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Seismic Waveform Modeling In Heterogeneous Media by Ray 

Perturbation Theory 

VERONIQUE FARRA AND RAUL MADARIAGA 

Iabomtoire de Sismologie, Ir•stitut de Physique ds Globe, Paris, Frar•ce 

We study the propagation of rays, paraxial rays, and Gaussian beams in a medium where 
slowness differs only slightly from that of a reference medium. Ray theory is developed using a 
Hamiltonian formalism that is independent of the coordinate system under consideration. Let us 
consider a ray in the unperturbed medium. The perturbation in slowness produces a change of the 
trajectory of this ray which may be calculated by means of canonical perturbation theory. We define 
paraxial rays as those rays that propagate in perturbed medium in the vicinity of the perturbed 
ray. The ray tracing equation for paraxial rays may be obtained by a linearization of the canonical 
ray equations. The linearized equations are then solved by a propagator method. With the help 
of the propagator we form beams, i.e. families of paraxial rays that depend on a single beam 
parameter. The results are very general and may be applied to a number of kinematic and dynamic 
ray tracing problems, like two-point ray tracing, Gaussian beams, wave front interpolation, etc. 
The perturbation methods are applied to the study of a few simple problems in which the 
unperturbed medium is homogeneous. First, we consider a two-dimensional spherical inclusion 
with a Gaussian slowness perturbation profile. Second, transmission and reflection problems are 
examined. We compare results for amplitude and travel time computed by exact and perturbed 
ray theory. The agreement is excellent and may be improved using an iterative procedure by which 
we change the reference unperturbed ray whenever the perturbation becomes large. Finally, we 
apply our technique to a three-dimensional problem: we calculate the amplitude perturbation and 

ray deflection produced by the velocity structure under the Mont Dore volcano (central France). 
Again a comparison shows excellent agreement between exact and perturbed ray theory. 

INTRODUCTION 

Exact solutions of wave propagation problems in three 

dimensions may be obtained only by numerical techniques 
like finite differences or finite elements. There are many pro- 

blems, however, where approximate techniques like geome- 

trical ray theory are applicable. So far most of the applica- 

tions of ray theory have been limited to ray tracing because 

of some essential instabilities that appear in the numeri- 

cal evaluation of ray amplitudes. These are mostly due to 

the fact that ray theory is an infinite frequency method. At 

finite frequencies many of these instabilities are smoothed 

out. Recently, several new methods have been proposed to 

avoid these instabilities in ray theory. For instance, Chapman 

[1978] proposed to use the WKB method to generate high- 
frequency seismograms in vertically heterogeneous media. 

Chapman and Drummond [1983] used the uniform Maslov 
method for the calculation of high-frequency fields in arbi- 

series of apparently unrelated techniques like dynamic ray 

tracing, Gaussian beams, WKB ,ray bending, etc., in a com- 
mon theoretical framework. We intend to show in this paper 

that all these problems are particular applications of the pa- 

raxial approximation, which is itself derived from first-order 

ray perturbation theory. 

A related problem that frequently appears in practice is 
how will the ray field be affected by small changes in the 

velocity or slowness structure. This problem has already 

been properly formulated for surface wave tracing when the 
structure differs only slightly from a spherically averaged 

model. Woodhouse and Wong [1986] have recently showed 
how to calculate rays and amplitudes in this perturbed 
medium. 

In this paper we will study non dispersive ray propaga- 

tion in three-dimensional heterogeneous media. A general 

formalism based on HamiltonJan theory will be used so that 

our results are independent of the coordinate system. Once 

trarily heterogeneous media. Even more recently, researchers the general formalism is presented, we will discuss in de- 
in Leningrad and Prague proposed to use a superposition of tail the case of a three-dimensional homogeneous medium 
Gaussian beams in order to generate high frequency syn- to which we add a small smooth velocity perturbation. Ray 
thetics [e.g.,Cerven• et a/.,1982; Cerven• and Pgen•ik, 1984; 
V. M. Babich et al., preprint, 1985]. All these methods al- 
low relatively fast computation of complex seismograms wi- 

thout special care for caustics and other ray field singulari- 

ties [No,oak and Aki, 1984; Yomogida and Aki, 1985; George 
et al., 1986] . As shown by Madariaga and Papadimitriou 
[1985] and Klime•' [1984], Gaussian beam summation in ver- 
tically varying media is an extension of the WKB method 
with some complex initial conditions. The unifying concept 

here is the so-called paraxial ray theory that incorporates a 
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and amplitude perturbations will be compared with exact 
solutions. For this same problem we will show that Gaussian 

beam perturbations may be found by the same paraxial ray 

tracing used to evaluate geometrical spreading. An exam- 

ple of Gaussian beam calculation will be presented. Finally, 

we demonstrate a three-dimensional application to the cal- 

culation of amplitudes simultaneously with the travel time 

perturbations. This results may be used to include wave am- 

plitudes in the inversion of seismic velocity by Aki et al. 's 

[1977] method. 

RAY AND PARAXIAL RAY THEORY 

Ray and ray perturbation theory will be presented in 

a coordinate independent form. We adopt for this pur- 
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pose the Hamiltonian formalism of analytical mechanics. 

Let us consider the high-frequency asymptotic solution to 

the elastic wave equation in a laterally heterogeneous three- 

dimensional body. K•rM •nd K•ll•r [1959] showed that to 
zeroth order in frequency, P and ,5' waves propagate inde- 

pendently and that the Fourier- transformed displacement 
field may be written in the form 

u(q,w) = PO co exp[iwO(q,qo)] (1) 
pcJ(q, qo) 

where qo and q are the generalized coordinates of the source 

and receiver, respectively; p and Po are the densities at the 

receiver and the source, respectively; and ½ and co are the 

corresponding wave speeds. A[w) is a complex amplitude 
vector that depends on the polarity of the wave and the 

source excitation. For P waves, c = c• (the P wave velocity) 
and A is tangent to the ray; for $ waves, c = f• (the shear 
wave velocity) and A is a transverse vector tangent to the 
local wave front. In some of the examples discussed below 
we used an acoustic approximation for the P waves. In this 

case, the square rooted term in [1) is replaced by 

½oJ 

The travel time, 8[q, go), and geometrical spreading func- 
tion, J[q, qo), are obtained by ray tracing in a three- 
dimensional perfectly elastic body. The rays can be found 
by solving the eikonal equation: 

(V0) 2 = c-2(q) = u2(q) (2) 

where q denotes the generalized coordinates of a point inside 
the earth, c is the appropriate wave speed and u is the 
corresponding slowness. V is the gradient operator in q 
coordinates, so that V8 is normal to the wave front and 

represents the slowness vector. 

