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Summary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe response of a structure composed of anisotropic strata can 
be built up from the reflection and transmission properties of individual 
interfaces using a slightly modified version of the recursion scheme of 
Kennett. This scheme is conveniently described in terms of scatterer 
operators and scatterer products. The effects of a free surface and the intro- 
duction of a simple point source at any depth can be accommodated in a 
manner directly analogous to the treatment for isotropic structures. As in 
the isotropic case the results so obtained are stable to arbitrary wavenumbers. 

For isotropic media, synthetic seismograms can be constructed by 
computing the structure response as a function of frequency and radial 
wavenumber, then performing the appropriate Fourier and Hankel transforms 
to obtain the wavefield in time-distance space. Such a scheme is convenient 
for any system with cylindrical symmetry (including transverse isotropy). 
Azimuthally anisotropic structures, however, do not display cylindrical 
symmetry; for these the transverse component of the wavenumber vector 
will, in general, be non-zero, with the result that phase, group, and energy 
velocities may all diverge. The problem is then much more conveniently 
addressed in Cartesian coordinates, with the frequency-wavenumber to 
time-distance transformation accomplished by 3-D Fourier transform. 

1 Introduction 

Seismic velocity anisotropy is a widespread phenomenon in Earth materials. A large variety 
of mechanisms may give rise to anisotropy: crystal alignments, grain alignments, preferential 
alignments of cracks (including pore closure under pressure), stress-induced effects, the 
interleaving of thin sedimentary beds. Until recently, seismic data could be adequately 
explained by assuming isotropy, so anisotropy could be largely ignored. With the increasing 
resolution of seismic observations, however, there is a growing awareness that the assump- 
tion of isotropy is often violated. Anisotropy has been widely detected in the crust and 
upper mantle (e.g. Stephen 1981; Fuchs 1977; Anderson & Dziewonski 1982) and 
laboratory measurements imply that the phenomenon must be widespread in both crystal- 
line and sedimentary rocks (BabuSka 1981 ; Christiansen & Salisbury 1979; Bachman 1979). 
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There are fundamental differences between wave propagation in isotropic and anisotropic 
media (Crampin 1977, 1981). In an isotropic medium, P-wave particle motion is normal to 
a wavefront so the P polarization vector is coincident with the phase propagation vector. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S motion may be in any direction orthogonal to P. In an anisotropic medium, the P 
polarization vector need not be coincident with the phase propagation vector, hence this 
phase is denoted qP for ‘quasi?‘. Two quasi-shear polarizations form a mutually orthogonal 
set with qP. Thus for any particular direction of phase propagation, there are three body 
waves with fixed orthogonal polarizations (Auld 1973, pp. 219-220). In general, the 
velocities and polarizations vary with direction of phase propagation, causing the transverse 
component of the wavenumber vector to be non-zero. As a consequence of this behaviour, 
in an anisotropic medium phase and energy-velocity vectors may diverge (Auld 1973, pp. 
223-227) so that a ray may depart from the sagittal plane (the vertical plane through the 
,direction of phase propagation). Further, if the medium is anelastic, energy and group 
velocity vectors will also diverge (Auld 1973, pp. 227-230). 

These departures from the well-understood behaviour of seismic waves in isotropic media 
mean that effects of anisotropy will be too difficult to comprehend without numerical 
modelling and the construction of synthetic seismograms. There has been much recent work 
on wave propagation through anisotropic media, although much of this has been addressed 
specifically to transverse isotropy (e.g. Sprenke zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kanasewich 1977; Daley & Hron 1977; 
Levin 1978; Oakley & Vidmar 1983). This form of anisotropy, which displays no azimuthal 
variation of elastic properties, is too restrictive for many lithospheric materials, especially 
crystalline rocks (eg. Christiansen & Salisbury 1979), which typically display a more 
complicated anisotropy as a consequence of tectonic stresses (either through cracking or 
crystal orientation). Obviously a means of constructing synthetic seismograms for more 
general forms of anisotropy is required; so far no method for constructing complete 
synthetics for arbitrarily anisotropic media has been presented. 

The mathematics of wave propagation through stratified media exhibiting azimuthal 
anisotropy was developed by Crampin (1970) for surface waves and extended to include 
body waves by Keith & Crampin (1977a, b). The first synthetics were the simple plane- 
wave seismograms of Keith & Crampin (1977~) .  Booth & Crampin (1983a, b) have con- 
structed synthetics for point sources, but their procedure considers wave propagation only 
in the sagittal plane; they assume that the transverse component of the wavenumber vector is 
approximately zero. This approach yields exact solutions if the sagittal plane is a plane of 
symmetry but for some arbitrary azimuth results will be approximately correct only if the 
anisotropy is weak. What ‘weak‘ anisotropy is is not clear; it is probable that some of the 
waveform subtleties of anisotropy will not be preserved under the assumption of a zero 
transverse component of the wavenumber vector. 

In this paper we describe a scheme which may be used to construct complete synthetics, 
even for strongly anisotropic media. Like Booth & Crampin (1983a) we use a reflectivity 
approach, but we include the second wavenumber integration necessary if divergence of 
phase and group velocity vectors is to be correctly modelled. Unlike Booth & Crampin 
we choose to use a Cartesian coordinate system. Cylindrical coordinates are the obvious 
choice for modelling elastic systems with symmetry about a vertical axis (such as isotropy 
or transverse isotropy), or if propagation in only a single vertical plane is to be considered. 
If, however, there is any variation of propagation velocity with azimuth, Cartesian coordi- 
nates yield much simpler mathematics and are more convenient to use. 

