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Seismic Wavelet Estimation: A Frequency
Domain Solution to a Geophysical
Noisy Input—Output Problem

Andrew T. Walden Associate Member, IEEEand Roy E. White

Abstract—In seismic reflection prospecting for oil and gas a &t Nt
key step is the ability to estimate the seismic wavelet (impulse input output
response) traveling through the earth. Such estimation enables
filters to be designed to deblur the recorded seismic time series
and allows the integration of “downhole” and surface seismic
data for seismic interpretation purposes. An appropriate model 7 D, Yt O
for the seismic time series is a noisy-input/noisy-output linear
model. We tackle the estimation of the impulse response in the
frequency domain by estimating its frequency response function.
We use a novel approach where multiple coherence analysis
is applied to the replicated observed output series to estimate finear system
the output signal-to-noise ratio (SNR) at each frequency. This,
combined with an estimate of the ordinary coherence between
observed input and observed output, and with the spectrum of
the observed input and cross-spectrum of the observed input and
output, enables estimation of the frequency response function. Fig. 1. The errors in variables linear system.
The methodology is seen to work well on real and synthetic
data.

Tt e e {ht} P Yt

where *' denotes convolution andh;} is the impulse re-
sponse of the filter defining the linear system. The sample
interval is denoted byAt.

To complete the specification, we must consider the struc-
tures of the processes involved. We shall be considering the
analysis of reflection seismology data, arising in oil and gas

N TIME series analysis of stationary processes, the situatierploration, as discussed in, e.g., [1] and [2]. In oil and gas

often arises where the input to a linear system is imperfecéploration, the model of Fig. 1 arises as follows. Consider
observed, as well as the output. Such a situation is showntfie highly simplified diagram of Fig. 2(a). This represents a
Fig. 1 and is often known as the noisy input-output problefarine seismic survey. A ship moves in a straight line on
[20], [22] or the errors in variables (EIV) problem [11], [15].the sea surface and regularly fires off an explosion from an
{O:} is the observed output series, consisting of the true outpiftay of airguns. The source signature from each explosion is
series{y;} plus theoutput noiseseries {7} - {D;} is the converted by transmission through the sea, seabed sediments,
observed input series, consisting of the true input sefigs  and upper layers of the overburden into a seismic wavelet
plus theinput noiseseries{e; }. The model is partly specified which is reflected back from each boundary between the layers

Index Terms—Frequency domain analysis, geophysics, identi-
fication, signal processing.

I. INTRODUCTION

by of consolidated rock at depth. Associated with each boundary
0 between two layers of rock is a reflection coefficient. The
Y =7rxhy = At Z hrre—g 1) sequence of boundaries going into the earth from a particular
k=—co surface location are represented by a finely sampled series
Or=ye +m 2) (equispaced at intervalst) of reflection coefficient{r,} for
Dy =71+ (3) digital computation purposes.

We obviously do not know this sequence at every surface
location (it varies slowly with lateral position), but usually
_ _ _ in oil and gas exploration a bore-hole will be drilled at a
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P Now consider the returning reflections recorded at intervals
At in a cable, full of hydrophones, towed behind the ship,
Vi I as in Fig. 2(a). Let us denote the recorded (“observed”) time

1 ] a specified time windowW, chosen so that the stationarity

| W | assumption is not obviously violated, the recorded series
consists of the convolution of the seismic wavelgt} active
at the corresponding depth rande with the sequence of
reflection coefficients in that same depth rafggl plus noise
A A A A {n:} due to the sea state, recording equipment etc. Hence, we

j> get Ot = Yt + Mty Whereyt = At Eioz—oo hth_k.

A(\—-iv_/_\—/ series at the locatio® of particular interest by{O,}. Over

{he} From consideration of the above physical situation, the
following assumptions are appropriate.
1) Output noise seriegn,} is independent of the input
- series{r } to the filter and also of the input noise series
{w} {e:} and independent of the outp{iy; } of the filter.
2) Input noise series{e;} is likewise independent of
R — {ret {ve} and {n:}.
L —_— 3) Series may be analyzed as (second-order) stationary and

= furthermore, from detailed investigations in [4] and [5],
may be taken to have a mean of zero and to have a
square summable autocovariance sequence so that their

@) spectra exist in the usual mean square sense.

