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S U M M A R Y  
A ray-theoretical relation is established between the autocorrelation function of the 
slowness fluctuations of a random medium and the autocorrelation function of the 
traveltime fluctuations on a profile perpendicular to  the general propagation 
direction of an originally plane wave. Although this relation can be inverted exactly, 
it is preferable for applications to use the results of a forward calculation for a 
modified exponential autocorrelation function which represents slowness fluctua- 
tions with zero mean. The essential parameters of this autocorrelation function, 
standard deviation E and correlation distance a, follow by simple relations from the 
maximum and the zero crossing of the corresponding autocorrelation function of the 
traveltime fluctuations. The traveltime analysis of 2-D finite-difference seismograms 
shows that E and a can be reconstructed successfully, if the wavelength-to- 
correlation-distance ratio is 0.5 o r  less. Otherwise, E is underestimated and a 
overestimated; however, both effects can be compensated for. 

The average traveltime, as determined from the finite-difference seismograms, is 
slightly, but systematically shorter than the traveltime according to  the average 
slowness, i.e. the wave prefers fast paths through the medium. This is in agreement 
with results of Wielandt (1987) for a spherical low-velocity inclusion in a full-space 
and with results of Soviet authors, summarized by Petersen (1990). The velocity 
shift is proportional to  E*, it has dispersion similar to  the dispersion related to 
anelasticity, and it increases with the pathlength of the wave. 

Key words: average wave velocity, random media, scattering, traveltime fluctua- 
tions, velocity shift. 

1 INTRODUCTION 

Velocity or slowness fluctuations in the Earth with 
scalelengths less than a few kilometres in the crust and a few 
tens of kilometres in the mantle cannot usually be resolved 
with current seismic networks in a deterministic way. The 
main reason is that subsurface coverage with intersecting 
seismic rays is not sufficient. Such small-scale fluctuations 
often can be described by only a few statistical measures like 
a mean value, a standard deviation and a correlation 
distance, and knowing just these quantities is enough for 
characterizing the medium. These few unknowns may be 
determined with the aid of simple ray systems, correspond- 
ing to observations on one profile and to excitation by one 
point source or plane-wave source. Hence, whereas 
deterministic tomography is not usually possible in such 
media, statistical tomography may well be. The purpose of 
this paper is to contribute to statistical tomography by 
studying theoretically and numerically (1) the traveltimes of 
waves in random media and (2) the inferences that can be 

drawn from the traveltimes and their fluctuations on the 
slownesses and their fluctuations. 

A basic work on traveltime or phase fluctuations in 
random media is the book by Chernov (1960). The 
background of his theory is the Born approximation for 
acoustic media. He mainly treated the case of monochroma- 
tic plane waves in a medium with a Gaussian autocorrelation 
function of the refractive-index (or slowness) fluctuations. 
The variance of the traveltime fluctuations turns out to be 
proportional to the variance of the relative slowness 
fluctuations, to the traveltime through the medium for the 
mean velocity, to the traveltime corresponding to the 
correlation distance, and to a factor which depends on 
frequency and increases with it. Chernov also derived, in the 
high-frequency or ray-theoretical limit, the autocorrelation 
function of the traveltime fluctuations on a profile 
perpendicular to the propagation direction and found 
agreement with the Gaussian autocorrelation function of the 
slowness fluctuations. Frankel & Clayton (1986) investi- 
gated, by finite-difference calculations, waves in media with 
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different statistics (Gaussian, exponential, self-similar) and 
determined, among other things, the autocorrelation 
function of the traveltime fluctuations of an originally plane 
wave. They identified the half-width of this autocorrelation 
function with the correlation distance of the velocity 
fluctuations. Gudmundsson et al. (1990) treated traveltime 
fluctuations in the framework of ray theory and Fermat’s 
principle and gave a general relation between the 
autocorrelation functions of slowness and traveltime 
fluctuations. 

Other work related to  wave propagation in random media 
has focused on the interpretation of traveltime and 
amplitude fluctuations, observed across large seismic arrays 
such as NORSAR. FlattC & Wu (1988) give an overview of 
papers dating back as far as 1973. Their own theory (see 
also Wu & FlattC 1990; Wu 1991) is based on the 
approximate description of forward scattering by a parabolic 
wave equation which to  some extent includes frequency- 
dependent effects. They give expressions for various 
correlation functions (autocorrelation function of phase 
fluctuations and log-amplitude fluctuations, respectively, 
cross-correlation function of both fluctuations) and dis- 
criminate also between different receiver geometries with 
respect to the incident wave. In the terminology of these 
authors we are dealing in the present paper with the 
transverse autocorrelation function of traveltime 
fluctuations. 

