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   Integrating a point source solution derived in the preceding paper by 

KAWASAKI et al. (1973), theoretical surface displacements due to various 

types of propagating faults located in a semi-infinite medium are obtained 

and compared with those for an infinite medium. General features of wave 

forms are summarized as follows; 
 (1)  Except for SP wave and Rayleigh wave portions, horizontal com-

ponents Ur and Uφ of free surface displacement are approximately given by

doubling the corresponding displacements for an infinite medium. The ver-

tical component Uz is much disturbed by the free surface. 

   (2) The SP wave has an appreciable amplitude comparable to that of 
P wave as pointed out for a point source case by KAWASAKI et al. (1973). 

Especially in such cases as shallow sources propagate upward, the SP wave 

becomes a remarkably marked phase. Hence, careful examinations for SP 

wave are required on analysing the near-field seismograms, especially for 

shallow focus earthquakes.

1. Introduction

   Source studies by the near-field data are important to understand dynam-

ical process of earthquake mechanism. So far the near-field data have been 

compared with the approximate theoretical seismograms calculated by assum-

ing that the free surface displacements would be obtained by doubling the 

 displacements for an infinite medium. Exact solutions for the free surface 

displacements generated from a shear fault in a semi-infinite medium are ob-

tained in the preceding paper "Part I" by KAWASAKI et al. (1973). 

   In this paper, "Part II," the free surface displacements due to the moving 

sources are calculated by numerically integrating the solution for the point 

source. Some difficulties arise in this numerical integration. It is shown that 

these can be removed by the methods explained in the Appendices I-III. The 

calculated free surface displacements are compared with those for an infinite 

medium and some characteristics of them are discussed.
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2. Moving Source Solution

   Definitions of notations in this study are the same as those in "Part I" 

and listed below with some new parameters for a moving source shown in 

Figs. 1 and 2. The observing point is always on the free surface of a semi-

infinite medium.

H; depth of the rupture initiation point,

δ; dip angle of the fault plane,

λ; slip direction of the (-y) side block relative to the (+y) side one,

t; time (the origin is taken to be the instant when the rupture  initiates) ,
t0; rise time of the seismic source time function of a ramp-type,

r; epicentral distance of the observing point,

R; focal distance of the observing point,

x, y; x and y component of the observing point,

VP; velocity of the compressional wave,
VS; velocity of the shear wave,
VR; velocity of the free Rayleigh wave,

u; displacement vector at the observing point (x,y,0),

 ; critical distance for SP and S wave,

L; length of a finite fault along the α-direction,

W; width of a finite fault along the β-direction
,

Fig. 1. Shear fault considered in this study
.

   S is the fault plane, δ is the dip angle of S,   λi
s the slip direction of the (-y) side rela_

   tive to the (+y) side. Double couple force   
system shown in the figure is equivalent to

   this shear fault.

Fig. 2. Source model which propagates with

   velocities Vc1, Vc2 in α, β directions meas-

   ured from x-axis, and extends far lengths   
of L, W respectively.
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Vc1; rupture velocity in the α-direction,

Vc2; rupture velocity in the β-direction.

   Calculations are performed using the non-dimensional quantities listed be -
low, the units of non-dimensionalization are  H0 for length and H

0/Vp for time.  h=H/H0
; non-dimensionalized depth of the rupture initiation point ,

ρ=r/H0; non-dimensionalized epicentral distance of the observing point
,

ρ'=R/H0; non-dimensionalized focal distance,

      φ; azimuthal direction of the observing point,    
x, y; non-dimensionalized x and y components of the observing

         point (x=ρcosφ, y=ρsinφ),

   τ=Vpt/H0; non-dimensionalized time,

  τ0=Vpt0/H0; non-dimensionalized rise time,

critical distance for S and SP waves,

          U; non-dimensionalized displacement vector,

     l=L/H0; non-dimensionalized fault length,

    w=W/H0; non-dimensionalized fault width,

   σ1=Vp/Vs,

   σ2=VR/Vs,

  σ31=Vp/Vc1,

  σ32=Vp/Vc2,

σ=
1 for P wave terms,

σ1 for S wave terms.