Estimation of the seismic wavelgth,}, or of its corre-

P sponding frequency response
/\A/\ H(f)=At Z hy exp(—i2r fEAt)
k=—oc

would enable the design of an inverse filter to deblur the
recorded traces. Such deconvolution (deblurring) is a vital
and ubiquitously used statistical technique in geophysics (e.g.,
T — [6], [7]). In this paper we are thus concerned with how

we can accurately estimaggh.} or H(f). In Section II, we

—| vy consider the form of the frequency response function and, in
R — Section lll, rewrite this in terms of the ordinary coherence
—] between observed input and output and the output signal-

to-noise ratio (SNR). This formula forms the basis of our
estimation scheme. In Section IV, we contrast our method
() with other approaches, including classical noisy input-output
Fig. 2. (a) Schematic of the seismic acquisition method at a location _(EIV) .SO|Ut|0nS' The novel contr!buuon of our approach lies
After transmission through the shallow sediments beneath the seabed, Ihd@king advantage of the multiple outputs available in the
pulse generated by the airguns towed by the ship is converted into a seisg@ophysical exploration setting, enabling estimation of the
wavelet{h:}. The observed seismic time serif®;} recorded by a towed output SNR via multiple coherence of multiple output series
hydrophone array over a time windoW is the convolution of{#;} with . . . o
the reflectivity sequencér:} in some depth rang&. (b) Measurement of HeNce we work just with second-order statistics, and unlike
{D+}, an approximation to the true reflection sequefice}, using a well with modern single-input/single-output approaches (e.g., [18],
drilled at location.P. [22]), higher order statistics are not required. Section V gives
the equation linking the multiple coherences to the SNR’s of
the replicated output series; this enables computation of the
impedance is given by velocity times density, it is thus possibteitput SNR at the well location. The estimation at the well
to construct (observe) a seridd),} which is close to the location of the output SNR, and of the ordinary coherence
true reflection sequencgr;}, i.e., D, = r; + ;. The input between the noisy input and output, leading to estimation of
noise {e;} arises due to errors in the physical experimenthe frequency response function, is discussed in Section VI.
due to causes such as extreme conditions in the bore-hole &edtion VIl illustrates applications of the method. First, real
instrument calibration inaccuracies. The constructiof@f}, data is used (an uncontrolled case study) by using a well-log
including the block-averaging for the production of equispaceynthetic seismograriD, } and seismic datdO, 1}, {0, 2},
samples, is discussed, for example, in [3]. and{0, s} from the southern North Sea. Second, a controlled




WALDEN AND WHITE: SEISMIC WAVELET ESTIMATION 289

experiment is carried out using simulated data and varioabobserved input and output by the spectrum of the observed
SNR’s on input and output. The method is seen to work vemyput. Now

satisfactorily in practice in both cases. Spo(f) _ Sw(f) _  H(f)S:(f)
HOlD(f) = SD(f) = SD(f) - S,(f) “I‘Sa(f)'

Hence, ifS.(f) =0, thenHO|D(f) H(f); estimation and
If we multiply through{y.-} defined in (1) by, and take accuracy considerations in this case are discussed in detail in

Il. FREQUENCY RESPONSEESTIMATION

expected values we obtain [8]-[10]. It is more physically realistic to assume that there is
0o some input noise at every frequency,$u(f) # 0, so that
sy = A D hise—ir P Se(f)} Spo(f)
k= L SN Sp(f)
where s, ., = cov {r,,yerr} = E{ririy,} is the cross- _ 1+pm(f)} Spo(f)
covariance sequence betwedn,} and {y,} and s,, = L pin(f) ] Sp(f)
cov {r,req-y = E{rriy,} Is the autocovariance sequence 1+ pin(f)
for {r,}. Fourier transforming gives the following relationship - T(f)} Hop(f) (8)
between the cross-spectrum §f.} and {y.}, denoted by ) ) )
S,(f), and the spectrum ofr,}, denoted byS,.(f): where pin(f)_ = S5.(f)/S:(f) is the input SNR. Hence, in
order to estimateH (f) from the observed seriefD,} and
Sy (f) = H()S-(F) (4) {0} we must in general allow for the effect of the input
SNR term in the square bracket. Put another way, at every
so that the true frequency response function is frequency we should modify the Wiener filter corresponding to
the observed input and output by multiplying by the unbiasing
(f) = S?‘y(f)_ term [1 + pin(f)]/p(f). We emphasize again that this term
Se(f) is frequency dependent. This is the frequency domain analog

to the result that ordinary least squares estimates are biased
in the EIV setting (e.g., [11]). The estimation of the impulse
1 response or frequency response function in this situation has
= At Z Sepc” 2R or |f] < INE = fav) beepn tackled inq[12] )e/md [plS] where it is assumed that the
TETee impulse response is minimum-delay (the frequency response
is minimum-phase), often called “invertible” in time series
analysis. Due to the many steps in seismic data processing
this assumption is usually unrealistic (e.g., [14]), and in this
) paper we do not make the assumption. Instead, we make use
Sey(f) = At Y srpye” 2T < Sl of the replicated nature of seismic time series.