The studies mentioned so far dealt with the fluctuations of 
traveltime and slowness around average or reference values. 
An interesting question is also whether or not the average 
traveltime along a profile is in agreement with the average 
slowness or velocity of the medium. Wielandt (1987) 
concluded, on the basis of synthetic seismograms for a 
spherical inclusion in an otherwise homogeneous medium, 
that in deterministic tomography low-velocity inclusions 
would be more difficult to  outline than high-velocity 
inclusions because of first arriving waves, diffracted around 
the slow inclusions in faster material. Therefore, the average 
velocity inferred from traveltime fluctuations would be 
biased towards higher values. Nolet (1987) has suggested 
calling this bias ‘Wielandt effect’. However, Soviet authors, 
summarized by Petersen (1990), have obtained similar 
conclusions to  Wielandt in the framework of ray theory for 
random media at least since 1983. Hence, a neutral 
abbreviation for this important effect is desirable. We will 
call it ‘velocity shift’ in the following. 

The investigations of this paper are for 2-D acoustic 
media. In Section 2 we establish, in a way similar to  that of 
Gudmundsson et al. (1990), the relationship between the 
autocorrelation functions of slowness and traveltime 
fluctuations. This integral relation can be inverted exactly, 
i.e. the autocorrelation function of the slowness fluctuations 
follows in a unique way from the autocorrelation function of 
the traveltime fluctuations. For practical applications, the 
forward relation is elaborated in Section 3 for a modified 
exponential autocorrelation function of the slowness 
fluctuations. This autocorrelation function corresponds to 
slowness fluctuations with mean value zero, and its free 
parameters are the variance and the correlation distance, as  
usual. Formulae are given by which these two quantities can 
be determined from the maximum and the zero crossing of 
the autocorrelation function of the traveltime fluctuations. 

In Section 4, media with the statistics just mentioned are 
constructed, and planz-wave propagation through them is 
calculated by a finite-difference method. Grid dispersion is 
compensated by special filtering of the synthetic seismo- 
grams, such that accurate traveltime determinations are 
possible. From the autocorrelation function of the 
traveltime fluctuations along a profile the variance and the 
correlation distance of the slowness fluctuations are 
estimated and compared with the pre-specified values. The 
success of the reconstruction depends on the ratio of the 
dominant wavelength to  the correlation distance. In Section 
5, the velocity shift is quantified, i.e. the velocity 
corresponding to  the average traveltime on the profile is 
compared with the velocity corresponding to  the average 
slowness of the structure. The velocity increase turns out to 
be proportional to  the variance of the slowness fluctuations 
and to  depend both on  frequency and pathlength. Finally, 
Section 6 presents some conclusions. 

2 S U M M A R Y  OF T H E O R Y  

We consider a 2-D medium with slowness u(x, z ) =  
uo + 6u(x, z), where un is the average slowness and du(x, z )  
a weak, randomly distributed slowness fluctuation whose 
mean value vanishes. Rays, propagating generally in 
x-direction between x = 0 and x = L, have z-dependent 
traveltime fluctuations with respect to  the traveltime 
To = Lu,. Their well-known linearized form is 

,-L 

Because of the validity of Fermat’s principle, integration in 
equation (1) can be performed to  first order along the 
straight rays in the unperturbed structure. 

The autocorrelation function of the traveltime fluctuations 
is the expectation (in the sense of the theory of stochastic 
processes with many realizations) 

r L  r L  

E[Gu(x, z )  6u(x’, z + 5 ) ]  dx dx’, 
= J” Jn 

where 5 is the lag corresponding t o  the z-coordinate. The 
integrand is the autocorrelation function of the slowness 
fluctuations. W e  assume that this function, called F(r), 
depends only on the distance r = [(x‘ - x)’ + 5’1’’’ of two 
points in the medium, i.e. there is no preferred orientation 
of the fluctuations. Then, the double integral 

r L  rL  

can be reduced to  a single integral by introducing as new 
integration variables the sum x’  + x and the difference 
x’ - x. Straightforward transformation yields 

