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S U M M A R Y

Studied in this paper are the properties of seismoelectromagnetic waves radiated by a double

couple in a saturated porous medium arising from the electrokinetic effect. First, using the

Pride’s equations, we derive the Green’s function of the magnetic field due to a single point

force as a complement of previous authors’ works, in which only the Green’s functions

of the solid displacement, the relative fluid–solid displacement and the electric field were

expressed. Furthermore, we extend these Green’s functions to cater for the moment tensor

sources. Then we derive the Green’s functions of the solid displacement, the electric and

magnetic fields in the frequency-space domain excited by a double couple source, which is

frequently used in earthquake seismology. To visualize these fields, the radiation patterns are

calculated and displayed. The results illustrate that the radiation pattern of the electric far

field for the longitudinal (or transverse) wave is the same in shape as that of the far field

of the P (or S) wave in elastodynamics. For a transverse wave, the electric and magnetic far

fields share the same radiation patterns in shape, while the electric and magnetic near fields

do not. For each of the four body waves, the far, intermediate and near fields are compared at

different receiver-to-source distances, respectively. The electromagnetic (EM) wave has a much

longer near-field-dominating distance than the seismic waves. We calculate the waveforms in

the time–space domain by numerically Fourier transforming the Green’s functions into the

time domain. In order to validate these Green’s functions and the waveforms, we calculate the

waveforms again by another method. The main idea of the method is regarding the source

as a displacement–stress–EM discontinuity vector. The result shows that the waveforms from

those two methods are in excellent agreement. In the waveforms, there are the electric fields

accompanying both the P and S waves, as well as the magnetic field accompanying the S

wave. We testify that the S wave generally has a weaker capacity than the P wave in inducing

an electric field. In the waveforms, there is also an independently propagating EM wave,

which has a much higher speed than the seismic waves, and reaches the observation point

immediately after the source launched. By comparing the waveforms at different receiving

locations, we find that waveforms differ at different observation orientations.

Key words: Magnetic and electrical properties; Body waves; Theoretical seismology; Wave

propagation.

1 I N T RO D U C T I O N

It is known that seismic waves can induce electromagnetic (EM) fields. The coupling between the seismic and EM energies may result from the

electrokinetic effect (Thompson & Gist 1993; Butler et al. 1996; Mikhailov et al. 1997; Garambois & Dietrich 2001), the piezoelectric effect

(Huang 2002), the EM induction effect (Matsushima et al. 2002), and some other mechanisms. Among these mechanisms, the electrokinetic

phenomenon has stirred great interest of geophysicists during the past decades. As early as in 1939 Ivanov measured the electric field induced

by the seismic waves. To explain the phenomena appeared in Ivanov’s field experiment, Frenkel (1944) built a mathematical model to analyse

the electric field induced by a seismic wave by assuming the existence of the electric double layer on the solid–fluid interface in a porous

medium. In recent years, successful field and laboratory experiments (e.g. Thompson & Gist 1993; Zhu et al. 1994, 1999, 2008; Butler

et al. 1996; Mikhailov et al. 1997; Garambois & Dietrich 2001; Bordes et al. 2006, 2008) provided further evidences for the electrokinetic
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874 Y. Gao and H. Hu

phenomenon and excited more interest among scientists. The electrokinetic effect has been recognized as a potential tool for explorations

(Thompson & Gist 1993; Butler et al. 1996; Mikhailov et al. 1997; Garambois & Dietrich 2001).

As a development of Frenkel’s work, Pride (1994) derived a set of macroscopic equations governing the coupled poroelastic and EM

field. In brief, in his set of equations the Biot’s poroelastodynamic equations are coupled to the Maxwell’s equations of electrodynamics.

As the coupling coefficient is experimentally measurable (Pengra et al. 1999; Reppert & Morgan 2002), Pride’s equations can be used to

quantitatively model the electrokinetic coupling phenomena. From the plane wave solutions to Pride’s equations (Pride & Haartsen 1996),

it is clear that there are two kinds of EM fields. One is local and restricted to the seismic disturbance region. The other is a propagating

wave. When a seismic wave propagates through a porous medium, a relative fluid–solid motion is induced. The relative fluid–solid motion

transports the ions in the pore fluid to cause local EM field due to the existence of the electric double layer. Such a local EM field does not

exist outside of the seismic wave pulse and is thus an accompanying EM field. This is the first kind of EM disturbance, which can be regarded

as local material response. The second kind of EM disturbance happens when the seismic wave crosses an interface separating two porous

media with different properties. An independently propagating EM wave is then generated at this interface. Such an EM wave is much faster

than the seismic wave. Those two effects were illustrated in detail by the numerical simulations of Haartsen & Pride (1997) and Garambois

& Dietrich (2002). These theoretical simulations can partly explain the observations made by Thompson & Gist (1993) and Garambois &

Dietrich (2001). For well logging cases, analytic and numerical methods were performed to describe the EM fields induced in the borehole

embedded in a porous medium (Hu & Liu 2002; Hu et al 2007; Guan & Hu 2008; Guan et al. 2009).

Previous works mentioned above mostly focused on the application of the electrokinetic effect for the exploration purpose. However,

electrokinetic effect may also be active in earthquake seismology, and is a possible mechanism for the existence of the coseismic EM

disturbances. In recent years, coseismic EM signals have been measured before, during or after earthquakes. Many articles have been

published to analyse these recorded coseismic EM signals. Huang (2002) developed a physical model considering the compensation of

piezoelectric effect and the dislocation theory of fault. He suggested the piezoelectric effect may be a possible mechanism of the recorded

seismoelectric signals during the 1995 M = 7.2 Kobe earthquake. Matsushima et al. (2002) supposed the electrically conducting crust

that vibrates under the Earth’s magnetic field may make motional EM induction. They called this mechanism the seismo-dynamo effect. By

estimating the motional EM response using the magnetotelluric fields and ground motion observed during the 1999 Mw = 7.4 İzmit earthquake

aftershock (M = 4.5), they thought that the seismo-dynamo effect is a plausible mechanism for the variations in the magnetotelluric fields

associated with the seismic waves. Honkura et al. (2002) studied the small electric and magnetic signals before the seismic waves during

the 1999 Mw = 7.4 İzmit earthquake, but they did not give a reasonable explanation for the existence of these signals. Karakelian et al.

(2002) analysed the ultralow-frequency EM field measurement associated with the 1999 M = 7.1 Hector Mine earthquake sequence. They

thought that the coseismic EM fields are perhaps due to the electrokinetic effect. Tang et al. (2008) also supposed that the coseismic EM fields

associated with the aftershock of the Ms 8.0 Wenchuan earthquake are possibly caused by the electrokinetic effect. Regrettably, Karakelian

et al. (2002) and Tang et al. (2008) haven’t provided any evidence for their supposition. However, since the seismoelectric and seismomagnetic

conversions arising from the electrokinetic effect assuredly exist and are measurable (Bordes et al. 2006, 2008), the electrokinetic effect in

an earthquake incident deserves our in-depth study.

As is known, most natural earthquakes were caused by the fault slips. Pride et al. (2004) and Pride & Garambois (2005) studied the

electric response in a uniform porous crust following a shear dislocation on an internal slip surface. They considered a finite fault model

and investigated how the fluid-pressure equilibration affects both the stress state and the electric fields near the fault in months following an

earthquake. In their modelling, the fluid pressure diffusion process was seen as a very low frequency ( f < 0.01 Hz) slow P wave. And they

suggested monitoring the diffusion process by observing the electric field induced by the slow P wave. However, they focused on the effect

of the slow P wave and did not discuss the magnetic field. In this paper, we study both the electric and magnetic fields induced by the seismic

waves. We study a fault, of which the scale is much smaller than the seismic wavelength considered. Therefore, the wavefields generated by

the slip of such a fault are recognized equivalent to those generated by a double couple source. Our goal is to describe the properties of the

electric and magnetic fields radiated by such a double couple source. The fundamental solutions, that is, the Green’s functions for a uniform

infinite porous medium are investigated to reveal the properties of these fields. Over the past decades, Green’s functions for wave propagating

in a poroselastic solid based on Biot’s theory have been presented in various formulations by many authors (e.g. Burridge & Vargas 1979;

Norris 1985; Bonnet 1987; Boutin 1991). These various representations of Green’s functions were systematically reviewed and discussed

by Karpfinger et al. (2009). For the coupled poroelastic and EM problem, Green’s functions were presented by Pride & Haartsen (1996).

However, in Pride & Haartsen (1996)’s work only the Green’s functions of the solid displacement u, the relative fluid–solid displacement w

and the electric field E were presented, while the Green’s function of the magnetic field is lacking. Besides, in their work, only the single point

sources were considered, namely, the current-source C and the single forces acting on the bulk material F and fluid phase f, respectively.

These single point sources are often insufficient in seismology. As a supplement, in this paper, the moment tensors are used to describe more

types of sources.