T=—00

is the cross-spectrum offr,} and {y,}. Hence, if {r;} and I1l. ORDINARY COHERENCE AND SIGNAL-TO-NOISE RATIOS

{y:} were observed without error, the transfer function could The ordinary coherence?,(f) or magnitude-squared co-

be estimated simply using (4). However, we are able twrence, which measures the linear correlation between the
observe only{D,} and {O;} given by (2) and (3). From components of O,} and{D,} at frequencyf is defined as

(3), and the uncorrelatedness{of.} and{e;} and zero mean

Here

is the spectrum for the process; }, and f() = 1/(2At) is
the Nyquist frequency. Also

2
assumptions, the autocovariance sequencelity} is given Yolf) = M. 9)
by $7.p = cov {Dy, Digr} = E{D;Disr} = $r.p+ 5+, and Sp(f)So(f)
similarly s- o = s, + s-,. The cross-covariance sequencélsing (5)—(7), this can be written
between{D,} and{O},is s; po = cov {Dy, Oy r} = S71y, g 2
where s, .., is the cross-covariance sequence betwéer} Yholf) = [5ry( )] .
and{y, }. Fourier transforming these auto and cross-covariance [5:(F) + S(NNSH(f) + 5o (f)]

relationships gives the following spectrum relationships  Now, since{y;} is the seriedr:} convolved with the impulse
response{h, }, the spectra are related by

Sp(f) =5:(f) +5:(f) (5)
Solf) =5,(f) + So(f) ©) Sy(f) = [H()I*S:(f) (10)
Spo(f) =Sw(f)- (7) Using (4) and (10), we g&tS,,(f)|?> = S-(f)S,(f), so that
(9) can be written
Clearly, consistent estimators &fp(f) and So(f) will be S, ()8 ( )
inconsistent estimators of,.(f) and S,(f). We can define bolf) = S, y
the filter that predicts{O,} from {D,} in the least squares [8:(f) + Se()IIS Sy(£)]
sense aso|p(f) = Spo(f)/Sp(f). This corresponds to _ { pin(f } { pout } (11)
the standard Wiener filter approach: divide the cross-spectrum 1+ pi(f 14 pou(f
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where poue(f) = Sy(f)/S,(f) is the output SNR (again that in order to do this using, say, the regression maximum
assuming physical reality, i.e., there is some noise at evdielihood estimator [11], [15], we would need to know the
frequency orS,(f) # 0). Note that if p,u(f) = 0, but input-output noise ratio in each of the chosen frequency ranges.
pin(f) # 0 at some frequency, them,,(f) = 0 and from Likewise, if we used the observablg(f;) as an instrument
9), |Spo(f)] = 0, so that from (8),|H(f)| = 0, i.e., the in an instrumental variables approach the input—output noise
frequency response, “by definition,” has no amplitude at thedtio is still required [17, p. 61].
frequency. Finally, from (8), Other possible approaches to the problem involve using
1 S higher order statistics [18]-[22]. The reflection coefficient
{ 6 [ Pous () } po(f) if pout(f)>0  series is known to have typically a non-Gaussian, but sym-

H(f) = Tho 1+ pou( )] Sp(f) . metric distribution [5]. Hence, for example in the frequency
0, otherwise : ; . . .
domain approach given in [22], the integrated trispectrum

(12)  would be required. Also, as emphasized in [22], “higher-order
which will form the basis of our estimation scheme. statistics based methods typically yield high-variance estimates
requiring ‘large’ record sizes to reduce the variance.” One of
the features of the geophysical data discussed above is that
) ) ) ) the time windowlV, over which the stationarity assumption

It is shown in Appendix A that the nonnull case in (12) cafy not obviously violated, typically contains between 200 and
be written as 400 sample values, a too small size to contemplate higher-
MHSo(f) = Sp(N1+ U order statistics. Our approach is thus appealing in using only

IV. OTHER POSSIBLE APPROACHES

H(f) = 2A(f)Spo(f) (13) second-order statistics and is also insensitive to the type or
degree of non-Gaussianity of the reflection coefficient series.
where
U(f) = YIMHSo(f) = Sp(DI? +4ANISpo ()P V. MULTIPLE COHERENCE AND SIGNAL-TO-NOISE RATIOS

and A(f) denotes the ratio of input noise spectral density Consider Figs. 1 and 2 again. So far we have considered
function to output noise spectral density function at frequen&)e single location” where first a seismic time serig®); }