@ ( P )  = 2 q  F ( r )  (r2 -1 ) ,/2 dr - 21c F(r ) r  dr, 

where N = (L’ + P2)”’. This result can be simplified by 
noting that L has to  be much larger than the correlation 
distance a of the slowness fluctuations. Hence, at r = N the 
integrands are  vanishingly small, and N can be replaced by 

N 

( 3 )  
N 
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infinity. Moreover, for 5; = 0 where @( 5 )  is maximum, the 
second integral in (3) is of the order of a / L  times the first 
integral; one way to show this is to  use an exponential F ( r ) .  
Hence, the second integral in (3) can be neglected both for 
f' = 0 and f' > 0, and we obtain 

rm 

(4) 

in agreement with equation (15) of Gudmundsson et al. 

In Section 3, equation (4) will be  used to perform a 
forward calculation of @ ( 5 ; )  for a suitably chosen F ( r )  and 
to relate the variance and the correlation distance of the 
slowness fluctuations to  prominent features of $( 5;). These 
formulae allow simple interpretations of traveltime fluctua- 
tions. The special structure of equation (4), however, makes 
possible an exacf inversion of F ( r )  from $ ( 5 ; )  which is 
briefly explained in the following. 

Equation (4) can be transformed, by the variable changes 
x = 115 and E = l / r ,  into the variant 

(1990). 

of Abel's integral equation whose solution is (e.g. Frank 81 
von Mises 1961) 

Here, the functionsf(x) and y ( E )  are: 

Using f (0) = 0, one obtains from (5) 

The variance of the slowness fluctuations, F(O), can be 
found by the variable change u = (c' - r2)'12 in (6), 

(7) 

and by Taylor expansion of the integrand in (7) for small rz .  
The constant term gives a vanishing contribution to  the 
integral, and from the r2 term one finds 

The integrand of (8) has no singularity a t  5;=0 because 
$'(O)=O; this is due to  the fact that @ ( 5 ; )  is actually a 
function of t2 (see equation (2) with the proper variable r ) .  

Numerical calculations of F(r )  with the aid of equation 
(6) and (8) require knowledge not only of +(c), but also of 
@'(5; ) .  This derivative probably will be difficult to  obtain in 
practice with sufficient accuracy. This limits the usefulness of 
(6) and (8) for inversion purposes. 

3 2-D SLOWNESS FLUCTUATIONS WITH 
ZERO MEAN 

Fluctuating media in different fields of science are often 
described by exponential rather than Gaussian or other 
autocorrelation functions. An experience that we have made 
ourselves is that uniformly distributed impedance fluctua- 
tions with zero mean in a stack of layers of similar 
thicknesses are much better described by an exponential 
than by a Gaussian autocorrelation function. Therefore, we 
apply the theory of the foregoing section to  the case of a 
basically exponential autocorrelation function F ( r ) .  One 
modification, however, is made: we require F ( r )  to  
correspond to slowness fluctuations 6u(x, z )  with zero 
mean. For such fluctuations the 2-D Fourier transform 
6u(kx, k,) vanishes for the wavenumbers k, = k ,  = 0. This 
implies that also the 2-D Fourier transform p ( k E ,  k,) of 
F ( r  = (5' + c2)1'2] vanishes for k,  = kl- = 0. Hence, the 
integral over F in the 5-5 plane vanishes. Using polar 
coordinates, we obtain the following constraint: 

- 

J, F(r ) r  dr = 0. 

The modified exponential autocorrelation function 

(9) 

fulfils this constraint; E is the standard deviation of the 
relative slowness fluctuations and a their correlation 
distance. Fig. 1 shows F ( r )  and the corresponding 
autocorrelation function of the traveltime fluctuations, 
@( 0, calculated numerically with equation (4). The 

'h 20 

L 

+ 
r l a  

'h t \  

2 3 1 5 
1 1 1 1 .  0 

t l a  0 1  

Figure 1. (a) Modified exponential autocorrelation function of the 
slowness fluctuations of a 2-D random medium, equation (10). (b) 
The corresponding autocorrelation function of traveltime fluctua- 
tions, calculated numerically with equation (4). Both curves are 
normalized. 
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variance of the traveltime fluctuations is 

(11) 
4 

$(O) = 5 &%;La. 