We shall follow closely the techniques of Kennett (1974) and Kennett & Kerry (1979) 
for building up the response of isotropic stratified media from the reflection and trans- 
mission properties of individual interfaces. The book by Kennett (1983) must be regarded 
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Seismic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves in anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA693 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as the major reference for this work so we shall, as far as possible, follow Kennett's (1 983) 
notation. For convenience, we refer to Kennett's procedure as the reflection matrix method. 

2 The differential system 

Consider wave propagation in a medium which is laterally homogeneous but varies as a 
function of depth. The medium may be anisotropic and anelastic. As in the isotropic case, 
we begin by multiple Fourier transformation of the equations of motion to accomplish a 
separation of variables. We define the three-dimensional (3-D) Fourier transform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OD 

d P x ,  P,,? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(x, y ,  t )  exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ io(t - p ,x  - P,,y)I dx du d t  
--m 

where p x ,  p , ,  are horizontal phase slownesses. By Fourier transformation of the momentum 
and constitutive equations it is straightforward to show that 

a,b(z) = iwA(z) b(z) (2.1) 

(eg. Woodhouse 1974), where b is the vector of those variables continuous across any 
horizontal plane, 

-1 

iw 
7 = -(7xz, Tyzr 7,,)T. 

Here u,, u,,, u, are components of displacement and 7,=, 7y,. T,, are the z-components of 
the stress tensor. With this choice of the stress-displacement vector b the resulting 6 x 6 
system matrix A in (2.1) is a function only of horizontal slownesses p x  and p,,, density p,  
and elastic parameters cij (elements of the elasticity tensor). If the elastic parameters are 
independent of frequency w, then A too is independent of frequency. For lossless media, 
A is completely real. A has two other convenient properties: its eigenvalues are simply the 
permissible vertical slownesses for a given px ,  p , ,  pair, and, as we shall see, there is a very 
simple relationship between the associated eigencolumn and eigenrow vectors. The 
system matrix has the structure 

A=(' S ' )  TT (2.3) 

(Chadwick & Smith 1977; Chapman & Woodhouse 1981) where T, S and C are 3 x 3  
partitions and C and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS are symmetric. These matrices may be obtained from expressions 
given by Woodhouse (1 974) if due allowance is made for our choice of stress-displacement 
vector (2.2). 

2.1 T H E  P R O P A G A T O R  

The differential system (2.1) can be solved using classical propagator matrix techniques 
(Gilbert & Backus 1966; Woodhouse 1974). The propagator of the system (2.1) is the 
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unique continuous solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(z, z , )  of the system 

G. J. Ftyer and L. N. Frazer 

a,p(z, z I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= iwA(z) P(Z, zl), 

P(z,, z1) = I 

where I is the 6 x 6 identity. If the specific boundary condition applied at z l ,  is b(z1) then 
the response vector at z is 

b(z) = P(z, z 1) b(z 1 1 ,  (2.5) 

hence the term ‘propagator’. The exponential-like properties of propagators have been 
conveniently summarized by Woodhouse zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  974). 

The initial value problem (2.4) can be solved numerically; indeed, our first computations 
of the response of an anisotropic structure were based on such a numerical integration 
(Fryer & Frazer 1982). However, such an approach suffers from two related problems. 
First, numerical solution is extremely time-consuming. This is an especially severe problem 
since (as will become apparent) solutions have to be formed for a volume of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p x ,  p,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo) 
space. Second, as slowness is increased beyond evanescence the error tolerances for 
elements in the propagator have to be progressively reduced i f  sensible reflectivities are to be 
computed. Since (2.4) gets progressively more stiff as slowness increases (and therefore 
more time-consuming to integrate because of a rapidly decreasing step size), this increased 
accuracy requirement is particularly troublesome. To avoid the expense of direct numerical 
integration, we follow the same procedure as in the isotropic case (described, for example, 
by Kennett, Kerry & Woodhouse 1978) and attempt to solve the problem using an eigen- 
vector approach. 

3 A uniform anisotropic medium 

3.1 E I C E N S O L U T I O N S  

If D is the local eigenvector matrix of A then 

D-’ A D  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
where A is diagonal. The diagonal elements of A are the eigenvalues of A which are the 
vertical phase slownesses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq = p r .  In general we may write 

(3.2) 

where superscripts U and D denote upgoing and downgoing disturbances, the subscript P 
denotes quasi? and S1, S2 denote the two types of quasiS. For an isotropic medium 
q‘ = -qD, as shown in Fig. 1 ,  but for general anisotropy there is no such simple relation- 
ship between the vertical slownesses (Keith & Crampin 1977a). However, for our choice 
of Fourier transform and the definition of A in (2.1), it follows from the radiation 
condition that 

Im (qD) > 0 and Im (4’) < 0. (3.3) 

b = Dv. (3.4) 

Given the eigenvector matrix D, we may define a wavevector v from the transformation 

As in the isotropic case the elements of v may be identified with the amplitudes of upward 
and downward travelling plane waves, 

v =  [vU, VDIT  = “h, GtJ, XU, @Dt G D ,  XDIT  (3.5) 
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Seismic waves in attisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA695 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~5 denotes qP amplitude and (I, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx the two qS amplitudes. As before zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and D denote 
up and down. 

If the elastic parameters are locally constant then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is independent of z and substitution 
of(3.4)and (3.1) into (2.1) yields 

a,V = iw Av (3.6) 

with the solution 

v(z)=exp [ iwNz  - -  z l ) ]  v(zI) 

= Q ( z , z i ) V ( z i ) ,  (3 .7 )  
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 is some reference depth. From (3.6) and (3.7) it is apparent that Q may be regarded 
as a 'wave propagator' since it is the solution to 

a,Q(z, z I )  = iwAQQ(z, z ), 

Q b i , z i ) = l .  