£, 1.8, A(f) = S-(f)/S,(f), and /- denotes positive squareWas .recordgd [Fig. 2(a)], and Iater_awell was drilled 44 }

root. In this paper we will estimatél(f) using (12) rather obtained [Fig. 2(b)]. However, during the survey represented
than (13). Hence, we avoid the variance rat{g) and instead PY Fig. 2(a) the ship moves along a line firing off an explosion
estimate the SNR,.(f) and the ordinary coherengd,,(f). typically every 25 m. Hence a series like); } will have been
With replicated output serieg...(f) can be estimated usingrécorded every 25 m also. Let us consider= 3 such series
multiple coherence analysis, whitg,,(f) can be estimated recorded in the vicinity of the well locatio®’, namely, one
using ordinary coherence analysis. In estimatigg.(f) and ©n elthgr side of the well, and one at .the well IocatilanFor
v2,(f) we use smoothed spectral estimates with smoothifgnvenience we shall ngmber the series at the well Iocatlon'as
window bandwidthByy . (Note that use of raw, unsmoothedl and those on either side as 2 and 3. Thus, we are left with
periodogram ordinates makes the coherence exactly unit§¢ following model for serieg:

Hence, with respect to estimation at the Fourier frequencies 00

fx = kJ(NAt) for integersk such that|k| < |N/2], the Ov; =yr,j + 1, = At Z higre—i + M
relationY'(f) = H(fi)X(f) is implicitly assumed to apply k=—o0

for frequenciey f: fx — (Bw/2) < f < fi +(Bw/2)}, which i=1,23. (14)

is a smoothness assumption. In other words, the estimate

gets its degrees of freedom from contiguous spectral ordinapé%te in particular thagO¢ 1 } = {O¢}. This model assumes

within the smoothing window bandwidith. that the series of reflection coefficients is the same at.all

An alternative approach is to use classical EIV solution%
If we apply the discrete Fourier transform to (1)—(3) for
segment =0, .-, N—1, we obtain, at the Fourier frequencie

cations since these are so close together, clustered around

e well. The model also assumes that the signals on each

s'series~{yt7j]» differ by a linear filtering only. Hence, the signal

correlates from channel to channel. We assume the noise does
O(fr) =Y (fx) +n(fi) = H(fx)R(fr) +n(fx) not correlate from channel to channel and is uncorrelated with
D(fx) = R(fx) + e(fx) the signal. LetSo(f) be the full (Hermitian) cross-spectral

matrix

where, for exampleR(fi) = At SNt re=27/N | The

convolutionr = h; is now interpreted as cyclic due to the So = <Ssol(f) 5010/1(f) )

finite data length. Brillinger [16] points out that for this model onoilf) So0u(f)

the variates will be approximately uncorrelated at the FouriahereS, e /1( f) is the cross-spectral matrix of all the series

frequencies, and “because of this weak correlation we cp, ;}, excluding the first;j = 1. Also, So,,0,(f) is the

now consider applying the various classical procedures fagctor of cross-spectra of the — 1 series (the first being

approaching the problem of errors in variables. The solutigxcluded) with the first

... will involve separate errors in variables solution for each of

a number of frequencies” lying ifo, 1/(2At)]. Note though, So,,0.(f) = [S0.0,(f),S0,0,(f), S0, 0,(f)]
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and So,,0,(f) = Sglo/l(f), with *H’ denoting complex- where
conjugate transpose. Let us denote the top-left element of the

inverse of So(f) by S (f). Then

S =[50, (1) =80,0,, (S50, (F)S0,,0, (D]

(15)

Suppose we wish to predict series 1 by filtering the ofherl

V() =D+o(f) ++ pjmr(f) + pj42(f) +- 4 pL(f)]
which gives forj = 1,-.-, L

L

Zpi(f) - pi(f)

pi(f)

1+ j(f)) Z=1L
’ 1+ Y () = pih)

series and adding the resultants together. (This is analogous 2(f) = <
to ordinary regression, except here filters play the roles of
regression coefficients.) Wiener's minimum mean square error

criterion states that the filters should be chosen so as to

minimize the mean square error of the prediction. It foIIowE|

(18)

[23, pp. 204—-205 and 485-486] that the frequency respons

the multichannel filter takes the (regression-like) form

Go,j0,,(f) = Séilo/l(f)so/lol (-

The residual power spectrum from the least squares fit

is then got by subtracting the prediction ofp,(f),
namelySo, 0, (f)Go,0,,(f), from So, (f)

501|0/1 (f) = 501 (f) - Solo/l (f)S(_)}lO/l (f)SO/lol (f)

(16)

[STH(f)]~L. Thus the
fraction of power on seriegO;} = {O;} predicted from

From (15) and (16),50,10,,(f) =

e o

ence, given good estimates o;ff(f),j = 1,---,L an
iterative scheme should give estimatesgff),j =1,---, L.
Only p1(f) = pout(f) is required. Estimation is discussed in
the next section.