Two different versions of the HamiltonJan formalism have 

been discussed in the seismological literature. The first is 

based on the use of an independent parameter to measure 
position along the ray. This parameter may be distance 
along the ray, travel time or the parameter discussed by 
Burridge [1976] and Chapman and Drummond [1982]. For 
instance, if we choose arc length s as the parameter, then 
the HamiltonJan is 

1 -1 _ •2 niq, iv, s) = • u (q) [iv2 (q)] = 0 

where iv = V0 is the slowness vector. Use of this formalism 

leads to a system of six ray tracing equations, which must 
be integrated subject to the condition that H = 0. We will 

not discuss this approach any further since it will not be 
adopted in this paper. 

The alternative formulation, which will be adopted here, 
is to use the eikonal equation (2) to eliminate one of the 
space variables. Since H in (3) is always zero, at least one of 
the space coordinates is cyclic [Landau and Lifschitz, 1981; 
Goldstein, 1981] and may be used as a parameter along 
the ray. Let •r denote this independent variable and q a 
two-dimensional vector containing the other two position 
variables. In general orthogonal curvilinear coordinates the 
slowness vector has the form: 

•70__ (h•100 00, 00) 
where h,,(•r,q) and hi(•r,q) are the scale factors correspon- 
ding to each of the coordinates. Then we define for each of 
the two qi a conjugate momentum 

08 

= (i 

Let us remark that with this definition the ivi are not the 
components of the slowness vector except in the special cases 
when the scale factors hi - 1. 

The position q and moments iv define a four-dimensional 
phase space instead of the six-dimensional one for the clas- 

sical HamiltonJan (3). A ray trajectory is defined as the 
curve described in this space by the canonical vector y(•) = 
[q(•r), iv(•r)]. Ray trajectories are parameterized by the inde- 
pendent coordinate •. Finally, we define the reduced Hamil- 
tonian: 

H(q,p,•r) = -h,,•/u2(•r,q)- h•'2p12 _ h•-2p• (4) 
Considering (2) and the definition of VS, we observe that 

H = -OO/0o' = -iv,, 

Thus the reduced HamiltonJan H has a clear physical 
meaning: it is the momentum associated with the in- 

dependent variable •r. With these definitions, the com- 

plete position coordinates are (•r, ql, q2), the conjugate 
momentum is (-H, pl,p2), and the slowness vector is 

Two systems of coordinates will be considered in this 

paper. First, the simplest, is the usual geographical system 
shown in Figure 1 in which the independent parameter •r 
is the vertical coordinate z that points into the earth. In 
this system the scale factors hz = h i = 1. The other 
coordinate system that will be used is the ray-centered 

system introduced by Babich and Buldyrev [1972] and shown 
in Figure 2. This system is built around a certain given 
unperturbed reference ray; •r is the distance along this 
ray, and q are orthogonal coordinates defined on a plane 
perpendicular to it. This is the system most frequently used 

to construct Gaussian beams (see, for example, Cervenl• et 
a•. [•9s21). In this case, h,, = (1 -u-lq Ou/Oq) and aq = 1. 

Equation (4) contains all the information that is needed 
to generate rays and calculate the wave fronts. Rays are ob- 

tained from (4) by applying Hamilton's method[Oervenl• et 
a/., 1977; Cerven•, 1985] which yields the following canonical 
ray equations: 

OH OH 

4 = OIV IJ = Oq (5) 

where the dot indicates derivative with respect to the in- 
dependent parameter •r. Equations (5) should be completed 
with appropriate initial or boundary conditions at •r = •ro 
and •r = •q, which will be discussed after we study slowness 
perturbations in next section. 

Once the ray trajectories [•r,q(•r),p(•r)] have been found, 
the travel time is found by direct integration along the 
trajectory: 
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axial 

Z • • 

Po A $p 

Z unpertur 

Fig. 1. Geometry of ray and paraxial ray parameters in a two- 
dimensional geographical coordinate system. Position is defined 
by (•r, q) = (z, x), and the conjugate momentum Pz is simply the 
horizontal component of the slowness vector. The vertical slow- 
ness Pz = -H is the Hamiltonian. The perturbed central ray 
is specified by the pertubation Ax with respect to the unpertur- 
bed central ray. A paraxial ray is specified by •x measured with 
respect to the perturbed reference ray. 

where 

e(•r,q,•ro,qo) = L[s,q(s),cj(s)] ds 
o 

V/ 2 '2 2 '2 œ(•.q. 4) = p4 - H = .(•.q) • + •xq• + •eqe 

is the Lagrangian function. 
Geometrical spreading J, as well as Gaussian beams will 

be obtained from the so-called paraxial ray approximation, 

which is in fact a particular application of perturbation 

theory. Paraxial rays (see, for example, Deschamps [1972]) 
are those rays that propagate in the vicinity of a certain 
reference ray. They differ from this reference or central ray 
by small changes (perturbations) in position and slowness. 
Let us assume that we have already traced a reference 

ray in the medium with unperturbed slowness distribution 
uo(•r,q). We will denote with •/o(•) = [qo(•r),po(•)] the 
canonical vector trajectory of this reference ray. Paraxial 

rays are given by 

q(o') = qo(o') + 5q(o') = (?) 

where 6•/ = [6q, 6p] denote the perturbations in canonical 
vector (position and slowness). These perturbations are due 
to small c]•anges •q(•ro) and 6p(•o) in the initial values of 
q and p. In order to trace paraxial rays we insert (7) into 
(5), and developping to first order, we find the following 
linearized system: 

(8) 

where all the derivatives of the Hamiltonian are calculated 

on the reference ray. Solutions to this linear system may 

be found by standard propagator techniques [Gilbert and 
Backus, 1966]. Let us first simplify the notation in (8) to 

= no() (9) 

where 6•/denotes the perturbation of the canonical vector in 

phase space. Ao is a matrix containing second-order partial 

derivatives of H, that appear in (8). Then, given the initial 
value •$t(•ro), the subsequent evolution of the canonical 
vector in phase space is given by 

6y(•r) = Po(•r, •ro) 6y(•ro) (10) 

where Po(•r, •ro) is the propagator matrix, which is a solution 
of (9) with initial conditions Po(•ro,•0)= I, where I is the 
identity matrix. 

When it is written in ray-centered coordinates (see Figure 
2), the linear system (8) reduces to the so-called dynamic 
ray tracing system derived by Cerven• and Pgenfik [1983] 
for the calculation of the Jacobian J. 