We note from (3.2) that within the uniform layer, Q has the structure 

(3.8) 

with 

EU =diag{cxp [ iw( z  - z l ) q ~ ] ,  exp [ iw( z  - z l ) q : , ] ,  exp [ i o ( z  - z , ) q ~ J } ,  (3.9 ) 

and a similar expression for ED. Using (3.4) and (3.7) the stress-displacement vector at any 
level z within the uniform medium is 

b(z)=DQ(Z, ~ 1 )  D-lb(z1) .  

By comparison with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 .5 )  the desired propagator for the uniform interval is 

P(r, z I ) =  DQ(z, z I )  D-'. (3.10) 

To find this propagator, it is necessary to  find the eigenvalues (vertical slownesses), the 
eigenvector matrix D, and its inverse D-'. In the isotropic case these are known analytically, 
so construction of the propagator is straightforward. In the anisotropic case. analytic 
solutions have been found only for simple symmetries (Fryer & Frazer 1984, in preparation) 
so in general. solutions will be found numerically. Fortunately, D and its inverse are very 
simply related, as we shall show. 

3.2 T H E  I N V K K S K  E I G E N V E ( ' T 0 K  M A T R I X  

D and (and hence Q) can be found using standard numerical techniques for eigensolutions. 
It remains to find D-'. D and D-', being eigencolumn and eigenrow matrices, must be 
simply related. If bi is a column eigenvector (a column of D) and gT  a row eigenvector (a row 
of D-I) then there exists a transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg i =  Jbi (Pease 1965, pp. 87  -89). so that 
(D-l)T = JD. This means that it is unnecessary to resort to numerical inversion to  find 
D-I. The appropriate transformation matrix J is given by Chadwick & Smith (1977) and 
Garmany (1983) but these authors have limited their treatment to  lossless media. We present 
here a simple derivation of D-' valid for general anelastic anisotropic media. 

Each column of D is an eigenvector of the form 

bi = e i ( z )  (3.1 1) 
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696 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. FyerandL .  N. Frazer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Projections on to the sagittal plane of possible slowness surfaces for (a) general anisotropy and 
(b) isotropy (pr is radial slowness, so if the azimuth of the section is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@, px =P,.COS$J andp,, =pr sin@). 
For any horizontal slowness s there will be two possible vertical slownesses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqu and qD corresponding to 
upward and downward progation. For general anisotropy, (a), there is no simple relationship between 
q" and qD. In the case of isotropy, (b), symmetry demands that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqu = -qD. Energy velocities (equivalent 
to group velocities in a lossless medium) have a direction normal to the slowness surface (Auld 1973, 
pp. 223-227) and are indicated by arrows. For anisotropic materials, the energy velocity vector will not 
necessarily lie in the plane of the figures (modified after Garmany 1983). 

where u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT are the three-element vectors defined in (2.2) and ei is a normalization constant 
to be determined. From (3.1) 

A D =  DA 

and 

D-' A = AD-'. 

The first of these equations can be written 

Abi = qibi 

and the second 

(3.12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T 

g .  I A = q .  1% T ,  (3.13) 

where g? is the j th row of D-' and is a reciprocal or left-hand eigenvector of A. Since 
D-' D = I, it follows immediately that 

g?bi = aii. (3.14) 

We wish to find the transformation from b to g such that 

gi = J bi. (3.15) 

Consider the similarity transformation of (3.1 2), 

JAJ-' Jbi = qi Jbi, 

or, using (3.1 5) 

A'g. 1 = 4. 1g1, . (3.16) 

where A' = JAJ-'. Note that the eigenvalue is invariant under a similarity transformation. 
Taking the transpose of (3.16) we obtain 

gT(A')T = gTqi. 
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Seismic waves in anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
By comparison with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.13), 

A' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= J A J - ~  = AT 

or, since J is non-singular, 

J A - A ~ J  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

697 

(3.17) 

To find a J which has this prouertv we consider the symmetry properties of A. A has the 
structure given in (2.3), from which 

Using these expressions for A and AT in (3.17) the transformation matrix J is found by 
inspection to be 

(3.18) 

where I is the 3 x 3 identity. Hence from (3.1 1 )  and (3.15), 

From the orthonormality requirement (3.14), 

(3.19) 
T -112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ei = ($Ui + ui Ti) . 

From (3.1 5), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D-' = ( J D ) ~  = D ~ J .  

This suggests a simple algorithm for computing the eigenrow matrix D-' : 

(a) Normalize each of the six columns of the raw eigenvector matrix according to (3.19) 

(b) Interchange the stress and displacement 3-vectors ( T ~  and ui) in each column. 
(c) Transpose the result. 

Garmany (1983) obtained the same results as (3.18)-(3.20) above. However, in trying 
to relate the normalization to the vertical energy flux, he was forced to limit his treatment 
to lossless media; the treatment above is not so limited and retains its validity in the anelastic 
case. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An alternative determination of D-' may be made by considering the properties of D 
implicit in the transformation relationship (3.4). Kennett (1  983) has followed this approach 
to arrive at an expression for the inverse which is independent of the normalization. Our 
results here are a special case of Kennett's more general result (Kennett 1983, equation 2.63) 
and correspond to the form given by Kennett (1983, equation 3.40) for isotropic media. 

(3.20) 

to form D. 

4 A stratified anisotropic structure 

We consider a vertically stratified anisotropic medium in 0 < z < zL with a free surface at 
z = 0 and an anisotropic half-space in z > ZL, as shown in Fig. 2. The variation between 0 
and ZL can be approximated by a series of uniform layers with interfaces at each zi. We 
shall initially ignore the free surface and treat the upper layer in z < z1 as a half-space 
(the free surface will be considered in Section 5). The treatment here essentially follows 
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698 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Fryer and L.  N. Frazer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Free surfoce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ r  

Receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fi- ZR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h Rodiotion condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzr 

L 

Figure 2. A stratified half-space. Between the free surface and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZL. the medium may vary in a depth- 
dependent manner. Below zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZL the medium is uniform. Any part of the structure may be anisotropic and 
anelastic. zs and ZR are source and receiver levels; these may be anywhere between the surface and ZL. 
The conventions for up  and downgoing waves are also indicated. 