VI. THE ESTIMATION SCHEME

To summarize, our scheme consists of the following steps,
carried out at each Fourier frequendfy, = j/(NA?).
1) Estimate all the entries of thiex L cross-spectral matrix.
From this, obtain estimates Qf(f),j =1,.---,Lusing
(17). Solve (18) for estimates of the SNRSs(f),j =
1,---, L. Keep in particular the estimate ¢f (f) =
pout(f)'

the otherL — 1 series at frequency, known as the magnitude 2) Using estimates of the spectfbo(f), Sp(f), So(f)

squared multiple coherence, may be written

S, -S
() = 2o (f)SO1 (?l)w/l(f)

In the same way it follows that for serig®); ;}

So,(f) = So,0,,
13y = A= RoionD)

=1-[So, (NS

=1~ [So, (NS (NI

of the observed series, estimatg,(f) from (9), and
hence estimatéd(f) from (12).
The impulse response sequerég} is then found by inverse
Fourier transformation. We now give a few details of how
we implemented each of these estimation steps. The actual
parameter values used which influence the estimation will be
discussed in Section VII.

(17) A. Estimation Step One

The cross-spectral matrix was estimated using the lag win-

whereS’/(f) is the jth diagonal element of the inverse of thgyq,y cross-spectral estimator applied to the time series after

full cross-spectral matrixSo(f).

From (14), each of th¢O, ; } have a spectrunto, (f) =
Sy, (1) + Sy, (f). with SNR given by, (f) = 5y, (£)/S,,,(/),
so thatSo,(f) = [1 4 p;(f)]Sy, (f). Since{O; 1} = {O:} it
follows that pi (f) = pous(f). Hence an estimate ¢f (f) is
identical to an estimate Qfou:(f).

Now the jth diagonal element of the inverse of the full
cross-spectral matri$o(f) will be given by itsjth diagonal

cofactor A ;(f), say, divided by its full determinanA(f).
Hence, from (17)

A(f)
[+ pi (DS, (A

White [24] showed that
Af) =5 (f) -+ S (D + o1 (f) + - 4 pL(f)]

and

Asi(f) =Sn ()

=1~

“Snj—1(F)Spjw1(f) - Sy, (HV(S)

tapering. The tapering helps reduce side-lobe leakage caused
by the finite data lengths available. L&, } be a data taper
standardized so that), d? = 1. For series of lengthV the

j, kth entry of the cross-spectral matrix at frequenfcis

5 (1w) B fowy A(d)
SOjOk (f) = s Wrn(f - d))SOjOk (d)) d¢
—J)
N-1 ‘
= At Z w"':"l‘g‘(r(f())j()k e—zQWfTAt (19)
T=—(N-1)

where the lag window{w, .} and the smoothing window
W,,.(+) are Fourier transform pairs, wit, ,,, = 0 for |7| >
N, i.e., whereW,,(-) is the smoothing window corresponding
to the chosen lag window, i.e.,

N—-1

—i27 fT
> we e

r=—(N—-1)

Wi (f) = At
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and m is a smoothing parameter. Helé(()dj)ok(f) is the Estimated SNR'sp;(f),j = 1,---,L were found by itera-

direct cross-spectrum estimator, a#ff]), , is the estimator UVely solving the implicit equations (18)
of the cross-covariance sequence (CdVS), both incorporating

tapering. Forr = 0,---, (N —1) the CCVS estimatoﬁff())jok K;(NA3(F) = b/ + pi()]
can be conveniently computed using where
L L
N—7 2 PN A A A
. K; = |1+ i — Py i —p; .
sg(f())jok = Z 04,5 i 7Opgr i i) iz::lp (=4, (f)] / Lz:;p () =24 (f)]
t=1
and To end step 1 we sel,u(f) = p1(f).
(@ N~
A(d
57,0,0; = Z @Ok ditr Oprj B. Estimation Step Two
t=1

' . . ) @ The spectrumSo(f) is identical to the spectrunio, (f),

and wherr is negative, using the fact thﬁ(,lflojok =38, .0,0, since{O;} ={0;,}. Thus the smoothed spectrum estimate
and3'¥, , =3 . (Recall, the means of the series aréo(f) is already available from step 1. The cross-spectrum