SLOWNESS PERTURBATION 

Let us consider now a smooth perturbation of the model 

such that the slowness is slightly changed from uo to u = 

uo + Au. Capital A will be used to denote perturbations due 

to the structure, and low case 6 will be used for paraxial 

perturbations. The perturbation in slowness produces a 

corresponding perturbation of the Hamiltonian' 

H(q, p, •r) = He(q, p, •r) + AH(q, p, 

where AH = OH/Ou Au and He is the HamiltonJan (4) 
for the reference slowness uo ß In principle, ray tracing 

may be done by replacing the new HamiltonJan in the 

canonical equations (5) and solving this nonlinear system. 
To first order in Au it is possible to linearize these equations 

considering only rays that deviate slightly from the reference 

c 

unperturbed 

Fig. 2. Geometry of ray and paraxial ray parameters in a ,two- 
dimensional ray centered coordinate system. Position is defined by 

(•r,q = •), and the conjugate momentum Pn is the components 
of slowness perpendicular to the central ray. The perturbed ray is 
specified by An measured with respext to the unperturbed central 
ray. A paraxial ray is specified by 6n measured with respect to 
the perturbed central ray. 



2700 FARRA AND MADARIAGA : SEISMIC WAVEFORM MODELING 

one. Introducing the perturbed canonical variables q = 

qo + Aq and p = Po + Ap, we get: 

0:2 c9:2Ho c9 A H Ac• = Ho Aq + Ap + 
c9q c9p c9 p 2 c9p 

_ • c9AH At}= O:•Hø Aq 0 aHo A•_• 
c9 q 2 c9 q c9 p c9 q 

(11) 

where all the partial derivatives are calculated on the refe- 

rence ray. Equations (11} form a linear system which has 
the same form as that of paraxial rays {9}, except for the 
•source term n derived from AH. This term contains the 

gradient of the slowness perturbation, so that the perturbed 

rays behave like paraxial rays in the original medium which 

are continuously perturbed by the gradient of the slowness 

perturbation. We rewrite {11} in the simpler form 

= Ao() + aB() (•2) 

where A•/ is the perturbation of the canonical vector •/ in 

phase space. The vector AB contains the HamiltonJan per- 

turbations that act as sources in the linear system {11). The 
solution of (12) may again be found by standard propagator 
theory [Gilbert and Backus, 1966]: 

= + aB() (is) 
o 

where A•/(•ro) is the initial perturbation. If we are interested 
in a perturbation of the reference ray such that the initial 

conditions are conserved, then Ay(ao ) = 0. In most of the 
applications in this paper we will be interested in the two- 

point boundary value problem so that the perturbed ray 
passes through both the source and the observer. In this 

case the boundary conditions for the solution of (13) are 
Aq(•ro) = 0 and Aq(•rl) = 0, where •rl is the end-point of 
the ray. 

Finally, we may now look for the paraxial rays in the 

perturbed medium. These are rays that propagate in the 
vicinity of the perturbed ray •/= •/o + A•/. Careful analysis 

of the perturbation of the matrix Ao in (9) leads to the 
following linear system of equations for the paraxial rays: 

6• = A(o') 6y (14) 

where 6•/is the perturbation measured from the perturbed 

reference ray. In (14) the matrix A(•r) = Ao(•r) + AA(•r), 
where AA = AA• + AA2 , and 

AA1 = 

c9 :2 A H c9 :2 A H 

c9 q c9 p c9 p 2 
c9 :2 A H c9 :2 A H 

c9q 2 c9 qc9 p 

is a term due to perturbations in the HamiltonJan, while 

AAa = [Aq•qq + Alo•pp] 
c9 q c9 p c9 p 2 

_ Oa Ho Oa Ho 
c9 q 2 c9 qc9 p 

is due to the perturbation Ay of the reference central ray. All 

the derivatives are calculated on the original unperturbed 

ray Yo. Comparing with {10), we observe that the paraxials 
of the perturbed reference ray are given by 

su() = su(o) (•s) 

where P{o',o'o) is the propagator of (14) which we may 
calculate by standard perturbation theory. To first order in 

the slowness perturbation, the Born approximation to P is 

P(o',o'o) = Po(o',o'o) + Po(o', r) AA(r)Po(r,o'o) dr 
o 

(16) 
Thus the paraxial rays 6y(•r) in the perturbed medium 

are given by an expression of the same form as that for 

the paraxials in the original medium (10), except that the 
propagator P has been perturbed as in (16). Let us remark 

deribe of 
paraxial ray referred to the perturbed trajectory of the 

central ray. Thus the total perturbation of a paraxial ray 

measured from the original unperturbed reference ray is 

6yT = Ay + 6y. This total perturbation is of little practical 

utility and will not be used in the following. We have 

purposely avoided using a separate notation for paraxial rays 
in the original medium and those in the perturbed one. This 

will simplify notation in next section. 

INITIAL CONDITIONS FOR PARAXIAL 

AND BEAMS 

Let us consider first the solution of the original nonlinear 

ray tracing equations (5). When [q(•ro), p(•ro)] are given as 
initial conditions at •ro we obtain the standard ray tracing 
problem. On the other hand, if q(•o) and q(•x) are specified 
at •ro and •r•, respectively, we obtain a two-point boundary 
value problem [Keller, 1968]. Of these two problems the first 
is simpler since it consists of a relatively straightforward 
integration of (5). The two-point problem is more difficult 
since one has to find by some iterative procedure the initial 

slowness p(•ro) of the ray that passes through q(•r•). One of 
the most powerfull methods to solve this problem is the ray 
bending method [Julian and Gubbin•, 1977] which is closely 
related to ray perturbation theory. 

In the following we will assume that a set of rays has 
been traced by some numerical method in the unperturbed 
medium and that we have also constructed the propagator 
Po(•r, •o). If we introduce a small perturbation in the slow- 
ness of the medium, the ray trajectories will be perturbed by 
a small amount Ay which can be calculated using (13). The 
new ray trajectories are then given by y(•r) = y0(•r)+ Ay(•r). 
In order to calculate geometrical spreading J and to gene- 
rate Gaussian beams, we construct a beam around each of 

these ray trajectories using the paraxial approximation. Let 
us remark that since the paraxial ray equations in unpertur- 
bed (10) and perturbed media (15) have the same form, the 
results derived in the following will be applicable to both 
the initial and perturbed media. 

Depending on the form of the initial perturbation 6y(•0), 
we will distinguish two fundamental types of paraxial rays: 

1. If 6P(•0) = 0, we have •plane wave r initial conditions 

in the nomenclature introduced by Cerven• et al. I1982]. In 
fact, keeping 6P(•o) = 0 while changing 6q(•o) generates a 
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beam of rays which are initially parallel to the reference ray. 
In homogeneous media the rays propagate along straight 
lines so that this boundary condition generates a true plane 

wave solution. In heterogeneous medium the rays bend and 
the actual form of the beam will depend on the particular 

coordinate system. 