    Let U(x,y,h;τ) be the displacement vector at an observing point (x,y,0)

at an instant τ when a point source is located at (0,0,-h). We consider a

moveing source model in which the rupture initiates at a point (0,0,-h) and

propagates with velocity Vc1 in the α-direction and with Vc2 in the β-direc-

tion (Fig. 2). The displacement U(x,y,τ) due to such a moving source is

given by

   Three difficulties arise when the above integration is performed numeri-

cally. The first difficulty is that the integral does not converge well by the 

simple trapezoidal rule, because wave forms of body waves for a point source 

are basically rectangular with discontinuous onset as discussed in "Part I." 

We can remove the noise generated in the numerical integration by changing 

integral variables, details of which are explained in Appendix I. The second 

is related to infinity at the arrival of Rayleigh wave for a surface source. 

This is also solved by changing variables as described in Appendix  II. The 

last is about logarithmic infinity at the onset of S phase beyond the critical
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distance. We can neglect this on performing the numerical integration by 

the reasons presented in Appendix III.

3. Surface Displacements Due to Moving Sources

   For the purpose of a plain comparison of wave forms of displacements 

for two (semi-infinite and infinite) media, we consider here a line source 

model, in which rupture initiates at a point and propagates in only one di-

rection. Essential differences of theoretical seismograms for a semi-infinite 

medium from those for an infinite medium are the existences of SP wave and 

Rayleith wave, as is easily seen in the following figures. 

   Figures 3 and 4 show the r- and z-components of the displacements due

Fig. 3. (Ur components of the displacements from a vertical strike slip fault 

  moving horizontally in parallel to x-axis at the depth h=1
.0; (a) for an 

  infinite medium, (b) for a semi-infinite medium .

Fig. 4. Uz components from the same fault as i
n Fig. 3; (a) for an infinite 

   medium, (b) for a semi-infinite medium
.
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to a vertical strike slip fault (δ=90°,λ=0°, i.e. left lateral) at the depth

h=1 in which the rupture propagates horizontally in parallel to the x-axis by

the length l=2. The observing point is located at ρ=10 and φ=45°. The

arrow heads indicate arrivals of waves expected from ray theory. Figures 5

and 6 are the r- and z-components of the theoretical displacements due to a

fault of the same type as that in Figs. 3 and 4 except the focal depth of h=0.0.

Fig. 5. Ur components of the displacements from a surface fault of the same 

  type as in Fig. 3; (a) for an infinite medium, (b) for a semi-infinite medium.

Fig. 6. Uz component from the same fault as in Fig. 5; (a) for an infinite 

   medium, (b) for a semi-infinite medium.
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In the surface focus case, the Rayleigh phase is remarkably marked. The
vertical component for an infinite medium is zero, as shown in Fig. 6.

   Figures 7 (a, b), 8 and 9 show the r-, z-, and φ-components of the displace-

ments radiated from a reverse fault (δ=60°, λ=60°) in which the rupture

initiates at the depth h=1 and propagates upward by the length l=1.3 in the

same direction as the slip direction. Other parameters are the same as in

Figs. 3 and 4. Figure 7 (c) shows the Ur component due to the same reverse

Fig. 7. Ur components from a reverse fault (δ=60°
, λ=60°); (a) for an infinite

   medium (rupture propagates upward in the same direction as the slip di-   
rection), (b) for a semi-infinite medium

, (c) for a semi-infinite medium

   (rupture propagates downward, α=-60°).

Fig. 8. Uz components from the same fault model as in Fig
. 7 (a), (b); (a)    f

or an infinite medium, (b) for a semi-infinite medium
.
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fault as Fig. 7 (b) except that rupture propagates downward (α=-60°) from

the depth h=1. Displacements due to a vertical dip slip fault (δ=90°, λ=

-90°) which propagates upward from the depth h=1.0 to 0.1 are shown in

Figs. 10 and 11.

   Comparing the displacements in two media, we see that a large phase 

change of SV wave occurs at the observing point beyond the critical distance.

We also find that the difference is least in the Uφ component and greatest in

 Uz. Therefore, the assumption that, at least in the initial part of the seismo-

grams, doubling the displacements for an infinite medium gives those for a 
semi-infinite medium is satisfactory to some extent for the horizontal com-

ponents but not for the vertical component.