7,0,0; |7],0; Ok L . L. .
known to be zero so no mean adjustments are required.) Theo(/) and the spectrunsp () were additionally estimated
Papoulis “minimum bias” lag window was used here (see e.§Y the lag-window method detailed in step 1. However, cross-
[25, pp. 266—267]). Smoothing properties are controlled by tig@ectral estimates are subject to misalignment bias: this occurs
smoothing parameten—spectral smoothing increases ms if there is a large phase difference between the series, as can
decreases and as this happens the estimated CCVS becdia@gen when energy peaks are not aligned. In step 1 this was
increasingly truncated. The number of complex degrees ¥t & problem because dll series are essentially replications
freedomn, associated with such an estimator is given by (e.@f the same thing, due to their close proximity. However,

[25, Sect. 6.10]) energy peaks betweefl), } and {O,} can occur at different
times due to the effect of the filtdt:; }. The standard solution
n=u/2= NB, At _ NAt is, having computed the cross-covariance sequéfjf%, to
Cy fooy ) shift the series until the peak of the sequence is at zero lag; the
Cd/_f(me(e) df shift is noted and reapplied to the impulse response estimate.

Having estimatedy?,,(f) from (9), it is also debiased by

Y 2% 5 1 N converting it to¥3,,(f) using (24) withL = 2, the ordinary
where By = [[7 Wi () df]~ is the definition of coherence correction [24].

smoothing window bandwidth due to Jenkins [26] (see also Finally, we obtain our estimateﬁ(f) of the frequency
[25, Sect. 6.8]) and’; is a variance inflation factor due toresponse function

tapering which has the forn®; = N XY, df. For the
Papoulis lag window {

A

1 ﬁout(f) 2 e A
346(f) {1+ﬁout(f)}H0|D(f)v if pout(f)>0

0, otherwise.
(22)

n = L7N/(mCy). o =

The cross-spectral matrix must be invertible. If the number

of complex degrees of freedom of the cross-spectral estimators ) )

are such that < L, the matrix will be singular [24]. Also, C. Relative Variances
given estimates of the; (), for the L series, estimates of the  The forms of (5)~(7) mean that we can also formulate the

p;(f) can be determined only if. > 2 [since whenL = 2 filter that predicts| D, } from {O,} in the least squares sense as
there is a single coherence and two unknown SNR’'s—see

(11)]. Additional bias in coherence estimates can be caused Sop(f) Syr(f)

. . e . H (f) = — Y
by alignment problems, e.g., due to significantly different Dlo So(f) Sy () + Su(F)
positions of a strong reflection event from one end of the g ‘(fy) !
block of L contiguous series to the other. The chalce- 3 is =g QSw ST
a good compromise in that in the real-world alignment changes [HDIES() + Sa(f)

should be negligible, while also putting no real limitation on .
the range of choices of smoothirjg > 3.) Hence, if $,(f) = 0, then

Using (17) estimategy]?(f),j = 1,---,L were obtained .
from the entries in the cross-spectral matrix. Maximum- Hpolf) = H*(£)5:(f) = [H()]™
likelihood estimates of these magnitude-squared multiple |H ()25 (f) + Sy(f)

coherencies were debiased in the standard way (e.g., [24])
The two cases: 13.(f) = 0, so that the input SNR is infinite,

2() ~ 1)~ (=] 21) or A(f) = 0, and Hoip(f) = H(f), and 2) $,(f) = 0,
)~ 1-[(L-1)/n] ~ () so that the output OslﬁR is infinite, ok(f) ’ o0, and
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Fig. 3. Three seismic reflection time serig®; 1}, {O: 2}, and{O¢ 3}, recorded during a survey in the southern North Sea, and labeled “output series”
1, 2, or 3. Series 1 is at the well location. Also shown is the approximate reflection seq{Bn¢e labeled “input series,” derived at the well. The
sample interval isAt = 4 ms so that 225 sample values are shown.

