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Summary. The response of a stratified elastic half space to  a general source 
may be represented in terms of the reflection and transmission properties 
of the regions above and below the source. For P-SV and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASH waves and both 
buried sources and receivers, convenient forms of the response may be found 
in which no loss of precision problems arise from growing exponential terms 
in the evanescent regime. These expressions have a ready physical interpreta- 
tion and enable useful approximations to  the response to  be developed. The 
reflection representation leads to efficient computational procedures for 
models composed of uniform layers, which may be extended in an 
asymptotic development to  piecewise smooth models. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Introduction 

The problem of the excitation and propagation of seismic waves in a stratified elastic half 
space has been extensively discussed, particularly with regard to seismic surface waves. When 
the elastic parameter distribution is a function of only one coordinate the stress-strain 
relations and the elastic equations of motion can be reduced by transform techniques to a 
set of first-order differential equations, to  be solved subject to  free surface boundary 
conditions and excitation at the source (Alterman, Jarosch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Pekeris 1959; Takeuchi & 
Saito 1972). 

The commonest approach has been to consider models of the elastic parameters within 
the Earth consisting of a number of uniform layers. For such a structure, transfer matrix 
methods may be developed which relate the stresses and displacements at the top and 
bottom of these layers. This approach was introduced by Thompson (1950) and corrected 
and extended by Haskell(l953). The early work was principally concerned with the calcula- 
tion of surface wave dispersion but both Haskell (1964) and Harkrider (1964) considered 
the excitation of Love and Rayleigh waves by realistic sources. 

A computational difficulty arises in the simple matrix methods associated with loss of 
precision. In each layer growing exponentials have to  be included in the transfer matrix 
but these cancel in the secular function for surface wave dispersion. In finite accuracy 
computations the cancellation is not comolete since the growing exponentials swamp the 
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significant part of the secular function. This difficulty may be avoided either by a reformula- 
tion of the matrix method (Knopoff 1964) or alternatively by considering higher-order 
minors of the original matrices (Molotkov 1961 ; Dunkin 1965). 

Gilbert & Backus (1966) gave a systematic development of the transfer matrix methods 
for a general stratification in elastic parameters. They introduced the term 'Propagator 
matrix' for the transfer operator for stress and displacement between two levels in the 
stratified medium. In addition they established the general utility of the minor matrix 
approach. 

For smoothly varying models of the elastic parameter distribution, most work has 
concentrated on the numerical solution of the set of ordinary differential equations 
(Takeuchi, Saito & Kobayachi 1962; Alterman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1959). To avoid numerical problems 
associated with growing solutions of the differential equations at depth, akin to  those 
already mentioned for uniform layers, the integration is carried in the direction of an 
increasing solution, i.e. towards the surface. 

In this paper we show how the whole response of an elastic half space may be built up in 
terms of the reflection and transmission properties of the stratified medium, following the 
approach of Kennett (1974). For both buried sources and buried receivers we are able to 
derive convenient representations of the seismic wavefield. These expressions do not contain 
any growing solutions and so completely avoid loss of precision problems. 

In the case of a medium composed of uniform layers the representation in terms of the 
reflection and transmission properties leads to an efficient computational procedure in 
which the calculation progresses from the base of the layering towards the surface. The 
method may be extended to a piecewise smooth model and in an asymptotic development 
retains its computational advantages (cfi Woodhouse 1978). 

B. L.  N. Kennett and N. J.  Keny  

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA stratified half space 

We will consider a horizontally stratified half space with isotropic elastic properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P wave 
speed a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS wave speed 0, density p )  depending only on the depth coordinate z (Fig. 1). 
We assume that the structure is underlain by a uniform half space beneath the level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZL with 
properties a ~ ,  PL, PL - this requirement can however be weakened to  allow structures in 
which the elastic parameters ultimately asymptote to a constant value. For simplicity we 
will also restrict our attention to excitation due to  a point source, since more complex 
sources may easily be generated by superposition. 

2.1 T H E  COUPLED E Q U A T I O N S  A N D  B O U N D A R Y  CONDIT IONS 

In a cylindrical system of coordinates ( x ,  @, z ) ,  with corresponding unit vectors 8,4, 2 we 
may represent the elastic displacement w(x, 4, z, t )  as a Fourier-Bessel transform 

w ( x , @ , z , t ) = w x X t  W @ 9 t W Z i  

1 "  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=-I d w  exp (- i w t )  IOmdk k 1 (UR? t V S r  t WTP), (2.1) 
2i7 _ "  m = - - 2  

in terms of the vector surface harmonics (Takeuchi & Saito 1971) 
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The summation in (2.1) is restricted to  Im I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 2 by our assumption of a point source. This 
representation is equivalent to that introduced by Hudson (1 969). 

The traction vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT across a horizontal plane, representing the horizontal and vertical 
stress components, may also be written in a similar form to (2.1) 

T ( X , @ , Z , ~ ) = T ~ , ~ ~ + T $ , $  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ T , , i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d o  exp (- iot) /:dk k (PRP t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASSP + T T P ) ,  
m = - 2  

with 

P =  Po! a,U - kp(.a2 - 2p2) V, 

s = po2(a, v + k u ) ,  

T = &a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, 
(2.5) 

since the elastic properties are only functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. We may note that the harmonic TP lies 
wholly within a horizontal plane and for an isotropic medium this part of the displacement 
and traction separates from the rest to give the SH wave part of the seismic field. 

When we use the representations (2.1) and (2.4) in the stress-strain relations and the 
elastic equations of motion we find that the stress and displacement scalars (U, V, P, S )  and 
( W ,  T )  satisfy coupled sets of first-order ordinary differential equations. For notational 
simplicity it is convenient to introduce the stress-displacement vectors (Woodhouse 1978) 
(a) for P-SV waves 

B p =  [U, V,  o-'P, o-'SIT, (2.6P) 

and (b) for SH waves 

BH = [ W, o-l TI ', (2.6H) 

where T denotes a transpose. These vectors satisfy differential equations of the form (Gilbert 
& Backus 1966) 

a, ~ ( z )  = ~ A ( Z ) B ( Z ) .  (2.7) 

For P-SV waves we have 

0 P(1 - 2P2/a2) ( Pa2)-' 0 

- P  0 0 ( PO2) 

- P  0 0 P 

-p( l  - 2P'/aZ) 0 

(2.8P) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl 7  I 0 U P 2  - P 

Ap = 

where p is the slowness (op = k) ,  and v = 4pp2(1 - O 2 / d  j ,  and for SH waves 

(2.8H) 
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A similar set of equations may be obtained for a two-dimensional seismic wavefield where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
all stresses and displacements are assumed to be independent of one Cartesian horizontal 
coordinate (see, e.g. Kennett, Kerry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Woodhouse 1978). If we consider the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 = 0 
and take a Fourier transform u with respect to  x rather than a Hankel transform, equations 
(2.7), (2.8) can be recovered if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. N. Kennett and N. J. Kerry 

U=iu,, V = & ,  P=ii,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS=i,,, W=u, ,  T= iy , .  (2.9) 

The stress-displacement vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB have the convenient property that, with the usual 
conditions of welded contact between elastic media, they are continuous across any 
horizontal plane. At the free surface (z = 0) the stress scalars must vanish so that we have 

B(0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[WO,  01 ’, 

(2.10) 

We will assume that any source lies above the level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzL (this may easily be achieved by 
suitable adjustment of this depth), and then in the underlying half space we require either 
purely downgoing radiation or that the seismic field be purely evanescent waves decaying 
with depth, depending on the slowness range being considered. 