We organize the present paper as follows. In the coming section, we give a brief introduction of Pride’s equations. Next, we review the

frequency-space-domain Green’s functions of u, w and E due to a single point force that have been obtained by Pride & Haartsen (1996). In

addition, we derive the Green’s function of the magnetic field H. In Section 4, we derive the Green’s functions of u, w, E and H relating to

the moment tensors. Thereafter, with the help of the radiation patterns, we illustrate the radiation characteristics of the electric and magnetic

fields generated by a double couple source. Subsequently, we calculate the full waveforms of the solid displacement, the electric and magnetic

fields due to the double couple source by numerically Fourier transforming the corresponding Green’s functions into the time–space domain.
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Seismo_EM waves radiated by a double couple 875

Meanwhile, to check the validity of the Green’s functions obtained, we introduce another method to calculate the full waveforms again.

The main idea of the method is taking the source as a displacement–stress–EM discontinuity vector (Haartsen & Pride 1997; Garambois

& Dietrich 2002; White & Zhou 2006). Furthermore, we calculate the waveforms at different locations to investigate the influence of the

observation orientation on the received waveforms.

2 P R I D E ’ S E Q UAT I O N S

Assuming an e−iωt time dependence, the equations governing the coupled EM and elastic waves in an isotropic homogeneous porous medium

are

∇ × H = [σ (ω) − iωε]E + L(ω)(−∇ P + ω2ρ f u + f) + C, (1)

∇ × E = iωµH − M, (2)

−ω2(ρu + ρ f w) = ∇ · τ + F, (3)

−iωw = L(ω)E + κ(ω)/η
(

−∇ P + ω2ρ f u + f
)

, (4)

τ = [(H − 2G)∇ · u + C∇ · w]I + G(∇u + ∇uT ), (5)

−P = C∇ · u + M∇ · w, (6)

where ω is the angular frequency, H is the magnetic field, E is the electric field, u is the average solid displacement, w is the average relative

fluid–solid displacement, τ is the bulk stress tensor, P is the pore fluid pressure, I is the identity tensor, ε and µ are the electrical permittivity

and magnetic permeability of the porous formation, respectively. ρ = (1 − φ)ρs + φρ f is the bulk density, ρs is the solid grain density, ρ f

is the pore fluid density, φ is the porosity, η is the fluid viscosity. σ (ω), κ(ω) and L(ω) are the dynamic electrical conductivity, the dynamic

permeability and the electrokinetic coupling coefficient, respectively, all of which are complex and frequency dependent. Their detailed

expressions can be seen in Pride (1994). F and f are the average force densities exerted on the bulk material and fluid phase, respectively. C

and M are the applied current-density and magnetic-current sources, respectively. H , C and M are the elastic moduli which are expressed as

H = Kb + 4G/3 + α2 M, (7)

C = αM, (8)

M = K f Ks/[φKs + (α − φ)K f ], (9)

where

α = 1 − Kb/Ks, (10)

Ks and K f are the bulk moduli of the solid grain and the pore fluid, respectively, Kb and G are the bulk and shear moduli of the framework,

respectively.

3 G R E E N ’ S F U N C T I O N S F O R P O I N T S O U RC E

The magnetic-current source M can be excluded because such a term is always due to loops of applied electrical current, which can be

represented by a particular distribution of the electrical current C (Pride & Haartsen 1996). Using the solid displacement u, the relative

fluid–solid displacement w and the electric field E as the independent field variables, we rewrite the Pride’s equations as

[(H − G)∇∇ + (G∇2 + ω2ρ)I] · u +
[

C∇∇ + ω2ρ f I
]

· w = −F, (11)

[

C∇∇ + ω2ρ f I
]

· u + [M∇∇ + ω2ρ̃ I] · w − iωρ̃LE = −f, (12)

[∇∇ − (∇2 + ω2µε̃)I] · E + iω3µρ̃Lw = iωµC, (13)

where

ρ̃ = iη/[ωκ(ω)], (14)

ε̃ = ε + iσ (ω)/ω − ρ̃L2(ω). (15)

We consider the source terms in the forms of the Dirac delta function

F = F0δ(r − r′), (16)

f = f0δ(r − r′), (17)

C = C0δ(r − r′), (18)
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876 Y. Gao and H. Hu

where r = xi ei is the position vector of the observation point, r′ = x ′
i ei is the position vector of the source location, ei is the coordinate unit

vector, and here the Einstein summation convention for repeated indices is used. The general solutions of eqs (11)–(13) are in following forms

u = G
F
u F0 + G

f
u f0 + G

C
u C0, (19)

w = G
F
wF0 + G

f
wf0 + G

C
wC0, (20)

E = G
F
E F0 + G

f

E f0 + G
C
E C0, (21)

where G
ξ

β is the Green’s function describing the field response of β(β = u, w, E) type due to the source exerted of ξ (ξ = F, f, C) type. By

Fourier transforming eqs (11)–(13), and then solving the system of equations, Pride & Haartsen (1996) obtained the Green’s functions in the

frequency-space domain

G
ξ

β (r|r′) =
sem∑

s=ss

T
ξ

β,s

eiωsr

4πr
(I − r̂r̂) +

sps
∑

s=sp f

L
ξ

β,s

eiωsr

4πr
r̂r̂ +

[
sem∑

s=ss

T
ξ

β,s

(
i

ωsr
−

1

ω2s2r 2

)
eiωsr

4πr

−
sps
∑

s=sp f

L
ξ

β,s

(
i

ωsr
−

1

ω2s2r 2

)
eiωsr

4πr

⎤

⎦ (I − 3r̂r̂), (22)

where r = |r − r′|, and r̂ = r−r′

r
. r̂ = r̂i ei indicates the unit vector pointing from the source location to the observation point. sp f , sps , ss

and sem are the complex slownesses of the fast P wave (Pf ), slow P wave (Ps), shear wave (S) and EM wave, respectively. T
ξ

β,s and L
ξ

β,s are

the complex amplitudes of the transverse and longitudinal components, respectively. The detailed expressions of the wave slownesses and

the complex amplitudes have been derived by Pride & Haartsen (1996). They are listed in Appendix A. The tensorial polarization (I − r̂r̂)

in expression (22) corresponds to the transverse waves (i.e. the S and EM waves) while r̂r̂ corresponds to the longitudinal waves (i.e. the Pf

and Ps waves). The near field polarization (I − 3r̂r̂) can be considered as a combination of the transverse and longitudinal waves.

Pride & Haartsen (1996) did not give the Green’s function of the magnetic field. We derive its expression as follows. Ignoring the

magnetic-current source in eq. (2), we have

H =
1

iωµ
∇ × E. (23)

Then the Green’s function of the magnetic field H is

G
ξ

H (r|r′) =
1

iωµ
∇ × G

ξ

E (r|r′). (24)

Substituting eq. (22) into eq. (24) with setting the subscript β as E , and noticing the relation

∇ ×
[

−
eiωsr

r
r̂r̂ +

(
i

ωsr
−

1

ω2s2r 2

)
eiωsr

r
(I − 3r̂r̂)

]

= 0, (25)

we then have

G
ξ

H (r|r′) =
1

iωµ

sem∑

s=ss

T
ξ

E,s

eiωsr

4π

(
iωs

r
−

1

r 2

)

r̂ × I . (26)

The proof of eq. (25) is given in Appendix B. As stated by Pride & Haartsen (1996), only the transverse waves (i.e. the S and EM waves)

contribute to the Green’s function of the magnetic field while the longitudinal waves (i.e. the Pf and Ps waves) do not. Different from the

electric field expressed in eq. (22), the magnetic field due to a single force has only one polarization, that is, r̂ × I .

To visualize the electric and magnetic fields generated by a single force, we calculate their radiation patterns. The spherical coordinates

(Fig. 1) are introduced for the convenience of analysis. In Fig. 1, S denotes the source and is located at the origin, and B denotes the observation

point. The cosines r̂1, r̂2 and r̂3 are defined as follows

r̂1 = sin θ cos φ̃, (27a)

r̂2 = sin θ sin φ̃, (27b)

r̂3 = cos θ. (27c)

Assuming a body force F = F3e3 is exerted, the electric and magnetic fields are then expressed as

E = G
F
E (r|r′) · F

=
sem∑

s=ss

T F
E,s

eiωsr

4πr
F ê

f ar

T +
sps
∑

s=sp f

L F
E,s

eiωsr

4πr
F ê

f ar

L +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sem∑

s=ss

T F
E,s

(
i

ωsr
−

1

ω2s2r 2

)
eiωsr

4πr

−
sps
∑

s=sp f

L F
E,s

(
i

ωsr
−

1

ω2s2r 2

)
eiωsr

4πr

⎤

⎥
⎥
⎥
⎥
⎥
⎦

F ênear ,
(28)
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Seismo_EM waves radiated by a double couple 877

Figure 1. Definition of the cosines r̂1, r̂2 and r̂3 in spherical coordinates. S indicates the source and is located at the origin. B indicates the observation point.

