | · | represents the absolute value. This transformmakes the choice of variational approximations
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independent of bounds on the original model since transformed variables lie in the common unconstrained

space of real numbers.

In ADVI, we choose a Gaussian variational family (e.g., blue line in Figure 1b):

q(𝛉;𝜙) =  (
𝛉|𝛍,

∑)
=  (𝛉|𝛍,LLT) (6)

where 𝜙 represents variational parameters 𝛍 and 𝚺, 𝛍 is the mean vector, and 𝚺 is the covariance matrix.

As in Kucukelbir et al. (2017), for computational purposes we use a Cholesky factorization 𝚺 = LLT where

L is a lower-triangular matrix, to reparameterize the covariance matrix to ensure that it is positive semidef-

inite (covariance is positive semidefinite by definition). If 𝚺 is a diagonal matrix, q reduces to a mean-field

approximation in which the variables are mutually independent; in order to include spatial correlations in

the velocity model, we use a full-rank covariance matrix, noting that this incurs a computational cost since

it increases the number of variational parameters.

In the transformed space, the variational problem is solved by maximizing the ELBO, written as , with
respect to variational parameters 𝜙:

𝜙∗ = argmax
𝜙

[q(𝛉;𝜙)]
= argmax

𝜙
Eq[log p(T

−1(𝛉),dobs) + log |det JT−1 (𝛉)|] − Eq[log q(𝛉)]
(7)

This is an optimization problem in an unconstrained space and can be solved using gradient ascentmethods

without worrying about any constrains on the original variables.

However, the gradients of variational parameters are not easy to calculate since the ELBO involves expecta-

tions in a high-dimensional space. We therefore transform the Gaussian distribution q(𝛉;𝜙) into a standard

Gaussian (𝛈|𝟎, I) (Figure 1c), by 𝛈 = R𝜙(𝛉) = L−1(𝛉 − 𝛍); thereafter, the variational problem becomes

𝜙∗ = argmax
𝜙

[q(𝛉;𝜙)]
= argmax

𝜙
E (𝛈|𝟎,I)[log p(T

−1(R−1
𝜙
(𝛈)),dobs) + log |det JT−1 (R−1

𝜙
(𝛈))|] − Eq[log q(𝛉)]

(8)

where the first expectation is taken with respect to a standard Gaussian distribution (𝛈|𝟎, I). There is no
Jacobian term related to this transform since the determinant of the Jacobian is equal to 1 (Kucukelbir et al.,

2017). The second expectation −Eq[log q(𝛉)] is not transformed since it has a simple analytic form as does

its gradient (Kucukelbir et al., 2017)—see Appendix A.

Since the distribution with respect to which the expectation is taken now does not depend on variational

parameters, the gradient with respect to variational parameters can be calculated by exchanging the expec-

tation and derivative according to the dominated convergence theorem (DCT; Ç𝚤nlar, 2011) and by applying

the chain rule—see Appendix B:

∇𝛍 = E (𝛈|𝟎,I)[∇m log p(m,dobs)∇𝛉T
−1(𝛉) + ∇𝛉 log |det JT−1 (𝛉)|] (9)

The gradient with respect to L can be obtained similarly:

∇L = E (𝛈|𝟎,I)[(∇m log p(m,dobs)∇𝛉T
−1(𝛉) + ∇𝛉 log |det JT−1 (𝛉)|)𝛈T] + (L−1)T (10)

where the expectation is computedwith respect to a standard Gaussian distribution, which can be estimated

by MC integration. MC integration provides a noisy, unbiased estimation of the expectation and its accu-

racy increases with the number of samples. Nevertheless, it has been shown that in practice a low number

or even a single sample can be sufficient at each iteration since the mean is taken with respect to the stan-

dard Gaussian distribution (see discussions and experiments in Kucukelbir et al., 2017). For distributions

p(m,dobs) for which the gradients have analytic forms, the whole process of computing gradients can be

automated (Kucukelbir et al., 2017), hence the name “automatic differential”. We can then use a gradient

ascent method to update the variational parameters and obtain an approximation to the pdf p(m|dobs) (e.g.,
Figure 1d).

Note that although the method is based on Gaussian variational approximations, the actual shape of the

approximation to the posterior p(m|dobs) over the original parameters m is determined by the transform
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Figure 2. An illustration of the transform in equation (11). The original
variable is in a constrained space between 0.5 and 3.0. The blue area shows
a standard Gaussian distribution in the transformed unconstrained space,
and the orange area shows the associated probability distribution in the
original space. The probability distributions are estimated using Monte
Carlo samples. The orange curve is the distribution fitted using Gaussian
kernels.

T (Figure 1e). It is difficult to determine an optimal transform since

that is related to the properties of the unknown posterior (Kucukelbir

et al., 2017). In this study we use a commonly used invertible logarithmic

transform (Team, 2016):

𝜃i = T(mi) = log (mi − ai) − log(bi −mi)

mi = T−1(𝜃i) = ai +
(bi − ai)

1 + exp(−𝜃i)

(11)

wheremi represents each original constrained parameter, 𝜃i is the trans-

formed unconstrained variable, ai is the original lower bound, and bi the

upper bound onmi. Therefore, the quality of the ADVI approximation is

limited by the Gaussian approximation in the unconstrained space and

by the specific transform T in equation (11).

To illustrate the effects of the transform in equation (11), we show an

example in Figure 2. The original variable lies in a constrained space

between 0.5 and 3.0 (a typical phase velocity range of seismic sur-

face waves). The space is transformed to an unconstrained space using

equation (11). If, as inADVI,we assume a standardGaussian distribution

in the transformed space (blue area in Figure 2), the associated probabil-

ity distribution in the original space is shown in orange in Figure 2. The

actual shape of the distribution in the original space is not Gaussian but is determined by the transform T

in equation (11). However, under this choice of T it is likely that the probability distribution in the original

space is still unimodal. We thus see that ADVI provides a unimodal approximation of the target posterior

pdf around a local optimal parameter estimate. This suggests that the method will not be effective for mul-

timodal distributions, and the estimated probability distribution depends on the initial value of 𝛍 and 𝚺

(Kucukelbir et al., 2017). However, since the maximum a posteriori probability (MAP) estimate has been

shown to be effective for parameter estimation in practice, the ADVI method could still be used to provide

a good approximation of the distribution around a MAP estimate.

2.3. SVGD

In practice, most applications of variational inference use simple families of posterior approximations such

as aGaussian approximation (Kucukelbir et al., 2017),mean-field approximations (Blei et al., 2017; Nawaz&

Curtis, 2018, 2019), or other simple structured families (Hoffman & Blei, 2015; Saul & Jordan, 1996). These

simple choices significantly restrict the quality of derived posterior approximations. In order to employ a

broader family of variational approximations, variational methods based on invertible transforms have been

proposed (Marzouk et al., 2016; Rezende & Mohamed, 2015; Tran et al., 2015). In these methods instead of

choosing specific forms for variational approximations, a series of invertible transforms are applied to an

initial distribution, and these transforms are optimized by minimizing the KL divergence. This provides a

way to approximate arbitrary posterior distributions since a pdf can be transformed to any other pdf as long

as the probability measures are absolutely continuous.