Kennett & Kerry (1979) and Kennett (1983) except that we have chosen to build up the 
response of the medium by starting at the uppermost interface then adding the effects of 
successively deeper and deeper structure. The more traditional procedure is to start at 
the lowest interface and work upwards. We shall discuss the relative merits of the two 
approaches in Section 4.3. 

4.1 R E F L E C T I O N  A N D  T R A N S M I S S I O N  R E S P O N S E  

If we ignore free-surface effects, from equation (2.5) stresses and displacements at the top 
and bottom of the structure are related by 

b(zL) = P(zL, 0 )  b(0). (4.1 ) 

The propagator P(zL, 0) is itself a product of individual propagators for each layer, 
commonly termed layer matrices. 

P(ZL, 0 )  = P(ZL, ZL -1) P(ZL -1' Z L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2) . . . P e l  3 0). (4.2) 

Each layer matrix can be found by solving the eigenvalue problem for each layer, then 
assembling the propagator from (3.10). From (4.1) and (3.4) the wavefields at top and 
bottom of the structure are related by 

v(zL +) = D-'(zL t) P(zL, 0) D(0 t) v(0 +) 

= Q ( Z L  +, 0 +) ~ ( 0  +), (4.3) 

where, as before, Q is the wave propagator, but now it no longer has the simple structure 
of (3.6) since the medium between z = 0 and z = zL is not necessarily uniform. Here the 
modifiers, + and -, are necessary as, unlike stress and displacement, wave potentials are not 
continuous across an interface. 

If in (4.3) we partition Q into 3 x 3 submatrices then we can write 
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Seismic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves in anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA699 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We may define reflection and transmission matrices in terms of the vu, vD. For an incident 
downward wave, vu(zL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+) = 0 and we have 

VU(O +) = RDVD(O +), VD(ZL +) = TDVD(O +), (4.5) 

where RD, TD are the 3 x 3 reflection and transmission coefficient matrices 

Here, for example, rrp is the amplitude of an upward qS1 wave generated by reflection of 
a downward incident qP wave of unit amplitude. If we also consider energy incident from 
below so that vD(0 +) = 0, then from (4.4) all reflection and transmission coefficients are 
given by 

From (4.6) we can assemble the scatterer or reflection matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR containing all reflection 
and transmission coefficients, 

(Kennett 1974; Kennett & Kerry 1979). 
For constructing synthetics, the desired quantity is usually RD, the overall reflection 

coefficient matrix of the structure for energy incident from above. The obvious way to 
compute RD is to solve the eigenvalue problem for each layer and the two half-spaces, 
perform the multiplications of (4.2) and (4.3) to find Q, then find RD from (4.7). 
Unfortunately, this procedure suffers from severe numerical problems. Since each layer 
propagator in (4.2) describes both upward and downward propagation, for inhomogeneous 
waves the propagators contain both growing and decaying exponentials. The disturbances 
with exponentially increasing amplitude are not of interest, but eventually they swamp 
the solution, reducing the results to nonsense. This problem has been widely recognized 
and reported; a description is given by Kennett & Kerry (1 979). 

The numerical problems can be avoided by building up the overall response in terms 
of the reflection and transmission properties of each interface (Kennett & Kerry 1979). 
Before describing the application of this reflection matrix method to problems in anisotropy, 
it is convenient to introduce the concept of a scatterer product. 

4.2 T H E  S C A T T E R E R  O P E R A T O R  A N D  S C A T T E R E R  P R O D U C T  

Equation (4.7) may be written symbolically 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, the scatterer operator, is a transformation which maps wave propagators Q into 
scatterers R. This operator, introduced to seismology by Saastamoinen (1980), allows 
the matrix algebra of wave propagation in stratified media to be described much more 
concisely and helps provide insight into the physics of the propagation. 

R =  9 Y Q )  

The scatterer matrix R is given by 
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where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 3 reflection and transmission matrices are defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vu [min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z ; ,  z j ) ]  = Tuvu [max ( Z i ,  zj)]  

vu [min (z; ,  z ,)]  = RDVD [min (z; ,  z,)] 

G. J.  F y e r  and L. N. Frazer 

b [max (z; ,  z,)] = Ruvu [max ( Z i ,  z , ) ]  ' 
(4.9) 

VD [max (z; ,  z j ) ]  = TDvD [min (z; ,  zi)]  

as shown schematically in Fig. 3.  It follows from these definitions that R is independent of 
the order of its arguments so that 

R(zi, z j )  = R ( z ~ ,  zi) .  

The scatterer operator takes different forms depending on the direction of propagation 
described by Q. We differentiate between these two operators by using subscripts U, D for 
upward and downward propagation. We can write 

N z ; ,  z j )  = YD [Q(z;, z j ) ]  (4.10) 

and 

R(z;, z j )  = YU [Q(zj, z ; ) ]  

that 

for z ;  > zj 

for zi > zj. (4.1 1) 

To define these operators, consider a 2k x 2k matrix M partitioned into k x k blocks so 

M = ( M z l  M1l M 1 2 ) .  M22 

The downward scatterer operator Yo is defined by 

while the upward scatterer operator 9" is defined by 

(4.12) 

(4.13) 

By forming the product YD(M) Y;(M) from (4.12), (4.13) it is apparent that the two 
operators are related by matrixlnversion, i.e. 

