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We explore the use of stochastic optimization methods for seismic waveform inversion. The basic principle of such methods
is to randomly draw a batch of realizations of a given misfit function and goes back to the 1950s. The ultimate goal of such
an approach is to dramatically reduce the computational cost involved in evaluating the misfit. Following earlier work, we
introduce the stochasticity in waveform inversion problem in a rigorous way via a technique called randomized trace estimation.
We then review theoretical results that underlie recent developments in the use of stochastic methods for waveform inversion. We
present numerical experiments to illustrate the behavior of different types of stochastic optimization methods and investigate the
sensitivity to the batch size and the noise level in the data. We find that it is possible to reproduce results that are qualitatively similar
to the solution of the full problem with modest batch sizes, even on noisy data. Each iteration of the corresponding stochastic
methods requires an order of magnitude fewer PDE solves than a comparable deterministic method applied to the full problem,
which may lead to an order of magnitude speedup for waveform inversion in practice.

1. Introduction

The use of simultaneous source data in seismic imaging has a
long history. So far, simultaneous sources have been used to
increase the efficiency of data acquisition [1, 2], migration [3,
4], and simulation [5–7]. Recently, the use of simultaneous
source encoding has found its way into waveform inversion.
Two key factors play a role in this development: (i) in
3D, one is forced to use modeling engines whose cost is
proportional to the number of shots (as opposed to 2D
frequency-domain methods where one can reuse the LU
factorization to cheaply model any number of shots) and
(ii) the curse of dimensionality: the number of shots and the
number of gridpoints grows by an order of magnitude.

The basic idea of replacing single-shot data by randomly
combined “super shots” is intuitively pleasing and has lead
to several algorithms [8–11]. All of these aim at reducing the
computational costs of full waveform inversion by reducing
the number of PDE solves (i.e., the number of simulations).
This reduction comes at the cost of introducing random
crosstalk between the shots into the problem. It was observed
by Krebs et al. [8] that it is beneficial to recombine the
shots at every iteration to suppress the random crosstalk
and that the approach might be more sensitive to noise in

the data. In this paper, we follow Haber et al. [12] and
introduce randomized source encoding through a technique
called randomized trace estimation [13, 14]. The goal of this
technique is to estimate the trace of a matrix efficiently
by sampling its action on a small number of randomly
chosen vectors. The traditional least-squares optimization
problem can now be recast as a stochastic optimization
problem. Theoretical developments in this area go back to
1950s, and we review them in this paper. In particular, we
discuss two distinct approaches to stochastic optimization.
The stochastic approximation (SA) approach consists of a
family of algorithms that use a different randomization in
each iteration. This idea justifies a key part of the approach
described in Krebs et al. [8]. Notably, the idea of averaging
the updates over the past is important in this context to
suppress the random crosstalk; lack of averaging over the
past likely explains the noise sensitivity reported by Krebs
et al. [8]. The theory we treat here concerns only first-order
optimization methods, though there has been a recent effort
to extend similar ideas to methods that exploit curvature
information [15].

Another approach, called the sample average approxi-
mation (SAA), replaces the stochastic optimization problem
by an ensemble average over a set of randomizations. The
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ensemble size should be big enough to suppress the crosstalk.
The resulting problem may be treated as a deterministic
optimization problem; in particular, one may use any
optimization method to solve it.

Most theoretical results in SA and SAA assume that the
objective function is convex, which is not the case for seismic
waveform inversion. However, in practice one starts from a
“reasonable” initial model, and we may be able to converge
to the closest local minimum. One would expect SA and SAA
to be applicable in the same framework. Understanding the
theory behind SA and SAA is then very useful in algorithm
design, even though the theoretical guarantees derived under
the convexity assumption need not apply.

As mentioned before, the gain in computational effi-
ciency comes at the cost of introducing random crosstalk
between the shots into the problem. Also, the influence of
noise in the data may be amplified by randomly combining
shots. We can reduce the influence of these two types of noise
by increasing the batch size, recombining the shots at every
iteration, and averaging over past iterations. We present a
detailed numerical study to investigate how these different
techniques affect the recovery.

The paper is organized as follows. First, we introduce
randomized trace estimation in order to cast the canonical
waveform inversion problem as a stochastic optimization
problem. We describe briefly how SA and SAA can be applied
to solve the waveform inversion problem. In Section 3, we
review relevant theory for these approaches from the field
of stochastic optimization. The corresponding algorithms
are presented in Section 4. Numerical results on a subset of
the Marmousi model are presented in Section 5 to illustrate
the characteristics of the different stochastic optimization
approaches. Finally, we discuss the results and present the
conclusions.