The 2-D Fourier transform of F ( r )  in (10) is 

with k Z  = k $  + k i .  Slowness fluctuations 6u(x, z) with the 
autocorrelation fuEtion (10) are constructed via their 
Fourier transform 6u(k,, k , )  whose modulus is &k,, k,)1'2 
from equation (12) and whose phase follows from pseudo 
random numbers. Such slowness fluctuations are used in the 
following section. 

The autocorrelation function $(f) in Fig. 1 has its zero at 
= 1.65 a. This value and equation (11) provide a simple 

interpretation of traveltime fluctuations in synthetic or 
observed seismograms. The (first) zero of their autocorrela- 
tion function yields the correlation-distance estimate 

a = 0.61fzero, (13) 

and equation (11) yields an estimate of the standard 
deviation E.  Equations (11) and (13) are applied to 
traveltime fluctuations in synthetic seismograms in the next 
section. 

4 TRAVELTIME I N T E R P R E T A T I O N  OF 
SYNTHETIC SEISMOGRAMS 

The acoustic finite-difference computations are performed 
with a second-order scheme for a heterogeneous medium 
(Korn & Stock1 1982). The random medium is constructed, 
as described in the foregoing section, and occupies a 
rectangular box with dimensions L = 1064 m in x-direction 
and 2000 m in z-direction. The standard deviation E is either 
3 or 5 per cent, the correlation distance varies from 15 to 
240111, and the grid spacing is 2m.  The average velocity 
depends on the particular realization of the random 
structure and is close to 4000 m s-', and the relative density 
fluctuations are proportional to the relative velocity 
fluctuations with the proportionality factor K = 0.3. 

At one of the long sides of the box ( x  = 0) the input signal 

2n  
T 

s ( t )  = sin - t - 
1 4n  
- sin - t, 
2 T  

0 < t < T,  

is prescribed. T is either 30 or 7.5 ms; hence, the dominant 
wavelength A is about 120 or 30m, and the pathlength-to- 
wavelength ratio L/A is about 9 or 36. The time step is the 
critical time step for the maximum velocity of the medium; 
it is about 0.3 ms. 

The seismograms at x = L, with the receiver spacing 10 or 
20m, are the results of the computation which are 
subsequently subjected to a traveltime analysis. Prior to this 
analysis, numerical grid dispersion, which deforms waves in 
addition to any physical dispersion and leads to systematic 
traveltime errors, has to be removed. Since wave 
propagation is essentially along the grid lines z = constant, 
the numerical phase velocity is (Alford et al. 1974) 

2u 
c(w)=-arcsin (?sin") 

Atw 2v 

for a homogeneous medium with grid spacing h, time step 
At and material velocity u and for angular frequency o. 
According to (15), high frequencies propagate slower than 
low frequencies. 

This dispersion can be removed by filtering with the 
phase-shift filter 

f (w)=exp  iwL [ L;") :)I. 
The shift to earlier times by (16) is about 0.1 ms for the 
dominant frequency of the T = 30 ms signal (14), i.e. for the 
case LIA = 9. In this case the dispersion correction is not 
very essential. For the T = 7.5 ms signal and L/A = 36, the 
shift is about 1.3ms, i.e. about 4At ;  in this case the 
correction is definitely needed. 

Application of the filter (16) to finite-difference results for 
a homogeneous medium yields very accurate traveltimes for 
both critical and subcritical time steps. Hence, we assume 
that the filter is also accurate for random media with 
standard deviations E of a few per cent because the 
deviation from the homogeneous case is only small. In this 
case, the velocity u in (15) is identified with the average 
velocity, and At is the actual time step of the 
finite-difference computation. 

Figs 2-5 present examples of finite-difference seismo- 
grams and their traveltime interpretation for the two L/A 
ratios and for variable ratio of dominant wavelength to 
correlation distance, Ala. The central parts display the 
traveltimes of the first peaks of the seismograms, their mean 
value (horizontal continuous line) and the theoretical 
traveltime of the first peak of the signal (14) according to 
the average slowness of the grid (dashed line). Additionally, 
the first arrivals have been determined at times where 1 or 2 
per cent of the maximum input amplitude is reached. The 
similarity of the first-arrival curves and the first-peak curves 
shows that the traveltimes can be determined safely. At the 
bottom of Figs 2-5 the autocorrelation function $(f) of the 
traveltime fluctuations is shown. The fluctuations have been 
related to the mean first-peak time (horizontal continuous 
line), since equation (1) implies that for slowness 
fluctuations with zero mean the mean value of the traveltime 
fluctuations vanishes also. The inferred values, according to 
equations (11) and (13), of the standard deviation and the 
correlation distance, E and ci, are also given. 