The unit vectors r̂, θ̂SV and κ̂SH are also shown.

and

H=G
F
H (r|r′) · F =

1

iωµ

sem∑

s=ss

T F
E,s

eiωsr

4π

(
iωs

r
−

1

r 2

)

F ĥ, (29)

where

ê
f ar

L = r̂3r̂, (30a)

ê
f ar

T =

⎡

⎢
⎢
⎣

−r̂1r̂3

−r̂2r̂3

1 − r̂3r̂3

⎤

⎥
⎥
⎦

, (30b)

ênear =

⎡

⎢
⎢
⎣

−3r̂1r̂3

−3r̂2r̂3

1 − 3r̂3r̂3

⎤

⎥
⎥
⎦

, (30c)

ĥ =

⎡

⎢
⎢
⎣

r̂2

−r̂1

0

⎤

⎥
⎥
⎦

. (30d)

Expressions (30) show the polarization vectors of the electric and magnetic fields. For the electric field, the far field polarization of

longitudinal mode (L mode) êfar
L is along the r̂-direction (i.e. the direction of the wave propagating). The far field of transverse mode (T mode)

êfar
T can be rewritten as

ê
f ar

T = − sin θ

⎡

⎢
⎢
⎣

cos θ cos φ̃

cos θ sin φ̃

− sin θ

⎤

⎥
⎥
⎦

= − sin θ θ̂SV . (31)

The vector θ̂SV is shown in Fig. 1. We can easily prove the relation θ̂SV · r̂ = 0, which means that the direction of the electric far field

of the transverse wave is orthogonal to the r̂-direction. The polarization vector of the magnetic field can be rewritten as

ĥ = − sin θ

⎡

⎢
⎢
⎣

− sin φ̃

cos φ̃

0

⎤

⎥
⎥
⎦

= − sin θ κ̂SH . (32)

The vector κ̂SH is also shown in Fig. 1. One can prove the relations κ̂SH · r̂ = 0 and κ̂SH · θ̂SV = 0, respectively. These indicate that

the magnetic field is orthogonal to not only the r̂-direction but also the θ̂SV -direction. As seen from Fig. 1, θ̂SV is always along the tangent

direction of meridian and is the well-known SV wave polarization vector in elastodynamics, while κ̂SH is always along the tangent direction

of latitude and is thus the SH wave polarization vector. The third equation of expressions (30) represents the polarization vector of the electric

near field, which has following properties:

ênear · r̂ = −2 cos θ, (33a)
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878 Y. Gao and H. Hu

Figure 2. Geometry of 3-D radiation patterns due to a single vertical point force F = F3e3: (a) electric far field of longitudinal mode, (b) electric far field of

transverse mode, (c) electric near field and (d) magnetic field of transverse mode (colour online).

ênear · θ̂SV = −3 sin θ cos θ, (33b)

ênear · κ̂SH = 0. (33c)

It is implied in eq. (33) that the electric near field radiated by the force F = F3e3 is parallel to neither the r̂-direction nor the θ̂SV -direction.

It is, however, in the plane composed of r̂ and θ̂SV , and is orthogonal to the κ̂SH -direction. To get a further understanding, we calculate the

radiation patterns of the electric far fields of the L and T modes, as well as the electric near field and the magnetic field. When only considering

the amplitudes of the polarization vectors and ignoring all other corresponding constants in eqs (28) and (29), we define

E far
L =

∣
∣êfar

L

∣
∣ = | cos θ |, (34a)

E far
T =

∣
∣êfar

T

∣
∣ = | sin θ |, (34b)

Enear = |ênear| =
√

1 + 3 cos2 θ, (34c)

H = |ĥ| = | sin θ |. (34d)

The radiation pattern of the electric far field of the L mode wave is illustrated n in Fig. 2(a), which is similar to that of the far field of an

elastic P wave. The radiation pattern of the electric far field of the T mode wave (Fig. 2b) is similar to that of the far field of an elastic S wave.

Comparing Fig. 2(b) with Fig. 2(d), we find that for the T mode wave, the electric far field and the magnetic field have the same radiation

patterns in geometry, although they differ in the polarizations. Fig. 2(c) shows the radiation pattern of the electric near field, which is quite

different from those of the electric far fields of the longitudinal and transverse waves.

4 WAV E F I E L D S D U E T O T H E M O M E N T T E N S O R S O U RC E S

4.1 Moment tensor sources

In seismology, the single point forces are often insufficient to describe real physical sources. For example, an explosive source cannot be

represented by a single force. So the moment tensors are usually introduced to model more sources, for example, explosive sources and

dislocation type sources (Backus & Mulcahy 1976a,b). In elastodynamics, the displacement due to the moment tensor in the frequency domain

is

ui = M jk

∂G
F
u,i j

∂r ′
k

, (35)
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Seismo_EM waves radiated by a double couple 879

Figure 3. Nine components of moment tensor M jk and their equivalent body force representations. Three of them are dipoles ( j = k) and the other are

couples. For a couple, j and k denote the directions of forces and the arm of the couple, respectively (after Aki & Richards 2002).

where G
F
u,i j is the Green’s function of the displacement due to a single force. M jk is the moment tensor component, which is either a dipole

when j = k or a couple when j �= k. For a couple, the subscripts j and k denote the directions of the forces and the arm of the couple,

respectively. The nine components of the moment tensor are illustrated in Fig. 3 (Aki & Richards 2002).

Eq. (35) is also valid for the solid displacement u, the relative fluid–solid displacement w, the electric field E and the magnetic field H

due to the moment tensors for the coupled poroelastic and EM problem. To obtain the expressions of these fields due to the moment tensors is

not difficult since their Green’s functions due to a single force have been obtained in the former section. Using eq. (35), after a straightforward

but lengthy algebraic manipulation, we get

βi =
sem∑

s=ss

T F
β,s

−iωseiωsr

4πr
(Mi j r̂ j − M jk r̂i r̂ j r̂k) +

sps
∑

s=sp f

L F
β,s

−iωseiωsr

4πr
(M jk r̂i r̂ j r̂k)

+
sem∑

s=ss

T F
β,s

eiωsr

4πr 2
(M j j r̂i + M j i r̂ j + 2Mi j r̂ j − 6M jk r̂i r̂ j r̂k)

+
sps
∑

s=sp f

L F
β,s

eiωsr

4πr 2
(M j j r̂i + M j i r̂ j + Mi j r̂ j − 6M jk r̂i r̂ j r̂k)

+

[
sem∑

s=ss

T F
β,s

eiωsr

4π

(
i

ωsr 3
−

1

ω2s2r 4

)

−
sps
∑

s=sp f

L F
β,s

eiωsr

4π

(
i

ωsr 3
−

1

ω2s2r 4

)
⎤

⎦ (3M j j r̂i + 3M j i r̂ j + 3Mi j r̂ j − 15M jk r̂i r̂ j r̂k), (36)
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880 Y. Gao and H. Hu

and

Hl =
1

iωµ

[
sem∑

s=ss

T F
E,s

eiωsr

4π

ω2s2

r
M jk r̂i r̂kεi jl +

sem∑

s=ss

T F
E,s

eiωsr

4π

(

−
iωs

r 2
+

1

r 3

)

(M j i − 3M jk r̂i r̂k)εi jl

]

, (37)

where β can be u,w and E , εi jl is the permutation symbol. Eq. (36) is similar to the expression of the displacement due to the moment tensors

in elastodynamics (Aki & Richards 2002). The β field can be divided into three parts of fields in terms of different geometrical diffusions,

namely, the far field with 1
r

dependency, the intermediate field with 1

r2 dependency, and the near field with ( i

ωsr3 − 1

ω2s2r4 ) dependency. The

magnetic field can also be divided into the far field with 1
r

dependency and the near field with (− iωs

r2 + 1

r3 ) dependency, respectively.

The various combinations of the moment tensor components represent different physical sources. For example, the combination of

components M11 + M22 + M33 corresponds to an explosion source, while the combination of components M13 + M31 corresponds to a

double couple source. The double couple is an important source in seismology because it is equivalent to the fault slip, which often causes an

earthquake. Many observations suggest that most earthquakes obey the double couple source mechanism (Aki & Richards 2002).

4.2 Electric and magnetic fields due to a double couple

Consider a double couple M13 +M31, which can represent either a fault in the x2 −x3 plane with slipping in the x3-direction (i.e. a vertical fault)

or a fault in the x1 − x2 plane with slipping in the x1-direction (i.e. a horizontal fault). Using eqs (36) and (37), and setting M13 = M31 = M0,

we get the electric field

E =
sem∑

s=ss

T F
E,s

−iωseiωsr

4πr
M0ê

f ar

T +
sPs∑

s=sP f

L F
E,s

−iωseiωsr

4πr
M0ê

f ar

L

+
sem∑

s=ss

T F
E,s

eiωsr

4πr 2
M0êintermediate

T +
sPs∑

s=sP f

L F
E,s

eiωsr

4πr 2
M0êintermediate

L

+

⎡

⎣

sem∑

s=ss

T F
E,s

eiωsr

4π

(
i

ωsr 3
−

1

ω2s2r 4

)

−
sPs∑

s=sP f

L F
E,s

eiωsr

4π

(
i

ωsr 3
−

1

ω2s2r 4

)
⎤

⎦ M0ênear, (38)

and the magnetic field

H =
1

iωµ

[
sem∑

s=ss

T F
E,s

eiωsr

4π

ω2s2

r
M0ĥfar

T +
sem∑

s=ss

T F
E,s

eiωsr

4π

(

−
iωs

r 2
+

1

r 3

)

M0ĥnear
T

]