2. If 5q(o.o) = 0, we obtain point source initial condi- 
tions since the coordinates of the starting point of the pa- 

raxial is kept fixed. As 5p(o.o) changes, a pencil of paraxial 
rays emanating from the source point is formed. 

Let us introduce the following partition of the propagator 
matrix: 

P(o.'o.ø)= Pz P2 

so that the paraxial solution is written as 

where subscript 1 denotes •'plane •' wave initial conditions 
and subscript 2 denotes point source conditions. This no- 
menclature has been chosen following that introduced by 

Gerven• et ai. [1982] in the special case of ray centered co- 
ordinates. 

In order to calculate geometrical spreading and Gaussian 
beams we have to generate a beam around the reference 

ray. We define a beam as a set of paraxial rays such that the 
perturbed initial conditions satisfy the linear relationship: 

[6qo]= [ •! 0][6po ] (18) 0 •2 

where the •i are complex scalars that define the initial form 
of the beam. For point sources • = •2 = 0, while for •plane • 
initial conditions • = •2 = oo. For Gaussian beams the • 

are complex with a negative imaginary part [Gervenl• et al., 
1982; Madariaga, 1984]. Although the •i may be different, 
for simplicity we will assume that • = •2 = •. In that case, 

(17) gives: 

•q = (eQ! + Q2)•po = (Q! + e-lQ2)Sqo 

= + = (P, + 

and the perturbed position and slowness are linearly related 
by •p = M •q, where 

= + + (2o) 

The matrix M(o.) is related to the curvature of the wave 
front, but except for ray-centered coordinates, this relation 
is not simple. Let us note that the initial value of M(o.o) = 
e-•I. 

We may now calculate the travel time/• for the paraxial 

rays in a beam. From (6) we find 

+ = + + 

8(o.,q) = 80(o.,qo) + Au(o.,qo) do' -!- Po(O.) Aq(o.) (22) 
o 

with the obvious notation that ao(o.,qo) is the travel time 
along the unperturbed reference ray [qo(o.),Po(o.)]. We can 
use 6p = M 6q in (21) to obtain 

1 

8(o., q + 5q) = 8(o., q) + p 6q + •6qtM 6q (23) 

where dagger denotes transposition. A similar expression 

for cartesian coordinates was obtained by Madariaga and 

Papadimitriou [1985]. 
We may now determine geometrical spreading. Let us 

consider again a beam around the reference ray q(o.). At 
o. = o.o, an elementary beam cross section is defined by 

dS(o) = Ileqx x eq=11 ½obo (24) 

where 5q•. and 5q2 are two arbitrary but nonparallel paraxial 

ray vectors; •bo is the angle between the tangent to the 

perturbed ray and the unit vector perpendicular to •qz and 

5q2. We now follow this elementary cross section along the 

reference ray. At a point o. the cross section dS(o.) is again 
given by (24) where the •qi are updated using (19) and 
is replaced by •b, the local angle between the normal to the 

surface dS and the tangent to the perturbed ray. Thus 

dS(o.) det(Qz + e-ZQ cosb = aS(o) 

and, since by definition the Jacobian J -- dS(o.)/dS(o.o), we 
find 

J(o.,o.o) = det(Q! + e-XQ2) cos•b (25) 
cos •o 

This expression for geometrical spreading has to be modified 

for point sources since in this case e -• 0, so that J 

becomes singular. This difficulty is solved incorporating • in 

the excitation vector A(•o) (see equation (1)). In this case, 
J (o., o.o) - der(Q2) cos •b cos- • •bo, which is the expression 
most commonly used in seisinology. 

Using (23) for t• and (25) for J in (1), we find the most 
general expression for a beam in the vicinity of a reference 
ray. These expressions are valid both in unperturbed and 

perturbed media. In the former case, Qi and Pi are obtained 

partitioning the unperturbed propagator Po(o.,o.o), in the 
latter from the perturbed propagator (16). Gaussian beams 
are a particular case of a beam in which e is complex and its 

imaginary part is less than zero. Thus we can use the theory 
presented here to solve perturbation problems for rays and 
beams. 

HOMOGENEOUS I:LEFERENCE MODEL 

The general results obtained above take a very simple 

form when the reference medium is homogeneous. In the 

following we will discuss this particular case with some de- 

tail because the examples that will be presented later in the 
paper are perturbations with respect to a homogeneous refe- 

where [q(o.), p(o.)] is the perturbed canonical vector of the rence medium. A reference ray in the unperturbed homoge- 
reference ray in phase space. To first order in the slowness negus medium is of course a straight line. The ray-centered 
perturbation, the travel time t•(o.,q) along the perturbed coordinate system associated with this reference ray is Car- 
reference ray is resJan. We take as independent parameter o., the abscissa 
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along the reference ray, and q and p are two-dimensional vec- 
tors defining position and slowness in plane perpendicular 

to the reference ray. We can write the reduced unperturbed 

Hamiltonian in this coordinate system as 

which is independent of •r and q. The ray tracing equations 

($) take the simple form 

= P = 0 (26) 

Let us denote with yo(•r) = (qo,Po), the four-dimensional 
canonical vector representing a ray at the abscissa (,. The re- 

ference ray in the unperturbed medium is simply Yo(•*) = 0. 
The paraxial rays in the unperturbed medium are obtained 

by a small perturbation of the initial conditions, •(•*o). De- 
veloping equations (26) up to first order in •y, we obtain the 
linear differential system, 

6• = Ao(a) •y (27) 

with 

0 vol ] Ao = 0 0 

where vo is the velocity in the reference medium and I is 

the identity matrix. The solution of (27) is 

= Po(, 

where Po is the propagator matrix given by 

I vo(•r - •ro)I] Po(•, •o) = 0 (28) 

The perturbation Ay(•r) of the reference ray is obtained 
solving (29) by the propagator technique 

o 

(30) 

where Po is the propagator (28). The perturbation solution 
(30) may be used to solve a number of initial and boundary 
value problems. For instance, if we want to trace a perturbed 
ray with the same initial conditions as the reference ray, 
we would take Ay(ao) = 0. If we want to calculate the 
perturbed ray passing through the same source and observer 

as the unperturbed ray, then we take Aq(•r o)= Aq(•r) = 0 
and use (30) to calculate Ap(•ro). 