For each A/a ratio eight different realizations of the 
random medium have been investigated, both for E = 3 and 
5 per cent. The inferred E and H values are given in Fig. 6 
for the case LfA = 9, E = 5 per cent, and for four out of six 
Ala ratios. The standard deviations of E and ci decrease with 
increasing A/a,  but most of this dependence disappears, if 
they are normalized with the mean values. The results of all 
computations are compiled in Table 1. 

Fig. 7 presents the mean values of the ratios EIE and 
610, i.e. the quotients of reconstructed and original 
parameters, as functions of Ala. The mean E decreases with 
increasing A / a ;  this is due to the increase of averaging over 
the wavelength and is an expected feature. At A/a = 0.5, E is 
on average 20 per cent lower than E. The mean H is always 
larger than a, and ci/a increases with A/a. Both the decay of 
E and the increase of d with increasing Ala are more 
pronounced for the longer pathlength (LIA = 36). 

We conclude from Fig. 7 that the ray-theoretical results 
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Figure 2. (a) Synthetic finite-difference seismograms for a random medium with standard deviation E = 5 per cent, correlation distance 
a = 240 m and for wavelength A = 120 m (pathlength-to-wavelength ratio L / 1 =  9, A/a = 0.5). (b) Traveltinie curves of the first arrivals (1 per 
cent criterion) and the first peaks (solid curves), mean value of first-peak times (horizontal continuous line) and theoretical first-peak time, 
computed with average slowness (dashed line). (c) Autocorrelation function of the traveltime fluctuations of the first peak. E is the inferred 
standard deviation and d the inferred correlation distance. 

5 THE VELOCITY SHIFT for traveltime fluctuations, equations (11) and (13), give 
reasonable estimates of E and a,  if Ala is 0.5 or less. For 
larger ratios (and also for Ala 0.5, if desired) Fig. 7 can be The continuous horizontal lines in the central parts of Figs 
used to derive E and a from E and d ;  this requires 2-5, which represent the mean values of the first-peak 
transformation of the A/a values on the abscissa into A/6 traveltimes in the finite-difference seismograms, are 
values with the C / a  values given. generally earlier than the dashed lines, which represent the 
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Figrre 3. The same as Fig. 2 for E = 5 per cent, a = 20 m, A = 120 m (LIA = 9, A/a = 6). The theoretical first-peak time is 0.2766 s. 

first-peak traveltimes according to the average slowness of 
the finite-difference grid. Early arrivals have been found in 
almost all models investigated and clearly point to a 
systematic decrease of the apparent slowness due to the 
randomness of the medium. According to equation (l), such 
a shift should not occur for slowness fluctuations with zero 
mean (therefore, it was disregarded in the interpretations of 
Section 4). This effect is an extension of Wielandt’s (1987) 

results for one inclusion in a full-space to the case of many 
inclusions: the wave prefers to propagate over the fast parts 
of the medium or to diffract around the slow parts. The 
effect has also been predicted by Soviet authors (see 
Petersen 1990) from ray theory for media with both 
deterministic and random velocity variations. In the 
terminology of scattering theory, the velocity shift is a 
particular form of multilple scattering, which is faster than 
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Figure 4. The same as Fig. 2 for E = 5 per cent, a = 60 m, A = 30 m ( L / 1 =  36, A/u = 0.5). 

single scattering. An alternative explanation is by wavelengths (Alu = 0.5) the velocity increase is 
leaking-mode propagation in anti-waveguides of variable 

ray theory is sufficient, since energy will travel over ’0 

minimum-time paths which obey Snell’s law everywhere. 
The relative velocity change 6v/vo with respect to the 

inverse of the average slowness, uo = l/uo, is proportional 
to E* and depends on the wavelength (Fig. 8). For short 

for LIA = 9, 
for LIA = 36. 

curvature and cross-section. For Alu << 1, however, simple 5 = [ ’’;$ (17) 

In the case L/A = 36 it is difficult to decide whether the 
6u/uo value is also representative for A/u < 0.5. 