SVGD is one such algorithm based on an incremental transform (Liu & Wang, 2016). In SVGD, a smooth

transform T(m) = m + 𝜖𝛟(m) is used, wherem = [m1, … ,md] and mi is the ith parameter, and 𝛟(m) =

[𝜙1, … , 𝜙d] is a smooth vector function that describes the perturbation direction and where 𝜖 is the magni-

tude of the perturbation. It can be shown that when 𝜖 is sufficiently small, the transform is invertible since

the Jacobian of the transform is close to an identity matrix (Liu &Wang, 2016). Say qT(m) is the transformed

probability distribution of the initial distribution q(m). Then the gradient of KL-divergence with respect to

𝜖 can be computed as (see Appendix C):

∇𝝐KL[qT||p] |𝜀=0 = −Eq
[
trace

(p 𝛟(m)
)]

(12)

where p is the Stein operator such that p 𝛟(m) = ∇m log p(m)𝛟 (m)T + ∇m 𝛟(m). This suggests that

maximizing the right-hand expectation with respect to q(m) gives the steepest descent of the KL divergence,

and consequently, the KL divergence can be minimized iteratively.

It can be shown that the negative gradient of the KL divergence in equation (12) can be maximized by using

the kernelized Stein discrepancy (Liu et al., 2016). For two continuous probability densities p and q, the Stein
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discrepancy for a function 𝜙 in a function set  is defined as follows:

S[q, p] = argmax
𝛟∈

{(
Eq

[
trace

(p 𝛟(m)
)])2}

(13)

The Stein discrepancy provides another way to quantify the difference between two distribution densities

(Gorham & Mackey, 2015; Stein, 1972). However, the Stein discrepancy is not easy to compute for general

 . Therefore, Liu et al. (2016) proposed a kernelized Stein discrepancy by maximizing equation (13) in the

unit ball of a reproducing kernel Hilbert space (RKHS) as follows.

A Hilbert space is a space  on which an inner product <,> is defined. A function is called a kernel if

there exists a real Hilbert space and a function 𝜑 such that k(x, 𝑦) = < 𝜑(x), 𝜑(𝑦)>
ℋ
(Gretton, 2013). A

kernel is said to be positive definite if the matrix defined by Kij = k(xi, xj) is positive definite. Assuming

a positive definite kernel k(m,m
′

) on  × , its reproducing kernel Hilbert space  is defined by the

closure of the linear span {𝑓 ∶ 𝑓 (m) =
∑n

i=1 aik(m,mi), ai ∈ ,n ∈  ,mi ∈ } with inner products

⟨𝑓, g⟩ =
∑

i𝑗aib𝑗k(m
i,m𝑗) for g(m) =

∑
ibik(m,mi). The RKHS has an important reproducing property,

that is, 𝑓 (x) = ⟨𝑓 (x′), k(x′, x)⟩ , such that the evaluation of a function f at x can be represented as an inner
product in the Hilbert space. In a RKHS, the kernelized Stein discrepancy can be defined as (Liu et al., 2016)

S[q, p] = arg max
𝛟∈d

{(
Eq

[
trace

(p 𝛟(m)
)])2

, s.t. ||𝛟 ||d ≤ 1
}

(14)

whered is the RKHS of d-dimensional vector functions. The right side of equation (14) is found to be equal

to

𝛟∗ = 𝛟∗
q,p
(m)∕||𝛟∗

q,p
(m)||d (15)

where

𝛟∗
q,p
(m) = E{m′∼q}

[pk(m
′,m)

]
(16)

and for which we have S[q, p] = ||𝛟∗
q,p(m)||d

2. Thus, the optimal 𝛟 in equation (12) is 𝛟* and

∇𝜖KL[qT||p] |𝜖=0 = −
√
S[q, p].

Given the above solution, the SVGDworks as follows: We start from an initial distribution q0 then apply the

transform T∗
0 (m) = m + 𝜖 𝛟∗

q0 ,p
(m) where we absorb the normalization term in equation (15) into 𝜖; this

updates q0 to q[T0] with a decrease in the KL divergence of 𝜖 ∗
√
S[q, p]. This process is iterated to obtain an

approximation of the posterior p:

ql+1 = q
l
[
T∗
l

], where T∗
l
(m) = m + 𝜖l 𝛟

∗
ql ,p

(m) (17)

and for sufficiently small {𝜖l} the process eventually converges to the posterior pdf p. Note that a large

stepsize may lead the Jacobianmatrix of transform T to be singular, which in turnmakes the approximation

probability fail to converge to the true posterior (Liu, 2017).

To calculate the expectation in equation (16), we start from a set of particles (models) generated using q0,

and at each step the𝛟∗
q,p
(m) can be estimated by computing themean in equation (16) using those particles.

Each particle is thenupdated using the transform in equation (17), and the resulting particleswill formbetter

approximations to the posterior as the iteration proceeds. This suggests the following algorithm, which is

schematically represented in Figure 3:

1. Draw a set of particles {m0
i
}n
i=1

from an initial pdf estimate (e.g., the prior).

2. At iteration l, update each particle using

ml+1
i

= ml
i
+ 𝜖l 𝛟

∗
ql ,p

(ml
i
) (18)

where

𝛟∗
ql ,p

(m) =
1

n

n∑

𝑗=1

[
k(ml

𝑗
,m)∇ml

𝑗
log p(ml

𝑗
) + ∇ml

𝑗
k(ml

𝑗
,m)

]
(19)

and 𝜖l is the step size at iteration l.
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Figure 3. An illustration of the SVGD algorithm. The initial pdf is represented by the density of a set of particles (red
histogram) in the top plot. The particles are then updated using a smooth transform T(x) = x + 𝜖𝜙*(x), where 𝜙* is
found in a reproducing kernel Hilbert space (RKHS). (a) An example of a posterior pdf (blue line) and an initial
distribution (red histogram). (b) The approximating probability distribution after five iterations. (c) The approximating
probability distribution after 500 iterations.
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Figure 4. (a) The true velocity model and receivers (white triangles) used in the synthetic test. Sources are at the same
locations as receivers to simulate a typical ambient noise interferometry experiment. Black dots indicate the locations
of grid points used in the inversions. The histograms show the initial distribution of each parameter in the (b) original
space (velocity) and (c) transformed unconstrained space for ADVI (blue) and SVGD (orange). In ADVI, the initial
distribution is a standard Gaussian in unconstrained space. For simplicity we generated 5,000 samples from the
standard Gaussian and transformed to the original space to show the initial distribution in the original space. In SVGD
the initial distribution is approximated using 800 particles generated from a Uniform distribution in the original space
and transformed to the unconstrained space.

3. Calculate the density of the final set of particles {m∗
i
}n
i=1
, which approximates the posterior probability

density function.

For kernel k(m,m
′

) we use the radial basis function k(m,m′) = exp(− 1

h
||m − m′||2), where h can take

any positive value. Here h is taken to be d̃2∕ log n where d̃ is the median of pairwise distances between all

particles. This choice of h is based on the intuition that
∑

𝑗
k(mi,m𝑗) ≈ n exp(− 1

h
d̃2) = 1, so that for particle

mi the contribution from its own gradient and the influence from the other particles in equation (19) are

balanced (Liu &Wang, 2016). For the radial basis function kernel the second term in equation (19) becomes∑
𝑗

2

h
(m −m𝑗)k(m𝑗 ,m), which drives the particlem away from neighboring particles for which the kernel

takes large values. Therefore, the second term in equation (19) acts as a repulsive force preventing particles

from collapsing to a single mode, while the first term moves particles toward local high probability areas

using the kernel-weighted gradient. If in the kernel h → 0, the algorithm falls into independent gradient

ascent which maximizes logp for each particle.