, (39)

where

êfar
T =

⎡

⎢
⎢
⎣

(

1 − 2r̂ 2
1

)

r̂3

−2r̂1r̂2r̂3

(

1 − 2r̂ 2
3

)

r̂1

⎤

⎥
⎥
⎦

, (40a)

êfar
L = 2r̂1r̂3

⎡

⎢
⎢
⎣

r̂1

r̂2

r̂3

⎤

⎥
⎥
⎦

, (40b)

êintermediate
T =

⎡

⎢
⎢
⎣

(

3 − 12r̂ 2
1

)

r̂3

−12r̂1r̂2r̂3

(

3 − 12r̂ 2
3

)

r̂1

⎤

⎥
⎥
⎦

, (40c)

êintermediate
L =

⎡

⎢
⎢
⎣

(

2 − 12r̂ 2
1

)

r̂3

−12r̂1r̂2r̂3

(

2 − 12r̂ 2
3

)

r̂1

⎤

⎥
⎥
⎦

, (40d)

ênear =

⎡

⎢
⎢
⎣

(

6 − 30r̂ 2
1

)

r̂3

−30r̂1r̂2r̂3

(

6 − 30r̂ 2
3

)

r̂1

⎤

⎥
⎥
⎦

, (40e)

ĥfar
T =

⎡

⎢
⎢
⎣

r̂1r̂2

r̂ 2
3 − r̂ 2

1

−r̂2r̂3

⎤

⎥
⎥
⎦

, (40f)
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Seismo_EM waves radiated by a double couple 881

ĥnear
T = −3

⎡

⎢
⎢
⎣

r̂1r̂2

(

r̂ 2
3 − r̂ 2

1

)

−r̂2r̂3

⎤

⎥
⎥
⎦

. (40g)

The first two equations of expressions (40) denote the polarization vectors of the electric far fields of the L and T mode waves, respectively,

and the following two terms represent the polarization vectors of the electric intermediate fields of the L and T mode waves, respectively. The

fifth term corresponds to the electric near field. The last two terms denote the magnetic far field and near field. One can get the expressions

of the solid displacement u simply by changing T F
E,s to T F

u,s and L F
E,s to L F

u,s , or the relative fluid–solid displacement w by changing T F
E,s to

T F
w,s and L F

E,s to L F
w,s in eq. (38). However, in this paper we aim to investigate the characteristics of the electric and magnetic fields, and thus

we do not expand on the seismic fields in the following sections.

4.2.1 Far field

We can rewrite the second equation of expressions (40) as

êfar
L = sin 2θ cos φ̃r̂, (41)

which indicates the electric far field of L mode is along the r̂-direction. It is easy to validate the following relation:

êfar
T · r̂ = 0. (42)

Eq. (42) reveals that the electric far field polarization of transverse mode is perpendicular to the r̂-direction. In elastodynamics, the

transverse waves can be decomposed into two types of waves in light of their alternative polarizations, namely, the SV wave with θ̂SV

polarization and the SH wave with κ̂SH polarization. Similarly, in this paper, when projecting ê
f ar

T to θ̂SV and κ̂SH , respectively, we get

êfar
SV =

(

êfar
T · θ̂SV

)

θ̂SV = cos 2θ cos φ̃θ̂SV , (43a)

êfar
SH =

(

êfar
T · κ̂SH

)

κ̂SH = − cos θ sin φ̃κ̂SH . (43b)

It is shown that the electric far field of the T mode wave could also be decomposed into those of SV and SH modes, respectively. We

can also prove the validity of the relations below

ĥfar
T · r̂ = 0, (44a)

ĥfar
T · êfar

T = 0. (44b)

Eqs (44a) and (44b) imply that the magnetic far field is perpendicular to not only the r̂-direction but also the êfar
T -direction. As those

three unit vectors r̂, θ̂SV and κ̂SH are pairwise orthogonal, we deduce that an SV mode wave with an electric far field in the θ̂SV -direction

should have a magnetic far field in the κ̂SH -direction, while an SH mode wave with an electric far field in the κ̂SH -direction should own a

magnetic far field in the θ̂SV -direction. As a result, we have

ĥfar
SV =

(

ĥfar
T · κ̂SH

)

κ̂SH = cos 2θ cos φ̃κ̂SH , (45a)

ĥfar
SH =

(

ĥfar
T · θ̂SV

)

θ̂SV = cos θ sin φ̃θ̂SV . (45b)

An EM wave of SV mode is also called a TM wave due to the horizontality of the magnetic field, while an EM wave of SH mode is

called a TE wave due to the horizontality of the electric field. From the expressions (41), (43) and (45), we calculate the amplitudes of the

polarization vectors of the electric far fields for the L mode waves

E far
L =

∣
∣êfar

L

∣
∣ = | sin 2θ cos φ̃|, (46)

and for the SV and SH mode waves

E far
SV =

∣
∣êfar

SV

∣
∣ = | cos 2θ cos φ̃|, (47a)

E far
SH =

∣
∣êfar

SH

∣
∣ = | cos θ sin φ̃|. (47b)

The amplitudes of the polarization vectors of the magnetic far fields for the SV and SH mode waves are

H far
SV =

∣
∣ĥfar

SV

∣
∣ = | cos 2θ cos φ̃|, (48a)

H far
SH =

∣
∣ĥfar

SH

∣
∣ = | cos θ sin φ̃|. (48b)

The amplitude of the polarization vector of the electric far field for the whole T mode wave is

E far
T =

√
(

E far
SV

)2 +
(

E far
SH

)2 =
√

cos2 2θ cos2 φ̃ + cos2 θ sin2 φ̃. (49)

The amplitude of the polarization vector of the magnetic far field for the whole T mode wave is

H far
T =

√
(

H far
SV

)2 +
(

H far
SH

)2 =
√

cos2 2θ cos2 φ̃ + cos2 θ sin2 φ̃. (50)
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882 Y. Gao and H. Hu

Figure 4. Geometry of 3-D radiation patterns due to a double couple source M13 + M31: (a) electric far field of the L mode wave, (b) electric far field of the

SV mode wave, (c) electric far field of the SH mode wave and (d) electric far field of the T mode wave (colour online).

Using eqs (46)–(50) we plot the radiation patterns for these fields in Fig. 4. Fig. 4(a) shows the radiation pattern of the electric far field

of the L mode wave is like a four-leaved clover. It is the same in geometry as that of the P wave in elastodynamics (Aki & Richards 2002).

As seen in Figs 4(b)–(d), the radiation patterns of the electric far fields of the SV , SH and whole T mode waves are similar in shape to those

of the SV , SH and S waves in elastodynamics, respectively (Aki & Richards 2002; Pujol 2003). Comparing Fig. 4(b) with Fig. 5(a), we find

that the electric far field and magnetic far field for the SV mode wave have the radiation patterns although they differ in polarizations. Similar

conclusions can be obtained for the SH mode wave and the whole T mode wave by comparing Fig. 4(c) with Fig. 5(b) and Fig. 4(d) with

Fig. 5(c), respectively.

4.2.2 Near field

In seismology, usually we only consider the far-field terms of the seismic waves radiated by the seismic source at a long distance away from

the source, where the near-field terms hardly contribute to the total wavefield and can be ignored. For the coupled poroelastic and EM case,

the wavelength of an EM wave is always much larger than that of a seismic wave (P or S wave) at the same frequency. There possibly exists an

observation point, where for the seismic wave the far-field term dominates the total field while for the EM wave the near-field term dominates

the total field. In this situation, the near-field term of the EM wave cannot be ignored any longer, and should be taken into account. From

eqs (38), the geometrical diffusions of the far-field term, the intermediate-field term and the near-field term of the body waves are denoted as

Dfar
α =

−iωsα

r
, (51a)

Dintermediate
α =

1

r 2
, (51b)

Dnear
α =

(
i

ωsαr 3
−

1

ω2s2
αr 4

)

, α = p f, ps, s, em. (51c)

Using expressions (51) and ignoring the other constants in eq. (38), the absolute values of the far, intermediate and near fields versus

receiver-to-source distance r for each wave are calculated (Fig. 6). The parameters are specified in Table 1 and the frequency is chosen as

1 Hz. As seen from Fig. 6(a), for the Pf wave the absolute value of the far-field term is larger than those of the intermediate- and near-field

terms when r ≥ 0.8 km. For the S wave the far-field term is dominant when r ≥ 0.5 km (Fig. 6c). For the Ps wave the far-field term is always

dominant when r > 100 m (Fig. 6d). However, the dividing point between the far-field-dominating and near-field-dominating domains for

the EM wave is about 25 km. When the frequency is decreased to 0.1 Hz (the other parameters is kept), we find the dividing point for the EM

wave increases to about 60 km (Fig. 7a); When the salinity is decreased to 0.0001 mol/L (the other parameters is kept and the frequency is
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Seismo_EM waves radiated by a double couple 883

Figure 5. Geometry of 3-D radiation patterns due to a double couple source M13 + M31: (a) magnetic far field of the SV mode wave, (b) magnetic far field of

the SH mode wave and (c) magnetic far field of the T mode wave (colour online).

Figure 6. Comparison among the far field (dash line), the intermediate field (dotted line) and the near field (solid line) for (a) Pf wave, (b) Ps wave, (c) S wave

and (d) EM wave when f = 1 Hz and C0 = 0.001 mol L−1 (colour online).