2.2 DECOMPOSITION O F  T H E  SEISMIC WAVEFIELD 

In order to relate the stress-displacement vector (2.6) more directly to  the elastic wavefield 
we follow Kennett et a2. (1 978) and make the transformation 

B =  DV, (2.1 1) 

where D is the eigenvector matrix for A; this procedure appears to have been introduced in 
the seismic literature by Dunkin (1965). In a uniform medium the new wave vector V then 
satisfies 

a,V = iw AV, (2.12) 

where i l l  is a diagonal matrix whose entries are the eigenvalues of A.  for P-SVwaves 

AP = diag {- qa, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4p, 4&,  q p ) ,  

and for SH waves 

(2.13) 

The elements of V may be identified with the amplitudes of upward and downward 
travelling plane waves 

(2.14) 
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For P-SVwaves, writing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq5 for P-wave amplitude and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$J for S-wave amplitude, we have 

VP = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[@U, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$JU? GD? $JDIT, 

while for SH waves 

(2.15) 

vH = [XU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 XD1'- 

The columns of D are the eigenvectors of the matrix A and may be  identified as 'elementary' 
stress-displacement vectors corresponding to the different wave types. For P-SY waves 

U U D  
DP = [bp, bs, bP, bR, 

and the vectors b take the form 

(2.16P) 

bF*D = ~ , [ T i q , , p ,  p(2P2p2 - l ) ,  T 2ipP2pq,lT, 

by7D = e p [ p ,  T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi q p ,  T 2ipo2pqp, p(2p2p2 - I ) ] ' .  

Since we have a free choice of scaling parameters E,, €0 we follow Kennett et al. (1978) 
and normalize with respect to energy flux in the z direction, so that 

E ,  = (2pq,)-"*, €0 = (2pqp)-? 

In a similar way for SH waves 

DH = [ b k  GI (2.16H) 

and 

b # D  = ~p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[P- ' ,  T ipPqp I '. 
From the definition of D (2.1 1 )  we see that its subpartitions play the role of transforming 

up- and downgoing wave components into stress and displacement. We may display this 
relation by writing 

(2.17) 

so that MU, M D  are the displacement transformations and NU, ND the stress transformations. 
For the P-SV wave system MU etc. will be 2 x 2 matrices and for SH waves simply scalars. 

For a uniform layer the amplitudes of the up- and downgoing waves at different levels 
are, from (2.12),  connected by 

V ( z )  = exp [ i o A ( z  - ZO)]  V ( Z O ) ,  (2.18) 

and thus in terms of the stress-displacement vector B we have 

B(z) = D exp [ i o A ( z  - zo ) ]  D-' B(z,), 

and the transfer matrix may be identified with the Haskell(l953) layer matrix. 
With the choice we have made for the radicals qa, q p  (2.13) our requirement that the 

wavefield below z L  should either be travelling in the positive z direction or be evanescent, 
may be encompassed by requiring that the upgoing wave vector V, should vanish in z > Z L .  

This means that the stress-displacement field at z L  must take the form 

(2.19) 

(2.20) 

where the eigenvector matrix is to be evaluated in the lower uniform half space. 
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2.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT H E  I N T R O D U C T I O N  O F  A S O U R C E  

Burridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Knopoff (1964) established that a dislocation source across zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan arbitrarily 
oriented plane can be replaced by a system of forces which generate an identical radiation 
field. Hudson (1969) demonstrated the converse that a point force or dislocation source 
with arbitrary orientation can be replaced by a point dislocation acting across a horizontal 
plane to give the same radiation. Thus if the source is confined to a single horizontal plane 
we may introduce equivalent discontinuities in displacement and traction across that plane, 
i.e. we have a discontinuity in the stress-displacement vector B across the source plane z, 
(Fig. 1). We therefore introduce a source vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL.  N. Kennett and N. J.  K e n y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SOURCE 
* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1c 2s 

zL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I \ \ VL’ 

YZ DOWNWARD RADIATION 

[B(z,)]? = B(z,+) - B(z,-) =Y(z,). (2.21) 

In order to allow the most general form of a point force we make use of the source 
moment tensor (Gilbert 1971) and consider this in combination with a simple force. Thus 
we consider a source specified by the force system, on Cartesian axes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fi = - ili(Mii6(x)) t Fi6 (x); i, j = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, y ,  z. (2.22) 

By a suitable choice of the components of the Moment tensor Mii one may generate an 
explosion (Mii=MoGjj) or a double couple (Mjj=Mo(einj+ejni) ,  e .n=O) or other more 
exotic sources. The explicit form of the discontinuity vector Y (2.21) corresponding to this 
choice of general source is given in Appendix A. 

An alternative approach to the introduction of a source is to regard it as giving rise to a 
discontinuity in the wave vector V and this has been used by Haskell(l964) and Harkrider 
(1964) to specify their sources. I f  we can assume the source to lie in a locally homogeneous 
region about the source plane z,, then the discontinuity in the wave vector V is given by 

[V(z,)]: = X(z,) = D-’(z,) 9 (2,). (2.23) 

The wavefield discontinuity may be partitioned in a similar way to (2.14) 

(2.24) 
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and we may examine the significance of the terms by considering a source embedded in a 
uniform medium of infinite extent. By analogy with (2.14) the wavefield solution will be 

V(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [i;'u(z), O]T, 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[O ,  VD(Z)]T, 

z < z, 

z > zs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SO that the discontinuity I: has the representation 

[V(Z,)]+_ = I: = [- &J(z,),  V~(Z,)]T. (2.25) 

Thus when we equate the two forms for Z, (2.24) and (2.25), we see that a source will radiate 
a wavefield -Xu upwards and I:D downwards. For the general point source (2.22) the 
elements of the jump vector C are given in Appendix A. 