Note that since SVGD uses kernelized Stein discrepancy, the choice of kernels may affect the efficiency of

the algorithm. In this study we adopted a commonly used kernel: a radial basis function. However, in some

cases other kernels may provide a more efficient algorithm, for example, an inverse multiquadric kernel

(Gorham &Mackey, 2017), a Hessian kernel (Detommaso et al., 2018), and kernels on a Riemann manifold

(Liu & Zhu, 2018).

In SVGD, the accuracy of the approximation increases with the number of particles. It has been shown

that compared to other particle-based methods, for example, sequential MC methods (Smith, 2013), SVGD

requires fewer samples to achieve the same accuracy, which makes it a more efficient method (Liu &Wang,

2016). In contrast to sequential MC, which is a stochastic process, SVGD acts as a deterministic sampling

method. If only one particle is used, the second term in equation (19) becomes 0 and themethod reduces to a

typical gradient ascent toward themodel with themaximuma posteriori (MAP) pdf value. This suggests that

even for a small number of particles the method could still produce a good parameter estimate since MAP

estimation can be an effective method in practice. Thus, in practice, one could start from a small number of

particles and gradually increase the number to find an optimal choice.

In seismic tomography velocities are usually constrained to lie within a given velocity range. In order to

ensure that velocities always lie within the constraints, we first apply the same transform used in ADVI

(equation (11)) so that the parameters are in an unconstrained space. We can then simply use equation (18)

to update particles without explicitly considering the constraints on seismic velocities. The final seismic

velocities can be obtained by transforming particles back to the constrained space.

3. Synthetic Tests

We first apply the abovemethods to a simple 2-D synthetic example similar to that in Galetti et al. (2015) and

Zhang et al. (2018). The truemodel is a homogeneous backgroundwith velocity 2 km/s containing a circular
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Figure 5. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using ADVI. The red pluses show locations which are referred to in the main text.

low velocity anomaly with a radius of 2 km with velocity 1 km/s. The 16 receivers are evenly distributed

around the anomaly approximating a circular acquisition geometry with radius 4 km (Figure 4a). Each

receiver is also treated as a source to simulate a typical ambient noise interferometry experiment (Campillo

&Paul, 2003; Curtis et al., 2006;Galetti et al., 2015). This produces a total of 120 interreceiver travel time data,

each of which is computed using a fast marching method of solving the Eikonal equation over a 100 × 100

gridded discretization in space (Rawlinson & Sambridge, 2004).

For variational inversionswe use a fixed 21×21 grid of cells to parameterize the velocitymodelm (Figure 4a).

The noise level is fixed to be 0.05 s (<5% of travel times) for all inversions. The prior pdf of the velocity

in each cell is set to be a Uniform distribution between 0.5 and 3.0 km/s to encompass the true model.

Travel times are calculated using the same fast marching method as above over a 100 × 100 grid but using

the lower spatial resolution of model properties parameterized inm. The gradients for velocity models are

calculated by tracing rays backward from each receiver to each (virtual) source using the gradient of the

travel time field for each receiver pair (Rawlinson & Sambridge, 2004). For ADVI, the initial mean of

the Gaussian distribution in the transformed space is chosen to be the value, which is the transform of the

mean value of the prior in the original space; the initial covariance matrix is simply set to be an identity

matrix, which turns out to give a standard Gaussian in our case (see blue histogram in Figure 4c). The shape

of the initial distribution in the original space is shown in Figure 4b (blue histogram). We then used 10,000

iterations to update the variational parameters (𝝁 and 𝚺). In order to visualize the results, we generated

5,000 models from the final approximate posterior probability density in the original space and computed

their mean and standard deviation. For SVGD, we used 800 particles generated from the prior pdf (orange

histogram in Figure 4b) and transformed to an unconstrained space using equation 11 (orange histogram in

Figure 4c). Each particle is then updated using equation (17) for 500 iterations, then transformed back to

seismic velocity. The mean and standard deviation are then calculated using the values of those particles.

To demonstrate the variational methods, we compare the results with the fixed-dimensional Metropolis-

Hastings (MH) McMC method (Hastings, 1970; Malinverno & Leaney, 2000; Metropolis & Ulam, 1949;

Mosegaard & Tarantola, 1995) and the rj-McMC method (Bodin & Sambridge, 2009; Green, 1995; Galetti

et al., 2015; Zhang et al., 2018). For MH-McMC inversion we used the same parameterization as for the vari-

ational methods (a 21 × 21 grid). A Gaussian perturbation is used as the proposal distribution to generate

potential McMC samples, for which the step length is chosen by trial and error to give an acceptance ratio

between 20% and 50%. We used a total of six chains, each of which used 2,000,000 iterations with a burn-in

period of 1,000,000 iterations. To reduce the correlation between samples, we only retain every fiftieth sam-

ple in each chain after the burn-in period. The mean and standard deviation are then calculated using those

samples. For rj-McMC inversionwe use Voronoi cells to parameterize themodel (Bodin& Sambridge, 2009),

for which the prior pdf of the number of cells is set to be a Uniform distribution between 4 and 100. The

proposal distribution for fixed-dimensional steps (changing the velocity of a cell or moving a cell) is chosen

in a similar way as in MH-McMC. For transdimensional steps (adding or deleting a cell) the proposal distri-

bution is chosen as the prior pdf (Zhang et al., 2018). We used a total of six chains, each of which contained

500,000 iterations with a burn-in period of 300,000. Similarly to the fixed-dimensional inversion the chain

was thinned by a factor of 50 post burn-in.
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Figure 6. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using SVGD. The red pluses show locations which are referred to in the main text.

3.1. Results

Figure 5 shows the mean, standard deviation, and an individual realization from the approximate posterior

distribution calculated using ADVI. The meanmodel successfully recovers the low velocity anomaly within

the receiver array except that the velocity value is slightly higher (∼1.2 km/s) than the true value (1.0 km/s).

Between the location of the central anomaly and that of the receiver array there is a slightly lower velocity

loop. The standard deviation map shows standard deviations similar to that of the prior (0.72 km/s) outside

of the array and clearly higher uncertainties at the location of the central anomaly. The standard deviations

around the central anomaly are slightly higher than those at the center. Figure 6 shows the results from

SVGD. Similarly, the velocity of the low velocity anomaly (∼1.2 km/s) is slightly higher than the true value

and a slightly lower velocity loop is also observed between the central anomaly and the receiver array. There

is a clear higher uncertainty loop around the central anomaly; this has been observed previously and repre-

sent uncertainty due to the trade-off between the velocity of the anomaly and its shape (Galetti et al., 2015;

Zhang et al., 2018). There is also another higher uncertainty loop associated with the lower velocity loop

between the central anomaly and the receiver array. In contrast to this result, the loop cannot be observed

in the results of ADVI.

