
Review Article

Seizure-Induced Oxidative Stress in Temporal Lobe Epilepsy

Sreekanth Puttachary, Shaunik Sharma, Sara Stark, and Thimmasettappa Thippeswamy

Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA

Correspondence should be addressed to�immasettappa�ippeswamy; tswamy@iastate.edu

Received 13 June 2014; Revised 11 September 2014; Accepted 11 September 2014

Academic Editor: Mahendra P. Singh

Copyright © 2015 Sreekanth Puttachary et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

An insult to the brain (such as the 	rst seizure) causes excitotoxicity, neuroin
ammation, and production of reactive
oxygen/nitrogen species (ROS/RNS). ROS and RNS produced during status epilepticus (SE) overwhelm the mitochondrial natural
antioxidant defense mechanism. �is leads to mitochondrial dysfunction and damage to the mitochondrial DNA. �is in turn
a�ects synthesis of various enzyme complexes that are involved in electron transport chain. Resultant e�ects that occur during
epileptogenesis include lipid peroxidation, reactive gliosis, hippocampal neurodegeneration, reorganization of neural networks,
and hypersynchronicity. �ese factors predispose the brain to spontaneous recurrent seizures (SRS), which ultimately establish
into temporal lobe epilepsy (TLE). �is review discusses some of these issues. �ough antiepileptic drugs (AEDs) are bene	cial to
control/suppress seizures, their long term usage has been shown to increase ROS/RNS in animal models and human patients. In
established TLE, ROS/RNS are shown to be harmful as they can increase the susceptibility to SRS. Further, in this paper, we review
brie
y the data from animal models and human TLE patients on the adverse e�ects of antiepileptic medications and the plausible
ameliorating e�ects of antioxidants as an adjunct therapy.

1. Introduction

Epilepsy is a serious neurological disorder manifested by
recurrence of unprovoked seizures resulting in devastating
e�ects on patients and the caregivers. �e seizures are
generated due to abnormal hypersynchronous paroxysmal
cerebral discharges from the neuronswhich eventually results
in irreversible damage to them and their surroundings. About
50% of reported cases of epilepsy are acquired [1]. �e
acquired causes such as head injury or infection or exposure
to toxic chemicals can initiate one or more seizures or status
epilepticus (SE) [2, 3]. Depending on the severity of the 	rst
insult, a varying period of latent period was reported during
which a cascade of neurobiological changes takes place.�ese
neurobiological changes culminate in the development of
spontaneous recurrent seizures (SRS) resulting from synaptic
reorganization into hyperexcitable and hypersynchronous
neural networks [4]. According to International League
Against Epilepsy (ILAE) multiple seizure episodes that occur
within 24 hr are considered as a single event and hence SE
is regarded as a single event. Established epilepsy refers to
occurrence of two or more unprovoked recurrent seizures

[2, 3]. A seizure occurring for a short duration is usu-
ally benign and self-limiting. Generalized convulsive SE is
regarded as a clinical emergency due to signi	cant morbidity
and mortality [5]. Generalized convulsive SE in humans is
attributed to continuous seizure lasting for 30min or more
consisting of two or more seizure episodes where the patient
remains unconscious between the episodes [6, 7]. Consider-
ing the severe brain pathology associated with generalized
convulsive SE, any seizure lasting for more than 5min is
treated as an emergency in clinics [6, 7]. It has been reported
that some patients show nonconvulsive SEwhere EEG abnor-
malities are associated with impairment of consciousness
that lasts at least 30min without any obvious convulsive
seizures [8]. �e clinical signs of nonconvulsive SE are
multifaceted exhibiting behavioral/cognitive changes such
as confusion, agitation, hallucinations, facial automatisms
with jerks, aphasia, nausea, pupillary abnormalities, and
cardiorespiratory and thermal alterations [9]. Nonconvulsive
SE is o�en underrecognized when compared to generalized
convulsive SE [10]. �e current antiepileptic drugs (AEDs)
are merely symptomatic and do not prevent the progression
of the disease. �e greatest disadvantage with AED therapy
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is that its discontinuation makes the brain more vulnerable
to the recurrent seizures andmay get worse with time [11, 12].