3 The propagator solution 

3.1 PROPAGATOR M A T R I C E S  

For a horizontally stratified medium we have seen that the stress-displacement vector B 
satisfies the system of ordinary differential equations 

a, B(Z) = UA(Z)B(Z). (3.1) 

The propagator matrix P(z, zo) (Gilbert & Backus 1966) is a fundamental matrix solution 
of the corresponding matrix equation 

a,p(Z, z0) = UA(Z)P(Z, z0), (3.2) 

with linearly independent columns, under the constraint P(zo, zo) = I (where I is the identity 
matrix of appropriate dimensionality). From any fundamental matrixQ,(z) for (3.1) we may 
construct the propagator P(z, ZO) by 

P(z, zo) = Q,(z)Q,-%o), (3.3) 

which will exist since Q, is non-singular. For the elastic equations (3.1) the trace of A 
vanishes and so det P = 1 everywhere. 

In terms of the propagator matrix the solution of (3.1) with the stress-displacement 
vector specified at some level zo is 

B(z) = P(Z, zo)B(zo), 

P(z, zo) =Q,(z)Q-'(zo) = 4We-l (OOdt)*-'(zo) = P(z, S)P(t, z,), 

(3 -4) 

and such an overall propagator may be split at any intermediate level since 

and in particular 

P(Z2,ZI) = P@l, z2>-'. 

(3.5) 

These relations also hold in media with discontinuities in the elastic parameters since the 
continuity of the stress-displacement vector across a horizontal plane (in the absence of 
sources) ensures the continuity of P(z, zo). 

For homogeneous layers we have already shown (2.19) that a suitable fundamental 
matrix is 

Q,(z) = D exp [ioAz], (3.6) 
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and thus the layer matrix (2.19) is a special case of the propagator matrix. Hence if we have 
a stack of uniform layers the overall propagator will just be a matrix product of the layer 
matrices between the levels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo as in the work of Haskell(1953), Harkrider (1964). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. L. N. Kennett and N. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ, Kerry 

3.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT H E  RESPONSE O F  T H E  H A L F  SPACE 

We recall the boundary conditions imposed on the seismic wavefield (Fig. 1): from the free 
surface 

B(O) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[wo, 01 T, 

B(zL)= D(ZL+)V(ZL+)= D(zL+) [O,  V‘D]~ .  

(2.10) 

and with the requirement of only outgoing or evanescent waves below ZL, 

(2.20) 

Now we may relate the stress-displacement vector just below the source B(z,t) to the wave- 
field in the underlying half space by 

B(z,+) = P(Z,,ZL)B(ZL), (3.7) 

and including the discontinuity term associated with the source (2.1 S), we may construct 
the stress-displacement vector just above the source 

B(z,-) = P(z,, zL)B(zL) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-9 (3.8) 

The surface displacement is thus given by 

We introduce the vector 

s = P ( o , z , ) Y =  [&,STIT, (3.10) 

which represents the effect of the entire discontinuity due to the source propagated up to 
the surface, i.e. this represents rather more than just the direct radiation from the source 
to  the surface. 

When we include the boundary conditions at the level ZL,  

B(0) = P(O,ZL)D(ZL+)V(ZL+) - S, (3.1 1) 

which in the case of a stack of uniform layers is equivalent to equation (55) of Harkrider 
(1964). We get 

F ( O , Z L + ) =  P(O,ZL)D(ZL+) (3.12) 

and then the free surface condition requires 

(3.13) 

where we have introduced the subpartitions of the matrix F,  i.e. 
P-SV wave case and scalars for SH waves. 

are 2 x 2 matrices in the 
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To ensure the vanishing of the surface stress, the wavefield must neutralize the stressST 
induced at the surface by the source discontinuity. Thus formally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W o =  F 1 2 F i i S ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Sw (3.14) 

provided that the secular function det F22 does not vanish. Once we have found the surface 
displacement, the stress-displacement field at any other level may be found from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B(z) = P(z, 0) [w,, OIT, z < z, 

= P(z, 0) [wo, O]T + P(z, ZJS, z > z,. (3.15) 

The propagator solution thus does allow a complete specification of the seismic wavefield 
but also suffers from some computational disadvantages. 

The propagator matrix P(zl, z2) between two levels includes all the characteristics of the 
wave propagation in the region between z1 and z2, and so both upward and downward 
travelling waves are considered. This is well illustrated by the propagator for a uniform layer 
(2.19) which contains exponentials of the form exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ioqph), exp (-iwqph), which appear 
in the combinations cos (oqph),  sin (oqph) in the explicit form of the layer matrix (Haskell 
1953). This causes little difficulty when waves are propagating in the layer but once the 
waves become evanescent we encounter terms of the form cosh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(olqplh),  sinh (wlqplh). 

Our condition (2.20) means that we are interested in terms with negative exponents which 
are swamped in the cosh and sinh terms, so that it is difficult to achieve sufficient accuracy, 
particularly when the frequency is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhigh. 

The problem is compounded in the case of P-SV waves by the form of the solution. 
The elements of F,,Fi: consist of ratios of minors of F. Thus for a given slowness, even if 
only part of the structure contains evanescent waves one is faced with the problem of the 
subtraction of large nearly equal quantities with consequent loss of precision. Molotkov 
(1961), Dunkin (1965) and Gilbert & Backus (1966) have overcome this difficulty by re- 
formulating the problem ab initio in terms of the minors of the propagator matrices, but 
this procedure does not allow an easy physical interpretation of the results. 

In the following sections we present an alternative approach based on the reflection and 
transmission properties of the half space in which the numerical difficulties are avoided by 
eliminating the growing solution from the formulation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Reflection and transmission properties of elastic media 

4.1 R E F L E C T I O N  A N D  TRANSMISSION O F  ELASTIC W A V E S  

We consider an arbitrary vertically inhomogeneous medium in z1 < z < z3 sandwiched 
between two uniform half spaces in z < z l ,  z3 < z ,  as in Kennett (1974) and Kennett et al. 
(1978). Then the stress-displacement vectors at the top and bottom of the region are related 

by 

B(zl) = P(z1, Z3)B(Z3), (4.1) 

and in terms of the wavefields V in the bounding half spaces we have 
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and by analogy with (4.1) we may term Q the wave propagator. This wave propagator has 
similar properties to  P(zl, z3), since from (3.5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. L. N.  Kennett and N. J. Kerry 

(4.3) 

Although P(zl, z2) is continuous across the level z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= z2, Q(zz, z3 t) will not be unless there is 
no discontinuity in the elastic parameters across this plane; hence in (4.2) the +, - indicators 
are strictly necessary. In a similar way to  (3.13) we introduce the subpartitions of Q so that 

(4.4) 

We may define reflection and transmission matrices R ,  T in terms of the VU, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVD; for 
example if we consider an incident downward wave from z < z l ,  so that Vu(z3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt) = 0, we 
have 

vU(zl-) = R D  vD(z l - ) ,  vD(z3+) = TD VD(z1-) (4.5) 

with a corresponding definition for Ru,  Tu due to an upward wave from z > z3. 
For P-SVwaves RD, TD are 2 x 2 matrices and we write 

in accordance with the standard indexing of matrix elements, so that, e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArFs is the 
amplitude of an upward P wave generated from a unit amplitude downward incident S wave. 
For SH waves R D ,  TD are just the reflection coefficients. 