2. Waveform Inversion and Trace Estimation

The canonical waveform inversion problem is to find the
medium parameters for which the modeled data matches the
recorded data in a least-squares sense [16]. We consider the
simplest case of constant-density acoustics and model the
data in the frequency domain by solving

H[m]u = q, (1)

where H[m] is the discretized Helmholtz operator [ω2m +
∇2] for the squared slowness m (with appropriate boundary
conditions), u is the discretized wavefield, and q is the
discretized source function; both are column vectors. The
data are then given by sampling the wavefield at the
receiver locations: d = Pu. Note that all the quantities are
monochromatic. We hide the dependence on frequency for
notational simplicity.

We denote the corresponding optimization problem as

min
m

φ(m,Q,D) =
∑
ω

∥∥∥PH[m]−1Q−D
∥∥∥2

F
, (2)

where D = [d1,d2, . . . ,dN ] is a frequency slice of the recorded
data, and Q = [q1, q2 , . . . , qN ] are the corresponding source

functions. Note that the dependence of H on ω has been
suppressed. ‖ · ‖F denotes the Frobenius norm, which is
defined as ‖A‖F =

√
trace(ATA) (here ·T denotes the

complex-conjugate transpose. We will use the same notation
for the transpose in case the quantity is real). Note that we
assume a fixed-spread acquisition where each receiver sees all
the sources.

In practice, H−1 is never computed explicitly but involves
either an LU decomposition (cf., [17–19]) or an iterative
solution strategy (cf., [20, 21]). In the worst case, the matrix
has to be inverted separately for each frequency and source
position. For 3D full waveform inversion, both the costs for
inverting the matrix and the number of sources increase
by an order of magnitude. Recently, several authors have
proposed to reduce the computational cost by randomly
combining sources [8–12].

We follow Haber et al. [12] and introduce this encoding
in a rigorous manner by using a technique called randomized
trace estimation. This technique was introduced by Hutchin-
son [13] as a technique to efficiently estimate the trace of
an implicit matrix. Some recent developments and error
estimates can be found in Avron and Toledo [14].

This technique is based on the identity

trace
(
ATA

)
= Ew

(
wTATAw

)
= lim

K→∞

1

K

K∑

k=1

wT
k A

TAwk, (3)

where Ew denotes the expectation over w. The random vec-
tors w are chosen such that Ew(wwT) = I (the identity
matrix). The identity can be derived easily by using the
cyclic permutation rule for the trace (i.e., trace(ABC) =
trace(CAB)), the linearity of the expectation, and the
aforementioned property of w. At the end of the section,
we discuss different choices of the random vectors w. First,
we discuss how randomized trace estimation affects the
waveform inversion problem.

Using the definition of ‖A‖F , we have

φ(m,Q,D) = Ewφ(m,Qw,Dw). (4)

This reformulation of (2) is a stochastic optimization
problem. We now briefly outline approaches to solve such
optimization problems.

2.1. Sample Average Approximation. A natural approach to
take is to replace the expectation over w by an ensemble
average

φK(m) = 1

K

K∑

k=1

φ(m,Qwk ,Dwk). (5)

This is often referred to in the literature as the sample
average approximation (SAA). The random crosstalk can be
controlled by picking a “large enough” batch size. As long as
the required batch size is smaller than the actual number of
sources, we reduce the computational complexity.

For a fixed m, it is known that the error |φ − φK | is of
order 1/

√
K (cf., [14]). However, it is not the value of the

misfit that we are trying to approximate, but the minimizer.
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Figure 1: True (a) and initial (b) squared-slowness models (s2/km2) and the true reflectivity.

Unfortunately, the difference between the minimizers of φ
and φK is not readily analyzed. Instead, we perform a small
numerical experiment to get some idea of the performance
of the SAA approach for waveform inversion.