To validate and better understand these results, Figure 7 shows the results from MH-McMC. The mean

velocity model is very similar to the results fromADVI and SVGD. For example, the velocity value of the low

velocity anomaly is higher than the true value, which suggests that themean value of the posterior under the

specified parameterization is genuinely biased toward higher values than the true value. A lower velocity

loop is also observed between the circular anomaly and the receiver array. The standard deviationmap shows

similar results to those from SVGD: There is a higher uncertainty loop around the central anomaly and

another one associatedwith the lower velocity loop between the circular anomaly and the receiver array. The

latter loop suggests that this area is not well constrained by the data, and therefore, the mean velocity tends

toward the mean value of the prior, which is lower than the true value. We do not observe the clear higher

uncertainty loops in the result of ADVI, which may be due to the Gaussian approximation which is used to

fit a non-Gaussian posterior in that method. In Figure 8 we show the results from rj-McMC. Compared to

the results from the fixed-parameterization inversions, the mean velocity is a more accurate estimate of the

truemodel and uncertainty across themodel is also lower. For example, themiddle low velocity anomaly has

almost the same value as the true model and has standard deviation of only ∼0.3 km/s compared to values

significantly greater than 0.3 km/s for all othermethods. Between themiddle anomaly and the receivers, the

Figure 7. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using MH-McMC. The red pluses show the point location which are referred to in the text.
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Figure 8. The mean (left), standard deviation (middle), and an individual realization from the approximate posterior
distribution (right) obtained using transdimensional rj-McMC. The red pluses show the point location which are
referred to in the text.

model is determined better than in the fixed-parameterization inversions (with a standard deviation smaller

than 0.1 km/s). This is because in rj-McMC the model parameterization adapts to the data, which usually

results in a lower-dimensional parameter space due to the natural parsimony of the method. For example,

the average dimensionality of the parameter space in the rj-McMC inversion is around 10; for comparison the

fixed-parameterization inversions all have dimensionality fixed to be 441. The standard deviation map from

the rj-McMC also shows a clear higher uncertainty loop within the array around the low velocity anomaly

and high uncertainties outside of the array where there is no data coverage.

Note that individual models from fixed-parameterization inversions (ADVI, SVGD, and MH-McMC) show

complex structures because of their higher dimensionality and the simple Uniform prior distribution that

we adopted (right panels in Figure 5–7). This might not be appropriate since the real Earth may have a

smoother structure (de Pasquale & Linde, 2016; Ray & Myer, 2019). In that case, more informative prior

information including some form of regularization might be used to produce smoother individual models

(MacKay, 2003).

The results in Figure 8 do not show the double-loop uncertainty structure that is observed in the SVGD

and MH-McMC results. The rj-McMC method contains an implicit natural parsimony—the method tends

to use fewer rather than more cells whenever possible. While this may be useful in order to reduce the

dimensionality of parameter space, it is also possible that it causes some detailed features of the velocity or

uncertainty structure to be omitted, much like a smoothing regularization condition in other tomographic

methods. Since the double-loop structure appears to be a robust feature of the image uncertainty, we assume

that the parsimony has indeed regularized some of the image structure out of the rj-McMC results.

Note that the result from rj-McMC is fundamentally different from results obtained using the fixed-

parameterization inversions (ADVI, SVGD, and MH-McMC) because of its entirely different parameteriza-

tion.While the other inversion results are parameterized over a regular grid and can themselves be regarded

as pixelated images, rj-McMC produces a set of models that are vectors containing positions and velocities

of Voronoi cells, which can be transformed to an image on a regular grid (right panel in Figure 8). However,

the Voronoi parametrization imposes prior restrictions on the pixelated form of models, for example, all pix-

els within each Voronoi cell have identical velocities. As a result rj-McMC produces very different results to

those obtained using the other methods. In fact, the choice of parameterizaiton in rj-McMC can impose a

variety of restrictions on models, and different parameterizations impose different prior information and so

can produce very different standard deviation structures (Hawkins et al., 2019). Thus, the results of rj-McMC

must always be interpreted in the light of the specific prior information imposed by the parameterization

deployed, and whether this is expected to match the target structure.

To further analyze the results, in Figure 9 we show marginal probability distributions from the different

inversion methods at three points (plus signs in Figures 5–8): Point (0, 0) at the middle of the model, point

(1.8, 0) at the boundary of the low velocity anomaly which has higher uncertainties, and point (3, 0) which

also has higher uncertainties in the results from SVGD and MH-McMC. Due to symmetries of the model,

marginal distributions at these three points are sufficient to reflectmuch of the entire set of single-parameter

marginal probability distributions. At point (0, 0), the three fixed-parameterization methods produce sim-

ilar marginal probability distributions. However, the marginal distribution from rj-McMC is narrower and

concentrates around the true solution (1.0 km/s). This is likely due to the fact that in rj-McMC we have a
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Figure 9. The marginal posterior pdfs of velocity at three points (pluses in Figures 3–6) derived using different
methods. (a–d) show the marginal posterior distributions of velocity at the Point (0,0) from ADVI, SVGD, MH-McMC,
and rj-McMC respectively. (e–h) show the marginal distributions at the Point (1.8,0) from the four methods
respectively, and (i–l) show the marginal distributions at the Point (3,0) from the four methods, respectively. The red
lines in (a) and (b) are marginal distributions obtained by doubling the number of iterations, and the black line in
(b) shows the marginal distribution obtained using 1,600 particles. The number at the top right of each figure shows
the number of Monte Carlo samples used for ADVI results and for the two McMC methods, and the number of
particles used for SVGD.

much smaller parameter space than in the fixed-parameterization inversions. To assess the convergence, we

show the marginal distributions obtained by doubling the number of iterations in ADVI and SVGD with a

red line in Figures 9a and 9b. The results show that increasing iterations only slightly improves themarginal

distributions, suggesting that they have nearly converged. The black line in Figure 9b shows the marginal

distribution obtained using more particles (1,600) with the same number of iterations (500). The result is

almost the same as the result obtained using the original set of particles, which suggests that 800 particles

are sufficient in this case. At point (1.8, 0), the marginal distributions from the three fixed-parameterization

inversions become broader, which explains the higher uncertainty loops observed in the standard deviation

maps. The distribution from ADVI is more centrally focused than the other two, which is again suggestive

of the limitations of that method caused by the Gaussian approximation. The distributions from SVGD and

MH-McMC are more similar to each other and are close to the prior—a Uniform distribution—which sug-

gests that the area is not well constrained by the data. By contrast, the result from rj-McMC shows a clearly

multimodal distribution with one mode centered around the velocity of the anomaly (1 km/s) and the other

around the background velocity (2 km/s) as discussed in Galetti et al. (2015). This multimodal distribution

reflects the fact that it is not clear whether this point is inside or outside of the anomaly, which produces

the higher uncertainty loop in the standard deviation map. This suggests that there are different causes

of the higher uncertainty loops in the different models. In the fixed-parameterization inversions (ADVI,

SVGD, and MH-McMC) the higher uncertainty loops are mainly caused by the low resolution of the data at

the boundary of the low velocity anomaly, which produces broader marginal distributions. In the rj-McMC

inversion, the higher uncertainty loops are mainly caused by multimodality in the posterior pdf. At point

(3.0, 0) similarly to the point (0, 0), the marginal distributions from the three fixed-parameterization inver-

sions have similar shape and are much broader than the result from rj-McMC. Compared to the results from

SVGD andMH-McMC, the result fromADVI again shows amore centrally focused distribution reminiscent

of the Gaussian limitation implicit in ADVI. In the result of rj-McMC the marginal distribution concen-

trates to a very narrow distribution around the true value. Overall, the marginal distributions from the
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Table 1
The Comparison of Computational Cost for All Four Methods

Method Number of simulations CPU hours

ADVI 10,000 0.45

SVGD 400,000 8.53

MH-McMC 12,000,000 480.3

rj-McMC 3,000,000 102.6

fixed-parameterization inversions are broader than the result from rj-McMC due to their far larger parame-

ter space. Note that although the marginal distributions from SVGD and MH-McMC have slightly different

shape, which causes differences in themagnitudes of their standard deviationmaps, themaps are essentially

similar from these quite different methods which suggests that the results are (approximately) correct.