In terms of the partitions of Q 

R D  = Q i 2 Q 2 ,  

Tu = Q i i - - Q i 2 Q Z Q 2 i 3  

RU = Qii Q21, 

and so the wave propagator takes the form 

(4.7) 

It is of interest to note that the block matrix form of (4.8) may be inverted explicitly to  
obtain, via (4.3), 

(4.9) 
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and we see that reflecting the matrix (4.9) blockwise about its centre and exchanging the 
superscripts U, D we obtain the matrix (4.8). This is equivalent to the statement that the 
upward matrices are just the downward matrices from the inverted structure. Also from the 
general symmetry relations (Kennett et al. 1978) 

R D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=RE, RU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= RE, TD = T;. (4.10) 

We note that the reflection and transmission matrices are only well defined for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 G z3 

so when we wish to represent Q(zA, ZB) in terms of reflection and transmission coefficients 
we will use (4.8) for ZA G ZB and (4.9) for ZB < ZA. 

We may recover the propagator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP from the wave propagator Q by (Kennett 1974) 

p(zi, 2 3 )  = D-'(zi - )Q(z ,  - 9  ~ 3 + ) W 3 + ) .  (4.1 1) 

In the special case of a uniform layer we have the partitioned form 

(4.12) 

where E is the phase income for downward propagation. For P-SV waves 

E = diag [exp (ioq,(zz - zd) ,  exp (ioqp(zz - zl))], 

and for SH waves 

E =  exp ( ioqp(z ,  - zl)). 

When we compare (4.12) with (4.9) we see that as we would expect there is no reflection 
from the layer and 

TD=E, Tu=E. (4.14) 

(4.13) 

4.2 REFLECTION FROM A REGION BOUNDED ABOVE BY A F R E E  S U R F A C E  

Consider a vertically inhomogeneous region 0 < z < ZB bounded above by the free surface 
and below by a uniform half space in z > zB. Then if we consider an incident upward wave- 
field from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ B  this will be reflected from the region giving rise to a downward field and 
we may introduce a reflection matrix R{(zB) to describe the interaction 

The free surface displacement is related to the wavefield at ZB + by 

B(O) = P(O, zB)D(zB +)v(zB+) = F(O, ZB +)v(zB +) 

using (3.12), and so in terms of the partitions of F 

(4.16) 

Thus from the vanishing of the stress at the surface we may identify 

(4.17) 

(4.18) 
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In particular if we take the level zB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 -, i.e. just at the surface 
- 

R ~ ( O  -) = R = - NG~N,,, 

in terms of the partitions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD(O -) (Kennett 1974). 

(4.19) 

4.3 R E F L E C T I O N  A N D  T R A N S M I S S I O N  C O E F F I C I E N T S  F O R  S U P E R P O S E D  MEDIA  

We consider an inhomogeneous region, as in Section 4.1, in z1 < z < 23  but now subdivided 
by some horizontal plane z = z2 such that z1 + G z2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz j  -. Then from (4.3) 

Q(zi -, z3+)  = Q(zi - ,zz)Q(z~, z3+), (4.20) 

and we can substitute from (4.8) for Q(zl -, z2), Q(z2, z3+) to obtain Q(zl -, z 3 t )  in terms 
of the reflection and transmission properties of the two inhomogeneous regions z1 - B z B z2 
and z2 G z G z3 t. The overall response for z1 - 4 z 4 z 3  is once again given by (4.8) so that 

(4.21) 

which generalize the relations given by Kennett (1974) for a uniform layer. 

matrix inverse as a power series 
A simple heuristic picture helps to explain these relations. We note that expanding the 

[I -A]-' =I t A t A 2  + . . . , 
so that, e.g. 

(4.22) 

which is represented somewhat schematically in Fig. 2 .  The total response to some incident 
field VD can be considered as the sum of contributions from each term in the series. The 

R b 3  = Rb2 + T62Rh3TA2 + Tl2R23R12R23T12 f 
U D U D D  . . *  

Figure 2. Graphic representation of the first few terms of the expansion (4.22) of the reflection and 
transmission matrices for superposed media; showing schematically the interactions undergone by the 
waveswiththeregionsz,<z < z , a n d z , < z  <z, .  
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action of each of these terms can be seen by reading it from right to left. The first term is 
reflection from the upper region. The second arises from transmission down through the 
upper zone, reflection by the lower region and transmission back up through the upper zone. 
In the third term an additional interaction between the two parts of the inhomogeneous 
region is introduced. The total response includes all reverberations within the central region. 

If the series (4.19) is truncated after a finite number of terms then this approximation to 
Rh3 only includes a finite number of internal reverberations. Such a device can be very 
convenient when one is trying to look at the effect of internal multiple reflections and has 
been used by Kennett (1975,1978) and Stephen (1977). 

4.4 COMPOSITION R E L A T I O N S  FOR F R E E  S U R F A C E  REFLECTION COEFFIC IENTS 

As in Section 4.2 we consider an inhomogeneous region 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< z < zB but now divided by the 
plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = ZA(O < ZA < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzB) .  From the original definition (3.1 2) 

F(O, ZB +) = P(0, ZB)D(ZB +) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
=P(O, zA)D(zA)D-~(zA)P(zA, ZB)D(ZB+) 

= F(O, ZA)Q(ZA, ZB +). (4.23) 

If we substitute from (4.8) for Q(zA, z g + )  in (4.23) and evaluate REB = R$(zB) from (4.18) 
we find 

(4.24) 

which has the same form as the iterative expression for R U  in (4.21). (A similar relation may 
be deduced for any other linear boundary conditions imposed at z = 0.) 

REB = RCB + TiBREA[Z - R D  AB R U  FA ] -1 Tu AB , 

4.5 I T E R A T I V E  APPROACH F O R  A S T A C K  O F  U N I F O R M  L A Y E R S  

The iterative development (4.21) has been used by Kennett (1975, 1978) and Stephen 
(1977) for efficient numerical calculation of reflection coefficients for a stack of uniform 
layers. 

If we consider a uniform layer in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 < z < z2 overlying an inhomogeneous region in 
z2 < z < 23, then we may write 

(4.25) 

where the coefficients R g  etc. are those for the interface at z l ,  and 
efficients for z > z2 phased relative to the level z = zl ,  so 

etc. are the co- 

ERgE, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28 = ERZE, FA3 = TA3E, F63  = ,57763, (4.26) 

where E is the phase income for downward propagation through the layer (4.13). 
Thus by starting at the base of the layers the reflection and transmission coefficients may 

be calculated in a convenient iterative manner by adding a layer to the stack at each stage. 

20 
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Further at fxed slowness p the frequency dependence at each layer step only appears 
through the phase income E ,  since the interface reflection and transmission coefficients are 
then frequency-independent. Thus if the interface coefficients are stored, calculations may 
be rapidly performed for many frequencies. 