9 D W )  = [ % J ( M ) I - l .  (4.14) 

Applying the definition (4.12), we find that 

R(ZL +, z i  -1 = YD [ Q ( ~ L  +, Zi -11 
does indeed reproduce (4.7), as anticipzted. 

Figure 3. Definition of reflection and transmission matrices for the depth interval from zi to zj .  RD and 
TD describe the reflection and transmission of a plane wave initially travelling downward, RD, TU of a 
plane wave initially travelling upward. 
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Saastamoinen (1980) has listed the properties of scatterer operators, but does not 

consider the joint existence of complementary operators Yu and 9,. Two properties, 
which we shall now discuss, are of central importance to the iterative construction of the 
response of a stratified medium. 

It may readily be verified from (4.12) that YD[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYD(Q)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Q, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, and 9,' are 
identical operators. A similar property for Yu may be found using (4.13). Hence, a 
scatterer operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis its own inverse, i.e. 

YD(M) = 9';' (M), Yu (M) = Yc' (M). (4.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  

Since equations (4.9) are valid for arbitrary zi, zi, we find that reflection and trans- 
mission coefficients for, say, an interface, are extracted from the interface wave propagator 
Q(zi+, z i - )  in exactly the same way as the overall coefficients for a stack of layers are 
extracted from Q(zL+, 0 t). Hence the relationship between a scatterer and the associated 
wave propagator is always the same. This implicit property of (4.9)-(4.11) is worth stating 
explicitly: the form of a scatterer operator is independent of depth, so that 

R(zi, Zj) = YD [Q(zi, zj)I = YU [Q(zi, zi)l (4.16) 

Combining (4.1 5 )  and (4.16) we find, for all zi > zj, 

for all zi > zj. 

(4.18) 

relationships first discovered by Kennett (1 974). 

propagator Q, 
To find out how to combine scatterers we first expand a scatterer R in terms of the wave 

R(zi, Zj) = YD [Q(z;, zj)I = YD [Q(zi, Z/c) Q(Zk9 Zj)I, zj < zi. 

(4.19) 

(4.20) 

Note that (4.19),, (4.20) must yield identical results. This can readily be verified using the 
definitions of Y,, YD. Expansions of the scatterer products, (4.19) or (4.20), are often 
called recurrence relations, and have been widely published (e.g. Kennett & Kerry 1979, 
equation 4.2 1). The scatterer product is conveniently denoted 

R(Zi, Zj) = R(Zi, Zk) *R(Zk, Zj). (4.21) 

We note that the scatterer product incorporates the addition rules for reflection and 
transmission described by Kennett (1 983, p. 127). 

4.3 I T E R A T I V E  C O M P U T A T I O N  O F  T H E  R E S P P N S E  

To avoid the numerical problems suffered in a direct stress-displacement propagator 
construction of the response of a stratified medium, Kennett (1974) devised the reflection 
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matrix method in which the response is built up, an interface at a time, in terms of the 
reflection and transmission properties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA modification by Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kerry (1979), the 
factoring out of the wave propagator for a layer, has made the reflection matrix method 
unconditionally stable ; the numerical problems are completely avoided. Although originally 
derived for isotropic media, the method can readily be extended to include anisotropy and 
has been used by Booth & Crampin (1983a, b) to compute the response of anisotropic 
structures. Our approach differs from that of Booth & Crampin in that we develop the 
response in'terms of scatterer products, and, as described earlier, we choose to build up the 
response by working down through the structure from the surface rather than up from 
the lower half-space. 

For continuity of stress and displacement, the wave propagator for an interface at zi is 
simply, from (3.4), 

G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. Fryer and L. N. Frazer 

Q(zi +, zj -) = D - ' ( z ~  +) D(z~ -). 

So the interface scatterer, which includes the reflection and transmission effects, is from 
(4.1 6) 

(4.22) 

The scatterer for the interval (zi-l +, zi-), the uniform interval immediately above the 
interface, is from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.8), 

This expression tells us that there is no reflection from a uniform medium. 
To find the overall layer-interface scatterer, which includes all effects of transmission 

through the layer and reflection/transmission at the interface at the base of the layer, we 
simply form the scatterer product 

R(zi +, zi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1  +) = R ( z ~  +, zj -) *R(z~ - ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzj-1 +). 

Using (4.1 9) and the definition of the scatterer operator we obtain 

TU (zi +, zi - 1 +) = EC' Tu (Zi +, Z i  -) 

R u ( z ~ + , z ~ - ~  + )=Ru(z i+ ,z i - )  

RD(zi +, zi - 1  +) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 EG' RD(zi +, zi-)  ED 

T D ( z ~ + ,  z i - i+)  = T D ( z ~  +, zj -) ED. 

(4.23) 

Here we have used an obvious notation: TU(zj, zk)  represents all upward transmission 
effects of the structure between z, and zk. Strictly, ED should be written E ~ ( z i - ,  ziwl +), 
etc., but the simplicity of (4.23) is already somewhat obscured by the notation. 

The construction of the overall response of the layered structure begins by finding the 
layer-interface scatterer for the first layer and interface beneath, R(zl +, 0 +), from (4.22) 
and (4.23). Using the scatterer product, layer-interface scatterers are added in succession, 
working down through the stack of layers, so that at step i we form the product 

R(z~+ ,  O+)=R(z i+ ,z i - l  +)*R(zi- l+,O+).  

The iteration is terminated when we reach the base of the structure at ZL. In a similar way, 
any desired scatterer R(zi, zi) can be put together from the individual scatterers for layers 
and interfaces between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi and zj. 

