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Abstract

Background: Classification method capable of recognizing abnormal activities of the
brain functionality are either brain imaging or brain signal analysis. The abnormal
activity of interest in this study is characterized by a disturbance caused by changes
in neuronal electrochemical activity that results in abnormal synchronous discharges.
The method aims at helping physicians discriminate between healthy and seizure
electroencephalographic (EEG) signals.

Method: Discrimination in this work is achieved by analyzing EEG signals obtained
from freely accessible databases. MATLAB has been used to implement and test the
proposed classification algorithm. The analysis in question presents a classification of
normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through
this method, information related to the intrinsic functions contained in the EEG
signal has been extracted to track the local amplitude and the frequency of the
signal. Based on this local information, weighted frequencies are calculated and a
comparison between ictal and seizure-free determinant intrinsic functions is then
performed. Methods of comparison used are the t-test and the Euclidean clustering.

Results: The t-test results in a P-value < 0.02 and the clustering leads to accurate
(94%) and specific (96%) results. The proposed method is also contrasted against the
Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison
results strengthen the contribution of this paper not only from the accuracy point of
view but also with respect to its fast response and ease to use.

Conclusion: An original tool for EEG signal processing giving physicians the
possibility to diagnose brain functionality abnormalities is presented in this paper.
The proposed system bears the potential of providing several credible benefits such
as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user
friendly. Furthermore, the classification of mode mixing can be achieved using the
extracted instantaneous information of every IMF, but it would be most likely a hard
task if only the average value is used. Extra benefits of this proposed system include
low cost, and ease of interface. All of that indicate the usefulness of the tool and its
use as an efficient diagnostic tool.
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Background
Electroencephalography (EEG) is an investigative method that provides information for

the classification, diagnosis, and therapy of brain conditions. The frequency and energy

content of EEG signals may contain helpful information about the nature of diseases

affecting the brain.

In the past, physicians were asked to perform visual EEG analysis. To reduce the

workload, computer programs for bio-signal analysis have been developed and used

[1]. Since the first commercially available programs were introduced, computerized

EEG analysis systems have become more sophisticated and less expensive with an

increasing number of available programs.

The use of computerized EEG analysis has increased rapidly in health care. The

information obtained via this computerized analysis is used to detect and diagnose nor-

mal and abnormal brain activities.

In patients with epilepsy, seizures occur suddenly. This brain disorder is a distur-

bance characterized by changes in neuronal electrochemical activity that results in

abnormal synchronous discharges in a large cell population, which gives rise to clinical

symptoms and signs. The computerized classification of epileptic seizures in EEG

intracranial recordings is an important part in the epilepsy diagnostic procedure.

There are many variations and combinations of EEG features or parameters that can

be measured, studied, analysed, and correlated one with et al. [2] have conducted a

study to detect epilepsy using a linear approach based on main frequency, bandwidth

and power. This approach yields good results for periodic signals. However, the accu-

racy of the method is based on the system of thresholds used for classification as well

as on the nature of seizure. An alternative linear approach applied by Liu at al. [3]

based on autocorrelation analysis has been performed to facilitate rhythmic activity

tracking. In this study, regularity of spaced peaks of the same frequency has been char-

acterized with the intention of rhythmic another and with other available data before a

definite epileptic EEG analysis is made. Each of these features has its own sensitivity

and specificity for classification of seizures. Qu seizure activity classification. Nonlinear

methods applied to EEG dynamics have been also studied in other approaches to indi-

cate changes in brain activity [4-6]. For instance, Pachori et al. [6] have implemented

the mean frequency measure (centre of spectrum) as a feature of classification in order

to identify the difference between ictal and seizure free intracranial EEG signals. The

signal processing tool used for mean frequency calculation (Fourier-Bessel), though

adapted to non-stationary signals, may not help in further important applications

based on instantaneous frequency and amplitude tracking [7,8].

The outcomes of these studies called for efficient methods to perform seizure classi-

fication with accurate estimation of oscillatory information such as phase, frequency

and amplitude. These are supposed to be an essential feature of comparison between

ictal and seizure-free brain activities. A well-known method widely used to get such

spectral information is the Hilbert Transform and its analytic signal representation