We note that if waves are evanescent, only terms of the form exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAolqpl(z2 - ZI)] 

appear so that there are no problems with growing exponential solutions. 
This form of iterative solution may also be easily extended to the free surface reflection 

matrix, via (4.24), although here the iteration would start with the free surface reflection 
coefficients at the surface rather from the base of the layering. 

3. L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKennett and N. J. Keny 

4.6 PIECEWISE SMOOTH M O D E L S  

The iterative development in the previous section may be extended to piecewise smooth 
models in an asymptotic development. Woodhouse (1 978) has presented a convenient 
asymptotic form for fundamental matrices of (3.1), in terms of standing waves characterized 
by the Airy functions Ai(x), Bi(x). His results may be modified to a travelling wave 
representation by the replacements 

Ai(x) -+ Ai(x)  -t iBi(X) 

Bi(x) -+ Ai(x )  - iBi(x) 
(4.27) 

and these are related to the Hankel Functions &(x), used by Richards (1976), but have a 
simpler behaviour in the complex plane. In a uniform, layer the asymptotic fundamental 
matrix reduces to the previous expression (3.6), but in general can be written as 

= W P ,  2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(w, P ,  2) (4.28) 

where the phase matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 depends on frequency through the Airy functions and gradient 
terms. 

The relations (4.21), (4.24) may be used to calculate reflection and transmission matrices 
sequentially for a stack of smooth layers if we use an extension of (4.8) and identify, e.g. 

= b;Yw,p, Z ) W ( P ?  Zl)%(P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ M * ( W ,  P ,  z2). (4.29) 

We note that the interface termkdl-'(p, zl)kdz(p, zl)  is independent of frequency so that the 
computational advantages of the uniform layer case are retained. 

If turning points occur within a layer this approach allows a uniform asymptotic 
connection through the turning' point, but the behaviour in this region and below is most 
effectively expressed in terms of Ai(x) ,  Bi(x) .  It may therefore prove to be most convenient 
to adopt different fundamental matrix representations on the two sides of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan interface and 
so generalize the concept of reflection and transmission matrices. 

5 The half space response in terms of reflection matrices 

5.1 T H E  RESPONSE VIA A S U R F A C E  S O U R C E  VECTOR 

In Section 3.2 we introduced the vector S arising from the propagation of the discontinuity 
in the stress-displacement vector due to the source (Y), up to the free surface 

s = P(o,z,)Y= [SW,STIT.  (5.1) 
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In terms of S the free surface displacement took the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F , ~ F ; ~ S T  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsw, (5.2) 

where Fi2, F,, are the partitions of F(0, zL +). Now zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F ( ~ , Z L + ) =  P(O,ZL)D(ZL+) 

= D(O +)Q(o +,zL+), (5.3) 

from the definition of the wave propagator (4.2). When we calculate the partitions of F 
in terms of those of D, Q ,  making use of the representation (2.17) for D(O+), and (4.8) 
for Q(0 +, zL +), we find 

Here the reflection and transmission matrices R D ,  TD refer to the entire half space below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z = o .  

An alternative representation of the surface displacement (5.2) is thus 

W O = ( M D  + M ~ R ~ )  (ND + NuRD)-'ST -Sw. 

Also, from (4.16), the free surface reflection matrix takes the form 
may equivalently write 

W ~ = ( M D  + MURD) [Z-R"RD]-'N;'ST -Sw, (5.5b) 

as in the treatment of Kennett (1974). The secular function det F2, also has the alternate 
form det (ND + NURD)/det TD, independent of the depth of the source. As we have seen 
in the previous sections, R D  and TD may be calculated without needing to  introduce the 
growing exponentials present in the propagator representation of F12, FZ2. Thus (5.5) 
contains a rather convenient representation of the entire half space response. 

The surface source vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS however will still include the possibility of growing terms via 
the propagator P(0, z,). This does not cause much difficulty for very shallow sources and 
(5.5) has been used successfully by Kennett (1978) in the calculation of complete synthetic 
seismograms, including surface generated multiples, for small offsets between source and 
receiver. 

For a buried source or a buried receiver at an arbitrary depth in the half space we can 
overcome the problems with the growing solutions by the method described in the next 
section, which also allows a convenient physical interpretation of the wavefield. 

(5.5a) 

= - N ~ ~ N ~ ,  so that we 

5.2 B U R I E D  S O U R C E S  A N D  R E C E I V E R S  

Consider the wavefield at a level z in the medium, 

v(z) = [vU(z>, vD(z)lT. (5.6) 

If we take z to lie above the level of the source (i.e. 0 Q z < z,) then the vanishing of stress 
at the free surface requires the up- and downgoing wave parts of the field to be connected 
by (4.12) 
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In a similar way if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz lies below the source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< z < zL)  then our requirement (2.20) that 
there should be no upcoming wave component below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzL means that we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. L. N, Kennett and N. J. Keny 

and thus from (4.9) we find 

[TbL(z)l-l -RbVD(z)l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, 

where R k(z), T k ( z )  are the reflection and transmission matrices for the structure between 
z and ZL. The up- and downgoing fields at z are therefore related by 

Vu(z) = Rfj(z) VD(z), z, < z < zL. (5.9) 

The wavefields just below the source and at the level zL are related by the wave 
propagator 

V(z,+) = Q ( ~ , + , z L + ) ~ ( z L + ) ,  (5.10) 

V(Z,+) - V(Z, -) = c, 
we may construct the wavefield just above the source V(z,-). In terms of the partitions of 
Q(z,+, Z L + )  

and using the wavefield representation of a source (2 .23)  

(5.1 1 )  

and, writing R<(z,) =REs, (5.7) gives the additional relation 

VD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Z, -) = RCs Vu (Z, -) . (5.12a) 

We may solve (5.1 1) to  find the upgoing field Vu(z,-), using the relation (4.7) R fj(z,) = 
REL = Q12Qii, thus 

VU(Z,-) = [I - RD SL RU FS ] -1 ( R g L Z ~  - ZU). (5.12b) 

An analogous argument, using the free surface boundary condition, yields the wavefield 
just below the source in the form 

vD(i!,+) = [I - RCSREL]-' (ED - REs&) 

vU (z, +) = REL VD (z, +). (5.13) 

With the aid of the wave propagator we may now construct the wavefield, and hence the 
stress-displacement field, at any receiver level. 