3.2. Computational Cost

Table 1 summarizes the computational cost of the different methods. ADVI involves 10,000 forward sim-

ulations which takes 0.45 CPU hours. However, note that in ADVI we used the full-rank covariance

matrix, which becomes huge in high-dimensional parameter spaces, which could make the method inef-

ficient. SVGD involves 400,000 forward simulations, which takes 8.53 CPU hours. This appears to make

it less efficient than ADVI; however, SVGD can produce a more accurate approximation to the poste-

rior pdf than ADVI which is limited by the Gaussian approximation. Note that SVGD can easily be

parallelized by computing the gradients in equation (19) in parallel, making the method more time effi-

cient. For example, the above example takes 0.97 hr when parallelized using 10 cores. In comparison,

MH-McMC requires 2,000,000 simulations for one chain to stabilize, which takes about 80.05 CPU hours,

so for all six chains it requires 480.3 CPU hours in total. The rj-McMC run involved 500,000 simula-

tions for one chain, which takes about 17.1 CPU hours, so 102.6 CPU hours in total for six chains.

The MC methods use evaluations of the likelihood and prior distribution at each sample, whereas both

variational methods also deploy the information in the various gradients in equations (9), (10), and

(19). The number of simulations is therefore not a good metric to compare the four methods, since

the gradients in this case are calculated by ray tracing, which require more calculations per simula-

tion in Table 1 compared to those required for MC. CPU hours is a fairer metric for comparison, but

of course, this depends on the mechanism by which gradients are obtained: In other forward or inverse

problems it is even possible that the variationalmethods take longer thanMC if estimating gradients requires

extensive computation.

In the comparison in Table 1, rj-McMC is more efficient than MH-McMC due to the fact that rj-McMC

explores amuch smaller parameter space than the fixed parameterization inMH-McMC.However, note that

this might not always be true since transdimensional steps in rj-McMC usually have a very low probability

of being accepted (Bodin & Sambridge, 2009; Zhang et al., 2018) and the method is generally significantly

more difficult to tune (Green & Hastie, 2009). Overall, obtaining solutions from variational methods (ADVI

and SVGD) is more efficient thanMCmethods since they turn the Bayesian inference problem into an opti-

mization problem. This also makes variational inference methods applicable to larger data sets and offers

the advantage that very large data sets can be divided into randomminibatches and inverted using stochas-

tic optimization (Kubrusly &Gravier, 1973; Robbins &Monro, 1951) together with distributed computation.

MC methods can be very computationally expensive for large data sets. Of course, the above comparison

depends on the methods used to assess convergence for each method, which introduces some subjectivity

in the comparison so that the absolute time required by each method may not be entirely accurate. Never-

theless, from all tests that we have conducted it is clear that variational methods produce stable solutions

to the above problem far more efficiently than Metropolis-Hastings and rj-McMCmethods. Note that some

otherMC samplingmethods, for example, HamiltonianMC, also use gradient information andmay bemore

efficient than Metropolis-Hastings methods (Fichtner et al., 2018; Neal et al., 2011; Sen & Biswas, 2017).

4. Application to Grane Field

The Grane field is situated in the North Sea and contains a permanent monitoring system composed of

3,458 four-component sensors measuring three orthogonal components of particle velocity and water pres-

sure variations due to passing seismic waves. Zhang et al. (2020) used beamforming to show that the noise
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Figure 10. (a) The distribution of receivers (blue and red triangles) across the Grane field used in this study. Red
triangles show the receivers that were used as virtual sources. The blue plus in the inset map shows the location of
Grane field in the North Sea. The histograms show the initial distributions of each parameter in the (b) original space
(velocity) and (c) transformed unconstrained space for ADVI (blue) and for SVGD (orange). Similar to Figure 4, we
used 5,000 Monte Carlo samples to show probability distributions in both the original and the unconstrained space for
ADVI. The initial distribution for SVGD is approximated using 1,000 particles generated from the prior (a Uniform
distribution) in the original space and transformed to the unconstrained space.

sources measured in the Grane field are nearly omnidirectional, which allows us to use ambient seismic

noise tomography to study the subsurface of the field. To reduce the computational cost, in this study we

downsampled the number of receivers by a factor of 10, which results in 346 receivers, and we only used

35 receivers as virtual sources (Figure 10a). Cross correlations are computed between vertical component

recordings at pairs consisting of a virtual source and a receiver using half-hour time segments, and the set of

correlations for each pair were stacked over 6.5 hr. This process produces approximate virtual-source seis-

mograms of Rayleigh-type Scholte waves (Campillo & Paul, 2003; Curtis et al., 2006; Shapiro et al., 2005;

Wapenaar & Fokkema, 2006). Phase velocity dispersion curves for each (virtual) source-receiver pair are

then automatically picked using an image transformation technique: For all processing details see Zhang

et al. (2020), which presents a more complete ambient noise analysis of the field and presents tomographic

phase velocity maps at various frequencies as well as estimated shear velocity structure of the near seabed

subsurface. Here we use the recording phase velocity data at 0.9-s period.

We apply the variational inference methods ADVI and SVGD, and rj-McMC to the data to obtain phase

velocity maps at 0.9 s and compare the results. For variational methods, the field is parametrized using a

regular 26 × 71 grid with a spacing of 0.2 km in both x and y directions giving a velocity model dimension-

ality of 1,846. Due to its computational cost in such high-dimensional space, we do not apply MH-McMC.

The data noise level is set to be 0.05 s, which is an average value estimated by the hierarchical Bayesian

MC inversion of Zhang et al. (2020). The prior pdf of phase velocity in each model cell is set to be a Uni-

form distribution between 0.35 and 0.55 km/s, which is selected to be wider than the minimum (0.4 km/s)

and maximum (0.5 km/s) phase velocity picked from cross correlations. The initial probability distribution

for ADVI is chosen similarly to that in the synthetic tests: A standard Gaussian distribution in the uncon-

strained space (blue histogram in Figure 10c) and its shape in the original space is shown in Figure 10b (blue

histogram). For SVGD, the initial distribution is approximated using 1,000 particles generated from the prior

in the original space (orange histogram in Figure 10b) and transformed to the unconstrained space (orange

histogram in Figure 10c). We then applied 10,000 iterations for ADVI and 500 iterations for SVGD. Similarly

to the synthetic test above, for rj-McMC we use Voronoi cells to parameterize the model. The prior pdf of

the number of cells is set to be a discrete Uniform distribution between 30 and 200, and the data noise level

ZHANG AND CURTIS 15 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018589

Figure 11. The mean (left) and standard deviation map (right) obtained for Grane using ADVI.

is estimated hierarchically during the inversion (Zhang et al., 2018). Proposal distributions are the same as

in the synthetic test above. We used a total of 16 chains, each of which contains 800,000 iterations including

a burn-in period of 400,000. To reduce the correlation between samples we only retain every fiftieth sample

post burn-in for our final ensemble.