The limit of 6u/u, for large A/u appears to be negative, 
but close to zero. This means that the long-wavelength limit 
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Figure 5. The same as Fig. 2 for E = 5 per cent, a = 15 m, I = 30 m ( L / I  = 36, I / a  = 2). 

of the wave velocity is less than, but close to, the velocity For instance, one may ask whether there is theoretical 
uo. Since uo follows from the average velocity 3 by support for a long-wavelength velocity limit less than v0. We 
uo= U ( 1 -  E'), the medium is, with respect to U, slower at have used the elastostatic theory of Hashin (1962) for the 
long wavelengths, but still faster at short wavelengths. effective elastic moduli of two-component media and 

The 6u/u ,  values in Fig. 8 are interesting numerical obtained the limit 
results for the velocity shift of acoustic waves in random 
media. We continue with a few attempts to explain these 6 v -  (18) - (1 + K)2&2. 
results by theoretical arguments or by plausible reasoning. uo 2 
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Fire 6. Reconstructed standard deviations L and correlation distances rl for pathlength-to-wavelength ratio L/A = 9 and for different 
wavelength-to-correlation-distance ratios k/u. In  each case eight different realizations of the statistics were used. The crosses denote mean 
values and standard deviations of I and 6. The full circles represent the prescribed values E and u. 

In deriving (18), the random medium with a continuous 
slowness distribution was replaced by a two-component 
medium with slownesses (1  f &)/uo,  which means a quite 
pronounced simplification of the structure. For K = 0.3, 
equation (18) yields 6 u / u o =  -0.85 E'. A t  least the sign of 
Su/u, for A/a = 6 in Fig. 8 is in agreement with (18), but 

whether the long-wavelength limit agrees quantitatively with 
(18) is uncertain in view of the simplification mentioned. 

Another question of theoretical interest is whether the 
weak dispersion in Fig. 8 agrees with the dispersion that can 
be calculated from attenuation due t o  scattering by a 
dispersion relation. Fang & Muller (1991) have shown how 

Table 1. Results of the traveltime interpretations. 

9 0.5 240 

9 1 ; 120 

9 2 g 6 0  

9 3 z 4 0  

9 4 z 3 0  

9 6 ; 2 0  

36 0.5 z 60 

36 1 30 

36 2 15 

2.4k0.4 
4.0k0.7 

2.1k0.4 
3.4k0.6 

1.720.3 
2.9k0.4 

1.4k0.2 
2.3k0.4 
1.1t0.2 
1.9k0.3 
0.820.1 
1.3k0.2 

2.3k0.4 
3.320.5 

1.920.2 

1.120.1 
1.8k0.3 

2.9k0.3 

a 
(m) 

260280 
260280 
156230 
180240 

90215 
100+20 

65210 
77+20 
5721 3 
60210 
42+3 
4452 

77210 
90+18 

48210 
53L9 

3 223 
3 424 

L = pathlength (1061 m), 
A = dominant wavelength (120 m and 30 m, respectively), 
E = standard deviation of slowness 
a = correlation distance) fluctuations, 

I} reconstructed values, 

6u/un 
(%) 

0.14k0.05 
0.3920.11 
0.12k0.07 
0.3920.14 

0.08k0.03 
0.23k0.09 

0.03+0.03 
0.05+0.08 

0.02k0.03 
0.03k0.03 

-0.03+0.01 
-0.06+0.01 

0.37k0.10 
1.05k0.29 

0.2320.05 
0.5920.05 

0.06+0.02* 
0.20+0.03 

_ -  a' - apparent velocity change with respect to q, (u,' = average slowness). 
Un 
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Fiyre 7. Reconstructed standard deviations E and correlation distances 6, normalized by E and a, respectively, as functions of the 
wavelength-to-correlation-distance ratio A/u. LIA is the pathlength-to-wavelength ratio. Open symbols represent 6 / u ,  closed symbols P / E .  
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Figure 8. The velocity shift and its wavelength dependence. du is 
the apparent velocity change with respect to the inverse uo of the 
average slowness. 