(1) For a receiver above the source 

V(ZR) = Q(zR. z,-)V(z,--). (5.14) 

We substitute for the partitions of Q from (4.8) and make use of the composition rule for 
free surface reflections (4.2 l), together with the identity 

I t A [I  - A]-'  = [I - 4 - 1  (5.15) 
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to find the receiver wavefield 

R S  FR -1 R S  SL FS -1 
vU(zR)=  [ I - R D  R U  1 TU [ I - R D  R U  1 ( R g L C D - C U ) ,  

v D ( z R ) = R $ ~ v ~ ( z R ) ,  o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< ZR < z,. (5.16) 

The corresponding receiver displacement may be reconstituted using B(zR)  = D(zR)V(ZR) ,  

and with the representation (2.17) for D(zR) 

w(zR) = (ME + M E R ~ ~ )  [I - R D  R S  . ~ u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF R  I -1 ~u R S  [I - R D  SL ~u FS I -1 ( ~ g ~ x ,  - xu). (5.17) 

(2) For a receiver below the source 

V(ZR) = Q(zR, z,+)v(z,+).  (5.18) 

We now use (4.9) for Q, and the composition relations (4.18) to  derive the receiver wave- 
field 

vU(zR) = R R D ~  vD(zR), 

(5.19) R S  SL -1 R S  FS SL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1 
VD(ZR) = [I - RU R D  ] TD [I - RU R D  ] (CD - RGssCu). 

As in the previous case we may find the displacement at the receiver 

R S  SL -1 R S  FS SL -1 (5.20) 

In all of the expressions (5.12-5.13), (5.16-5.17), (5.19-5.20) we have been able to  
express the wavefield, or displacement, entirely in terms of the reflection and transmission 
matrices for various subregions of the structure. Thus we have achieved our objective of 
developing a formulation which avoids growing exponential terms. 

We may use the same heuristic approach as in Section 4.3 to give a physical interpretation 
to the expressions for the wave or displacement fields. In each case we have a term of the 
type [I - RgLRcS]-' - which is a reverberation operator for the whole half space, with 
waves reflected back by the layer sequence above the source bounded above by the free 
surface and then interacting with the layering beneath the source. The comparable term 
[I - RRD]-' also appears in (5.5). The source terms are arranged to include the upgoing 
waves generated by the source allowing for the structure beneath it (5.12, 5.16, 5.17) or 
alternatively the downgoing waves including those arising from the structure above (5.13, 
5.19, 5.20). 

In the expressions for receiver response we have a direct transmission from source to  
receiver but then have to  allow for possible reverberations between the source level and 
either the free surface (5.16, 5.17 with term [I - REsR5R]-') or the base of the layering 
(5.19,5.20 with the term [Z-R$sRtL]-'). 

If we now consider a surface source with a receiver positioned just beneath it, we find 
that the displacement field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w(0 +) = (MD + MURD)  [ I -R"RD] - ' (CD -R"CU) ,  

R RL 
W(ZR) = ( M S  -I- MURD ) [I - RU R D  ] T D  [I - RU RD ] (CD - @'&J). 

(5.21) 

which is equivalent to  (5.5b) since 

w(0) = w(0 +) - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,. 
The expression (5.21) is however more revealing about the nature of the propagator 
solution, which is based on introducing a source at the surface which is equivalent in its 
radiation to  the original buried source. 
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For a buried source a more convenient representation of the surface displacement field is 
to  use (5.17) and then 

w ( o + ) = ( M u + M ~ k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I - R R D S k ] - l T U R S I Z - R ~ ~ R ~ ~ ] - l ( R ~ ~ X ~  -XU) ,  (5.22) 

the operator ( M ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ M ~ W )  is simply that whch  converts an upgoing wave potential into a 
free surface displac, Pment. 

The representations (5.1 7), (5.20-5.22) form a convenient starting point for approxima- 
tions to the full response, as discussed further in Section 6. 

5.3 A N  O V E R L Y I N G  F L U I D  S T R A T U M  

The reflection matrix approach to the calculation of the response of a stratified medium 
may be extended to  the case where a stratified fluid layer overlies an elastic half space. The 
development of a pressure-displacement vector and its decomposition into up- and down- 
going wave components parallels our discussion for the elastic case in Section 2 and is given 
in Appendix B. 

The expressions (5.16-5.17) and (5.19-5.20) are applicable to the fluid solid case 
provided that care is taken in the definition of the reflection and transmission matrices for 
the absence of shear waves. Thus we will have to  allow for the solid-fluid transition in 
calculating the free surface reflection terms RGs, RER and possibly also in REs, TES. 

The simplest consistent formalism is to, maintain a 2 x 2 matrix system throughout the 
layering and in the fluid just t o  have a single non-zero entry, e.g. 

(5.23) 

When a fluid-solid boundary is encountered, e.g. in the iterative approach of Section 4.5 
then the interfacial reflection and transmission coefficients used must be those appropriate 
to  such a boundary. 

5.4 S U R F A C E  W A V E S  

In the expressions which we have derived for the displacements in the stratified half space 
(5.2), (5.5) we have poles when the secular function (det F2, or det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ND + NURD)/det TD) 

vanishes. The work of Lapwood (1 949) and Sezawa (1 935) shows that at a large distance 
from the source the response from these poles corresponds to  the surface wave train. 

The surface waves exist solely because of the presence of the free surface and correspond, 
at futed frequency, to  non-trivial sohitions of the equations of motion satisfying the con- 
ditions of vanishing stress at the surface and decaying displacement at depth ( I  w I + O  as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z -+ m). This latter condition for our form of structure corresponds to  (2.20) for the form 
of the stress-displacement vector at z = zL. The surface waves are not excited directly by 
the source since the polar residue contributions from (5.2) show no discontinuity across the 
source level (Harkrider 1964) but by the interaction of the entire wavefield with the surface. 

The dispersion equation defining the location of the surface wave poles in frequency- 
slowness space is the vanishing of the secular function, i.e. 

A = det F22 = 0. 

Now if we consider (5.5 b) we may derive an alternative secular function (Kennett 1974) 

det [I - k R D ]  = 0, 

(5.24) 

(5.25) 
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which we see is related to a condition for constructive interference of waves reflected from 
the surface back into the structure. In the case of SH waves (5.25) takes the particularly 
simple form 

R H =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  (5.26) 

i.e. the Love-wave secular relation requires us to  seek the combination of frequency and 
slowness for which a wavefield is reflected from the half space without change of amplitude 
or phase. 

If we visualize a receiver placed at some level zR within the half space we can obtain a 
more general representation of the secular function in terms of the reflection properties of 
the medium. From (4.23) 

F(O,ZL) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= F(O, z ~ > Q ( z ~ , z i )  

and so setting F(0, zR) = F '  and substituting for the partitions of Q from (4.8) 

From the definition of the free surface reflection matrix (4.18) 

A = det (F;,) det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Z - RGRRSL]/det (TEL),  

so that, provided we choose zR so that det F;, and det TEL are both non-zero, we may 
redefine the secular function as 

a = det [Z - RGRRzL] = 0, (5.27) 

which generalizes the relation (5.25). The restriction on ZR is to ensure that for a frequency- 
slowness pair, surface waves are not possible on the structure above ZR or channel waves on 
the structure below zR. Equations (5.25) and (5.27) form the basis of an efficient scheme 
of calculating multimode surface wave dispersion described in greater detail by Kerry 
(1979). 