We investigate the misfit along the direction of the
negative gradient gk (defined below)

fK (α) = φK
(
m− αgK

)
. (6)

The data are generated for the model depicted in Figure 1(a),
for 61 colocated, equidistributed sources and receivers along
a straight line at 10 m depth and 7 randomly chosen
frequencies between 5 and 30 Hz. The source signature is
a Ricker wavelet with a peak frequency of 10 Hz. We use
a 9-point discretization of the Helmholtz operator with
absorbing boundary conditions and solve the system via an
(sparse) LU decomposition (cf., [22]). We note that this setup
is quite efficient already since the LU decomposition can be
reused for each source. Reduction of the number of sources

becomes of paramount importance in 3D where one is forced
to use iterative methods whose costs grow linearly with the
number of sources. The search direction gK is the gradient of
φK evaluated at the initial model m0, depicted in Figure 1(b).
The gradient is computed in the usual way via the adjoint-
state method (cf., [23]). The full gradient as well as the
gradients for K = 1, 5, 10 are depicted in Figure 2. The
error between the full and approximated gradient, caused by
the crosstalk, is depicted in Figure 3. As expected, the error
decays as 1/

√
K . The misfit as a function of α for various K ,

as well as the full misfit (no randomization), is depicted in
Figure 4. This shows that the minimizer of φK is reasonably
close to the minimizer of the full misfit φ, even for a relatively
small batch size K .

2.2. Stochastic Approximation. A second alternative is to
apply specialized stochastic optimization methods to prob-
lem (4) directly. This is often referred to as the stochastic
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Figure 2: The full gradient is depicted in (a). The approximate gradients for various K are depicted in (b) K = 1, (c) K = 5, and (d) K = 10.
For a relatively small batch size, the approximate gradients already show the main features.

approximation (SA). The main idea of such algorithms is
to pick a new random realization in each iteration and
possibly average over past iterations to suppress the resulting
stochasticity. In the context of the full waveform inversion
problem, this gives an iterative algorithm of the form

mν+1 = mν − γν∇φK ,ν(mν), (7)

where batch size K can be as small as 1, {γν} represent
step sizes taken by the algorithm, and the notation φK ,ν

emphasizes that a new randomization is used at every
iteration ν (in contrast with the SAA approach).

We discuss theoretical performance results and describe
SAA and SA in more detail in the next section.

2.3. Accuracy and Efficiency of Randomized Trace Estimation.
Efficient calculation of the trace of a positive semidefinite
matrix lies at the heart of our approach. Factors that
determine the performance of this estimation include the

random process for the i.i.d. w’s, the size of the source
ensemble K , and the properties of the matrix. Hutchinson’s
approximation [13], which is based on w’s drawn from
a Rademacher distribution (i.e., random ±1), attains the
smallest variance for the estimate of the trace. The variance
can be used to bound the error via confidence intervals.
However, the variance is not the only measure of the error.
In particular, Avron and Toledo [14] derive bounds on
the batch size in terms of ǫ and δ, defined as follows. A
randomized-trace estimator TK = K−1

∑
wT
i Bwi is an (ǫ, δ)-

approximation of T = trace(B) if

Pr

( |TK − T|
|T| ≤ ǫ

)
≥ 1− δ. (8)

The expressions for the minimum batch size K for which the
relative error is smaller than ǫ with probability δ are listed
in Table 1 (adapted from Avron and Toledo [14]). Smaller ǫ’s
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Table 1: Summary of bounds, adapted from Avron and Toledo [14].

Estimator Distribution of w Variance of one sample Bound on K for (ǫ, δ) bound

Hutchinson

HK = (1/K)
∑K

j=1 w
⊤
j Aw j Pr(w j = ±1) = 1/2 2(‖A‖2

F −
∑N

i=1 A
2
ii) 6ǫ−2 ln(2 rank(A)/δ)

Gaussian

GK = (1/K)
∑K

j=1 w
⊤
j Aw j w j ∈ N(0, 1) 2‖A‖2

F 20ǫ−2 ln(2/δ)

Phase encoded

LK = (N/K)
∑K

j=1 w
T
j F AF Tw j w j drawn uniformly from {e1, . . . , eN} n/a 2ǫ−2 ln(4n2/δ) ln(4/δ)

100

108

107

|g
K
−
g
|

100 101 102

K

Figure 3: Error in the gradient as a function of the batch size K . As
expected, the error goes down as 1/

√
K (dashed line).

Table 2: This table shows the theoretical lower bounds (see Table 1)
on the batch size K for δ = 10−1 for the matrix shown in Figure 5.

ǫ = 10−1
ǫ = 10−2

ǫ = 10−3

Gauss 6 · 103 6 · 105 6 · 107

Hutchinson 4 · 103 4 · 105 4 · 107

Phase 9 · 103 9 · 105 9 · 107

and δ’s lead to larger K , which in turn leads to more accurate
trace estimates with increased probability.