[9,10]. In this context, this study comes with the aim of proposing a new method that

relies on the coupling of Hilbert Transform and Empirical Mode Decomposition

(EMD). This coupling is performed to extract information about the EEG signal intrin-

sic functions. The main properties of such an approach are adaptability to the non-sta-

tionary and non-linearity as well as to instantaneous (local) frequency and amplitude
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tracking. Hence, discrimination between healthy and seizure EEG signals using a

weighted feature based on local oscillatory information is possible. One of the useful

weighted features of Hilbert Transform is the Hilbert weighted frequency. It is antici-

pated that the outcome of this study leads to acquiring a tool allowing for the classifi-

cation of abnormal activities of brain functionality. Since the EEG signals used in this

paper are multivariate time series, comparison is performed between the frequency

contents of the corresponding modes in seizure and seizure free signals. Contrast

between EMD and Multivariate Empirical Mode Decomposition (MEMD), recently

proposed by Rehman et. al and Rilling et. Al [11-13], is illustrated. This MEMD is cap-

able of performing EMD on multivariate time series such that the corresponding

modes have the same frequency content. Seizure detection in EEG signals utilizing

MEMD is introduced in [12]. In [14], Tzallas et. al analyzed selected segments of EEG

signals for seizure detection purposes using time-frequency and artificial neural net-

work. Results of this work indicated an overall accuracy reaching 97.72%.

The work presented here is based on the results produced by the authors in [6] and

[12]. This study when compared to [6] offers the possibility to track the instantaneous

(local) frequency as well as the amplitude. By this tracking the weighted mean fre-

quency, which is the main feature used to identify the abnormalities in EEG signals, is

calculated accurately. Furthermore, authors in [6] use Fourier Bessel method, in which

the selection of the optimum window size is required for good resolution. The fact

that larger window size provides finer resolution in frequency comes at the expense of

higher computation power (greater number of Fourier-Bessel coefficients). The pro-

posed method also when measured up to [12], in which authors are facilitating decom-

position simultaneously, offers higher accuracy by avoiding the mode mixing. This

mode mixing makes the application of Hilbert transform to track the changes in the

amplitude and frequency harder and thereby imposes the need for more time to com-

plete the diagnostic procedure.

Methods
In this study, the classification of abnormal activities of the brain functionality is

achieved by understanding abnormal activities caused by changes in neuronal electro-

chemical activity through identifying the EEG signal features by utilizing Hilbert-

Huang Transform. As indicated previously, EMD in this work is adapted to EEG sig-

nals [15]. Thus, it facilitated the extraction of the EEG intrinsic modes as well as the

eventual EEG frequency/energy content analysis. The analysis of the frequency and

energy content of every extracted mode has been performed via Hilbert Transform,

which was achieved through the tracking of the instantaneous frequencies and ampli-

tudes. Hilbert weighted frequency has been used to help discriminate between healthy

and seizure EEG patterns.

A. Hilbert Transform

The analytic signal z(t) of the real signal x(t), can be obtained from:

z(t) = x(t) + iy(t) = a(t)eiϕ(t) (1)

a(t) = [x2(t) + y2(t)]1/2 (2)
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ϕ(t) = arctan(
y(t)
x(t)

) (3)

where a(t) and �(t) are the instantaneous amplitude and phase of z(t) respectively.

The instantaneous pulsation ω(t) of z(t) is expressed as:

ω(t) =
dϕ(t)
dt

(4)

The Hilbert Transform y(t) of x(t) is given by [16]:

y(t) =
1
π

lim
∈→0+

(

t−∈∫

t−1/∈

x(τ )
t − τ

dτ +

t+1/∈∫

t+∈

x(τ )
t − τ

dτ ) (5)

The Hilbert weighted frequency is defined as [10]:

f =

∑k
i=1 a(i)f

2(i)∑k
i=1 a(i)f (i)

(6)

This frequency ( f ) gives an idea about the mean frequency using instantaneous

information (frequency f and amplitude a over an interval from the point index 1 to

the point index k).

Many studies have successfully applied this method to wide-band neuronal signals.

However, it has been shown that proper estimation of oscillatory parameters can be

performed only on narrow-band signals. One of the methods that might be coupled to

Hilbert Transform in order to get narrow-band signal is the nonlinear local technique

known as Huang transform [17]. It can be used to adaptively represent the non-sta-

tionary signals as sums of zero-mean Amplitude Modulated-Frequency Modulated

components called intrinsic mode functions (IMF).

B. Empirical Mode Decomposition (Huang Transform)

EMD is a signal processing technique used to extract all the oscillatory modes

embedded in a signal without any requirement of stationarity or linearity. The

extracted modes, with well-defined instantaneous frequencies (accurate estimation of

oscillatory information), are speculatively associated with specific physical aspects of

the phenomenon investigated. When compared to wavelet decomposition, which is a

wavelet-model based method, EMD is a data driven method, has no resolution or har-

monics complications as indicated in Figure 1. The investigation of Figure 1 makes it

evident that the results obtained by Hilbert-Huang Transform overcome the disadvan-

tages induced by the wavelet transform. Figure 1 illustrates that the instantaneous local

frequency/amplitude information cannot be precisely extracted by the wavelet trans-

form. It also shows that Hilbert-Huang spectrum, which is the application of Hilbert

Transform to the extracted modes, is having high accuracy in this direction.