This downward iteration scheme is particularly convenient if the response is being 
computed at large slowness, for which evanescence may prevent significant energy from 
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Seismic waves in anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA703 

penetrating to the base of the structure. Under such circumstances it is often unnecessary 
to include the complete structure in the computation. While working down through the 
structure we can monitor the behaviour of the downward transmission matrix of the stack, 
TD(z~+,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+), and truncate the iteration if all elements of this matrix approach zero (indica.t- 
ing that only negligible energy penetrates to greater depth). By truncating the iteration, 
considerable computational savings may be realized. 

At small values of slowness (the subcritical regime), the complete structure contributes to 
the response. It is then often more efficient to build the response by working upwards from 
the lowest interface (using the operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYu) so that at step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi we form the scatterer 

This upward iteration is preferable for those problems which require only the downgoing 
reflection or transmission matrices, RD, TD, of the complete stack (we shall discuss some 
examples in Section 5). By expanding the upward scatterer product (4.20) it may be verified 
that upward stack matrices [such as RU(ZL +, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZL -i+)] never appear in expressions for 
downward stack matrices (Kennett 1983, section 6.2.1). This means that if the matrices 
RD, TD, are computed using the upward iteration, the matrices RU, TU need not be 
carried through the iteration and a considerable fraction of the matrix multiplication can 
be avoided. 

The intrinsic stability of the reflection matrix iteration is apparent on examination of 
(4.23). From (3.3) and (3.9) we know that EU contains no negative (and ED no positive) 
real exponentials. Hence layer-interface scatterers (4.23) do not contain growing exponentials. 
Further, scatterer products of layer-interface scatterers contain no growing exponentials 
(Saastamoinen 1980). This means that the reflection matrix iteration is stable to arbitrarily 
large frequency and slowness, unlike the direct propagator approach. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Response of a half-space 

5.1 I N C L U S I O N  O F  A S O U R C E  

For a source in the structure the original differential equation (2.1) must be replaced by the 
inhomogeneous equation 

where F is a source term containing the vector f of body forces: 

a,b = iwA(z) b(z) + F(z) (5.1) 

We can integrate (5.1) following Gilbert & Backus (1966), to obtain 

b(z) = P(Z7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo)  b(zd + (5.3) 

which should be compared with (2.5) for the source-free case. 
Many simple point sources can be modelled as a point force acting in a plane through 

the source combined with a dipole or couple acting in the same plane (Hudson 1969). If 
z = z s  is the source depth we therefore take 

F(z)=F16(z-zs)+F2Sf (z  -zs). (5.4) 

With this point source excitation substituted in (5.3) the stress-displacement vector b is 
found to have a discontinuity across the plane zs,  

b(zs +) - b(zs -) = s(zs) = Fl  + iwA(zs) Fz (5.5) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
8
/3

/6
9
1
/6

4
9
0
3
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



704 

(Kennett 1983, p. 44). We consider a point source representation in terms of a force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh and a 
moment tensor M (Gilbert 1971), for which the equivalent body force (Burridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Knopoff 
1964) is 

G. J. Fryer and L. N. Frazer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f = h6(r - rs) - M(w) - V  6(r - rs). 

We assume the source is located at (0, 0, Z S )  as in Fig. 1, so 

6(r - rs )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6(y )  6 ( z  - Z S ) ,  

thus 

V6(r - rs) = s[ikx6(z - z s ) ,  i kyS(z - z s ) ,  a26(z - z s ) l T .  

From (5.6) we obtain 

f = h6(z - z s )  - i w [ p x M x  t p y M y ]  6(z - z s )  - Mz6'(z - ZS) 

where M x ,  M y ,  M z  are the appropriate columns of the moment tensor M ,  so that M x  = ( M x x ,  
M y x ,  Mzx)T.  Substituting this force vector f into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 . 2 )  we can identify F 1  and F 2  in (5.4). 
From (5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS) the stress-displacement discontinuity which acts equivalently to f is 

(5.6) 

, 

s(z) = 

'0 

0 

0 

-1  
- h x +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
iw 

-1 
- hy t 
iw 

-1 
- h z +  
iw 

PXMXX + Py M x  y 

PYMYX +PYMYY 

PXMZX + Py Mzy 

0 

0 

0 

MXZ 

MY z 

Mzz 

6 (z  - zs). (5.7) 

If, for example, the source is in an orthotropic medium with symmetry planes parallel 
to coordinate planes, we can use the system matrix A given by Fryer & Frazer (1984, in 
preparation) to obtain 

s(z) = 

It is worth noting that equation (5.8), derived in a Cartesian coordinate system, is 
relatively simple. Had we chosen cylindrical coordinates, (5.8) would have been much 
less concise [compare with equations (4.59), (4.60) of Kennett 1983 for the equivalent 
expression for an isotropic medium]. This is a further attraction in working in Cartesians. 
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Instead of dealing with a jump in stress-displacement, we can equivalently consider the 

source as a discontinuity in the wave vector. The equivalent wave vector discontinuity is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARESPONSE O F  T H E  H A L F - S P A C E  

With the source specified either by the stress-displacement discontinuity s or the wave vector 
discontinuity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, the full half-space response, including free-surface effects, may be 
constructed using the reflection matrix method, exactly as described by Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 983, 
chapter 7). The reflection matrix development remains valid in the anisotropic case. 