Fig. 9. Uφ components from the same fault model as in Fig. 7 (a), (b); (a)

   for an infinite medium, (b) for a semi-infinite medium.

Fig. 10. Ur components from a vertical dip slip fault moving upward vertic-

  ally; (a) for an infinite medium, (b) for a semi-infinite medium.
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   SP wave has a rather large amplitude than expected as is seen in Fig. 7 (b), 
especially when the source moves upward and toward the observing point. 

Figure 12 shows the Ur component due to a moving source (the same as in 

Fig. 7 (b) and that for a point source with the same dip- and slip-angles. As 

is seen in this figure, the amplitude of SP wave is similar in magnitude to that 
of P wave for the case of a point source, but that of SP is much larger than 

that of P in the case of a source which moves both upward and toward the 

observing point. The cause of this effect may be explained by the Doppler 

effect for SP wave, which is different from that for P wave. Ray path of SP 

wave is shown in Fig. 13. In Fig. 14 the wave forms due to a vertical strike
slip fault (δ=90°,λ=0°) moving horizontally are compared with that for a

point source of the same type fault. In these cases, the amplitudes of SP are

Fig. 11. Uz components from the same fault model as in Fig . 10; (a) for an 
  infinite medium, (b) for a semi-infinite medium .

Fig. 12. Ur components of the surface displacements from di
pping faults

(δ=60°, λ=60°). Top; the same moving source as in Fig
. 7 (b). Bottom;

the point source.
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comparable to those of P. Therefore, it cannot be concluded that the ampli-

tude of SP is always much larger than that of P wave for a moving source.

We define the duration time τd of a phase as the difference of its arrival

times from both ends of a fault which extends in one direction as illustrated

in Fig. 15. When the duration time τd of a phase is comparable to or less

than the rise time τ0, the amplitude and the pulse width of the phase are

Fig. 13. Ray path of the SP wave.

Fig. 14. Ur components of the surface displacements from vertical strike slip 

  faults; (a) the source moves horizontally in parallel to x-axis for the length

l=2.0, (b) the source moves horizontally in parallel to x-axis for the length
l=0.3, (c) the point source.

Fig. 15. A duration time defined as a difference of arrival times from both 

   ends of the line fault.
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Fig. 17. Ur components of the surface displacements from the same source 

   model as in Fig. 7 (c) with the rise time changing from 0.16 to 1.60.

strongly dependent on the rise time. Figure 16 shows the wave forms due to

the source with the same geometry as in Fig. 7 (b) with various rise times τ0

from 0.16 to 1.60. The duration time of SP phase is 0.362 and that of P is 

1.68. The amplitude and the pulse width of SP vary considerably, while 

those of P do not vary too much. In Fig. 17 are shown the wave forms due 

to the fault of the same type as in Fig. 7 (c). The duration times of P and SP 

are 2.85 and 3.95, and the wave forms are not very different for the various 

rise times. KANAMORI (1972) utilized the slope at the beginning of P in the 

determination of the rise time of the Tottori earthquake of 1943, and obtained 

the value of 3.0sec. The discussion of this section suggests the possibility of 
an effective determination of the rise time through careful examinations of 

diffracted SP phase and P phase. For example, KAWASAKI and SUZUKI (1974) 

determined the rise time of the Sanriku earthquake of 1933 to be about 5sec, 

based on a fact that SP phase can be discriminated from the initial P motion 

as a later phase for the rise times shorter than 5sec.

4. Concluding Remarks

   The surface displacements due to moving sources in a semi-infinite me-

dium can be obtained by numerical integration of the point source solution. 

A few  difficulties which arise in performing the numerical integration are 

pointed out. It is shown in the Appendices that these difficulties can be re-
moved by appropriate transformations of integral variables.
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   We also examined the validity of the assumption that the surface dis-

placements, at least in the initial part of wave arrivals, are approximately 

given by doubling the corresponding displacements in an infinite medium. 
It is found that this approximation is satisfactory to some extent for hori-

zontal displacements but not for vertical one, as pointed out for the Sanriku 

earthquake of 1933 by KAWASAKI and SUZUKI (1974). However, since SP 

phase, which does not appear for an infinite medium, has an appreciable 
amplitude comparable to that of P phase and arrives immediately after the P 

wave arrival for shallow focus, special care should be taken even in the initial 

part when investigating focal mechanism by comparing observed wave forms 
with theoretical ones derived under the assumption mentioned above.