The paraxial rays with respect to the perturbed reference 

ray are given by (14), where A(•r) = Ao(•r) + AA(•r) with 

(3•) 

Here, AU(•r) = c•2Au/c9qc9q is the matrix of second-order 
partial derivatives of Au in the q plane. As shown in (15), 
the perturbed paraxial rays are given by 

= (32) 

where P is the perturbed propagator. To first order in Au, 

P(•r,•ro) -- Po(•r, •ro) + Po(•r, r)AA(r)Po(r, •ro) dr (33) 
0 

where AA((,)is given explicitly by (31) and Po by (28). Once 
the perturbed trajectory of the central ray A•(•,} and the 
propagator P(•, •ro) have been calculated, the geometrical 
spreading may be calculated Using (25) and the complex 
travel time 8 of a Gaussian beam is calculated using (23). 
Thus we have all the elements to calculate the ray field in 

This is the same as used by Cerven•j et •. [1982] in their the perturbed medium. 
study of Gaussian beams in a homogeneous medium. 

Let us consider now the perturbed slowness distribu- 

tion u(•r,q) = uo + Au(•r,q), where the perturbation Au 
is a smooth function which is assumed to have continuous 

second-order derivatives. In order to determine the pertur- 

bation of ray trajectories we expand the new reduced Ha- 

miltonjan, H(•r, q, p) = -V/u2(•r, q) - p2, in a Taylor series 
around the reference ray in the homogeneous medium. Kee- 

ping terms up to first order in 

A SIMPLE EXAMPLE: 

A GAUSSIAN SPHERICAL INCLUSION 

We now apply the method developed in the previous 
sections to a very simple two-dimensional acoustic wave 

propagation problem. As described in Figure 3, the velocity 
distribution consists of a homogeneous medium of velocity 
vo = 3 km•s containing a smooth circular low-velocity zone. 
The total velocity is 

H(•r,q,p) = Ho(p) + AH(•r,q,p) 

where 

aH(,q,p) = - ,,o 

The perturbed rays are solutions of (12) which for a homo- 
geneous reference medium becomes 

with 

(29) 

where 

v--vo-Avp exp -•(•oo )2 

The peak velocity perturbation is Avp = 0.5 km/s, and the 
effective radius of the low velocity perturbation is Do = 1 

kin. As shown in Figure 3, the main effect of the low-velocity 
zone is to focus the rays behind the perturbation. In Figure 
3 we compare the rays traced using the perturbation method 

with the results of exact ray tracing. The exact rays shown 

with continuous line were obtained by numerical integration 
of the ray equations with the Runge Kurta method. The 

results of perturbation theory are shown by the dotted lines. 
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Fig. 3. Geometry of the spherical inclusion model and ray tracing through it. The perturbation in velocity is 
centered at (5,5) and h•s a Gaussian profile with effective radius 1 Km. Source is located at the origin. Exact 
rays (solid lines) traced by numerical integration of the ray equations may be compared with rays calculated by 
perturbation theory (dotted lines). 

The error in the perturbation method is larger for the rays 
that travel near the center of the velocity perturbation. This 

is clearly seen in Figure 3, where the perturbed rays get 
farther and farther from their respective reference ray once 

they cross the perturbation. 
Let us compare now synthetics calculated by exact ray 

theory and by the perturbation method. We consider an 
acoustic line source located at the origin. The ray field is 

given by 

exp[/wS(, = ff() (34) 

where f(w) is the source time function defined below. 
We compare in Figure 4 the synthetics calculated with 

the perturbation method with those calculated using exact 
ray tracing. The receivers are located on an horizontal line 
at a depth of 7 km (see Figure 3). For the calculation of 
exact eeismograms we would have in principle to solve a 
series of two-point boundary value problems in order to trace 

rays from source to receiver. We used instead the paraxial 
technique described by Cerven• and Pgenfi/• [1983] in order 
to interpolate between neighboring rays. All the calculations 
were carried out in two dimensions; however, in order to 
simulate a three-dimensional medium we chose a source time 

function of the following form 

= L--J 
Moreover, in order to avoid singularities in the time domain, 
the synthetics were smoothed with the sampling function 

source function width. The perturbation method gives these 

time perturbations with a maximum relative error of 2 % 
at the studied receivers. The amplitude of the signals are 

also very well modeled by the perturbation method even at 
the horizontal range of 7 km, where amplitude has doubled 
with respect to its value in the unperturbed medium. The 
results for travel time are quite good as we could expect 

from Fermat's principle [Alii et al., 1977]. The results for 
amplitude are also quite encouraging at least for smooth 
perturbation like the one considered in this example. 

We also applied the perturbation method to the compu- 

tation of a single Gaussian beam traveling in the perturbed 
medium. We considered an acoustic source located at z = 

5 km on the surface of the model (z = 0). We studied the 
Gaussian beam that leaves the source with a vertical ini- 

tial direction. Because of the symmetry of the perturbation 

9. 0 .• exact 
perturbed 

8.0 

7.0 

o.o 

5.0 

4.0 

3.0 

2.0 

1.0 

(35} 

where At z = 0.02 s. The perturbation in propagation times 
are of the order of 0.15 s, which is much greater than the 

I I I I I I 

Fig. 4. Seismograms calculated at a series of receivers located 
at a depth of 7 km in the model of Figure 3. 
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Fig. 5. Comparison of a Gaussian beam calculated by exact and approximate propagators. The central ray of 
the beam is vertical and the source is at (5,0) in the model of Figure 3. The top panel shows the Gaussian beams 
computed at depth of 4 km, while the bottom one shows the beams at 7 km depth. The traces are calculated at 
horizontal distance increments of 0.5 km and are centered around x = 5 km. The first column shows the beams in 

a homogeneous reference medium. The second column shows beams calculated exactly in the perturbed medium. 
The last column shows the results obtained for the perturbed model with perturbation theory. 

about this line, the central ray remains straight in the per- 

turbed medium, i.e. Ay(a) = 0. The Gaussian beam is given 
in the time domain by 

u(•r, q, t) = v(•r0) S(•r) P• t - O(•r, q) 

Where J and 8 are computed using (25) and (23), respecti- 
vely. The complex beam parameter was chosen as e = -i. 

In order to eliminate the problem with the pole at t = 8 
when 6q = 0, the synthetics were smoothed with the sam- 

pling function e(t) defined in (35), in which Art = 0.02 s. 
As shown by Madariaga and Papadimitriou [1985], this is ob- 
tained by adding a small imaginary part, equal to iAtt, to 
O. 

We computed the displacement due to this Gaussian beam 
on two horizontal lines located at z = 4 km and z = 7 kin. 

The receivers were distributed every 0.5 km, symmetrically 

with respect to the central ray. At the center in Figure 5 

we show the results obtained for the perturbed medium 

using exact numerical solutions for the central ray and the 

propagator P. For reference, we show at left in Figure 5 the 

Gaussian beam in the unperturbed homogeneous medium. 