5.5 C H A N N E L  W A V E S  

Channel waves are localized non-trivial solutions of the elastic equations in a stratified 
space in which the displacement I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  -+ 0 as z -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfm. If we consider a stratified region 
zk < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz < zL bounded above and below by uniform half spaces then for a channel wave to  
exist 

v (zk - )=  [VLJ(zk-),OIT, 

W L + )  = [O, b(ZL+) IT,  

and so since v(zk -) = Q(Zk -, ZL + ) v ( z ~  +), we require the channel wave function 

T= det Q,, = 0, 

(5.28) 

(5.29) 

and then the reflection and transmission matrices across the zone do not exist. In a similar 
fashion to  our treatment of surface waves we may visualize a receiver at a level zR within 
the zone, and then factoring the wave propagator we find 

'T = det (Z - RERREL)/det (7'gR) det (TEL) = 0. 
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Thus provided the partial transmission terms exist, we may redefine the channel wave secular 
function as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. L. N. Kennett and N. J. Kerry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
? = det (I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARCRRgL) = 0. (5.30) 

This represents a constructive interference condition for waves successively reflected above 
and below the level of the receiver and will only be attainable if there is an inversion in the 
velocity profile. 

5.6 D E C O M P O S I T I O N  O F  T H E  S U R F A C E  W A V E  S E C U L A R  F U N C T I O N  

Dunkin (1 965) has demonstrated that at high frequencies in a model composed of a stack 
of uniform layers the secular function tends to factor into a secular term for the near surface 
layering and Stoneley functions for the deeper interfaces. In our present treatment we see 
that the Stoneley functions arise from the denominators of the interface reflection and 
transmission coefficients (l?h2 etc. - (4.25)) which are compounded to produce the overall 
reflection matrix. 

We may generalize Dunkin's result to a stratified region by considering the decomposition 
of the secular function when we take a half space divided into two parts A and B by the 
level z ,  (Fig. 3). The overall reflection coefficient matrix R D  may be represented in terms of 
the reflection and transmission properties of regions A and B as (4.2 1) 

(5.31) A B  A B - 1  A RD = R h  + TU RD(I - RuRD) TD , 

so that the dispersion relation is 

(5.32a) 

and we recognize the first two terms in the matrix as the surface wave secular matrix for the 
upper part of the layering. A rearrangement of (5.32a) yields 

det {(I-RR$)(T;)-' -RTeRE) det {(I-RfiR;)-'Tb) = 0. 

det { I - R R g  -R"T(jRE(I-RURD) A B -1 T D r  A \  - -0, 

(5.32b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 

Figure 3. Division of velocity model by the plane z = z c ;  the slowness considered for the separation into 
channel and crustal modes is indicated by the dotted line. 
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If we have a velocity profile for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and S waves which just increases with depth then if we 
choose the dividing level z ,  deep in the evanescent regime for both P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR i  will 
be very small and so (5.32) approximates 

det (Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- RRb) = 0, (5.33) 

i.e. the secular function for the truncated structure. 
If, however, we have a velocity inversion the situation is rather more complex. For 

slowness p such that the phase velocity ( l / p )  is rather greater than the S-wave velocity just 
outside the inversion, a choice of level z ,  in the evanescent regime will give (5.33) again. 
When the slowness is such that there are propagating waves in the inversion but evanescent 
waves in a region outside (Fig. 3), then if we choose z ,  to lie at the top of the inversion, the 
coupling between the near surface and the channel is reduced by the factors T b ,  T k .  At 
very high frequencies T$,  TC will be very small and then the first term in (5.32b) will 
dominate and so approximately 

det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(Z - R R k )  (Tk)-'(Z - RURD)) A B  = 0, (5.34) 

which we see factors into the secular equation for surface waves on the near surface 
structure and the channel wave operator. At intermediate frequencies there will be coupling 
between the channel and the surface through the transmission matrices T k ,  TC;  and a given 
surface wave mode will in certain frequency ranges be mainly confined to the near surface 
region and in others be mostly a channel wave (Frantsuzova, Levshin & Shkadinskaya 1972; 
Panza, Schwab & Knopoff 1972). 

6 Approximations to the full medium response 

6.1 S U R F A C E  REFLECTIONS F O R  N E A R  S U R F A C E  S O U R C E  

In Section 5.1 we have shown that the surface displacement response of a stratified half 
space to a source takes the form (5.5b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wo = ( M ~  t M ~ R ~ )  (Z - RRD)- '~EIST - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASw, (6.1) 

and this expression includes all multiple reflections generated at the free surface, and the 
return of energy from depth due to the heterogeneity of the half space. We may display 
this more directly by rewriting (6.1), using the identity (5.19, as 

wo= ( M ~  t M ~ R ) R ~ ( z  -RR~)- 'N; ) 's~ t MDNE'ST -sW. (6.2) 

The last two terms are those which would occur in Lamb's problem for a uniform half space 
with a surface source S. The first term now displays the reverberations between the free 
surface and the half space layering and we can examine a specified number of surface 
reflections by truncating the series expansion of the inverse (1 - RRD)-'. We note that 
( M ~  t M ~ R )  is just the displacement operator which appears in (5.22). 

If we only consider that part of the response which has been reflected once by the half 
space and undergone no surface reflections 

who) = ( M ~  t M , , R " ) R ~ N ~ ' S ~ ,  (6.3) 

a form which has been used by Kennett (1979) in calculations of theoretical seismograms at 
small offsets from the source. We note that the neglect of the surface reflections changes the 
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r p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFREE SURFACE 

NO FREE SURFACE 
REFLECTIONS 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Singularities in the complex slowness plane for the full response and for the approximation 
neglecting free surface reflections. In the full response there are branch points corresponding to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- 
and S-wave slownesses in the underlying half space. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn addition there are the surface wave poles with limit 
points at the Rayleigh-wave slowness for a uniform half space with the surface properties (ao, Po,  p , )  for 
the fundamental Rayleigh mode, and the largest S-wave slowness in the layering for all other modes. 
In the absence of free surface reflections the surface wave poles are eliminated and further branch points 
with the surface P- and S-wave slownesses are introduced. 

character of the singularities in the slowness plane at fixed frequency, as shown in Fig. 4. 
In particular there is no longer any surface wave contribution. 

For a single surface reflection, we have 

w i l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( M ~  + M ~ R ) R ~ ( z +  R R ~ ) N ~ ' s ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6.4) 

and higher-order approximations may be easily developed, but with the surface representa- 
tion of the source (6.1) and (6.3) are probably the most convenient forms of the response. 