Appendix I

   A rectangular function f (τ, x) given by the following Eq. (A-I-1) was

chosen as a test function in the examination of the convergences of numerical

integration procedures.

where

τ; time, x; source distance.

When rupture propagates with velocity 1/σ3 toward the observing point and

extends for the length L, the resulting displacement is given by

(A-I-2)

(A-I-3)

where

Analytical integrals yield

Fig. A-1. Test function for the convergence of numerical integration.
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Fig. A-2. Analytical displacement (broken curve) and simply integrated nu-

  merical displacement (dotted curve). Top; N (divisions of the interval)=

   20. Bottom; N=100.

 (A-I-4)

where

Numerical integrations of F (τ,x) are performed by a formula

(A-I-5)

where

Δ=L/N

and

N: number of divisions of interval [0,L].

Broken curves in Fig. A-2 show exact wave forms given by FAp,s and displace-

ments calculated by, FNp,s are dotted for N=20 (1) and N=100 (2). As is seen

in this figure the convergence of integrals by the formula (A-I-5) is poor.

The following procedures are considered to remove this difficulty. The arrival

time of a wave radiated from a point ξ=ξ is σ3ξ+σ(x-ξ). Then we intro-

duce a new integral variable ξ' as

ξ'=σ3ξ+σ(x-ξ). (A-I-6)

And the integral interval Δ ξ'　is set to a fraction of time interval Δ τ
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Δξ'=Δτ/M, M: integer.

And then, we determine N (the number of divisions) as follows;

 (A-I-7)

Since N' is not an integer in general, the correction terms with d must be 

added to the ordinary summation as

(A-I-8)

where

and

Fig. A-3. Analytical displacement (broken curve) and numerically integrated 

   displacement after an appropriate change of variables (dotted curve). 

  Top; N=30 for P wave, N=22 for S wave. Bottom; N=120 for P wave, 

   N=90 for S wave.
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Figure A-3 shows the wave forms calculated after the above mentioned change 

of variables. The convergence is satisfactory even for a small value of N 

(about 20). 
   The extension of this change of variables into the three dimensional case 

is given by

(A-I-9)

where

r=xcosα+ysinα ・cosδ 十hsinα ・sinδ.

Then

 (A-I-10)

where

A=σ23-σσ2, B=-ξ'σ3+rσσ2, C=ξ'2-ρ'2σσ2.

And the integral with respect to ξ is replaced by the one with ξ' as,

 (A-I-11)

Then integration with ξ' is performed, satisfying that Δ ξ' is a fraction of time

increment Δ τ. Let ξn and ξn+1 be the neighbouring points on the fault plane,

and τ(ξn) be the arrival time of the wave radiated from the point ξn. Then

τ(ξn)=ξ'n and

τ(ξn+1)-τ(ξn)=ξ'n+1-ξ'n=Δ ξ'=Δ τ/M.

Therefore the above numerical integration is explained as a non-uniform 

interval integration on the actual fault  plane.

Appendix II. Rayleigh Pole Contribution

  When a point source is on the surface, Rayleigh pole contribution be-

comes infinity at the time τ=(σ1/σ2)ρ in the following form

 (A-II-1)

or

(A-II-2)

where

|f(τ,ρ)|, |g(τ,ρ)|<+∞.

Therefore we cannot carry out the numerical integration on the fault plane by 

the present form when the fault reaches the surface. 

   We will show that these infinities vanish when a point source propagates
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along the surface with a constant velocity  Vc smaller than the Rayleigh wave 

velocity VR. Rupture is assumed to propagate in parallel to the x-axis. First 

we will treat the infinity in the form  (A-II-1).

Let

τ=τ-σ3ξ and

then

where

A=σ23-(σ1/σ2)2, B=σ3(τ-σ3x) and C=(τ-σ3x)2-(σ1/σ2)2y2.