Since the reflection matrix method has been described so well elsewhere (Kennett & Kerry 
1979; Kennett 1983), we need only give the briefest description here. If we write 

with similar notation for R(zs+, zL t) and R(0 +, zs -), the free surface displacement is 
given by 

~ ( 0 )  = @[I - RtLL]-l O(ZS) (5.10) 

(Kennett 1983, equation 7.53). Here Cir is the free-surface magnification correction, 

a is a vector including all interactions of the source with the structure excluding the free 
surface, 

O(ZS) = TF[I  - R i j R Y ]  

and R is the reflection matrix for the free surface such that vD(O t) = Rvu(0 +). TO satisfy 
conditions of vanishing stress, 

f i  = M~~ t M ~ ~ R ,  

[&(zs) + RfjL&(Z,)], 

R = - N - '  N DO UO 

(Kennett 1983, pp. 117-1 18). If the receiver is not at the surface but at some depth ZR, 

(5.10) must be replaced by equations (7.35) or (7.38) of Kennett (1983). 
Note in (5.10) that the response is given entirely in terms of reflection functions. These 

can be computed using the iterative construction already described, which is stable to 
arbitrary slowness and frequency. As a result the response computed via (5.10) is itself 
unconditionally stable. Such stability is a characteristic of reflection matrix solutions. 

5.3 PARTIAL  RESPONSE 

For many seismological problems, especially long-range refraction studies, reflections from 
the surface are ignored as they arrive late in the seismogram, long after the arrivals of 
interest. In modelling the response, surface-reflected phases can be an annoyance as 
they demand the construction of extremely long synthetics (if only short time series are 
constructed, aliasing will fold the unwanted arrivals into the time frame of interest and the 
more important arrivals may be obscured). For example, in marine problems, if the source is 
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in the water it is often convenient to suppress both direct and surface-reflected phases. This 
can be done by retaining only downgoing radiation from the source and truncating the 
reverberation operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- RkLR]-' after the first term in its binomial expansion. This 
yields the partial solution 

u(O)= WT?j'[I - R$LRt ' ] - lRf j jCD(~~)  (5.1 1) 

which further simplifies for a surface source to 

~ ( 0 )  = WRkL&(O +). (5.12) 

Within the reflection matrix formalism there is complete freedom to suppress the response 
of any part of the structure for sources and receivers at any depth (Kennett 1983,chapter 9). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. J. Fryer and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. N. Frazer 

6 Synthetic seismograms 

If the displacement vector at the receiver depth, u(zR), is obtained for a range of trans- 
formed coordinates ( p x ,  p,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo), to  obtain synthetic seismograms it remains to perform the 
inverse transforms 

0 

x exp [-io(t - p,x - p r y ) ]  dp, dp,, do. (6.1) 

Traditionally, wave propagation problems involving isotropic media have been approached 
using not Cartesian but cylindrical coordinates (r, +, z). We chose not to use cylindrical 
coordinates here, but it is instructive to compare the two approaches. 

In cylindrical coordinates the Fourier transforms from (x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  to (p , ,  p,,) used in the 
original separation of variables of Section 2 is replaced by a finite Fourier transform from 
azimuth + to azimuthal order number m and a Hankel transform from range r to radial 
slowness pr. The stress-displacement vector b of the differential system (2.1) is defined 
slightly differently (Kennett 1983, pp. 26-29) but the scheme for obtaining u(pr, m, ZR,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  
differs only in detail from that for u(px, p,,, zR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). The inverse transforms for vertical 
displacement may be written 

u,(r, +, z R ,  t )  = - d o  uz exp(--iot) 

(6.2) 

2n 1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- m  

x Joa dprpr uz(pr,  m, Z R ,  a) Jm(oprr) exp (im+) 

(Kennett 1983, equation 2.44) with similar but somewhat more complicated expressions 
for the other displacement components (Kennett 1983, equation 7.57). The inverse of 
the finite Fourier transform is a summation over angular order number m, but for point 
sources composed of force and dipole components the summation can be restricted to 
i m 1 < 2 because of symmetry (Kennett 1983, p. 173). Equation (6.2) then represents a 
considerable computational savings over (6.1) as a triple integral has been replaced by two 
integrals and a (small) finite sum. 

is varied, an incident disturbance 
senses different elastic properties. In (6.2) convergence of the Fourier series is not then 
accomplished until m is large, so any advantage over Cartesian coordinates is lost. Further, 
evaluation of (6.2) for a specified azimuth is not simple. Either those values of m giving a 
contribution along the desired azimuth must be found, or the coordinate system itself 
must be rotated so that $ = 0 lies along the desired azimuth (6.2 can then be evaluated by 

For azimuthally anisotropic media, as azimuth 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
8
/3

/6
9
1
/6

4
9
0
3
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Seismic waves in anisotropic media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA707 

summing about m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0). The latter method is simpler but the system matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA in (2.1) will 
have a different form for each azimuth of interest, an inconvenience. In general, when 
dealing with azimuthal anisotropy, Cartesian coordinates will yield simpler mathematics 
and result in more efficient codes. This is especially true if any of the coordinate axes can 
be chosen to be parallel to a symmetry direction. The elasticity tensor will then be sparse, 
giving A a simple form and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso simplifying the extraction of eigensolutions (Fryer & Frazer 
1984). 

If anisotropy is weak so that the transerve component of the wave slowness vector is 
neghgible (i.e. all rays remain close to the sagittal plane), then cylindrical coordinates do 
offer an advantage as it then becomes legitimate to limit the angular order number to small 
values. This is obviously true for transversely isotropic media as these display cylindrical 
symmetry and the transverse component of wave slowness is identically zero. Booth & 
Crampin (1983a, b) construct synthetics for azimuthally anisotropic media in this way but 
they admit that such an approach is valid only for weak anisotropy. It is difficult to estimate 
the error introduced by this procedure. Since wave propagation out of the sagittal plane is a 
characteristic of anisotropy it seems important to try to retain this phenomenon in any 
modelling. Certainly propagation out of the sagittal plane must be accommodated if we are 
to construct complete synthetics. 