Of course, these bounds depend on the choice of the
probability distribution of the i.i.d. w’s and the matrix B.
Aside from obtaining the lowest value for K , simplicity of
computational implementation is also a consideration. In
Table 1, we summarize the performance of four different
choices for the w’s, namely,

(1) the Rademacher distribution, that is, Pr(w[i] =
±1) = 1/2, (w[i] denotes the ith element in the vector w)
yielding E{w[i]} = 0 and E{w[i]2} = 1 for i = 1 · · ·N .
Aside from the fact that this estimator HK (see Table 1) leads
to minimum variance, the advantage of this choice is that it
leads to a fast implementation with a small memory imprint.
The disadvantage of this method is that the lower bound
depends on the rank of A and requires larger K compared
to w’s defined by the Gaussian (see Table 1);

(2) the standard normal distribution, that is, w[i] ∈
N(0, 1) for i = 1 · · ·N . While the variance for this estimator
GK (see Table 1) is larger than the variance for Hk, the lower
bound for K does not depend on the size or the rank of A
and is the smallest of all four methods. This suggests that
we can use a fixed value of K for arbitrarily large matrices.
However, this method is known to converge slower than
Hutchinson’s for matrices A that have significant energy in
the off-diagonals. This choice also requires a more complex
implementation with a larger memory imprint;

(3) the fast phase-encoded method where w’s selected
uniformly from the canonical basis, that is, from {e1, . . . , eN}.
this estimator

LK =
N

K

K∑

j=1

wT
j F AF

Tw j , (9)

where F is a unitary (i.e, F T = F −1) random mixing
matrix. The idea is to mix the matrix B such that its diagonal
entries are evenly distributed. This is important since the
unit vectors only sample the diagonal of the matrix. The
flatter the distribution of the diagonal elements, the faster the
convergence (if all the diagonal elements were to be the same,
we need only one sample to compute the trace exactly).

The lower bounds summarized in Table 1 tell us that
Gaussian w’s theoretically require the smallest K and hence
the fewest PDE solves. However, this result comes at the
expense of more complex arithmetic, which can be a
practical consideration [8]. Aside from the lowest bound, the
estimator based on Gaussian w’s has the additional advantage
that the bound on K does not depend on the size or rank
of the matrix B. Hutchinson’s method, on the other hand,
depends logarithmically on the rank of B but has the reported
advantage that it performs well for near diagonal matrices
[14]. This has important implications for our application
because our matrix B is typically full rank and can be
considered nearly diagonal only when our optimization
procedure is close to convergence. At the beginning of the
optimization, we can expect the residual to be large and a B
that is not necessarily diagonal dominant.

We conduct the following stylized experiment to illus-
trate the quality of the different trace estimators. We solve
the discretized Helmholtz equation at 5 Hz for a realistic
acoustic model with 301 colocated sources and receivers
located at 10 m depth. We compute matrix B = ATA for a
residue A given by the difference between simulation results
for the hard and smooth models shown in Figure 1. As
expected, the resulting matrix B, shown in Figure 5, contains
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Figure 4: Behavior of misfit for various K . Shown are five different stochastic realizations and the true misfit (dashed line) for (a) K = 1,
(b) K = 5, and (c) K = 10. The stochastic misfits approximate the true misfit fairly well for relatively small batch sizes.

significant off-diagonal energy. For the phase-encoded part
of the experiment, we use a random mixing matrix based
on the DFT, as suggested by Romberg [24]. Such mixing
matrices are also commonly found in compressive sensing
applications [7, 24–26].

We evaluated the different trace estimators 1000 times for
batch sizes ranging from K = 1 · · · 1000. The probability
for the error level ǫ is estimated by counting the number
of times we were able to achieve that error level for each K .
The results for the different trace estimators and error levels
are summarized in Figure 6. For this particular example, we
see little difference in performance between the different
estimators. The corresponding theoretical bounds on the
batch size, as given by Table 1, are listed in Table 2. Clearly,
these bounds are overly pessimistic in this case. In our
experiments, we observed that we get similar reconstruction

behavior if we use a finer source/receiver sampling. This
suggests that the gain in efficiency will increase with the
data size, since we can use larger batch sizes for a fixed
downsampling ratio. We also noticed, in this particular
example, little or no change in behavior if we change the
frequency.