One can see the effect of the low-velocity zone on the 

amplitude and the curvature of the wave front which changes 

sign after crossing the perturbation: the concave wave front 

at 4 km becomes convex when it crosses the heterogeneity. 

Finally, at right in Figure 5 we show the Gaussian beams 

in the perturbed medium obtained with the perturbation 
method. The travel time and amplitude are practically 

identical with those of the center column, obtained with the 
exact method. 

REFLECTION AND TRANSMISSION OF PERTURBED 

RAYS AND BEAMS 

The interaction of perturbed rays with an interface was 

not considered in the general formulation presented above. 

In the following we discuss this problem in the case in which 
the interface remains fixed. The more dif•cult problem of 

the perturbation of the shape of the interface itself will be 
considered elsewhere. Let M be the point of incidence of 

the perturbed ray on the interface. In order to propagate 
the transmitted and reflected rays away from the interface 

we have to change the reference unperturbed ray. We choose, 

as the new reference ray, the ray of the unperturbed medium 

that is tangent at M to the direction of emergence of 

the reflected or transmitted ray in the perturbed medium 

(Figure 6). The new reference ray is therefore connected at 
M with the incident perturbed ray by the Snell-Descartes 

law expressed in the perturbed medium, 

sin 4i sin •t 

½i 
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smitted 

unperturbed\ 

transmitted • 
Fig. 6. Geometry of the interaction of a ray with an interface and 
the different coordinate systems used to continue the propagators 
across the interface. M is the point of incidence on the interface 
of the perturbed central ray. 

where ci and ct are the perturbed velocities at M of the 
incident medium and of the medium in which the reflected 

or transmitted wave propagates. The initial canonical vector 

representing the perturbed transmitted or reflected ray in 

this new reference system is simply A•/t (•) = O. 
Complex reflection coefficients are used at each interface. 

The amplitude of the reflected-transmitted wave is-calcu- 

lated by multiplying the complex amplitude A(w) in (1) by 
the reflection coefficient. Complex amplitudes are taken into 

account in the inverse Fourier transforms as described by 
Madariaga and Papadimitriou [1985]. 

The determination of initial conditions for the reflected 

or transmitted paraxial rays are somewhat more difficult to 

obtain. Let us introduce the following coordinate systems: 
/i• and P• are coordinate systems at M centered around 

the unperturbed incident and reflected-transmitted ray, res- 
pectively. 

R• is the Cartesian coordinate system of the interface at 
M. 

The 61t i and 61t• are the canonical vectors representing an 
incident paraxial ray in P• and P•, respectively. 

The 61t • and 61tt• are the vectors of the corresponding 
reflected or transmitted paraxial ray in P• and P•. 

Continuity of the phase at the interface is equivalent to 
the continuity of the paraxial canonical vectors expressed in 
the P• system, i.e., 

= 

We can now relate a canonical vector in the P• coordinates 

to that in ray centered coordinates /• or P• by canonical 
transformations as discussed in the Appendix. Denoting. M/ 
and Mt the canonical transformation matrices from P• to 
R• and from P• to R•, respectively, we obtain the following 
relations: 

= 
(38) 

Finally, using the continuity condition (37), we obtain 

(39) 

When there is no slowness perturbation, the matrix product 

Mt• reduces to the transformation matrix obtained by 

Cervenl• and Plen5ik [1984] using a phase matching method. 
The canonical perturbation vector 6It t determined from 
(39) is used as the new initial condition to propagate the 
reflected-transmitted paraxial ray away from M. 

As an example, we apply this method to the model 

described in Figure 7. The reference medium consists of 

three homogeneous layers with velocities of 3 km/s, 5 km/s 
and 6 km/s, respectively. We perturb this medium inserting 
a smooth circular high-velocity zone of the form 

Av -- Vl exp 

where vl -- 1 km/s, d:2 -- (x- 5) :2 -I- (z- 5):2, and Do -- 1 
km. 

The acoustic source was located on the free surface as 

shown in Figure 7. We traced in the perturbed medium the 

rays reflected on the second interface by the perturbation 
method. These rays are shown in Figure 7. One can see that 

the rays are deflected by the perturbation and spread out 
as they cross it. The same rays calculated using the Runge 
Kurta method are undistinguishable from those calculated 

by perturbation. 

We calculated synthetics at a number of receivers distri- 

buted on a vertical line, located 7 km away from the source 

as indicated by the vertical line on Figure 7. The source 
function was the derivative of Ricker's function: 

e(t) -- exp -•( ):2 

where At l = 0.02 s. In Figures 8 and 9 we show the syn- 

thetics calculated by classical ray theory in the reference 

5 10 
i I i ,,l I I I I _ 

5 

10 

Fig. 7. Geometry of a simple layered structure with a spherical 
inclusion and rays traced with the perturbation method. The 
model is the same as that in Figure 3, except that the unperturbed 
medium is a layered structure. The source is located at the origin. 
Rays traced with the exact method are practically identical to 
those shown here. 
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Fig. 8. Synthetic seismograms calculated on a vertical set of 
receivers located at a horizontal distance of 7 km from the 

origin in the model of Figure 7 without the circular high-velocity 
inclusion. 

medium and in the perturbed medium, respectively. They 

were computed using (34) modified to take into account the 
reflection and transmission coefficients at the interfaces. One 

can see the important effect of the perturbation on the syn- 

thetics, in particular the vertical shift of the nodal (almost 
zero amplitude) trace. This is due to the interaction of the 
perturbed rays with the interface rather than to perturba- 

tion of geometrical spreading. The node in amplitude is due 

to the particular form of the reflection coefficient on the se- 

cond interface. As the rays cross the high-velocity inclusion, 

they get deflected and the angle of incidence to the reflector 

decreases. Since we are close to critical angle, the reflection 

coefficient is very sensitive to these changes in incidence an- 

gle. At the bottom in Figure 9 we show the synthetics cal- 

culated by the perturbation method. The comparison with 

the results given by classical ray theory is excellent. 

ITERATIVE PERTURBATION 

The perturbation theory that we presented above has the 

obvious limitation that the perturbed ray may not move 

too far away from the unperturbed one in phase space, 

i. e. A• should be small. It is possible to reduce errors 

when A• increases by changing the reference ray as soon 

as the perturbed ray ceases to verify the following criterion: 

A• < A•max, where A•,nax is a predetermined maximum 

perturbation which should obviously depend on the accep- 

table error and the spatial scale of the velocity perturbation. 