attenuation operators for seismic waves can be determined 
for arbitrary dependence of anelastic or scattering Q on 
frequency, using the plausible minimum-phase assumption 
for the operator's phase. Their Fourier method can also be 
used to determine the phase velocity from Q. Scattering Q 
for a 2-D random medium with the autocorrelation function 
(10) and its Fourier transform (12) is given by the following 
integral over the scattering angle 8 (Frankel & Clayton 
1986, Appendix C, density term added): 

e 
6 sin' - a  k2a2 - 1 

2 

Here, k = 2n /A  is the wavenumber and Omin the minimum 
scattering angle which is in the range from 10" to 40" (Sato 
1982; Frankel & Clayton 1986; Roth 1990). The result of the 
Fourier method, applied to (19), is shown in Fig. 9 for 
~ = 0 . 3  and two Omin values (30" and 10"); both phase 
velocity c and group velocity U is given in the form of 
deviations from the velocity value at infinite wavelength 
which according to Fig. 8 is close to v,. 

The velocities in Fig. 8 represent the phase velocity for 
the dominant wavelength, since they were obtained by 
following the first peak from x = 0 to x = L. There is some 
general agreement between the phase-velocity curves of Fig. 
9 and the results in Fig. 8: the theoretical dispersion is also 
proportional to c2, the magnitudes of the velocity deviations 
agree, if a correlation of Omin and L is accepted (see below), 
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Figure 9. Phase velocity c and group velocity U, related to 
scattering attenuation according to equation (19) through a 
dispersion relation. The curves for different minimum scattering 
angles Omin differ from each other by a constant factor. 

and the general form of the wavelength dependence is 
similar. However, the decay of phase velocity to the 
long-wavelength limit is slower in Fig. 9 than in Fig. 8. This 
may indicate that the minimum-phase assumption for 
attenuation operators is only approximately correct for 2-D 
media (for I-D media and plane-wave propagation 
perpendicular to the interfaces it is exact). 

A particularly interesting aspect of the results in Fig. 8, 
and also of equation (17), is the pathlength dependence of 
the velocity shift: for L/A=36 the velocity increase with 

respect to v,, is much larger than for L / A = 9 ,  at least for 
A / a e  1. This property can be explained qualitatively as 
follows. The Fresnel volume of diffraction comprises all 
points for which single scattering leads to arrival times at the 
receiver at x = L which agree with the arrival time of the 
direct wave within a fraction yT of the wave period T 
(y=O.25 to 0.5). This volume is bounded by a parabola 
with its focus at the receiver and with the width (2yAL)”’ at 
x = 0, where the random structure begins (Fig. 10). The 
main contributions to the first arrival come from this 
volume. For L/A=36  this volume is longer and broader 
than for L/A = 9, such that there exist more possibilities for 
the wave to find fast multiple-scattering paths, which are not 
much longer than single-scattering paths and therefore 
contribute to the time interval yT. The consequence is a 
higher apparent velocity. 

Fig. 10 can also explain the dependence of the 
minimum scattering angle Omin on the pathlength L which is 
evident from Figs 8 and 9: singly scattered rays in the 
Fresnel volume have generally smaller scattering angles for 
LIA = 36 than for L/A = 9. The same is true for an average 
scattering angle which can be identified with Omin. 

LIA values larger, even much larger, than 36 would be of 
interest for seismological applications, e.g. to teleseismic 
body waves, but on the computer available we cannot go 
beyond 36. So we conclude that 

from equation (17) is a minimum value for the velocity 
difference between short and long waves in an acoustic 2-D 
random medium and for pathlengths in excess of 36 
wavelengths. 

6 DISCUSSION A N D  CONCLUSIONS 

We have shown in this paper that statistical heterogeneity 
produces interpretable traveltime fluctuations on profiles. 
The theory presented is ray-theoretical and hence requires, 
in principle, waves whose wavelength is less than 0.5 to 1 
times the correlation length of the heterogeneities. 
However, larger wavelengths, up to a few times the 
correlation length, can also be used since the corresponding 

I Fresnel volumes f o r  

Plane  X 

wave 

2 X  

Random 
medium 

x . 0  
I * 

Case B more possibilities for e a r l y  
multiple scattering over 
fast paths __ 

Figure 10. Two receivers in a random medium, A at L = 91 and B at L = 361. and the corresponding Fresnel volumes whose single scattering 
contributes to the first arrival ( y  =0.5). Multiple scattering over fast paths with eurly arrival times is possible for B, but not for A, because of 
geometrical reasons. Hence, the apparent velocity of the random medium is higher for B than for A. 
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results can be corrected with the finite-difference results of 
this paper (Fig. 7); in the 3-D case these 2-D corrections are 
only approximations. Application of the interpretation 
method to observations appears feasible in borehole 
tomography, but also in modern seismic studies of the 
Earth’s crust with narrow source or receiver spacing, such as 
the BABEL project in the Baltic Sea. In this project, for 
instance, very detailed records of the Pg phase were 
obtained (BABEL Working Group 1991). 