3. Optimization

3.1. Sample Average Approximation. The sample average
approximation (SAA) is used to solve the following class of
stochastic optimization problems:

min
x∈X

{
f (x) = Ew{F(x,w)}

}
, (10)
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Figure 5: Residual matrix A = STS, where S is the data residual
corresponding to the smooth model depicted in Figure 1(a) at 5 Hz.

where X ⊂ R
n is the set of admissible models (assumed to

be a compact convex set, for example, box constraints xmin ≤
x ≤ xmax), w is a random vector with distribution supported
on W ⊂ R

d , F : X × W → R, and the function f (x)
is convex [27]. The last important assumption is the law of

large numbers (LLN), that is, f̂K (x) → f (x) with probability
1 as K → ∞. These assumptions are required for most
of the known theoretical results about convergence of SAA
methods. The convexity assumption and LLN assumption
can be relaxed in the case when F(·,w) is continuous on X
for almost every w ∈ W and F(x,w) is dominated by an
integrable function G(w), so that | f (x)| ≤ Ew{G(w)} for
every x ∈ X [28]. Given an optimization problem of type
(10), the SAA approach [27] is to generate a random sample
w1, . . . ,wK and solve the approximate (or sample average)
problem

min
x∈X

⎧⎨
⎩ f̂K (x) = 1

K

K∑
j=1

F
(
x,w j

)
⎫⎬
⎭. (11)

When these assumptions are satisfied, the optimal value of
(11) converges to the optimal value of the full problem
(10) with probability 1. Moreover, under more technical
assumptions on the distribution of the random variable
w, conservative bounds have been derived on the batch
size K necessary to obtain a particular accuracy level ǫ
[29, equation (22)]. These bounds do not require the
convexity assumptions but instead require assumptions on
local behavior of F(·,w). It is worth underscoring that
“accuracy” here of solution x with respect to the optimal
solution x∗ is defined with respect to the function value
difference f (x) − f (x∗), rather than in terms of ‖x − x∗‖
or other measure in the space of model parameters. From
a practical point of view, the SAA approach is appealing
because it allows flexibility in the choice of algorithm for the
solution of (11). This works on two levels. First, if a faster
algorithm becomes available for the solution of (11), it can
immediately impact (10). Second, having fixed a large K and

f̂K to obtain reasonable accuracy in the solution of (10), one

is free to approximately solve a sequence of smaller problems

(Ki ≪ K) with warm starts on the way to solving f̂K [12]. In
other words, SAA theory guarantees the existence of aK large
enough for which the approximate problem is close to the full
problem; however, the algorithm for solving the approximate
problem (11) is left completely to the practitioner and in
particular may require the evaluation of very few samples at
early iterations.

3.2. Stochastic Approximation. Stochastic approximation
(SA) methods go back to Robbins and Monro [30], who
considered the root-finding problem

g(x) = g0, (12)

in the case where g(x) cannot be evaluated directly. Rather,
one has access to a function G(x,w) for which Ew{G(x,w)} =
g(x). The approach can be translated to optimization
problems of the form

min f (x) (13)

by considering g to be the gradient of f and setting g0 = 0.
Again, we cannot evaluate f (x) directly, but we have access
to F(x,w) for which Ew{F(x,w)} = f (x). More generally,
for problems of type (10), Bertsekas and Tsitsiklis [31] and
Bertsekas and Tsitsiklis [32] consider iterative algorithms of
the form

xν+1 = xν − γνs
ν, (14)

where γν are a sequence of step sizes determined a priori that
satisfy certain properties, and sν can be thought of as noisy
unbiased estimates of the gradient (i.e., Ewsν = ∇ f (xν)).
Note that right away we are forced into an algorithmic
framework, which never appears in the SAA discussion. The
positive step sizes γν are chosen to satisfy

∞∑
ν=0

γν = ∞,
∞∑

ν=0

γ2
ν
<∞. (15)

The main idea is that the step sizes go to zero, but not too
fast. A commonly used example of such a sequence of step
sizes is

γν ∝
1

ν

. (16)

The main result of Bertsekas and Tsitsiklis [31] is that if ∇ f
satisfies the Lipshitz condition with constant L

∥∥∇ f (x)−∇ f
(
y
)
‖≤ L‖x− y

∥∥, (17)

that is, the changes in the gradient are bounded in norm by
changes in the parameter space, and if the directions sν on
average point “close to” the gradient and are not too noisy,
then the sequence f (xν) converges, and every limit point x
of {xν} is a stationary point of f (i.e., ∇ f (x) = 0). Under
stronger assumptions that the level sets of f are bounded and
the minimum is unique, this guarantees that the algorithms
described above will find it. A similar family of algorithms
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Figure 6: Reconstruction as a function of K for various methods and error levels: (a) ǫ = 10−1, (b) ǫ = 10−2, and (c) ǫ = 10−3.

was studied by Polyak and Juditsky [33], who considered
larger step sizes γν but included averaging model estimates
into their algorithm. In the context discussed above, the step
size rule 10 is replaced by

γν − γν+1

γν

= o
(
γν

)
. (18)