1 Hz), such a dividing point increases to about 70 km (Fig. 7b). This means that for the EM wave the near-field term has a large dominating

distance. Such a dominating distance is sensitive to the frequency and the salinity. Another phenomenon should be noticed is that for each of

the body waves the intermediate-field term is never dominant whatever the receiver-to-source distance is chosen (Aki & Richards 2002). For

this reason, we leave this kind of field out of discussion. From eq. (38) we know that the electric near field is a combination of all the four

body waves, of which the polarization is ênear. It is not difficult to obtain the following relations:

ênear · r̂ = −18r̂1r̂3, (52a)
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884 Y. Gao and H. Hu

Table 1. Parameters of the porous medium used for the

calculation.

Porosity φ = 0.15

Permeability κ0 = 0.1 mD

Tortuosity α∞ = 3

Solid grain bulk modulus Ks = 35.7 GPa

Frame bulk modulus Kb = 17.91 GPa

Shear modulus G = 17.79 GPa

Fluid bulk modulus K f = 2.25 GPa

Solid grain density ρs = 2650 kg m−3

Fluid density ρ f = 1000 kg m−3

Fluid viscosity η = 0.001 Pas

Salinity C0 = 0.001 mol L−1

Solid relative permittivity εs = 4

Fluid relative permittivity ε f = 80

Velocity of P wave VP = 4322 m s−1

Velocity of S wave VS = 2721 m s−1

Figure 7. Comparison among the far field (dash line), the intermediate field (dot line) and the near field (solid line) for EM wave when (a) f = 0.1 Hz,

C0 = 0.001 mol L−1, (b) f = 1 Hz, C0 = 0.0001 mol L−1 (colour online).

ênear × r̂ = 6
[

−r̂1r̂2, r̂ 2
1 − r̂ 2

3 , r̂2r̂3

]T = −6ĥfar
T , (52b)

ênear · ĥfar
T = 0. (52c)

It is implied that the electric near field is neither parallel nor perpendicular to the r̂-direction, but is perpendicular to the ĥfar
T -direction.

From eqs (40f) and (40g), we find the direction of the magnetic near field is parallel and opposite to the magnetic far field. Using the fifth and

seventh equations of expressions (40), we calculate the amplitudes of the electric and magnetic near fields

Enear = |ênear| = 6

√

sin2 θ cos2 φ̃ + cos2 θ + 5 sin2 θ cos2 θ cos2 φ̃, (53)

H near = |ĥnear| = 3

√

cos2 2θ cos2 φ̃ + cos2 θ sin2 φ̃, (54)

and plot their radiation patterns in Fig. 8. Comparing Fig. 8(a) with Fig. 4, we find the radiation pattern of the electric near field is the same

as neither that of the electric far field of L mode nor that of the electric far field of T mode. Comparing Fig. 8(b) with Fig. 5(c), we find that

the radiation pattern of the magnetic near field shares the same shape with that of the magnetic far field. The 2-D radiation patterns of the

electric and magnetic near fields in the x1 − x3 plane are exhibited to help us get a further understanding (Fig. 9).

4.2.3 Waveforms in the time domain

The Green’s functions expressed in eqs (38) and (39) are presented in the frequency-space domain. Due to the Darcy viscous dissipation,

we are not able to analytically transform these Green’s functions back into the time domain. However, the numerical time responses can be

obtained by the discrete Fourier transform on these Green’s functions.

Consider a simple geological model, that is, a uniform infinite porous medium. The parameters of the porous medium are listed in

Table 1. The coordinates are illustrated as in Fig. 1. A double couple source M13 + M31 is located at the origin, and the location of the

observation point B is (x1 = 60 km, x2 = 1 km, x3 = 15 km). The moment is chosen as M13 = M31 = M0 = 4.37 × 1017 Nm, which

corresponds to a Mw 5.7 earthquake. The source used in this paper is a pulse source with a finite frequency band. The time function is

s0(t) =

⎧

⎪
⎨

⎪
⎩

1

2

[

1 + cos
2π

Tc

(

t −
Tc

2

)]

cos 2π f0

(

t −
Tc

2

)

, 0 ≤ t ≤ T

0, t < 0 or t > Tc,

(55)
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Seismo_EM waves radiated by a double couple 885

Figure 8. Geometry of 3-D radiation patterns for (a) electric near field (b) magnetic near field due to a double couple source M13 + M31 (colour online).

Figure 9. 2-D radiation patterns for (a) electric near field, (b) magnetic near field in x1 − x3 plane due to a double couple source M13 + M31 (colour online).

where f0 and Tc denote the centre frequency and the width of the pulse, respectively. In this paper, we choose f0 = 1 Hz and Tc = 2.2 s in

the calculation. The frequency varies in the range 0.1–1.9 Hz. Let s0(ω) be the frequency response of s0(t). By changing T F
E,s to T F

u,s and

L F
E,s to L F

u,s in eqs (38), we can get the expression of the solid displacement u. Multiplying both eqs (38) and (39) by s0(ω), respectively,

and Fourier-transforming them into the time domain, we get the waveforms of the solid displacement, the electric and magnetic fields at

observation point B (Figs 10–12, dotted lines). The distance from S to B is about r = 62 km. At about t = 14 s the P wave arrives, followed

by the S wave arriving at t = 22 s (Fig. 10). As can be seen from Fig. 11, there is an electric disturbance beginning at the arrival time of

the P wave. This is the so-called accompanying electric field induced by the P wave as local material response (Haartsen & Pride 1997).

From eq. (38), we know that the S wave can also induce electric field. But such an electric field is too weak to be apparent compared with

the P-wave-inducing electric field. It can be seen in the waveform of E3 (Fig. 11c), although not clearly. We theoretically prove that the S

wave usually has a weaker electric-field-inducing ability than the P wave. The proof is in Appendix C. There is a magnetic field disturbance

(Fig. 12) beginning at the arrival time of the S wave. Such a magnetic field is induced by the S wave, and is thus an accompanying magnetic

field. In both Fig. 11 and Fig. 12, there are electric and magnetic disturbances, which come into view immediately after the source launched.

This is the EM wave. It has been amplified by a factor 10 000 in order to be apparent. As its velocity is at least one magnitude larger than the

seismic waves (see Table 2), it almost takes no time to reach the observation point. As predicted in eq. (39), only the transverse waves can

cause magnetic fields, so we observe no magnetic field accompanying the P wave. Although the Ps wave is predicted in eq. (38), it does not

appear in the waveforms of u or E due to its strong attenuation.

We have obtained the waveforms in the space-time domain through above process. In this paper, we name this Green’s-function method.

To validate these waveforms as well as eqs (38) and (39), another method is introduced to calculate the waveforms at point B. The main idea

of such a method is regarding the source as a displacement–stress–EM discontinuity vector on the horizontal plane at the source depth. The

effect of the point source is represented by the body force terms in eqs (1)–(4). The related formulas have been shown in detail by Haartsen &

Pride (1997), Garambois & Dietrich (2002), and also White & Zhou (2006). However, few authors have considered the double couple source.

In order to calculate the wavefields induced by the double couple source, we have to derive the corresponding displacement–stress–EM

discontinuity vector. The derivation is somewhat lengthy, and is given in Appendix D. To distinguish from the Green’s function method (take

G-method for short) above, we name the latter equivalent-body-force method (take E-method for short). Using the E-method, the waveforms

of u, E and H at point B are calculated, and plotted again in Figs 10–12 (solid lines). As expected, the waveforms from the two methods show

an excellent agreement.
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886 Y. Gao and H. Hu

Figure 10. Waveforms of the solid displacement u at point B. ‘G’ (dotted line) corresponds to the Green’s function method while ‘E’ (solid line) corresponds

to the equivalent-body- force method.

Figure 11. Waveforms of the electric field E at point B. ‘G’ (dotted line) corresponds to the Green’s function method while ‘E’ (solid line) corresponds to the

equivalent-body-force method. The EM wave has been amplified by a factor 10 000 in order to be apparent.

4.2.4 Influence of observation orientation on the observed waveforms

Pride & Haartsen (1996) have shown that the solid displacement vector u and the electric field vector E are always in the same direction,

and one can get the expressions of u by simply changing T F
E,s to T F

u,s and L F
E,s to L F

u,s in eq. (38). For each of the body waves, the far-,

intermediate- and near-field terms of the solid displacement must have the same polarization vectors as the corresponding terms of the

electric field. This means that the solid displacement must have the same radiation patterns as the electric field. From the radiation patterns

(Figs. 2, 4, 5, 8 and 9), we know that the electric and magnetic fields have different amplitudes in different directions. In order to illustrate this

phenomenon and to get a further understanding of the radiation patterns, we investigate the waveforms at some special observation points in this

section.

We consider an observation point C, which is located on the x3-axis in the x1–x3-plane (Fig. 13). In Fig. 13, the dashed and solid lines

represent the 2-D-radiation patterns of the electric field (or the solid displacement) of the longitudinal and transverse waves, respectively. The

distance from the source S to the point C is the same to that from S to B, that is, r = 62 km. At point C, we have θ = 0 and φ̃ = 0. So we
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Seismo_EM waves radiated by a double couple 887

Figure 12. Waveforms of the magnetic field H at point B. ‘G’ (dotted line) corresponds to the Green’s function method while ‘E’ (solid line) corresponds to

the equivalent-body-force method. The EM wave has been amplified by a factor 10 000 in order to be apparent.