For applications a 3-D generalization of the 2-D theory 
given is needed. In this case one has to consider 2-D 
traveltime fluctuations 6 T ( y ,  z), observed in a plane 
perpendicular to the propagation direction of the wave. 
Their autocorrelation function # depends on two lags, q and 
t;; r,~ is the lag corresponding to the y-coordinate. For 
@(q ,  5 )  equation (4) applies with 5; replaced by p = 
(q2 + 5;2)”z. Interpretation of a synthetic or observed 
#( q, 5;) requires replacement or approximation by a 
p-dependent # ( p )  which then is treated like the 2-D 
autocorrelation function G(5;) above. The 3-D analogues to 
equations (9), (lo), (11) and (13) are: 

F(r)r2 dr = 0, (21) 

= Phalf. (24) 

Fig. 11 shows F ( r )  from (22) and @ ( p )  from (4); this figure 
is analogous to Fig. 1. Traveltirne fluctuations in the 3-D 
case would be interpreted with equation (23) and (24); phalf 
is the half-width of @(p) .  These equations would also be 

3D 

’k 
3 5 

1 I 

2 
0 

0 1  

Figure 11. The same as Fig. 1 for the case of a 3-D random 
medium. F ( r )  follows from equation (22) and @ ( p )  from equation 
(4) through numerical calculation. 

used, if fluctuations were available only along a profile and 
not in a plane. 

We have frequently observed that in seismogram sections 
such as those in Figs 2-5 early arrivals are connected with 
low amplitudes, while late arrivals are strong. The 
explanation is that over fast paths defocusing of the wave 
(or of rays) prevails and over slow paths focusing. A 
quantitative description of this correlation is available 
(FlattC & Wu 1988). It appears worthwhile to look for such 
a correlation also in data. If correlation is present, a 
common cause is probable. Lack of correlation may indicate 
that amplitudes are determined by very local effects which 
do not influence traveltimes noticeably. 

The velocity shift increases the apparent velocity of a 
random medium over the velocity, corresponding to the 
average slowness. For slowness fluctuations of a few per 
cent this shift is so small that no correction of observed 
velocities is required before they are used for other 
purposes, e.g. for interpretation in terms of composition. 
The frequency dependence of the velocity shift is of greater 
importance, because it is similar to the dispersion due to 
anelasticity. This latter dispersion, although weak, is widely 
accepted in seismology and rock physics. For instance, 
Dziewonski & Anderson (1981), in their construction of the 
Preliminary Reference Earth Model, found it necessary to 
incorporate anelasticity in order to make short-period (1 s) 
body-wave data compatible with long-period (200-1000 s) 
surface-wave and normal-mode data. For frequency 
independent anelastic Q the relative phase-velocity increase 
from the period T (>ls) to 1 s is 

6v 1 
In T (T in s). -=- 

nQ, 

For Q,=600, a typical value for P-waves in the Earth’s 
mantle, and T = 500 s one obtains from (25) 6vlv  = 0.33 
per cent. The dispersion of the velocity shift for 
heterogeneity with correlation lengths larger than the 
wavelength of a 1 s P-wave, i.e. larger than 10 to 20 km, 
follows from (20) and is larger than 0.16 per cent for E = 2 
per cent. Therefore, velocity dispersion in the Earth due to 
statistical heterogeneity can be of similar magnitude as 
dispersion due to anelasticity, and observed velocity 
dispersion is not only due to anelasticity, but due to 
heterogeneity as well. Similar conclusions have been 
obtained by Nolet & Moser (1991) by ray tracing for 
S-waves in mantle models with 3-D statistical heterogeneity. 

Our discussion of the velocity shift is based on 
wave-theoretical results, calculated with a finite-difference 
method. The velocity shift, following from ray theory for 
random media, has not been discussed. Snieder & 
Sarnbridge (1992) present ray perturbation theory for 
heterogeneous media in a form, which allows calculations of 
the ray-theoretical velocity shift. Such calculations are under 
way and will be presented in a future paper. 
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