A particular example of such a sequence cited by the paper is

γν ∝ ν
−β, 0 < β < 1. (19)

The iterative scheme is then given by

xν+1 = xν − γνs
ν,

xν = 1

ν

ν−1∑

i=0

xi.
(20)

Under assumptions similar in spirit to the ones in Bertsekas
and Tsitsiklis [31], there is a result for the convergence of the
iterates xν to the true estimate x∗, namely, xν → x∗ almost
surely and

√
ν(xν − x∗)−→DN(0,V), (21)

where the convergence is in distribution, and the matrix V
is in some sense optimal and is related to the Hessian of f
at the solution x∗. A more recent report [34] also considers
averaging of model iterates in the context of optimizing (not
necessarily smooth) convex functions of the form

f (x) = Ew{F(x,w)} (22)

over a convex set X. When f is smooth, this situation reduces
to the previous discussion. Nesterov and Vial [34] choose
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Figure 7: Inversion result for the SAA approach with various batch sizes and noise levels. The rows represent different batch sizes K =
1, 5, 10, 20, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. The reconstruction with K = 20
for noiseless data (j) is qualitatively comparable to the full reconstruction. The quality deteriorates quickly for small batch sizes and noisy
data.
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Figure 8: Error between the inverted and true model for the SAA approach with various batch sizes and the full problem, (a) without noise,
(b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). On noiseless data, we achieve a qualitatively comparable result with K = 20,
as can be seen from (a). For noisy data, however, the largest batch size is not enough to prevent overfitting.

a finite sequence of N step sizes a prior and consider the error
in the expected value function

Exν

{
f (xν)

}
− f (x∗) (23)

after N iterations. This is similar to the SAA analysis but is
much easier to interpret, because now the desired accuracy
in the objective value directly translates to the number of
iterations of a particular algorithm

xν+1 = πX
(
xν − γνsν

)
,

x =
∑N−1

ν=0 γνxν

∑N−1
ν=0 γν

,
(24)

where πX is projection onto the convex set of admissible
models X. Unfortunately, the error is O(L2(

∑
γ2

ν
/
∑
γν) +

R2(1/
∑
γν)), where R is the diameter of the set X (related

to the bounds on x from our earlier example) and L is a
uniform bound on ‖∇ f ‖, and so the estimate may be overly
conservative. If all the γν are chosen to be uniform, the
optimal size is γ = R/L

√
N , and then the result is simply

Exν

{
f (xν)

}
− f (x∗) ≤ LR√

N
. (25)

For a recent survey of stochastic optimization and new robust
SA methods, please see Nemirovski et al. [27].

Note that the error rate in the objective values is O(1/√
N), where the constant depends in a straightforward way
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Figure 9: Inversion result for the SA approach without averaging for various batch sizes and noise levels. The rows represent different batch
sizes K = 1, 5, 10, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. We obtain good results with
K = 1, and the quality does not improve dramatically for larger batch sizes, except for the highest noise level.

on the size of the set X and the behavior of ‖∇ f ‖. Compare
this to the O(1/

√
K) error bound for the SAA approach. In

contrast to the SAA, the SA approach translates directly into
a particular algorithm. This makes it easier to implement
for full waveform inversion, but also leaves less freedom for
algorithm design than in SAA, where any algorithm can be
used to solve the deterministic ensemble average problem.

4. Algorithms

To test the performance of the SAA approach, we chose to
use a steepest descent method with an Armijo line search
(cf., [35]). Although one could in principle use a second-
order method (such as L-BFGS), we chose to use a first-order

method to allow for better comparison to the SA results. The
pseudocode is presented in Algorithm 1.

The SA methods are closely related to the steepest descent
method. The main difference is that for each iteration a new
random realization is drawn from a prescribed distribution
and that the result is averaged over past iterations. We
chose to implement a few modifications to the standard
SA algorithms. First, we use an Armijo line search to
determine the step size instead of using a prescribed sequence
such as that discussed in the previous section. This assures
some descent at each iteration with respect to the current
realization of φK , and we found that this greatly improved
the convergence. Second, we allow for averaging over the
past n iterations instead of the full history. This prevents
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Figure 10: Error between the inverted and true model for the SA approach without averaging for various batch sizes and the full problem,
(a) without noise, (b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). We get qualitatively similar results, compared to the full
inversion, with K = 1 for noiseless data and data with 10 dB of noise. For very noisy data (20 dB), we need a larger batch size. Although the
SA approach requires roughly the same number of iterations as the full inversion, the iterations are much cheaper. For K = 1, we model the
data for only one simultaneous source per iteration, compared to 61 for the full inversion.

the method from stalling. The pseudo-code is presented in
Algorithm 2.