Changing the integral variable by η=x-ξ, we obtain

By setting the above integral becomes

 (A-II-3)

where

Since

then so far as σ3 is greater than σ1/σ2, i.e. Vc is smaller than VR, the integral

(A-II-3) is finite.

   For the form (A-II-2), we change the integral variable by η=x-ξ, using

the same τ, ρ, A, B, and C as before. Then we obtain

By setting the above integral becomes

 (A-II-4)

where
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A=σ23-σ2, B=σ3(τ-σ3x), C=(τ-σ3x)2-σ2y2.

The integral (A-II-4) is finite because, so far as Vc is smaller than VR, i.e. A 

is greater than zero, the integrand is finite and the integral interval is finite

since ζ2 does not go to infinity.

   Thus the difficulty in numerical integration related to the Rayleigh pole 

contribution is removed in the case when the rupture velocity Vc is smaller 

than the Rayleigh wave velocity VR. 

   By a similar procedure with an appropriate change of the integral varia-

ble, we can show that the Rayleigh pole contribution becomes finite when 

 Vc is greater than VR. 

   If Vc is equal to VR, the above mentioned integrals do not converge. In 

this case, it is rather convenient to locate the top of the fault slightly beneath 

the surface in order to obtain the theoretical seismograms.

Appendix III. Logarithmic Infinity of Terms of S and SP Waves

As shown in Part I, the amplitudes of terms of S and SP waves (Eqs. (62)

and (64) in Part I) beyond the critical distance ρc becomes logarithmically

infinite at arrival times of S waves. These infinities result from the follow-

ing integrals whose integrands contain Y-β as numerators in Eqs. (62) and (64)

in Part 1, i.e.

for S phase,

and

for SP phase,

where

|f(τ
,ρ,q)|, |g(τ,ρ,q)|<+∞.

At the time τ=σ1ρ', Y-β becomes and so the inte-
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grands diverge as (q-q0)-1 near the point q=q0=σ1ρ/ρ', and the integrals

diverge logarithmically.

   As in the case of Rayleigh wave (Appendix II), we can show that S phase
has a finite amplitude for a moving source with a constant rupture velocity
Vc smaller than Vs. It is sufficient to show that the following integral is finite.

 (A-III-3)

where

τ=τ-σ3ξ, x=x-ξcosα, y=y-ξsinαcosδ,

h=h-ξsinαsinδ,

A=(σ1sinαsinδ-ν β)(σ1sinαsinδ-νβ)2+qq2(σ23-σ21)/σ21

C=(τ-νβh)(τ-νβh)2-ρρ2qq2.

A is greater than zero, so far as σ3 is greater than σ1, that is, Vc is smaller than

Vs. Let m and n be the two roots of a quadratic equation Aξξ2+2Bξ+C=0

(A-III-4)

And let ms and ns be the two real roots of equation τ-σ1ρ'=0

where

As8=σ23-σ21

Bs=σ3τ-(xcosα+ysinαcosδ+hsinαsinδ)

Cs=ττ2-σ21ρ'2.

   Defining ξσ as ξ0=max [0, min (l, n, ns)], and changing the order of inte-

gration, we have

(A-III-5)

Introducing a new variable ζ by , the above integral

becomes

 (A-III-6)

where



Seismic Waves due to a Shear Fault in a Semi-Infinite Medium: Part II 61

Table 1. Amplitude of Ur and Uφ near S arrival. (The point source

parameters are δ=60°, λ=60°, h=1.0, and τ0=0.4, and the observ-

ing point is ρ=10, φ=45°).

Since (ζ2-A) is positive, the integrand of (A-III-5) is finite. As τ approaches

to σ1ρ', ξ0 and ζ2 approach to zero and ζ1, respectively. Then the integral

(A-III-5) itself approaches to zero.

   It is shown above that the logarithmic infinities of amplitudes of S and 

SP waves at the arrival times of S waves disappear for the case when rupture 

propagates with the constant velocity smaller than Vs. 
   Table 1 shows the amplitudes of the Ur and Uz components around the 

arrival time of S wave from a point source. We find that a very high value 

is confined to an extremely small interval arround the arrival time. 

   From the above two facts, it is concluded that we can neglect the loga-

rithmic infinity in the numerical integration for the propagating fault.
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