Hpio(f) = [H(f)]™, cover the two possible degenerat®f the amplitude responﬂé?o|D(f)| is given by [10]
noise structures corresponding to (5)—(7). A third interesting

case is when(f) = 5.(f)/S,(f) = Sn(f)/So(f), ie., var{|Bop(NI} _ 155 =1 ”
the noise spectrum ratios are equal to the total input/output |Hon(F)? - m (24)
spectrum ratios. Substituting in (13) we obtain
So(f) 1/2 Spolf) and the same expression is appropriate|ﬁiib|0(f)| and for
H(H= [ } . (23) the phase responses. The relative variance for the estimated
Sp(f)]  1Spo(f)l amplitude response corresponding to (23) is given by [27]
This is identical to taking the geometric mean of the two N
degenerate noise cases, since Var{|H(fQ)|} _ 1 —’71230(f)' (25)
H 2n
HA()) = |:HO|D(f):| _ So(f) Spo(f) DI
Hp|o(F) Sp(f) SHol(f) The expressions (24) and (25) set limits on the relative
o(f) . variance of the estimated amplitude response (22); the general
So(f) exp{iZarg[Spo(f)]} expression for relative variance is very complicated. However,
(24) and (25) suffice to show how the coherengg,,(f)

The spectral errors propagate into the estimates of thed the number of complex degrees of freederaffect the
frequency response function. The asymptotic relative varianegative variances.



294 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 36, NO. 1, JANUARY 1998

mag. sqd. ord. coherence

mag. sqd. mult. coherence

0.0 1 1 | | |
0.0 25.0 50.0 75.0 100.0 125.0
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Fig. 4. The estimated ordinary coherence (top) between input and ofifpyt f), and the estimated magnitude squared multiple coherence (bottom)
at the well Iocation,ﬂ?%(f)v at the Fourier frequencies.

VII. EXAMPLE RESULTS that 225 samples are available. Note that the input series is

To test and demonstrate the method proposed above, we fifs@ higher frequency content than the output serig$y)
apply the technique to real data recorded during a survey in #elS as a lowpass filter. This makes sense, since the “input
southern North Sea. This could be described as an uncontrofgdies” represents the reflection sequence in situ, while the
case study. Second, we carry out a controlled experiment ustegtput series” are recorded at the sea surface and contain
simulated data and various SNR’s on input and output.  the effect of the two-way passage of the seismic explosion

down to the depth of interest and back to the surface. Since
A. Real Data the layers of the Earth preferentially absorb high frequen-

Three seismic reflection time serig®); 1}, {0, .}, and cies, the frequency response will essentially be lowpass in

{O,3}, and labeled “output series” 1, 2 or 3, are shown ifP™M- _ ) o
Fig. 3. Series 1 is at the well location. Also shown is the The seismic time series form part of a “stacked section

approximate reflection sequence or “synthetic seismogra@nd are the result of several processing steps, including the
{D,}, labeled “input series,” derived at the well. The gatéemoval of water-bottom multiples using predictive deconvo-
of data shown starts at a two-way reflection time of 1.4 s amgtion [2] and the enhancement of primary reflections using
is of 900 ms duration; the sample intervaldg¢ = 4 ms so beamforming [28].
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Fig. 6. True impulse response (thin line) and estimates when input and
output signal-to-noise variance ratios are (a) both 10:1 (solid line), (b) 2:1
and 10:1, respectively, (line with short dashes), and (c) both 2:1 (line with
long dashes).

Fig. 5. The estimated impulse response (seismic Wavéfe,;}. Note the
significant energy before time zero.

A 20% cosine taper was applied to all series; for such a taper
C, = 1.12. The smoothing parametet was set to 32 so that convenient nor as effective as a nonparametric approach, such
from (20), there aren = 10.7 effective complex degrees ofas used here.
freedom at each frequency. (This choice is guided by results
from simulating the effects of different smoothing levels o simulated Data

estimating seismic wavelets and many years’ experience wit . . . .
seismic wellties. It represents a good tradeoff between bi hForthe simulation process a reflectivity sequefieg (with

from spectral smoothing and the suppression of random er&sr - 490 pomts) and an impulse response slequeﬁ-mge}
. : shown in Fig. 6 were used. Both this reflectivity series and
in the wavelet estimate.)

impulse response sequence are themselves estimates from a

Th im rdinar heren ween in n . . . i
e estimated ordinary coherence between input and OUIEH sical experiment since we can never measure precisely the

~2 . . . A
¥po(f) and the estimated magnitude squared multiple coh lgismic waveform or reflectivity inside the earth. This is true

o -
Ie:nce_ atfthe weII_ Ioc?’t\;oml(f) are Sh.OV\Im mh F'gf ‘:] at tlh_e Iremote sensing. However, these estimates have all the typical
ourier frequencies. We note in particular the high multip Enharacteristics, and so are ideal for simulation purposes. Note

coherence across the seismic bandwidth. that the impulse response consists of values before time zero