5. Results

For the numerical experiments, we use the true and initial
squared-slowness models depicted in Figure 1. The data are
generated for 61 equispaced, colocated sources and receivers
at 10 m depth and 7 randomly chosen (but fixed) frequencies
between 5 and 30 Hz. The latter strategy is inspired by results
from compressive sensing (cf., [7, 36, 37]). The basic idea is
to turn aliases that are introduced by sub-Nyquist sampling
into random noise.

The Helmholtz operator is discretized on a grid with
10 m spacing, using a 9-point finite difference stencil and
absorbing boundary conditions. The point sources are rep-
resented as narrow Gaussians. As a source signature, we use
a Ricker wavelet with a peak frequency of 10 Hz. The noise is
Gaussian with a prescribed SNR.

We run each of the optimization methods for 500 iter-
ations and compare the performance for various batch sizes
and noise levels to the result of steepest descent on the full
problem. Remember that by using small batch sizes, the
iterations are very cheap, so we can afford to do more. The
random vectors are drawn from a Gaussian distribution with
zero mean and unit variance. We chose to use the Gaussian
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Figure 11: Inversion result for the SA approach with limited averaging (n = 10) for various batch sizes and noise levels. The rows represent
different batch sizes K = 1, 5, 10, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. We obtain
good results with K = 1, and the quality does not improve dramatically for larger batch sizes, except for the highest noise level.

because the theoretical bounds on K do not depend on
properties of the residual matrix. Although the matrix will
change constantly during the optimization, we can at least
expect a uniform quality of the approximation.

In a realistic application, one might want to add a
regularization term. In particular, this would prevent the
overfitting that we observe in the noisy case. Note that
limiting the amount of iterations also serves as a form of
regularization [38].

5.1. Sample Average Approximation. We choose a set of K
Gaussian random vectors with zero mean and unit variance
and run the steepest descent algorithm presented previously

on the resulting deterministic optimization problem. The
results after 500 iterations on data without noise are shown in
the first column of Figure 7. The error between the recovered
and true model is shown in Figure 8(a). As reference, the
error between the true and recovered model for the inversion
with all the sequential sources is also shown. As expected,
the recovery is better for larger batch sizes. The recovered
models for data with noise are shown in the second column
(SNR = 20 dB) and third (SNR = 10 dB) columns of Figure 7.
The corresponding recovery error is shown in Figures 8(b)
and 8(c), respectively. It shows that the SAA approach starts
overfitting in an earlier stage than the full inversion. Also,
we are not able to reach the same model error as the full
inversion.
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Figure 12: Error between the inverted and true model for the SA approach with limited averaging for various batch sizes and the full
problem, (a) without noise, (b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). The convergence is smoother than that of SA
without averaging, especially when the data is very noisy (10 dB). The averaging seems to slow down the convergence slightly, however, and
we need a batch size K = 5 for the best results.

5.2. Stochastic Approximation. We run the stochastic descent
algorithm for varying batch sizes (K = 1, 5, 10) and history
sizes (n = 0, 10, 500).

The results obtained without averaging are shown in
Figure 9. The columns represent different batch sizes, while
the rows represent different noise levels. The recovery errors
for the different batch sizes and noise levels are shown in
Figure 10. In the noiseless case, we are able to achieve the
same recovery error as the full inversion with only one
simultaneous source. When noise is present in the data, one
simultaneous source is not enough, however. Still, we can
achieve the same recovery error as the full problem with only
10 simultaneous sources. This yields an order of magnitude
improvement in our computation, since the total number

of iterations needed by the stochastic method to achieve a
given level of accuracy is roughly the same as required by a
deterministic first-order method used on the full system, but
each stochastic iteration requires ten times fewer PDE solves
than a deterministic iteration on the full system.

Results obtained with averaging over the past 10 itera-
tions are shown in Figure 11. The rows represent different
batch sizes, while the columns represent different noise
levels. The corresponding recovery errors are shown in
Figure 12. It shows that averaging helps to overcome some
of the noise sensitivity, and we are now able to achieve
a good reconstruction with only 5 simultaneous sources.
Also, the averaging damps the irregularity of the convergence
somewhat.



International Journal of Geophysics 15

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(a)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(b)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(c)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(d)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(e)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(f)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(g)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(h)

x (km)

z
(k

m
)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

(i)

Figure 13: Inversion result for the SA approach with full averaging (n = 500) for various batch sizes and noise levels. The rows represent
different batch sizes K = 1, 5, 10, while the columns represent different noise levels: no noise, SNR = 20 dB, and SNR = 10 dB. Averaging
over the full past dramatically deteriorates the reconstruction.