In general, epilepsy a�icts more than 65 million people
worldwide and over 100,000 new cases are added every year
[13]. Among the epileptic patients, about 30% of them are
refractory to the current AEDs [14]. Temporal lobe epilepsy
(TLE) is one of the most common forms of partial or
focal epilepsy which is associated with head traumas, brain
malformations, infections, and febrile seizures [15]. In the
United States alone over 3million people su�er from epilepsy.
In developing countries, the incidence is even higher due to a
likelihood of cerebral infection in children during primitive
obstetric services, head traumas in adults resulting from
impacts, and a general susceptibility of elderly population to
seizures. Severity of epilepsy depends on factors such as age,
race, genetics, and socioeconomic and other environmental
factors [13, 16]. �e exact etiology of epilepsy is not well
understood, but any kind of insult to the brain depending on
its severity has a potential to induce seizures which can later
develop into epilepsy. An alarming rise of epilepsy among
di�erent age groups, inconsistent cause and prognosis, mor-
bidity,mortality, and above all itsmedically intractable nature
in some of the patients make it of a top priority for research.
Animal models have been instrumental in understanding the
pathophysiology of epilepsy and for the preclinical studies for
new drug discovery [17, 18]. In this review, we provide the
information from animal models and human patients on the
harmful role of ROS/RNS (reactive oxygen species/reactive
nitrogen species) that are generated as a consequence to
seizure and also discuss the role of gliosis, adverse e�ects of
AEDs, and potential bene	ts of antioxidant supplements in
TLE.

2. Oxidative Stress and Temporal
Lobe Epilepsy

Studies have indicated that the loss of inhibitory neurons
in the hippocampus during SE can alter the steady state
of excitation and inhibition between neuronal populations
towards hyperexcitability [19, 20]. �is hyperexcitability
initiates reactive gliosis and also results in mitochondrial
dysfunction in neurons due to the generation of free radicals
of oxygen and nitrogen species within the hippocampus and
dentate gyrus. �ese changes will lead to neurodegeneration.

2.1. Free Radicals of Oxygen and Nitrogen Species. In nor-
mal physiological conditions, ROS and/or RNS levels are
fairly well regulated to perform important functions such
as autophagy, chemical signaling, cell division, and mitogen
activated protein kinase signaling and apoptosis [21]. Due to
the highly reactive nature of these molecules, the ROS and/or
RNS are tightly regulated. Mitochondrial dysfunction due to
ROS and RNS is frequently observed a�er seizures during
epileptogenesis and is normally associated with neurodegen-
eration [22].

Free radicals contain one or more unpaired electrons in
the outermost shell which confers them for being chemically
reactive. Free radicals are generated by a loss of an electron

or a gain of an electron during a homolytic cleavage [23, 24].
�e resultant e�ect of homolytic cleavage is formation of
two free radicals which may or may not carry an electric
charge. Due to the presence of an excess electron or a lack
of electron in their outermost orbits, these radicals behave
as strong oxidants or reductants. Free radicals are highly
unstable and reactive species, which initiate a chain reaction
by pulling electrons from the nearby molecular fragments
to form stable bonds, as a result the proteins and lipids
will change their morphology and function. Such e�ects
on DNA result in cross-linking of base pairs leading to
mutation of a gene. Important free radicals of oxygen species
include hydroxyl radical (OH∙), superoxide anion (O2

−),
hydrogen peroxide (H2O2), singlet oxygen (O), alkoxy rad-
ical (RO), peroxy radical (ROO), and hypochlorite (HOCl).
Widely known free radicals of nitrogen species include nitric
oxide radical (NO∙), peroxynitrite radical (ONOO−), nitroxyl
anion HNO−, nitrosonium cation (NO+), higher oxides of
nitrogen (N2O3, NO2

∙), and S-nitrosothiols (RSNO) [25–28].
�e production of these radicals within the cell in excessive
amount can lead to oxidative stress.