Figure 11 shows the mean and standard deviation maps from ADVI. The mean phase velocity map shows

a clear low velocity anomaly around the center of the field from Y = 6 km to Y = 10 km and another at the

western edge between Y = 8 km and Y = 10 km. These were also observed by (Zhang et al., 2020) using

Eikonal tomography, who showed that they are correlated with areas of higher density of pockmarks on

the seabed, suggesting that they are caused by near-surface fluid flow effects. At the western edge between

Y = 6 km and Y = 8 km and at the northwestern edge there are high velocity anomalies which were also

observed in the results of Zhang et al. (2020). In the north between Y = 11 km and Y = 12 km and along the

eastern edge between Y = 7 km and Y = 10 km the model shows some low velocity anomalies. Moreover,

there are some small anomalies distributed across the field. For example, to the south of the central low

velocity anomaly around Y = 6 km there are several other low velocity anomalies. Similarly, there is a small

low velocity anomaly and a small high velocity anomaly in the south of the field around Y = 2.5 km and a

small high velocity anomaly in the north around Y = 10.5 km.

Overall, the standard deviationmap shows that uncertainty in the west is lower than in the east. At the west-

ern edge there are some low uncertainty areas, which are associated with velocity anomalies. For example,

the low uncertainty area between Y = 6 km and Y = 8 km is associated with the high velocity anomaly at

the same location. Similarly, the high velocity anomaly at the northwestern edge around Y = 12 km shows a

lower uncertainty, and the middle low velocity anomaly also shows slightly lower uncertainties. This might

suggest that these velocity structures are well constrained by the data. However, in the synthetic tests we

noticed that the ADVI can produce biased standard deviation maps due to the Gaussian approximation, so

these uncertainty properties may not be robust.

We show the mean and standard deviation maps obtained using SVGD in Figure 12. The mean velocity

map shows very similar structures to the result from ADVI, except that the velocity magnitudes are slightly

different. For example, we observe the central low velocity anomaly and one at the western edge, which

appeared in the mean velocity map from ADVI and are related to the density distribution of pockmarks.

Similarly, there are high velocity anomalies at the western edge and a low velocity anomaly at the eastern

ZHANG AND CURTIS 16 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018589

Figure 12. The mean (left) and standard deviation map (right) obtained for Grane using SVGD.

edge. Even for more detailed structure, for example, the low velocity anomalies at the north (Y > 10 km),

the low velocity anomalies around Y = 6 km and the small velocity anomalies around Y = 2.5 km, the two

results show highly consistent properties between the two methods. This suggests that we have obtained

accurate mean phase velocity maps given the fixed, gridded model parameterization and the observed data.

Despite the similarity in themean results, the standard deviationmap from SVGD is quite different from the

results from ADVI, which is consistent with variations that we observed in the synthetic tests. For example,

there is no clear magnitude difference between the west and the east as appeared in the result from ADVI.

There is a clear low uncertainty area associated with the central low velocity anomaly, which is slightly

lower in magnitude than the result from ADVI. Similarly, there is a slightly lower uncertainty area at the

western edge associated with the low velocity anomaly at the same location. The south-central low velocity

anomaly around Y = 6 km also exhibits relatively low uncertainties, which suggests that those small low

velocity anomalies in this area may reflect true properties of the subsurface. Similarly, there are some low

uncertainty structures at the north around Y = 11 km, which are associated with low velocity anomalies.

Note that due to the Gaussian approximation in ADVI, the standard deviation results from SVGD show

different magnitudes as we saw in the synthetic tests.

Figure 13 shows the mean and standard deviation maps obtained from rj-McMC. The mean velocity map

shows broadly similar structures to the results fromADVI and SVGD. For example,we also observed themid-

dle low velocity anomaly, the low velocity anomalies at the western and eastern edges, and the high velocity

anomalies at the western edge. However, compared to the previous results these structures are smoother,

which is probably caused by the constant-velocity Voronoi cell parameterization and the natural parsimony

that is implicit within the rj-McMC inversion method (Bodin & Sambridge, 2009; Green, 1995) similarly to

the synthetic tests above. The small velocity anomalies in the previous results disappear in the result from

rj-McMC; this may also be caused by the natural parsimony of rj-McMC or by overfitting of data in the vari-

ational methods due to the fixed parameterization. However, the small high and low velocity anomalies

around Y = 2.5 km and around Y = 10.5 km still exist, which suggests that these detailed velocity structures

may represent real properties of the subsurface (or are caused by a consistent bias in the data).

Similarly to the synthetic tests, the standard deviationmap from rj-McMC shows significantly smaller uncer-

tainties (<0.01 km/s) than the results from ADVI (∼0.04 km/s) and SVGD (∼0.055 km/s), which is probably

caused by a lower dimensionality of parameter space used in rj-McMC (around 60 Voronoi cells were used)
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Figure 13. The mean (left) and standard deviation map (right) obtained for Grane using rj-McMC.

Figure 14. The mean (left) and standard deviation map (right) obtained for Grane using Eikonal tomography by Zhang
et al. (2020).
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than in variational methods (1,846 parameters), resulting in fewer trade-offs between parameters. How-

ever, there are higher uncertainties at the location of the small velocity anomalies at Y = 2.5 km and at

Y = 10.5 km, which is probably due to the fact that not all chains found these small structures. Loop-like

structures are also observed to trace out the most abrupt velocity transitions, similarly to Figure 8.

To compare our results with traditional methods, Figure 14 shows the mean and standard deviation maps

obtained using Eikonal tomography by Zhang et al. (2020) using all of the available data (3,458 virtual

sources and 3,458 receivers). The mean velocity model shows similar but slightly smoother structures

compared to those obtained using ADVI and SVGD. This may be because the larger quantity of data used in

Eikonal tomography reduces the noise and stabilizes the results, or because the interpolation used inEikonal

tomography regularizes (smooths) small-scale structure. The standard deviation map shows lower uncer-

tainties at the location of the middle low velocity anomaly, which is similar to that obtained using SVGD.

This again suggests that SVGD can produce a more accurate standard deviation estimate than ADVI. The

mean velocity model from rj-McMC shows smoother structures than that from Eikonal tomography, which

may suggest that rj-McMC omits small-scale structure due to its implicit parsimony. The standard deviation

map from rj-McMC also does not show similar structures to those obtained using Eikonal tomography or

SVGD due to the completely different parameterizations employed.