By definition, an Intrinsic Mode Function (IMF) satisfies two conditions. These are:

a) The number of extrema and the number of zero crossings may differ by no more

than one. b) The local average, defined by the average of the maximum and minimum

envelopes, is zero. These properties of intrinsic mode allow for defining the instanta-

neous frequency and amplitude in an unambiguous way. Hilbert Transform can then

be applied to every single intrinsic mode.
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Given these two defining requirements of an intrinsic mode, the sifting process for

extracting intrinsic modes from a given signal x(t), t = 1,..., T can be implemented by

the following procedure:

1. Identify all the maxima and minima of x(t),

2. Generate its upper and lower envelopes, Xup(t) and Xlow(t), with cubic spline

interpolation,

3. Calculate the point-by-point mean from the upper and lower envelopes, by using

m(t) = (Xup(t) + Xlow(t))/2,

4. Extract the detail, d(t) = x(t) - m(t),

5. Test the following two conditions of d(t):

a) if d(t) meets the two conditions related to the IMF definition (mentioned

previously), an IMF is derived. Replace x(t) with the residual r(t) = x(t) - d(t);

b) if d(t) is not an IMF, replace x(t) with d(t), and

6. Repeat steps 1 to 5 until a monotonic residual, or a single maximum or mini-

mum-residual satisfying some stopping criterion is obtained.

At the end of this process, the signal x(t) can be expressed as follows:

x(t) =
N∑
j=1

cj(t) + rN(t) (7)

where N is the number of intrinsic modes,

rN(t) denotes the final residue, which can be interpreted as the DC component of

the signal,

cj(t) are he intrinsic modes, orthogonal to each other and all have zero means.

Now, Hilbert Transform can be applied to every single intrinsic function.
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Figure 1 Comparison between Hilbert-Huang Transform (left) and wavelet Transform (right).
Comparison between Hilbert-Huang Transform (left) and wavelet Transform (right) when applied to the
same signal (black). Frequency modulation is tracked precisely by Hilbert-Huang (yellow curve) while the
resolution constraints and resultant harmonics prevent accurate tracking of frequency modulation by
wavelet transform.

Oweis and Abdulhay BioMedical Engineering OnLine 2011, 10:38
http://www.biomedical-engineering-online.com/content/10/1/38

Page 5 of 15



Freely accessible databases containing normal and abnormal EEG signals were used

as resources to conduct this study. These are: Department of Epileptology at the Uni-

versity Hospital of Bonn, MIT and ANSI/AAMI. The sampling rate of the data is

173.61 Hz. Each signal treated having 23.6 s in duration. The time series have the

spectral bandwidth of the acquisition system, which is 0.5 Hz to 85 Hz. The subsets of

healthy signals have been acquired extracranially using surface EEG recordings of five

healthy volunteers with eyes open and closed respectively. The other subset contains

seizure activity selected from all recording sites exhibiting ictal activity. For a more

detailed description of the data please refer to the manuscript [18].

Recognition of abnormal activities caused by changes in neuronal electrochemical

activity was realized by EEG processing using the implemented coupling of Hilbert and

EMD by MATLAB. The algorithms indicated by [19] are used to get the desired

results. In the present work, EEG signals were decomposed by the EMD (2000 sifting).

Recognition in this paper was performed in three consecutive steps. First, EMD was

applied to a total of 50 cases: 25 EEG signals obtained from healthy volunteers and 25

EEG signals obtained from seizure activities. The main goal of this first step was to

extract the intrinsic modes in every EEG signal. Second, Hilbert Transform was applied

to every intrinsic mode with the aim of tracking instantaneous frequencies and ampli-

tudes. Finally, the weighted frequencies of counterpart intrinsic modes were statistically

compared using the student’s t-test [15]. The t-test assesses whether the distribution

means of the two groups are statistically different from each other. The weighted fre-

quency index of the proposed approach, when it provides a significant difference,

made it possible to discriminate between healthy and seizure activities. On the other

hand, using only this test for classification does not provide complete information

about the type of signals being classified. Supervised Euclidean Clustering of signals

has been therefore proposed, applied and evaluated in terms of sensitivity and

specificity.