The new reference ray is chosen as that ray of the unper- 

turbed medium that is tangent to the perturbed ray at the 

point M where A• becomes larger than A•,n•. The solu- 

tion of the differential system (12) may be continued beyond 
/Vf using A•/ = 0 as new initial condition. Initial conditions 

for the calculation of the propagator P are obtained by ca- 

nonical transformations connecting the old and the new co- 

ordinate systems. The change of reference ray is essential in 

order to maintain accuracy when the ray deviates too far 

from its unperturbed trajectory. 

A THREE-DIMENSIONAL EXAMPLE: 

AMPLITUDE MODELING IN THE MONT DORE VOLCANO 

In this section we use the perturbation method to trace 

rays and calculate amplitudes in a complex three-dimen- 

sional medium. The model is derived from the velocity 
structure under the Mont Dore volcano structure obtained 

by inversion of Prop arrival times by Nerce•ian et •/. [1984]. 
Nercessian et al. used critically reflected Prop waves in 

order to find velocity perturbations inside a fixed volume 
under the volcano. Travel time residuals were inverted to 

three-dimensional velocity perturbations using an inverse 

method. The calculated velocity perturbations reach values 

of the order of 20 % which are in fact quite large. In Figure 10 

we show a very simplified plane view and two cross sections 

through the structure inverted by Nerce•ian et •/. [1984]. 
Further details about the structure may be found in their 

paper. In order to eliminate artificial velocity discontinuities 

at the boundary of the studied volume, we enlarged it with 

a boundary layer in which the velocity tends gradually to 
the reference velocity of the unperturbed medium. 

The velocity of the medium is described by interpolating 

between the velocity defined on a regularly spaced grid of 

nodal points. We used the cubic splines proposed by Thom- 

son and Gubbin• [1982] in order to interpolate the velocity 
between grid points. These functions permit a local repre- 

sentation in which the velocity at one point is related to the 

parameters of the 64 nearest nodes. The main advantage 

of this interpolation is its computational speed: The ker- 

nels are independent of the values of the velocity at nodes, 

and consequently, they need to be computed only once. Mo- 

reover, instead of using the original procedure of Thom.•on 

EXACT 
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Fig. 9. Synthetic seismograms calculated on a vertical set of 
receivers located at a horizontal distance of 7 km from the origin 

in the model of Figure 7. At the top we show the seismograms 
calculated exactly by numerical integration, while at the bottom 
are those obtained by perturbation theory. 
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Fig. 10. Geometry of the velocity structure under the Mont Dore volcano as derived by Nercwsdan •t al. [1982] 
from travel time inversion. On top right is a horizontal section at a depth of 4 km. The line indicates the zero 
perturbation line. Plus and minus signs indicate the sense of the perturbation of the velocity. To the right and 
bottom are two vertical cross sections in the NS and EW directions, respectively. More details of the model may 
be found in the original paper by Nercessian et al. 

and Gubbins [1982], we evaluated the kernels and their first 
and second derivatives analytically. In this form we estimate 

velocity and its first and second derivatives which are conti- 

nuous as required by ray theory. 
The sc, urce was located 60 km south from the studied 

volume. We calculated the rays that reflect on the Moho 

and go through the perturbed volume. Figure 11 shows a 

perspective plot of a few rays selected among those that 
traverse the heterogeneous structure under the Mont Dore 

volcano. A severe distortion of the rays is observed. In order 

to give a more quantitative assessment of the effect of the 
structure we show on Figure 12 the intersection of a number 

of rays with several horizontal planes. In order to improve 

the visibility of these maps we connected with continuous 

lines the points corresponding to rays that leave the source 

on the same vertical plane (constant azimutal angle). These 
lines, which would be straight in a homogeneous medium, 

become distorted when the rays cross the different pertur- 

bation patches, especially in the low-velocity zone located 
near the center of the model. A caustic is formed in the 

vicinity of the maximum gradients that separate the low- 

velocity body from the higher-velocity rocks outside the old 

magma chamber. The reference ray in the unperturbed me- 

dium was changed every time the cartesian norm of the ray 

perturbation in configuration space [laqil faied to the 

criterion IlzXqll < o.ox. The ray crossing maps obtained by a 
numerical integration of the ray equations in three dimen- 

sions are practically identical to those shown on Figure 12 
and will not be shown here. 

We then computed the amplitudes obtained at several 
points on the horizontal plane located at 2 km depth. In 
order to avoid interpolation the amplitudes were calculated 
along profiles defined by the crossing points of the rays 
indicated on Figure 13. In this figure there are fewer equal 
takeoff azimuth lines than in Figure 12, but we have plotted 

many more points along each profile. The amplitudes were 
calculated using the perturbed JacobJan dr determined by 

Fig. 11. Stereo view of selected rays traversing the structure 
of the Mont Dore volcano. The arrow indicates the direction of 

incidence of the rays. 
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Fig. 12. Ray intersections with successive horizontal planes across the heterogeneous volume under the Mont Dore 
volcano. Each line in the cross sections joins rays that left the source with a constant azimuth. In a homogeneous 
medium these lines should be straight. We observe near the center, at shallow depths, the formation of caustics 
connected with the presence of a low-velociL-y zone. 

means of the propagator (16). Since the propagator has 
an analytic expression along the segment of the ray path 
between the source and the perturbed volume, the total 

propagator was computed using the analytical results as 
initial values for the propagation inside the volume. In 

Figure 14 we show the amplitude profiles obtained along the 
ray crossing lines shown in Figure 13. On the left of Figure 
14 we show exact results calculated by numerical integration 

of dynamic ray tracing equations, while on the right is the 
corresponding perturbation result. The amplitudes are very 
large around the edges of the low-velocity intrusion outlined 
in Figure 10. At the bottom of Figure 14 there are two loops 
in the amplitude curves which are due to the formation of 
a caustic. In the vicinity of this caustic the results obtained 
with exact or perturbed ray theory are not valid and the 

Gaussian beam summation should be used. The amplitudes 

are very well modeled by the perturbation method except 
near the caustics, where ray theory breaks down anyway. 

DIscussIo• 

We have applied perturbation theory to the calculation 
of complete ray fields and synthetic seismograms in three- 
dimensional heterogeneous media. We addressed two prin- 
cipal problems. First, the calculation of paraxial rays, i.e., 
rays that propagate in the vicinity of another ray. Fast call 
culation of these rays is essential to compute geometrical 
spreading and to generate Gaussian beams. Second, we cal- 
culated the effect of a smooth perturbation of the slowness 

of the medium upon the reference rays and their paraxials. 
A number of important problems in seismic ray synthesis 
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nonical' beams. A point source for • = 0 and, for e = oo, an 

initially plane wave which corresponds very closely to the in- 
tuitive idea of a collimated beam. For other values of e we get 

intermediate situations corresponding to as many different 

initial conditions. For complex e we get Gaussian beams. 