While not converged do

s← −∇φ[mi]/‖∇φ[mi]‖2

find λ s.t. φ[mi + λs] ≤ φ[mi] + cλ∇φ[mi]
T s

mi+1 ← mi + λs
i← i + 1

end while

Algorithm 1: Steepest descent.

Finally, we show the result obtained by averaging over the
full history in Figure 13. The corresponding recovery error is

While not converged do

draw w from a pre-scribed distribution
s← −∇φ[mi,w]/‖∇φ[mi,w]‖2

find λ s.t. φ[mi + λs,w] ≤ φ[mi,w] + cλ∇φ[mi,w]
T s

mi+1 ← (1/(n + 1))(
∑i

i−nmi + λs)
i ← i + 1

end while

Algorithm 2: Stochastic descent.

shown in Figure 14. It shows that too much averaging slows
down the convergence.
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Figure 14: Error between the inverted and true model for the SA approach with full averaging for various batch sizes and the full problem,
(a) without noise, (b) with noise (SNR = 20 dB), and (c) with noise (SNR = 10 dB). Averaging over the full past slows down the convergence
dramatically.

6. Conclusions and Discussion

Following Haber et al. [39], we reduce the dimensionality
of full waveform inversion via randomized trace estimation.
This reduction comes at the cost of introducing random
crosstalk between the sources into the updates. The resulting
optimization problem can be treated as a stochastic optimiza-
tion problem. Theory for such methods goes back to the
1950s and justifies the approach presented by Krebs et al.
[8]. In particular, we use theoretical results by Avron and
Toledo [14] on randomized trace estimation to get bounds
for the batch size needed to approximate the misfit to a
given accuracy level with a given probability. Numerical tests

show, however, that these bounds may be overly pessimistic
and that we get reasonable approximations for modest batch
sizes.

Theory from the field of stochastic optimization suggests
several approaches to tackle the optimization problem
and reduce the influence of the crosstalk introduced by
the randomization. The first approach, the sample average
approximation, dictates the use of a fixed set of random
sources and relies solely on increasing the batch size to get
rid of the crosstalk. The stochastic approximation, on the
other hand, dictates that we redraw the randomization each
iteration and average over the past in order to suppress the
stochasticity of the gradients.
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We note that, as opposed to randomized dimensionality
reduction, several authors have proposed methods for deter-
ministic dimensionality reduction [39, 40]. These techniques
are related to optimal experimental design and try to
determine the source combination that somehow optimally
illuminates the target. It is not quite clear how such methods
compare to the randomized approach discussed here. It is
clear, however, that by using random superpositions we have
access to powerful results from the field of compressive
sensing to further improve the reconstruction. Li and
Herrmann [11] use sparse recovery techniques instead of
Monte Carlo sampling to get rid of the crosstalk.

In our experiments, we were able to obtain results that
are comparable to the full optimization with a small fraction
of the number of sources. In the noiseless case, we needed
only one simultaneous source for the SA approach. Even
with noisy data, five simultaneous sources proved sufficient.
This is a very promising result, since using five simultaneous
sources for the SA method means that every iteration
requires 20 times fewer PDE solves, which directly translates
to a 20x computational speedup compared to a first-order
deterministic method. The key point is that both SA and the
full deterministic approach require roughly the same number
of iterations to achieve the same accuracy.

Averaging over a limited number of past iterations
improved the results for a fixed batch size and allows for
the use of fewer simultaneous sources. However, too much
averaging slows down the convergence.

The results of the SA approach, where a new realization of
the random vectors is drawn at every iteration, are superior
to the SAA results, where the random vectors are fixed.
However, one could use a more sophisticated (possibly black
box) optimization method for the SAA approach to get a
similar result with fewer iterations. The tradeoff between
using a smaller batch size and first-order methods (i.e., more
iterations) versus using a larger batch size and second-order
methods (i.e., less iterations) needs to be investigated further.
Random superposition of shots only makes sense if those
shots are sampled by the same receivers. In particular, this
hampers straightforward application to marine seismic data.
One way to get around this is to partition the data into blocks
that are fully sampled. However, this would not give the same
amount of reduction in the number of shots because only
shots that are relatively close to each other can be combined
without losing too much data.

The type of encoding used will most likely affect the
behavior of both SA and SAA methods. It remains to be
investigated which encoding is most suitable for waveform
inversion.
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