Table 2. Velocities of the four body waves of the porous medium at

f = 0.1 Hz and f = 1.9 Hz.

Frequency

Property f = 0.1 Hz f = 1.9 Hz

Pf -wave velocity (m s−1) 4322–0.00002i 4322–0.0004i

Ps-wave velocity (m s−1) 0.6174–0.6174i 2.7613–2.7612i

S-wave velocity (m s−1) 2721.3–0.00003i 2721.3–0.0007i

EM-wave velocity (m s−1) 23005–23005i 102880–102880i

obtain r̂1 = 0, r̂2 = 0 and r̂3 = 1 according to expressions (27). Using expressions (40), we have

êfar
T =

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦ , (56a)

êfar
L =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ , (56b)

êintermediate
T =

⎡

⎢
⎣

3

0

0

⎤

⎥
⎦ , (56c)

êintermediate
L =

⎡

⎢
⎣

2

0

0

⎤

⎥
⎦ , (56d)

ênear =

⎡

⎢
⎣

6

0

0

⎤

⎥
⎦ , (56e)
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888 Y. Gao and H. Hu

Figure 13. Locations of the observation points C (θ = 0◦) and D (θ = 45◦) in the x1 − x3 plane (colour online). The dashed and solid lines represent the

2-D-radiation patterns of the far field of the electric field (or the solid displacement) for the longitudinal and transverse waves, respectively.

ĥfar
T =

⎡

⎢
⎣

0

1

0

⎤

⎥
⎦ , (56f)

ĥnear
T =

⎡

⎢
⎣

0

−3

0

⎤

⎥
⎦ . (56g)

According to expressions 56, only the x1-component of the electric field (or the solid displacement) and the x2-component of the

magnetic field are non-zero. So only the waveforms of u1, E1 and H2 are considered and plotted (Fig. 14). In Fig. 14(a), only the S wave

that arrives at t = 22 s can be seen, whereas the P wave signal that should appear at t = 14 s cannot be seen. The reasons are as follows:

(1) as shown in eq. (56b), the far field of the P wave is zero; (2) meanwhile, as illustrated in Figs. 6(a) and (c), both the P and S waves are

far-field-dominating at r = 62 km, and in addition, both the intermediate and near fields of the P wave are much smaller than the far field of

the S wave at r = 62 km. Although the P-wave signal is not apparent in the displacement gram (Fig. 14a), the electric field accompanying

Figure 14. Waveforms of u1, E1 and H2 at point C. The EM wave has been amplified by a factor 1000 in order to be apparent.
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Seismo_EM waves radiated by a double couple 889

the P wave, which arrives at t = 14 s is prominent in the electric field gram (Fig. 14b), and is even stronger than that accompanying the S

wave, which arrives at t = 22 s. This is because the intermediate and near fields of the P wave are non-zero, and the P wave has a stronger

electric-field-inducing ability than the S wave. The intermediate and near fields of the P wave play an important role in inducing electric field

at this observation point. However, by comparing Fig. 11(a) with Fig. 14(b), we find that the electric field accompanying the P wave recorded

at point C is much weaker than that recorded at point B. The maximum amplitude of the former is about 1400 µV m−1, while that of the

latter is about 46 µV m−1. In Fig. 14(c) we can see the magnetic field signal induced by the S wave. There are also electric and magnetic field

disturbances due to the EM wave in the electric and magnetic field grams (Figs 14b and c). Both of them have been amplified by a factor of

1000.

Consider another observation point D, which is also located in the x1–x3 plane (Fig. 13) with θ = 45◦ and φ̃ = 0. The observation-source

distance is still chosen as r = 62 km. We have r̂1 =
√

2/2, r̂2 = 0 and r̂3 =
√

2/2 according to expressions (27). Using expressions (40), we

then have

êfar
T =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ , (57a)

êfar
L =

√
2

2

⎡

⎢
⎣

1

0

1

⎤

⎥
⎦ , (57b)

êintermediate
T = −

3
√

2

2

⎡

⎢
⎣

1

0

1

⎤

⎥
⎦ , (57c)

êintermediate
L = −2

√
2

⎡

⎢
⎣

1

0

1

⎤

⎥
⎦ , (57d)

ênear = −
9
√

2

2

⎡

⎢
⎣

1

0

1

⎤

⎥
⎦ , (57e)

ĥfar
T =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ , (57f)

ĥnear
T =

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ . (57g)

The waveforms of u1, E1 and H2 are plotted in Fig. 15. In Fig. 15(a), we can see the P wave arriving at t = 14 s. The S wave that

arrives at t = 22 s is weaker than the P wave. This is because: (1) as shown in eq. (57a), the far field of the S wave is zero; (2) meanwhile the

intermediate and near fields of the S wave are smaller than the far field of the P wave at r = 62 km. In Fig. 15(b), we can see the electric field

accompanying the P wave which arrives at t = 14 s. The electric field accompanying the S wave cannot be seen due to the weak amplitude

and the weak electric-field-inducing capability of the S wave. In Fig. 15(b) it is has been amplified by a factor 10 000 to be apparent. The

electric field due to the EM wave is also amplified by a factor 10 000 can be seen. It is interesting that no magnetic field induced by the S or

EM wave can be observed in Fig. 15(c). This is because both the far and near fields of the magnetic field are zero at point D.

The above discussions show that the recorded waveforms are sensitive to the observation orientation.

5 C O N C LU S I O N S A N D D I S C U S S I O N S

We have derived the frequency-space-domain Green’s function of the magnetic field for a point force as a complement of Pride & Haartsen

(1996)’s work. Different from the electric field, which is a combination of all the four body waves, the magnetic field is only composed of the

T mode waves (i.e. the S and EM waves). Furthermore, we extended the Green’s functions of the elastic and EM wavefields to the moment

tensor sources. As a frequently used source model in seismology, the double couple was taken for example and its radiation patterns were

discussed. For the longitudinal mode waves, the shapes of the radiation patterns of the electric far field are similar to that of the P wave in

elastodynamics. For the transverse mode waves, the shapes of radiation patterns of the electric and magnetic far fields are the same, and

moreover, they are both identical to the S wave in elastodynamics. The near field of the EM wave has a longer dominant distance than the
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890 Y. Gao and H. Hu

Figure 15. Waveforms of u1, E1 and H2 at point D. The electric fields due to the S and EM waves have been both amplified by a factor 10 000 in order to be

apparent.

seismic waves. Such a near-field-domainating distance is sensitive to the salinity. We got the waveforms by Fourier transforming the Green’s

functions into the time domain. In order to check the validity of the Green’s functions, we calculated the waveforms by another method that

regarding the double couple source as a displacement–stress–EM discontinuity vector. It is shown that the waveforms calculated by the two

methods agree with each other. We have simulated waveforms at three different observation points. In these waveforms, there is the electric

field accompanying the P wave as well as the magnetic field accompanying the S wave. We have testified that the S wave usually has a weaker

capacity than the P wave in inducing an electric field. The EM wave appears in both the electric and magnetic waveforms immediately after

the source launched. It may be useful for the earthquake early warning due to its much higher speed compared with the seismic waves.

However, it has much weaker amplitude than the accompanying electric and magnetic fields. Whether such an EM wave could be received

and identified during an earthquake needs further studies. By making a comparison between the waveforms at different observation locations,

we find that the waveforms are sensitive to the observation orientation.

The main purpose of this paper is to reveal the characteristics of the electric and magnetic fields radiated by a double couple source in

an infinite uniform space. The boundary effect was not considered. However, when solving a physical problem in seismology, the boundary

effect must be taken into account. To solve regular geological problems, a set of analytical formulas has been presented for horizontally

stratified media (Haartsen & Pride 1997; Garambois & Dietrich 2002; White & Zhou 2006) and radially stratified formations (Hu & Liu

2002; Hu et al. 2007). To solve irregular geological problem, the finite-difference method has been developed (Guan & Hu 2008; Guan et al.

2009). Another efficient approach can be used to solve the coupled poroelastic and EM problem is the boundary element method (Ge & Chen

2007, 2008). The fundamental solutions obtained in the present paper are useful for such a method.