In the inversion, ADVI involved 10,000 forward simulations which took 5.1 CPU hours and SVGD involved

500,000 forward simulations, which required 141.8 CPUhours. By contrast the rj-McMC involved 12,800,000

forward simulations to obtain an acceptable result, which required 1,866.1 CPU hours. In real time, SVGD

was in fact parallelized using 12 cores, which took 12.1 hr to run, while rj-McMC was parallelized using

16 cores, which therefore took about 5 days. We conclude that, although the variational methods pro-

duce higher uncertainty estimates, they can produce similar parameter estimates (mean velocity) at hugely

reduced computational cost, and indeed, our synthetic tests suggest that the variational SVGD image

uncertainty results may in fact be the more correct.

5. Discussion

Wehave shown that variational methods (ADVI and SVGD) can be applied to seismic tomography problems

and provide efficient alternatives to McMC. ADVI produces biased posterior pdfs because of its implicit

Gaussian approximation and cannot be applied to problems with multimodal posteriors. However, it still

generates an accurate estimate of the mean model. Given that it is very efficient (only requiring 10,000

forward simulations), the method could be useful in scenarios where efficiency is important and a Gaussian

approximation is sufficient for uncertainty analysis. Alternatively, a mixture of Gaussians approximation

might be used to improve the accuracy of the algorithm (Arenz et al., 2018; Zobay, 2014). In a very high

dimensional case, ADVI could become less efficient because of the increased size of the Gaussian covariance

matrix. In that case one could use a mean-field approximation (setting model covariances to 0) or use a

sparse covariancematrix to reduce computational cost since seismic velocity in any cell is oftenmost strongly

correlated with that in neighboring cells.

SVGD can produce a good approximation to posterior pdfs. However, since it is based on a number of parti-

cles, the method is more computationally costly than ADVI. In this study we parallelized the computation

of gradients to improve the efficiency, and for large data sets further improvements can be obtained by using

random minibatches to perform the inversion (Liu & Wang, 2016). Such a strategy can be applied to any

variational inference method (e.g., also ADVI) since variational methods solve an optimization rather than

a stochastic sampling problem. In comparison, this strategy cannot easily be used in McMC-based methods

since it may break the detailed balance requirement of McMC (Blei et al., 2017). Though it has been shown

that SVGD requires fewer particles than particle-based sampling methods (e.g., sequential MC) in the sense

that it reduces to finding theMAPmodel if only one particle is used, the optimal choice of the number of par-

ticles remains unclear, especially for very high dimensional spaces. In the case of very high dimensionality

another possibility is to use normalizing flows—a variational method based on a series of specific invertible

transforms (Rezende & Mohamed, 2015).

MC and variational inference are different types of methods that solve the same problem. MC simulates a

set of Markov chains and uses samples of those chains to approximate the posterior pdf, while variational

inference solves an optimization problem to find the closest pdf to the posteriorwithin a given family of prob-

ability distributions. MCmethods provide guarantees that samples are asymptotically distributed according

ZHANG AND CURTIS 19 of 25



Journal of Geophysical Research: Solid Earth 10.1029/2019JB018589

to the posterior pdf as the number of samples tends to infinity (Robert & Casella, 2013), while the statistical

properties of variational inference algorithms are still unknown (Blei et al., 2017). It is possible to com-

bine the two methods to capitalize on the merits of both. For example, the approximate posterior pdf from

an efficient variational method (e.g., ADVI) can be used as a proposal distribution for Metropolis-Hastings

(De Freitas et al., 2001) to improve the efficiency of McMC, or McMC steps can be integrated to the

variational approximation to improve the accuracy of variational methods (Salimans et al., 2015).

We used a fixed regular grid of cells to parameterize the tomographic model in the variational methods,

which might introduce overfitting of the data. For example, the mean velocity models in the synthetic tests

show a slightly lower velocity loop between the low velocity anomaly and the receivers, and the uncertain-

ties obtained from fixed-parameterization inversions are significantly higher than the results from rj-McMC.

However, although rj-McMC produces lower uncertainty estimates, this is because small-scale structures

are omitted in the results of rj-McMC due to their implicitly imposed a priori information and natural par-

simony. For example, in our real data example, small-scale structures in the results of variational inference

methods and Eikonal tomography are smoothed out in the results of rj-McMC. Indeed, the parameteriza-

tion used in rj-McMC imposes restrictions onmodels, and different parameterizations can produce different

uncertainties (Hawkins et al., 2019). This makes the interpretation and use of uncertainties from rj-McMC

difficult.

It is not easy to determine an optimal grid in variational inference methods since this introduces a trade-off

between resolution of the model and overfitting of the data. Therefore, it might be necessary to use a more

flexible parameterization, for example, Voronoi cells (Bodin & Sambridge, 2009; Zhang et al., 2018) or

wavelet parameterization (Fang & Zhang, 2014; Hawkins & Sambridge, 2015; Zhang & Zhang, 2015). It may

also be possible to apply a series of different parameterizations and select the best one usingmodel selection

theory (Arnold & Curtis, 2018; Curtis & Snieder, 1997; Walter & Pronzato, 1997). Note that this might make

the methods less computationally efficient to find an optimal parameterization because wemay need to run

a series of optimization problems with different parameterizations. However, in cases with very large data

setswhichmaymore suitably be solved by variational inferencemethods, itmight instead be sufficient to use

a parameterization with the highest resolution that the frequency of the data could resolve. Instead, some

more informative prior or regularization may be used to reduce the magnitude of uncertainty estimates and

to better constrain the model (MacKay, 2003; Ray & Myer, 2019).

In our experiments the results from rj-McMC are significantly different from the results obtained using vari-

ational methods or MH-McMC. This is essentially caused by different parameterizations. In ADVI, SVGD,

andMH-McMCwe invert for a pixelated image, while in rj-McMCwe invert for a distribution of parameters

that represent locations and shapes of cells and their spatially constant velocities, the pointwise spatialmean

of which is visualized as an image. Therefore, even though we visualized them in the same way, the results

are essentially not directly comparable. Nevertheless, the comparison with rj-McMC is interesting because

until now a quite different alternative probabilistic method was never used to estimate the posterior of

images from the same realistic tomography problem. The results here demonstrate that the rj-McMCmethod

as applied in most tomography papers gives significantly different solutions than we might previously have

thought; specifically, it does not produce the posterior distribution of the pixelated image that is usually

shown in scientific papers (e.g., Bodin&Sambridge, 2009; Crowder et al., 2019;Galetti et al., 2015; Zulfakriza

et al., 2014). Rather, it samples a probability distribution in a particular irregular and variably parametrized

model space, and results should be interpreted as such.Note that someothermethods, for example, rj-McMC

with Gaussian processes, may provide results that can be compared between all samplingmethods, and pro-

vide a means of injecting prior information with adaptable complexity into the sampling scheme (Ray &

Myer, 2019).

In this study we used a fixed data noise level in the variational methods. It has been shown that an improper

noise level can introduce biases in tomographic results (Bodin & Sambridge, 2009; Zhang et al., 2020), so in

our example we used the noise level estimated by hierarchical McMC. It can also be estimated by a variety

of other methods (Bensen et al., 2009; Nicolson et al., 2012, 2014; Weaver et al., 2011; Yao & Van Der Hilst,

2009) and maximum likelihood methods (Ray et al., 2016; Ray & Myer, 2019; Sambridge, 2013). In future it

might also be possible to include the noise parameters in variational methods in a hierarchical way.