6.2 S U R F A C E  R E F L E C T I O N S  FOR A B U R I E D  S O U R C E  

For a buried source the surface displacement takes the form (5.22) 

wo = ( M ~  + M D R )  (I - R ~ S R ) - ' T ~ S ( I  - R D  SL RU E5 ) -1 ( R 6 L Z ~  - &,), 

using the wave vector representation of the source. 
If we neglect reverberation in the neighbourhood of the receiver, we may expand the 

main free surface interaction operator (Z - RgLRCS)-I to generate approximations with 
successive free surface reflections included. Of these the most useful is that in which no 
surface interaction occurs 
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this simulates the direction propagation from a deep earthquake to the surface and has been 
used for this purpose by Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Simons (1 976). 

For a deeper source it is convenient to be able to include pP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsP phases etc. ('surface 
ghosts') in addition to the direct phases. We may do this by working carefully to a consistent 
order in RZL so that the surface reflected phases have the same interaction with the deep 
structure as the original downgoing waves. Thus to this approximation 

w(g) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = ( M ~  + M ~ R ) T E ~ [ R S ~ . ( Z ~  - RE;SZ,) - xu], (6.7) 

and at large ranges it would be appropriate to ignore the direct upward propagation. 
The operator (I - RESR)-I which we have so far neglected produces near surface re- 

verberations superimposed on more direct propagation, it thus has the character of, e.g. 
a generator of PL coupled shear waves. 

6.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT H E  R E F L E C T I V I T Y  M E T H O D  

Since we have consistently considered the response of a stratified medium in terms of its 
reflection and transmission properties, it is interesting to examine the approximations made 
in the 'reflectivity method' of Fuchs & Miiller (197 1). 

In their work no free surface reflections are included and the half space is divided into 
two parts, in the upper region (A) only transmission is allowed for, whilst in the lower part 
(B) all reflections are included. Thus one is approximating R D  by 

RD = T e R E T b ,  (6.8) 

rather than (5.3 l), i.e. all reverberations between the upper and lower parts of the half space 
are ignored. The final approximation for the displacement is thus 

which may be compared to the full response (6.1). In Fuchs & Muller's (1971) treatment 
only an individual wave type was considered. 

7 A comparison between the propagator and reflection matrix methods 

We have shown in this paper that we are able to produce convenient expressions for the 
response of an elastic half space in terms of reflection matrices and that these expressions 
are amenable to physical interpretation. This approach may also be readily extended to 
consider anisotropic media; the formal structures remain the same but 2 x 2 matrices are 
replaced by 3 x 3 matrices of reflection and transmission coefficients. 

The reflection approach differs strongly from the traditional 'propagator' method and we 
may illustrate these differences by considering a simple three-layered model. 

In terms of the propagators we may relate the stress-displacement vectors at zo and z3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby 

As we have seen in Section 2 even in a piecewise smooth half space we may represent the 
propagators in each layer in terms of fundamental matrices, i.e. 
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Asymptotically, at least, we may choose the fundamental matrix columns to  resemble up- 
and downgoing waves in a propagating region, and such a representation shares the advantage 
of the uniform layer in only having a frequency dependence, at fured slowness, in the phase 
term. In the neighbourhood of turning points the Airy function approach of Chapman 
(1974), Woodhouse (1978) or the equivalent development of Richards (1976) enables a 
uniform asymptotic connection to  be made to the evanescent regime. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. L. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Kennett and N. J. Keny  

In the propagator approach one takes the grouping 

p(z2, z3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= *2(z2)*i1(z3) 

and so proceeds upward from layer to  layer constructing, e.g. B(z2) as an intermediate 
result. 

In the reflection matrix method an interfacial grouping is employed. Thus we define 

C(Z3 -1 = *i1(Z3)B(Z3) (7.3) 

and consider successively 

with finally 

B(zo) = *o(Zo)C(Zi -1. (7.5) 

The interfacial matrices occurring in (7.4) include the phase terms and interfacial reflection 
coefficients (allowing for vertical inhomogeneity bordering the interface). In particular for 
uniform layers 

~ ~ ' ( Z ~ ) ~ ~ ( Z ~ )  = exp (-iwAozl)DOID1 exp (iwAlzl). (7.6) 

When we know the character of the wavefield required at z3 we may impose this behaviour 
by the choice of fundamental matrix aZ and then carry this behaviour up to  the level zo. 
In the reflection approach we are thus able to  select just those parts of the response in which 
we are interested. 

In the propagator method, however, we construct an overall transfer operator by the 
form of the stress-displacement B(z3). We thereby include initially features we do not want, 
e.g. growing exponentials, which are then cancelled out by the constraints. 

Although the reflection matrix method has here been presented for a stratified half space, 
it is easily extended to  a spherical geometry. 
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Appendix A: general point source terms 

We consider a source specified by the force system, referred to Cartesian axes, 

f;:=-a,(Mii6(x))+F,6(x), i , j = x , y , z ,  

in terms of the source moment tensor, as in (2 .22) .  
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The source may be represented as a discontinuity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS in the stress-displacement vector with 
components, for various angular orders zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[U]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= M z z / p a 2 ,  m = 0, 

[ V]'_ = (+ M,, - iMy,)/pf12, m = f 1, 

m = f 1 ,  

(A21 

[ W ]'_ = (f M y z  - iMXz)/pp2, 

and 

[PIT = - F , ,  m = 0 ,  

= % w p [ i ( M Z Y - M y z ) f ( M X z  -Mz,)], m = f l ,  

[SIT =%wp(M,, + M y y ) - w p M z z ( l  -2f12/a2), m = 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
= % ( T F X  +iFy) ,  m = + l ,  

= ?4wp[(Myy - M x x ) f i ( M X y  + M y , ) ] ,  m = k 2 ,  

[TI' = %wp(M,,  - M y , ) ,  

= %(iF, f Fy) ,  

= % u p  [ f i ( M , ,  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMyy) + (Mxy + M y , ) ] ,  

rn = 0, 

m = f 1, 

m = + 2 .  

From these expressions we see the significance of the following combinations of the Moment 
tensor components 

M I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= M x x  + M y y  - m z z ,  M 2 = M x y  +My, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N1 = M x y - M y x ,  N2 = M x z  - Mz, 

N3 ' M z y  - M y , ,  N4 = M x x  -Myy 

P, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf M,, - i M y z ,  Q, = f M y ,  - iM,, 

('44) 

Alternatively we look at the source in terms of the wave vector via the jump vector 
C = D-'(z,)S. The components of this jump vector are then: 

for m = 0, 



The interface reflection and transmission coefficients corresponding to these source 
vectors may be derived from (4.8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Appendix B: fluid media 

The differential equations for the pressure-displacement vector in a fluid are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a-2 - p2) 

"( az O - ~ P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P  0 

and the eigenvalue matrix is 

A f =  diag [- q,,qal. 

The eigenvector matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Df= [bf 9 bf I ,  
with 

bfUsD = E & [ T  iq , ,p lT .  
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