The equivalence between the fault slipping and the double couple source is under the hypothesis that the scale of the fault is much smaller

than the wavelength considered. Otherwise, when the scale of the fault becomes comparable to or larger than the wavelength considered, the

fault cannot be taken as a point source any longer. In this situation, such a fault can be divided into a series of small subfaults, each of which

can be recognized as a double couple. The wavefields generated by the whole fault slip are a stacking of those generated by the subfaults, and

can be calculated by an integral on the whole fault (Olson & Apsel 1982). These problems will be investigated in our further studies.
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A P P E N D I X A : B U L K WAV E S L OW N E S S E S A N D C O M P L E X A M P L I T U D E S

O F T H E G R E E N ’ S F U N C T I O N S

The slownesses of the compression waves are expressed as

2s2
p f,ps = γ ∓

√

γ −
4ρ̃ρ

H M − C2

(
ρt

ρ
+

ρ̃L2

ε̃

)

, (A1)

where the ‘−’ corresponds to the Pf -wave slowness sp f while the ‘+’ corresponds to the Ps-wave slowness sps , and

γ =
ρM + ρ̃H (1 + ρ̃L2/ε̃) − 2ρ f C

H M − C2
, (A2)
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ρt = ρ − ρ2
f /ρ̃. (A3)

The slownesses of the transverse waves are

2s2
s,em =

ρt

G
+ µε̃

(

1 +
ρ̃L2

ε̃

)

±

{
[

ρt

G
− µε̃

(

1 +
ρ̃L2

ε̃

)]2

− 4µ
ρ2

f L2

G

}1/2

, (A4)

where, the ‘+’ in front of radical corresponds to the S wave while the ‘–’ corresponds to the EM wave. The expressions of the complex

amplitudes of the Green’s functions in eq. (22) have been derived by Pride & Haartsen (1996). Here we only list the ones corresponding to

the force acting on the bulk material F. They are necessary for the calculation in the main text.

T F
u,ss

=
s2

s − µε̃(1 + ρ̃L2/ε̃)

G
(

s2
s − s2

em

) , (A5)

T F
u,sem

=
s2

em − µε̃(1 + ρ̃L2/ε̃)

G
(

s2
em − s2

s

) , (A6)

L F
u,sp f

=
(

M

H M − C2

)
s2

p f − ρ̃(1 + ρ̃L2/ε̃)M
(

s2
p f − s2

ps

) , (A7)

L F
u,sps

=
(

M

H M − C2

)
s2

ps − ρ̃(1 + ρ̃L2/ε̃)M
(

s2
ps − s2

p f

) , (A8)

T F
w,ss

= −
ρ f

ρ̃

s2
s − µε̃

G
(

s2
s − s2

em

) , (A9)

T F
w,sem

= −
ρ f

ρ̃

s2
em − µε̃

G
(

s2
em − s2

s

) , (A10)

L F
w,sp f

= −
M

H M − C2

s2
p f − ρ f /C
(

s2
p f − s2

ps

) , (A11)

L F
w,sps

= −
M

H M − C2

s2
ps − ρ f /C
(

s2
ps − s2

p f

) , (A12)

T F
E,ss

=
iωµρ f L

G
(

s2
s − s2

em

) , (A13)

T F
E,sem

=
iωµρ f L

G
(

s2
em − s2

s

) , (A14)

L F
E,sp f

= −iω
ρ̃L

ε̃

(
M

H M − C2

)
s2

p f − ρ f /C
(

s2
p f − s2

ps

) , (A15)

L F
E,sps

= −iω
ρ̃L

ε̃

(
M

H M − C2

)
s2

ps − ρ f /C
(

s2
ps − s2

p f

) , (A16)

A P P E N D I X B : P RO O F O F E Q. ( 2 5 )

The eq. (25) can be rewritten as

∇ ×

⎡

⎢
⎢
⎢
⎣

eiωsr

(

−
1

r
−

3i

ωsr 2
+

3

ω2s2r 3

)

︸ ︷︷ ︸

f (r )

r̂r̂
︸︷︷︸

A

+ eiωsr

(
i

ωsr 2
−

1

ω2s2r 3

)

︸ ︷︷ ︸

g(r )

I

⎤

⎥
⎥
⎥
⎦

= 0. (B1)

Note that

∇ × [X (r )Y ] = ∇ X (r ) × Y + X (r )∇ × Y = X ′(r )r̂kYi jεkilele j + X (r )
∂Yi j

∂xk

εkilele j . (B2)
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Seismo_EM waves radiated by a double couple 893

In eq. (B2), X (r ) is a scalar function of r , Y is a tensorial function, εkil is the permutation symbol, and here the Einstein summation

convention is used. Using the notations of (B1), we obtain

∇ × [ f (r )A] = eiωsr

(

−
iωs

r
+

4

r 2
+

9i

ωsr 3
−

9

ω2s2r 4

)

r̂k r̂i r̂ jεkilele j

+ eiωsr

(

−
1

r 2
−

3i

ωsr 3
+

3

ω2s2r 4

)

(r̂iδ jk + r̂ jδik − 2r̂k r̂i r̂ j )εkilele j

= eiωsr

(

−
1

r 2
−

3i

ωsr 3
+

3

ω2s2r 4

)

r̂iε j ilele j , (B3)

where δ jk is the Kronecker delta symbol. During the derivation of (B3), the following relations

∂ r̂i

∂x j

=
δi j − r̂i r̂ j

r
, (B4)

r̂k r̂iεkil = 0, (B5)

r̂ jδikεkil = 0, (B6)

are used. Similarly, we have

∇ × [g(r )I] = eiωsr

(

−
1

r 2
−

3i

ωsr 3
+

3

ω2s2r 4

)

r̂iεi jlele j . (B7)

At last, combining eq. (B3) and (B7), and using the relation

εi jl = −ε j il , (B8)

we finally get

∇ × [ f (r )A + g(r )I] = 0. (B9)

Then the eq. (B1) comes into existence.

A P P E N D I X C : C O M PA R I S O N O F E L E C T R I C - F I E L D - I N D U C I N G A B I L I T I E S

B E T W E E N T H E P A N D S WAV E S

Garambois & Dietrich (2001) derived the low-frequency approximate seismoelectric and seismomagnetic transfer functions

E ≈
1

σ f

ε0ρ f κ f ζ

η

(

1 −
ρC

ρ f H

)

ü, (C1)

|H| ≈
φ

α∞

ε0ρ f κ f |ζ |
η

√

G

ρ
|u̇| . (C2)

where ε0 is the vacuum’s dielectric permittivity, ρ f is the fluid density, κ f and σ f represent the fluid’s dielectric constant and electric

conductivity, ζ denotes the zeta potential, η is the fluid viscosity, ρ is the bulk density, H and C are the elastic moduli expressed in the eqs (7)

and (8) in the main text. φ is the porosity, α∞ is the tortuosity, ü and u̇ are the grain acceleration and velocity, respectively. According to

eqs (C1) and (C2), we have

|E|P ≈
1

σ f

ε0ρ f κ f |ζ | ω2

η

(

1 −
ρC

ρ f H

)

|u|P , (C3)

|H|S ≈
φ

α∞

ε0ρ f κ f |ζ | ω
η

√

G

ρ
|u|S , (C4)

where |E|P and |u|P denote the electric field and the solid displacement corresponding to a P wave, while |E|S and |u|S denote the electric

field and the solid displacement corresponding to an S wave. Using the relation

H =
1

iωµ
∇ × E, (C5)

in the frequency domain, we have

|H| =
∣
∣
∣
∣

iωs

iωµ
E

∣
∣
∣
∣
=

s

µ
|E| , (C6)

where s is the slowness of the body wave, µ is the magnetic permeability. Then using the eqs (C6) and (C4), we get the expression of the

electric field accompanying the S wave

|E|S =
µ

ss

|H|S ≈
φ

α∞

ε0ρ f κ f |ζ | ω
η

√

G

ρ

µ

ss

|u|S , (C7)

C© 2010 The Authors, GJI, 181, 873–896

Journal compilation C© 2010 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
8
1
/2

/8
7
3
/6

6
7
2
5
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



894 Y. Gao and H. Hu

where ss is the slowness of the S wave, and in the low frequency range, its approximate expression (Garambois & Dietrich 2001) is

ss =
√

ρ

G
. (C8)

Dividing eq. (C7) by eq. (C3), we get the ratio of electric field induced by an S wave to that induced by a P wave

|E|S

|E|P
=

φσ f µG

α∞ρ
(

1 − ρC

ρ f H

)

ω

|u|S

|u|P
. (C9)

The fluid electric conductivity σ f is defined as Pride (1994)

σ f = e2z2 N (b+ + b−), (C10)

where e = 1.6021892 × 10−19 C is the electronic charge, z = 1 is the ionic valence, b± are the ionic mobilities of the cations and anions.

Here we choose b+ = b− = 3 × 1011 m s−1 N as Pride (1994). N is the ionic concentration in ions per meters cubed and is defined as

N = 6.022 × 1026C0, (C11)

where C0 is the salinity. Then, we obtain

σ f = 9.27512C0. (C12)

Using eq. (C9) and the parameters in Table 1, we have

|E|S

|E|P
=

0.0011

f

|u|S

|u|P
. (C13)

In this paper, the centre frequency is f0 = 1 Hz, and the frequency varies from 0.1 to 1.9 Hz. Then, we get

0.00058
|u|S

|u|P
≤

|E|S

|E|P
≤ 0.011

|u|S

|u|P
. (C14)

From eq. (C14), we know that if |u|S = |u|P , |E|S is much smaller than |E|P . This means the S wave has a much weaker capacity in inducing

electric field than the P wave. From Fig. 10, we get u P
1 max = 0.0077 m, uS

1 max = 0.0137 m,u P
2 max = 1.25 × 10−4 m, uS

2 max = 4.6 × 10−4 m,

u P
3 max = 0.002 m and uS

3 max = 0.053 m. Then, we have

0.0011 ≤
E S

1 max

E P
1 max

≤ 0.02, (C15)

0.0022 ≤
E S

2 max

E P
2 max

≤ 0.041, (C16)

0.0153 ≤
E S

3 max

E P
3 max

≤ 0.29. (C17)

Finally, as illustrated in Fig. 11, we find that |E|S is much less than |E|P in our numerical simulations.