Furthermore, the HamiltonJan formulation used here is very 

well suited for the propagation of rays and beams across in- 
terfaces. Also, when the perturbation becomes large, we can 

change the reference ray in the unperturbed medium. This 
allows to maintain an adequate precision for perturbation 

theory even as the perturbations become large. 

In the applications considered in this paper we considered 
a relatively simple unperturbed background medium. This 
was either a uniform medium or vertically layered one. Since 

in these two types of media ray tracing is easily implemen- 
ted, it is relatively straightforward to calculate the effect 
of smooth perturbations in the velocity of the medium. For 
more complex reference media the calculation of unpertur- 
bed rays becomes more difficult, and the application of per- 
turbation theory becomes more complex because we have to 
estimate higher-order derivatives of the velocity distribution 
in the unperturbed medium. 

The method proposed in this paper may be compared 
with the work published by a number of researchers for more 

Fig. 13. Lines of ray crossing along which we calculated the 
amplitude proffies of Figure 14. These lines are a subset of those specific applications. For instance, Woodhome and Wong 
presented in Figure 12, but they are longer. [1986] developed ray perturbation theory in a form which 

closely ressembles ours, but for a spherical shell. Other au- 
thors like Thonuon and Gubbin, [1982] calculated ampli- 
tudes by perturbation theory for the case of the structure 

may be approached with the techniques developed in this under the NORBAR array in Norway. However, to our know- 
paper. ledge a systematic development of ray and beam perturba- 

In order to keep theory as independent as possible from tion theory proposing a common background to apparently 
the particular geometry under consideration, we used a Ha- unrelated problems like amplitude calculation and Gaussian 
miltonJan formalism in general orthogonal curvilinear coor- beams had not been published. 

dinares. The HamiltonJan chosen here differs from that used Finally, we remark that the theory presented here gives 
most commonly in seisinology (see, for example, Chapman the Frichet differentials for travel time and amplitude in a 
and Drummond [1982] and Cerver,• [1985]) by the choice of explicit form, so that it may be used in the simultaneous 
one of the spatial coordinates as the independent parameter inversion of amplitudes variations and time delays. It could 
of the problem. In usual seismic applications an independent also be easily adapted to the evaluation of differential seis- 
parameter is used along the rays. In the examples shown in toograms which could then be used in the inversion of wa- 
this paper we used simple geometries, but our results can be reforms. 

easily extended to deal for instance with spherical geometry The examples shown in this paper are indicative of the 
and the tracing of surface waves (see also Woodhome and possibilities of the perturbation technique. In all three cases 
Won!l [1986]). ((1) perturbation of a homogeneous medium by a heteroge- 

Tracing of paraxial rays in general heterogeneous media neous inclusion, (2) perturbation of a layered structure with 
and coordinates is one of our main results. As shown by Cis- 

terno., et ai. [1984], Madariaga and Papadirrdtriou [1985] and 
V. M. Babich et al. (preprint 1985), Gaussian beams may be 
directly derived from ray theory without solving the complex 

parabolic equation introduced by Cerven• eta/. [1982]. This 
paper extends those results to arbitrary coordinate systems 
and to perturbed media. Furthermore, the matrices that al- 

low to construct Gaussian beams are shown to be the propa- 

gators of the ray equations lineariaed around the reference 

ray. This provides a new insight into the construction of 

beams in general, and the close relationship between Gaus- 

sian beams, WKB, 'plane wave' initial conditions and point 

sources. The fundamental concept here is that of a beam, 

which is a continuous set of paraxial rays that depend on 

a single (complex) number called the beam parameter. The 
two extreme yahes of the beam parameter define the 'ca- 

a circular inclusion, and (3) a three-dimensional example of a 
laterally heterogeneous volcanic structure) the results of ray 
tracing, amplitude, and waveforms obtained by perturbation 
matched almost perfectly those determined with exact ray 

theory. The results are encouraging and show that a simple, 
fast, and efficient technique exists to make estimates of am- 
plitudes in the presence of weak lateral heterogeneities. For- 
larger heterogeneity the perturbation technique may be used 
as the basic step in an iterative technique. The algorithms 
that we developed are very efficient and permit iteration to 

change reference ray when perturbations become large. 
Whenever caustics or other ray field singularities appear, 

we can resort to Gaussian beam summation to improve the 

results of ray theory. The same program used to calculate 
synthetics by ray theory may be used to calculate Gaussian 
beams. 
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Fig. 14. Amplitude profiles along the lines shown in Figure 13. At left the exact results obtained by exact ray 
tracing; at right the results obtained with perturbation theory. The strong concentration of energy near the caustics 
is very clear in the loops near the bottom right of the profiles. 
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APPENDIX: CANONICAL TRANSFORMATIONS 

We present the canonical transformations from ray cen- 
tered coordinates to curvilinear coordinates in a two-dimen- 

sional space, the following results being easily generalized 

for a three-dimensional medium. Let (<rl,ql) be the ray- 
centered coordinate system and (<r2, q2) the curvilinear sys- 
tem related to the interface. These two systems are connec- 

ted by the following known transformation ß 

•2 = r•(•,q•) (A1) 
q2 = Fq(O'I, q• ) 

In both coordinates systems, o'i(i = 1,2) denotes the in- 
dependent variable, and Hi is the corresponding reduced 

Hamiltonian. The momentum conjugate to qi is Pi, as dis- 
cussed in the text. Then the travel time differential d8 for a 

small variation (dtri, dqi) is in either coordinate system (see 
(6)), 

dOi = Pi dqi - Hi &ri 

Imposing the condition that dO•. = dO2, the following linear 

relations are easily obtained from standard calculus: 



FARRA AND MADARIAGA: SEISMIC WAVEFORM MODELING 2711 

Pl = Oql 

//1 = _OFq 

Which may be easily inverted to 

where 

D = ( DF•t DF•, 0ql 0o'1 0o'1 

(A2) 

{A3) 

canonical vectors of the paraxial rays with respect to the 
central ray. In order to rotate from ray-centered to Cartesian 

coordinates we impose tz = O. Using this condition on the 
last two equations, we find 

cos•6pn+ sin•+•tan• 6n 
(AS) 

where r = c (Ou/On) is the curvature of the central ray. 
In vertically heterogeneous media, Iv, is constant and (AS) 
reduces to the expressions derived by Madariaga [1984]. The 
matrix M• and Mt in (38) may be derived from (AS) by 
inspection. 
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