Results
Figure 2 illustrates the result of decomposition performed by EMD of a healthy EEG

signal. Figure 2 shows that the first mode has a higher frequency than the second

mode where modes are ordered from the highest frequency to the lowest. The main

components of the EEG signal are located in the first four modes and the lower modes

indicate artefact, trend and low-frequency EEG.

In contrast, Figure 3 shows the result of the decomposition applied to an ictal EEG

signal (seizure) with the main components of the EEG signal located in the first four

modes.

A visual comparison between Figure 2 and Figure 3 may lead to a qualitative discri-

mination. As mentioned previously, a quantitative discrimination can be applied by

means of Hilbert-Huang spectrum based on local frequency/amplitude information.

The following four figures indicate a comparative illustration between ictal and seizure

free instantaneous frequency and amplitude.

The instantaneous amplitude value for the first four modes in Figure 2 (seizure free)

is depicted in Figure 4. The counterpart seizure free instantaneous frequencies

obtained by Hilbert Transform are presented in Figure 5.
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To compare with epilepsy, the results of the frequency/amplitude analysis of an ictal

signal are presented in Figures 6 and 7. Values are clearly different from those of sei-

zure free EEG.

The criterion used for comparison in this paper is based on the previously calculated

frequencies and amplitudes. It is the weighted Hilbert frequency value, which is con-

sidered in this work as the main feature upon which discrimination is based.

Table 1 contains the values of the calculated weighted frequencies for the first four

modes of 10 healthy signals and 10 seizure signals (for better illustration, not all values
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Figure 2 Components of a healthy EEG signal. Decomposition of a healthy EEG signal by EMD. The first
time series is the EEG signal. The decomposition yields 10 IMF and a residual. The IMF are the time-
frequency constituents or components of the EEG signal. Frequency content is ordered in a descending
order (IMF1 has the highest frequency content).
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Figure 3 Components of a seizure EEG signal. Decomposition of a seizure EEG signal by EMD. The first
time series is the EEG signal. The decomposition yields 10 IMF and a residual. The IMF are the time-
frequency constituents or components of the EEG signal. Frequency content is ordered in a descending
order. (IMF1 has the highest frequency content).
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are shown). According to the t-test, the weighted frequencies of the first four ictal and

seizure free EEG intrinsic functions are significantly different (p < 0.05). A hypothesis

testing with a lower p-value (p < 0.02) -high rejection region- indicates that the first

three modes are highly determinant.

As shown in figure 8, the classification by a supervised clustering using the Euclidian

distance has also been applied and evaluated. This figure shows two distinct groups:

ictal and seizure free weighted frequencies. The groups are concentrated around two

different centroids. Table 2 indicates the classification performance. The accuracy is

94%; the specificity is 96% and the sensitivity is 92%. To take the proposed method a

step further, a comparison against MEMD is conducted. The same 50 signals applied

to EMD have been also applied to MEMD. Four channels have been used; two
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Figure 4 Instantaneous amplitudes of components 1 to 4 of a healthy EEG. Instantaneous amplitudes
related to the first four components of the healthy EEG signal in shown Figure 2. Values are calculated via
the Hilbert-Huang Transform.
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Figure 5 Instantaneous frequencies of components 1 to 4 of a healthy EEG . Instantaneous
frequencies related to the first four components of the healthy EEG signal shown in Figure 2. Values are
calculated via the Hilbert-Huang Transform.
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identical healthy EEG channels and two identical seizure EEG channels. According to

MEMD every signal is considered as a time series. The 50 time series represents two

data-sets (25 healthy EEG and 25 seizure EEG). After the application of MEMD to all

of the couples of the time series, the Hilbert Transform was then applied to all IMF

(200) and the weighted frequency for every IMF has been calculated.

Figure 9 shows the classification by a supervised clustering using the Euclidian dis-

tance applied to MEMD. The groups are once again concentrated around two different

centroids (healthy and seizure). Table 3 contains the values of the calculated weighted

frequencies for the first four MEMD of 10 healthy signals and 10 seizure signals (for

better illustrations, not all the values are shown). Table 4 indicates the classification
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Figure 6 Instantaneous amplitudes of components 1 to 4 of a seizure EEG. Instantaneous amplitudes
related to the first four components of the seizure EEG signal shown in Figure 3. Values are calculated via
the Hilbert-Huang Transform.
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Figure 7 Instantaneous frequencies of components 1 to 4 of a seizure EEG. Instantaneous frequency
related to the first four components of the seizure EEG signal shown in Figure 3. Values are calculated via
Hilbert-Huang Transform.
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Table 2 Evaluation of classification performance