Fig. 5 gives the estimated impulse response or seismifticination terms) and values after time zero. The sample
wavelet{ /. }. The convolution of{ ~; } with theobservednput ;.\ /4l is the typical value of\t = 4 ms, giving a Nyquist

series{Dt}. accounts for 75% of the power in the obseryeﬂequency off ) = 1/(2A¢) = 125 Hz. To synthesizd D, },
output series{O;,} at the well location. (Recall that in ycorrelated white Gaussian noise was addedig. The
physical reality{%, } is convolved withunobservedrue input oytpyt serie§0;} = {0, 1} was synthesized by adding white
series{r;}.) Note that there is much significant energy in thg;ayssian noise thy, }. The other output seriggD, 5}, {0 3},
estimated seismic wavelet before time zero, so that the wavelay {O,.4} were created similarly, using independent noise
is clearly not minimum-delay; hence, as expected, methogslizations.

for its estimation which assume minimum-delay, such as [13], Three experiments were carried out. In the first the input
would not work for this data. The presence of anticipatiogignal-to-noise variance ratip S.(f)df/ [ S.(f) df and the
terms is typical of a seismic waveform present on seismic dagautput signal-to-noise variance ratfoS,(f) df/ [ S,(f) df
where they arise from shifts due to the recording equipmemiere both set to 10:1. Practical experience has shown that,
and effects caused by the many other preliminary processingsome cases, the seri¢d,}, an approximation to{r},
steps. One of the authors has investigated ARMA modelingdéequired from a rough bore hole can be quite heavily in
seismic wavelet estimation and concluded that because of #reor. Hence, for the second experiment a 10:1 ratio on the
noncausality of wavelets in processed data and their inhererdlytput signal-to-noise was maintained, but this was reduced to
strongly bandlimited spectra, these methods are neither a2:1 ratio for input signal-to-noise. For the third experiment a
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pessimistic 2:1 variance ratio was specified for both the iantance
and output signal-to-noises, which represents a severe test oL Su(f)

the method. =
. : 14 pou 28,
Estimation was carried out using about= 12 complex te t(f) o)

{[pout(f) - pin(f)]

degrees of freedom at each frequency in the spectral estimation + [Poulf) + pin(N]}
of both input and outputs. The true impulse respofise} _ Su(f) (Pont () = pin( )]
is compared to the estimates from the three experiments in 2So(f) .

Fig. 6. As expected from the discussion of relative variances in
Section VI, there is a degradation in estimate with decreasing

=+ Vpout(f) pm( )] +4p1n(f)pout(f)}

signal-to-noise variance ratios, but even in the extremely o )

pessimistic scenario of experiment three (2:1 ratios), the 250 S )

dominant features of the true impulse response are still to be

seen in the estimate. . V{So(f) —SD(f):|2+4ST(f)Sy(f)
Sﬁ(f) Sa(f) Sa(f)sﬁ(f)

VIIl. CONCLUSIONS
= 5:.(f)/Sy(f), and setl/(f) equal to

Sp(NOP +r[Se(£)Sy(£)S(H)/Sn(H)]-

It has been demonstrated that the estimation of the impufet A(f)
response in the geophysical noisy input-output (errors in
variables) problem discussed here can be tackled by thel/ [A(f)So(f) —
combination of 1) multiple coherence analysis applied to t
replicated time series with 2) ordinary coherence analysis

applied to the observed input and output series. The key to pouc(f) _ {AF)So(f) = Sp(H]+U(f)
the solution lies in the estimation of SNR’s at each of the 1+ pout(f) 2M(N)So(f) '
Fourier frequencies. (Although not discussed in detalil herlgUt S, (F)Sy () = 1Sms (DI = Spo(f)[2 so that
it is possible to use this information also to estimate the Y - Pbo ’

spectra of the input and output noise from the spectra of the ¢/( ) = YVINHSo(f) = Sp(HI2 +4M()[Spo(f)?
corresponding observed series and, hence, gain information on
the nonwhiteness of the noise spectra.) No strong assumptiengd
on the nature of the impulse response sequence, such as Spol(H{IA)So(f) = Sp(Hl + U}
that it is minimum delay, have been made, nor is anything H(f)= 2A(H)Spo(F)2
assumed about the level or types of non-Gaussianity of the _
series involved. Hence the method is generally applicable = {[)‘(f)song);’j({}%+U(f)}.
DO

in this geophysical context. Accurate tying of seismic data
{0} to synthetic seismogram§D,} recorded at wells are This form is similar to that given by Pisarenko [29], who does
increasingly important in modern seismic interpretation antbt however set it in the context of regression and spectral
virtually indispensable in reservoir geophysics which reliasoherence.
very heavily on the integration of “downhole” and seismic

data. We believe that the quantitative methods discussed here

could be indispensable in establishing the reliability of well-
ties.
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