However, this conclusion must be considered carefully. From eq. (C9) we know that the term (1 − ρC/ρ f H ) influences the ratio

|E|S/ |E|P , and in our calculation (1 − ρC/ρ f H ) ≈ 0.6. In most cases, (1 − ρC/ρ f H ) approximates 1 (Garambois & Dietrich 2001) and

makes a negligible impact on the ratio |E|S/ |E|P . But such approximation is not valid in some special media. Using Vernik’s (1998) relations

between frame moduli and porosity, Hu et al. (2002) showed that for certain real sedimentary rocks, the value of the term (1 − ρC/ρ f H ) can

be very small or even zero. In this instance, (1 −ρC/ρ f H ) will make a great impact on the ratio |E|S/ |E|P , and |E|S may exceed |E|P . When

(1 − ρC/ρ f H ) = 0, the porous medium becomes a dynamically compatible medium, in which the P wave does not induce any electric field.

This phenomenon has been discussed in detail by Hu & Gao (2009).

A P P E N D I X D : D E R I VAT I O N O F T H E D I S P L A C E M E N T – S T R E S S – E M D I S C O N T I N U I T Y

V E C T O R F O R A D O U B L E C O U P L E S O U RC E

To solve the wavefields in a horizontally stratified formation, a cylindrical-coordinate system (r, θ, z) with z indicating the depth is convenient

because the stratified media are axisymmetric and the point sources are assumed. We represent the field variable ξ in terms of the vector

surface harmonics (Kennett & Kerry 1979; Haartsen & Pride 1997)

Rm
k (r, θ ) = Jm(kr )eimθ ez, (D1a)

Sm
k (r, θ ) = −iJ ′

m(kr )eimθ er +
m

kr
Jm(kr )eimθ eθ , (D1b)

Tm
k (r, θ ) =

m

kr
Jm(kr )eimθ er + iJ ′

m(kr )eimθ eθ , (D1c)
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Seismo_EM waves radiated by a double couple 895

as a Fourier–Hankel transform

ξ (r, θ, z, ω) = ξr (r, θ, z, ω)er + ξθ (r, θ, z, ω)eθ + ξz(r, θ, z, ω)ez

=
∫ +∞

−∞
dk

∑

m

[

ξ̂1(k, m, z, ω)Sm
k + ξ̂2(k, m, z, ω)Tm

k + ξ̂z(k, m, z, ω)Rm
k

]

,
(D2)

where Jm(kr ) is the m-order Bessel function of the first kind, J ′
m(kr ) = 1

k

dJm (kr)

dr
, k is the horizontal wavenumber, er ,eθ and ez are the coordinate

unit vectors. The field vector ξ can be u, w, E, H, t, F, f , C or M. t = τr zer + τθ zeθ + τzzez represents the force vector in a horizontal plane,

m is chosen as ±1 for the double couple. ξ̂ is the field vector in the new coordinates composed of Rm
k , Sm

k and Tm
k . The Pride’s eqs (1)–(6) are

then transformed to

∂

∂z
B(k, m, z, ω) = A(k, ω)B(k, m, z, ω) + F̄(k, z, ω), (D3)

where B denotes the displacement–stress–EM vector, F̄ denotes the source vector. The mark ‘−’ on the top of F̄ is used to distinguish from

F, which represents the body force acting on the bulk material in eq. (3). A is a matrix dependent on the frequency ω, the wavenumber k and

the parameters of the porous formation. One can get the detailed expression of A in Haartsen & Pride (1997). The set of equations shown in

(D3) is then split into two independent systems. One is the PSVTM set coupling the Pf , Ps, SV and TM waves. The other is the SHTE set

coupling the SH and TE waves. The vectors B in the two systems are written as

BV = [û1, ûz, ŵz, τ̂1z, τ̂zz,−P, Ê1, Ĥ2]T , (D4)

BH = [û2, τ̂2z, Ê2, Ĥ1]T . (D5)

The superscripts ‘V’ and ‘H’ correspond to the PSVTM system and the SHTE system, respectively. The source vectors F̄ in the two

systems are

F̄V =
[

0, 0,
ip

ωρ̃
f̂1,

ρ f

ρ̃
f̂ − F̂1, −F̂z, − f̂z +

ρ̃L

ε̃
C̃z, −L f̂1 − C̃1,

p

ε̃
C̃z − M̂2

]T

, (D6)

F̄H =
[

0,
ρ f

ρ̃
f̂2, L f̂2 + Ĉ2 −

p

µ
M̂z, M̂1

]T

, (D7)

where the superscript ‘T’ denotes the transpose.

At the interface with depth z separating two different porous layers, the boundary condition requires

B(z−) = B(z+). (D8)

At the horizontal plane with depth zs where the source locates, the vector B is not continuous, and the discontinuity is

S ≡ B(z+
s ) − B(z−

s ) = Ḡ + AH̄, (D9)

where S is the so-called displacement–stress–EM discontinuity vector for the source. Ḡ and H̄ can be obtained from

F̄ = Ḡδ(z − zs) + H̄
∂

∂z
δ(z − zs). (D10)

From eqs (D6) and (D7), we know F̄ depends on f̂ and F̂. It can be obtained by following process.

According to the equivalence between the displacement–stress–EM vector discontinuity and the body force density at the source location,

the source can be represented as

Fe = −∇[Mδ(r − rs)], (D11)

where Fe is the body force density as an equivalent of the moment tensor M. In this paper, we assume that only the force acting on the bulk

material exists while the force acting on the fluid phase is absent for the double couple source. Therefore, we set F = Fe and f = 0 in the

Pride’s equations (1)–(6). Using expression (D2), F can be expressed as

F =
∫ +∞

0

dk
∑

m

(

F̂1Sm
k + F̂2Tm

k + F̂zR
m
k

)

. (D12)

And inversely, we have

F̂1 =
1

2π

∫ +∞

0

rdr

∫ 2π

0

dθ
[

Sm
k

]∗ · F, (D13)

F̂2 =
1

2π

∫ +∞

0

rdr

∫ 2π

0

dθ
[

Tm
k

]∗ · F, (D14)

F̂z =
1

2π

∫ +∞

0

rdr

∫ 2π

0

dθ
[

Rm
k

]∗ · F, (D15)

where ∗ denotes the complex conjugate.
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896 Y. Gao and H. Hu

Consider a double couple in Cartesian coordinates

M(x1, x2, x3) =

⎡

⎢
⎢
⎣

0 0 M0

0 0 0

M0 0 0

⎤

⎥
⎥
⎦

. (D16)

When transforming it into the cylindrical coordinates (r, θ, z), we have

M(r, θ, z) = M0

⎡

⎢
⎢
⎣

0 0 cos θ

0 0 − sin θ

cos θ − sin θ 0

⎤

⎥
⎥
⎦

. (D17)

Substituting eq. (D17) into (D11), and adding the source frequency spectrum s(ω), we obtain

Fr = −M0 cos θs(ω)
δ(r )

r
δ(θ )

∂δ(z − zs)

∂z
, (D18)

Fθ = M0 sin θs(ω)
δ(r )

r
δ(θ )

∂δ(z − zs)

∂z
, (D19)

Fz = M0s(ω)

{

−
[

1

r

∂δ(r )

∂r
−

δ(r )

r 2

]

δ(θ ) cos θ +
δ(r )

r 2

∂δ(θ )

∂θ
sin θ

}

δ(z − zs). (D20)

Using the eqs (D13)–(D15), we get

F̂1 = ∓
i M0

2

s(ω)

2π

∂δ(z − zs)

∂z
, (D21)

F̂2 = −
M0

2

s(ω)

2π

∂δ(z − zs)

∂z
, (D22)

F̂z = ±
k M0

2

s(ω)

2π
δ(z − zs). (D23)

Substituting eqs (D21)–(D23) into (D6)–(D7), and using eq. (10), we obtain

ḠV =
s(ω)

2π
M0

[

0, 0, 0, 0, ∓
k

2
, 0, 0, 0

]T

, (D24)

H̄V =
s(ω)

2π
M0

[

0, 0, 0, ±
i

2
, 0, 0, 0, 0

]T

, (D25)

and

ḠH = [0, 0, 0, 0]T , (D26)

H̄H =
s(ω)

2π

M0

2
[0, 1, 0, 0]T . (D27)

Substituting eqs (24)–(27) into (D9), we finally have

SV =
s0(ω)

2π
M0

[

±
i

2G
, 0, 0, 0, 0, 0, 0, 0

]T

, (D28)

SH =
s0(ω)

2π
M0

[
1

2G
, 0, 0, 0

]T

. (D29)

Similarly, for the double couple M23 = M32 = M0, the displacement–stress–EM discontinuity vectors are

SV =
s0(ω)

2π
M0

[
1

2G
, 0, 0, 0, 0, 0, 0, 0

]T

, (D30)

SH =
s0(ω)

2π
M0

[

∓
i

2G
, 0, 0, 0

]T

. (D31)
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