Parameter Value

Accuracy 94%

Specificity 96%

Sensitivity 92%
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Figure 9 Unsupervised Seizure Identification Using MEMD. Figure legend text. The classification of the
calculated weighted frequencies by a supervised clustering using the Euclidian distance. Every point holds
the information about the weighted frequencies of the first four IMF of an MEMD processed EEG signal.
Two different groups of points are illustrated; the first group (stars) indicates healthy EEG. The second
group (circles) indicates seizure EEG. Asterisks indicate two different centres of group. The lower one is
related to the seizure group.
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Figure 8 Unsupervised Seizure Identification Using EMD. The classification of the calculated weighted
frequencies by a supervised clustering using the Euclidian distance. Every point holds the information
about the weighted frequencies of the first four IMF of an EMD processed EEG signal. Two different groups
of points are illustrated; the first group (circles) indicates healthy EEG. The second group (stars) indicates
seizure EEG. Asterisks indicate two different centres of group. The lower one is related to the seizure group.
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performance based on 50 values (25 couples of healthy and seizure signals). The

obtained accuracy is 80%, the specificity is 80%, and the sensitivity is 81%.

Discussion
The proposed classification approach presented in this paper needs to be further inves-

tigated as it holds a promising potential in biomedical application. It can be enhanced

to be used as a computer aided diagnostic tool in which the resulting classification is

used to identify seizure based on the weighted frequency to detect any abnormalities

and list the diagnosis accordingly. The findings indicate also that the proposed classifi-

cation was insensitive to the noise in treated signals, thus, maintaining its levels of

high accuracy. Furthermore, its ability in solving the seizure classification without a

model-based procedure is extremely advantageous, especially that this task is hard or

even impossible. Hence, the proposed technique is a highly useful and powerful classi-

fication tool that fulfilled the independency requirement of being a self automated clas-

sification tool.

The proposed method has an advantage of instantaneous frequency/energy tracking,

which is very necessary for diagnosis and outperforms techniques based on only aver-

age-values. Thus, it can also be easily used as an online technique, where classified

EEG signals are decomposed and converted to the analytical form.

A hypothesis testing using the t-test with two different p-values indicates that the

first three or four modes are highly determinant. Hence, the rejection region should be

clearly determined before proceeding to the classification. Moreover, other statistical

classification methods can complement the proposed t-test based comparison. For

instance, independent component analysis and clustering techniques might give an

acceptable result of seizure classification via classes’ construction. In other words, if

the t-test shows significant differences between the data of two subjects, one normal

and the other epileptic, no one can determine which one is epileptic or normal.

Furthermore, if one adds some noise to the data of one subject, and then applies the

same classification method to the original data and noisy one, probably can find a sig-

nificant difference between them. Hence, a different supervised classification criterion

has been used.

It is worth noting that EMD has no analytical formulation; hence, our understanding

of EMD comes from experimental rather than analytical results. From experimental

results, it is shown that mode mixing and mode intermittency are the major obstacles

to the use of EMD. Mode mixing indicates that oscillations of different time scales

coexist in a given mode, or that oscillations with the same time scale have been

assigned to different modes. Hence, this may lead sometimes to a misunderstanding of

the real process.

The presented work reaches a higher accuracy and faster response than MEMD but

a slightly lower accuracy than the work of Tzallas et al. The fact that the approach of

Table 4 Evaluation of MEMD classification performance

Parameter Value

Accuracy 80%

Specificity 80%

Sensitivity 81%
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MEMD leads to similar frequency content in the corresponding IMFs makes the classi-

fication task harder, hence the Euclidian clustering might not be sufficient. In other

words, the fact that MEMD forces decomposition to have a specific pattern of IMF fre-

quency content order leads to a complicated case of mode mixing, which is one of the

disadvantages of empirical decomposition. This drawback makes Hilbert Transform to

be not a very good choice to track frequency [17]. The neural networks might be in

this case a good alternative.

Conclusions
The proposed techniques in this paper are used for EEG signal processing and com-

bined to come up with a new original tool that gives physicians the possibility to diag-

nose brain functionality abnormalities. The proposed system bear the potential of

providing several credible benefits such as fast diagnosis, high accuracy, good sensitiv-

ity and specificity, time saving and user friendly. Furthermore, given that the main per-

spective of this work is to detect and solve EEG mode mixing via an elaborated signal

processing solution, it may be concluded that the classification of mode mixing can be

achieved using the extracted instantaneous information of every IMF, but it would be

most likely a hard task if only the average value is used. Extra benefits of this proposed

system include low cost, and ease of interface. All of that indicate the usefulness of the

tool and its use as an efficient diagnostic tool.
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