To compute synthetics, we must find u(p,, p,,, ZR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  for a range of frequencies w and 
of both horizontal slownesses p x  and p y ,  then perform the inverse transformation (6.1). 
Three-dimensional Fourier transforms involve a daunting amount of computation and so 
are usually specially designed for the problem at hand. This problem is no different. If we 
were to execute a complete 3D-FFT of u(p,, p y ,  ZR, w )  we would obtain synthetics for 
every point on the x-y plane, which is obviously in excess of our requirements. To reduce 
the computation to a reasonable level, we must consider efficiency and avoid computing 
quantities we do not ultimately want. 

Two-dimensional FFTs are now fairiy common and are used routinely, for example, 
in F-K migration of seismic reflection data (e.g. Carter & Frazer 1982). We propose to 
evaluate (6.1) using a combination of 2-D and 1-D transformations. The obvious choice is for 
the 2-D operation to transform from ( p x ,  p,) to ( x , y )  and the 1-D from w to t .  We are left 
with the choice of order of the transforms. 

Construction of synthetics using a slowness approach (w to f transform performed first) 
is an attractive scheme as intermediate results are plane-wave seismograms in t - p  space, 
which are amenable to interpretation (Fryer 1980). Plane-wave seismograms for anisotropic 
media have proved quite instructive (Keith & Crampin 1977c). Unfortunately, the slowness 
approach is wasteful of both computer time and storage. This is illustrated in Fig. 4. When a 
frequency-to-time transform is executed the number of time samples obtained is the number 
that will appear in the final seismogram. From our experience with synthetics for isotropic 
media we expect a 1 000-point seismogram typically to be constructed from 100 frequencies. 
On performing the w to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt transform we can hence expect a 10-fold increase in array size. 
Each time point will then require a 2-D FFT from ( p x ,  p,,) to (x, y )  space and we shall 
obtain synthetics for all points in (x, y) ,  exactly the wasteful situation we had hoped 
to avoid. 

The alternative to the slowness approach is the spectral, with the 2-D transform from 
( p x ,  p y )  to (x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy )  performed first. This will not increase storage demands and the 2-D 
transform need be performed typically 100 times rather than the 1000 times of the slowness 
approach. From the resulting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, y,  w )  data (r, 4, w )  data can be interpolated for desired 
azimuths 4 and the final synthetics obtained by I-D FFT. Examples of such analyses will be 
presented in a future paper. 
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PLANE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- WAVE SEISMOGRAMS 
RESPONSE (ALL SPACE) 

@ REFLECTIVITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Deline 

Az, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmu t h 

\ 
RECORD 
5ECTlON 

Azimuth 
POSITION RANGE 
SPECTRA SPECTRA 

Figure 4. The two possible paths to synthetic seismograms; the goal is to obtain a record section for a 
given azimuth from the medium response (‘reflectivity’) which is computed in transformed coordinates. 
The upper path is the slowness path, in which the initial step is to transform from frequency to time to 
obtained the transient plane-wave response. This method requires a 2-D Fourier transform for each 
discrete time, which yields a seismogram for every zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x ,  y ) .  From these the desired record section can be 
extracted (by interpolation if necessary). In the spectral method (lower path) the 2-D transformation 
from ( p x ,  p,,) to ( x ,  y )  is performed for each frequency, data for the desired azimuth are extracted, and 
the final record section obtained by simple 1-D Fourier transformation. Boxes show the dimensionality 
and relative amounts of storage required at each step. The spectral method is the more economical as it 
requires much less storage and many fewer transforms. 

7 Discussion and conclusions 

Solution of the wave equation for vertically stratified media involves three steps, the first 
purely mathematical: (1) separation of variables by multiple transformation to obtain 
a system of ordinary differential equations in depth, (2) solution of the differential system, 
and (3) back transformation to time-distance space. The choice of coordinate system 
depends on the nature of the problem; the cylindrical symmetry of isotropy and transverse 
isotropy make cylindrical coordinates the most logical choice; when there is an azimuthal 
variation of elastic properties, Cartesian coordinates are much more convenient. 

The differential system may be solved using Kennett’s recursive algorithm. The recursive 
scheme has to be modified for anisotropic media, but the modifications are straightforward. 
In problems of P-SVmotion in isotropic media the recursive scheme involves 2 x 2 matrices 
whereas for general anisotropy it involves 3 x 3. The recursion relations for isotropy 
(Kennett 1983, p. 133) implicitly assume that for each wave type, the vertical slownesses 
for up and downgoing propagation are simply the negative of each other (i.e. that EU’ and 
ED are equal). For anisotropic media this assumption is valid only for those materials with a 
horizontal plane of elastic symmetry. For general anisotropy EU’ and ED are nor equal and 
equation (6.16) of Kennett (1983) must be replaced by our equation (4.23). Similarly, 
Kennett’s discussion of piecewise smooth models (Kennett 1983, pp. 136-1 5 1) implicitly 
assumes this symmetry of the vertical slownesses and would have to be modified. We have 
not considered this problem. 
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Apart from these modifications to the recursion, Kennett's reflection matrix procedure 

is directly applicable to problems in anisotropy. All matrix relationships given by Kennett 
(1983, chapters 7 and 9) describing either the complete or partial response of a layered 
half-space to a source at any depth, retain their validity in the presence of anisotropy 
(though the matrices themselves are all 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 3 rather than the 2 x 2 entities of isotropy). 

Construction of synthetic seismograms requires the back transformation of the (trans- 
formed) response. For isotropy, this is a 2-D combination of Fourier and Hankel transforms. 
For anisotropy, a 3-D Fourier transform must be evaluated. The complete process of 
computing medium response and performing a 3-D inverse transform promises to be 
extremely time-consuming, but with special-purpose hardware (an array processor) to assist 
in evaluating the transforms, it should be possible to make the process economical enough 
for routine use. 
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