In this studywe applied variational inferencemethods to simple 2-D tomography problems, but it is straight-

forward to apply themethods to any geophysical inverse problemswhose gradientswith respect to themodel
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can be computed efficiently. For example, variational methods could be applied to 3-D seismic tomogra-

phy problems to provide an efficient approximation, which generally demands enormous computational

resources using McMC methods (Hawkins & Sambridge, 2015; Zhang et al., 2018, 2020). The methods

also provide possibilities to perform Bayesian inference for full waveform inversion, which is generally

very expensive for McMC (Ray et al., 2017) and suffers from notorious multimodality in the likelihoods.

SVGD provides a possible way to approximate these complex distributions given that theoretically it can

approximate arbitrary distributions.

6. Conclusion

We introduced two variational inference methods to geophysical tomography—ADVI and SVGD, and

applied them to 2-D seismic tomography problems using both synthetic and real data. Compared to the

McMC method, ADVI provides an efficient but biased approximation to Bayesian posterior probability

density functions and cannot be applied to find multimodal posteriors because of its implicit Gaussian

assumption. In contrast, SVGD is slightly slower than ADVI but produces a more accurate approxima-

tion. The real data example shows that ADVI and SVGD produce very similar mean velocity models, even

though their uncertainty estimates are different. The mean velocity models are very similar to those pro-

duced by reversible jumpMcMC (rj-McMC), except that themeanmodel from rj-McMC is smoother because

of the much lower dimensionality of its parameter space. Variational methods thus can provide efficient

approximate alternatives to McMC methods and can be applied to many geophysical inverse problems.

Appendix A: The Entropy of a Gaussian Distribution

The entropy H
[
q(𝛉;𝜙)

]
of a Gaussian distribution (𝛉|𝛍,LLT) is as follows:

H
[
q(𝛉;𝛟)

]
= −Eq[log q(𝛉)]

= −∫  (𝛉|𝛍,LLT) log (𝛉|𝛍,LLT)d𝛉

=
k

2
+
k

2
log (2𝜋) +

1

2
log |det(LLT)|

where k is the dimension of vector 𝛉. The gradients with respect to 𝛍 and L can be easily calculated (see

Appendix B).

Appendix B: Gradients of the ELBO in ADVI

We first describe the dominated convergence theorem (DCT) (Ç𝚤nlar, 2011):

Theorem Assume X ∈  is a random variable and 𝑓 ∶ R× → R is a function such that f(t,X) is integrable

for all t and 𝜕𝑓 (t,X)

𝜕t
exists for each t. Assume that there is a random variable Z such that | 𝜕𝑓 (t,X)

𝜕t
| ≤ Z for all t

and E(Z) < ∞. Then

𝜕

𝜕t
E(𝑓 (t,X)) = E(

𝜕

𝜕t
𝑓 (t,X))

The proof of this theorem is given in Ç𝚤nlar (2011).

We then calculate the gradients in equations (9) and (10) based on Kucukelbir et al. (2017). The ELBO  is:

 = E (𝛈|𝟎,I)

[
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)
+ log |detJT−1

(
R−1
𝜙
(𝛈)

)
|
]
+H

[
q(𝛉;𝜙)

]

where H[q(𝛉;𝜙)] = −Eq[log q(𝛉)] is the entropy of distribution q. Assume
𝜕

𝜕 𝛟
log p is bounded where 𝜙

represents variational parameters𝝁 andL, then the gradients can be computed by exchanging the derivative

and the expectation using the DCT and applying the chain rule:

∇𝛍 = ∇𝛍

{
E (𝛈|𝟎,I)

[
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)
+ log |detJT−1

(
R−1
𝜙
(𝛈)

)
|
]
+H

[
q(𝛉;𝜙)

]}

Applying the DCT and since H does not depend on 𝝁,

∇𝛍 = E (𝛈|𝟎,I)

[
∇𝛍

{
log p

(
T−1

(
R−1
𝜙
(𝛈)

)
,dobs

)}
+ ∇𝛍

(
log |detJT−1

(
R−1
𝜙
(𝛈)

)
|
)]
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Applying the chain rule,

∇𝛍 = E (𝛈|𝟎,I)

[
∇m log p(m,dobs)∇𝛉T

−1(𝛉)∇𝛍R
−1
𝜙
(𝛈) + ∇𝛉 log |detJT−1 (𝛉)|∇𝛍R

−1
𝜙
(𝛈)

]

= E (𝛈|𝟎,I)
[
∇m log p(m,dobs)∇𝛉T

−1(𝛉) + ∇𝛉 log |detJT−1 (𝛉)|
]

The gradient with respect to L can be obtained similarly:

∇L = ∇L

{
E (𝛈|𝟎,I)

[
log p
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+
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2
log(2𝜋)

+
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2
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}

Applying the DCT,

∇L =E (𝛈|𝟎,I)

[
∇L

{
log p

(
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𝜙
(𝛈)

)
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)}
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(
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(
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)
|
)]

+ ∇L
1

2
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and applying the chain rule, we obtain

∇L = E (𝛈|𝟎,I)[∇m log p(m,dobs)∇𝛉T
−1(𝛉)∇LR

−1
𝜙
(𝛈) + ∇𝛉 log |detJT−1 (𝛉)|∇LR

−1
𝜙
(𝛈)] + (L−1)T

= E (𝛈|𝟎,I)[(∇m log p(m,dobs)∇𝛉T
−1(𝛉) + ∇𝛉 log |detJT−1 (𝛉)|)𝛈T] + (L−1)T

Appendix C: Gradients of KL Divergence in SVGD

We calculate the gradient in equation (12) following Liu and Wang (2016). Denote T−1 as the inverse

transform of T. Then by changing the variable,

KL[qT||p] = KL[q||pT−1 ]

and hence

∇𝜖KL[qT||p] |𝜖=0 = ∇𝜖KL[q||pT−1 ] |𝜖=0
= ∇𝜖

[
Eq log q(m) − Eq log pT−1 (m)

]

and since q(m) does not depend on 𝜖

∇𝜖KL[qT||p] |𝜖=0 = −Eq
[
∇𝜖 log pT−1 (m)

]

where pT−1 (m) = p(T(m)) · | det
(
∇mT(m)

)
|. Therefore

∇𝜖 log pT−1 (m) =
(
∇m log (p(m))

)T
∇𝜖T(m) + trace

((
∇mT(m)

)−1
· ∇𝜖∇mT(m)

)

where T(m) = m + 𝜖𝛟(m), ∇𝜖T(m) = 𝛟(m) and ∇mT(m)|𝜖=0 = I, and so

∇𝜖KL[qT||p] |𝜖=0 = −Eq

[(
∇m log (p(m))

)T
𝛟(m) + trace

(
∇m 𝛟(m)

)]

= −Eq
[
trace

(
∇m log (p(m))𝛟 (m)T

)
+ trace

(
∇m 𝛟(m)

)]

= −Eq
[
trace

(p 𝛟(m)
)]

wherep 𝛟(m) = ∇m log p(m)𝛟 (m)T + ∇m 𝛟(m) is the Stein operator.
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