2.2. Free Radical Production and Oxidative Stress. An oxida-
tive stress generally refers to a biochemical state where ROS
or RNS production is unregulated resulting in damage to
the cell membrane, proteins, enzymes, andDNA components
within the nucleus and the mitochondria [24]. A majority
of RNS are generated from the interactions of nitric oxide
(NO) and oxygen. NO is an important second messenger,
which can also behave like a free radical due to the presence
of an unpaired electron in the outermost orbit (6 valence
electrons from oxygen and 5 from nitrogen) [28]. NO is
produced from the substrate, L-arginine via the enzyme NO
synthase (NOS) involving nicotinamide adenine dinucleotide
phosphate (NADPH) and oxygen. �ere are three major
isoforms of NOS: (a) neuronal NOS (nNOS) produced by
neurons, (b) endothelial NOS (eNOS) expressed mainly
endothelial cells, and (c) inducible NOS (iNOS) induced in
immune cells, astrocytes, microglia, and also neurons. �e
roles performed by NO vary based on its synthesis from
the NOS isoforms and the tissues in which it is produced
[29, 30]. �e physiological concentrations of NO produced
by nNOS mediate calcium dependent protein modi	cation
(S-nitrosylation), energy metabolism (through cytochrome
C oxidase), synaptic plasticity, and neuroprotection. �e
NO produced by eNOS results in calcium dependent cyclic
guanosine monophosphate (cGMP) mediated vasodilation
to maintain vascular tone of cerebral blood vessels. �e
NO by iNOS is important for immune response or killing
pathogens by generating free radicals [31–37]. However,
excessive amount of NO produced by iNOS-mediated mech-
anism is harmful to the host cells.

Generation of free radicals under normal conditions
within a cell is depicted in Figure 1. In the cytoplasmic mem-
brane, NADPH oxidase (NOX) reduces O2 to superoxide
anion (O2

−). Superoxides can also be generated from O2
from xanthine oxidase during the production of uric acid.
�ese superoxides are converted intoH2O2 in the presence of
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Figure 1: Biochemical reactions of ROS/RNS and their elimination by cellular endogenous antioxidants. Components in blue represent
nonenzymatic antioxidants; green represents oxidative and antioxidant enzymes; and small red explosion sign represents generation of free
radicals. NOX is the key enzymatic source of ROS. It reduces oxygen to superoxide anion and hydrogen peroxide. O2

∙ formsH2O2 which is the
most reactive radical among its group that is produced via Fenton reaction. OH∙ leads to lipid peroxidation by producing harmful metabolites
such as MDA and 4-HNE leading to mitochondrial dysfunction and cell death. It also produces HOCl∙ and PhO∙ which are extremely toxic
oxidants that disrupt tight junctions and increase paracellular permeability. H2O2 is eliminated by CAT, in peroxisomes, and GPx (location
varies). At rapid rates, superoxide anions compete with NO which results in the formation of highly reactive molecule called peroxynitrite
(ONOO∙), in cytoplasm, leading to increased ROS production, oxidation of DNA, RNA, and proteins, ion channel dysfunction, and loss of
bioactive NO∙. Peroxynitrite inactivates Mn-SOD, thereby increasing the 
ux of superoxide anions available to react with NO. SOD catalyzes
the reduction of superoxide anions intoH2O2, inmitochondria in the presence of enzymes GPx andCAT;H2O2 gets converted into water and
oxygen. Antioxidant enzymes such as GPx oxidize GSH to GSSG and GSHred recycles GSH back fromGSSG. NADPH gets reduced to NADP
by GSHred. GSH/GSSG is a commonly used biomarker of oxidative stress in biological systems. However, GPx also catalyzes H2O2 into H2O
by using reduced TRXred. Antioxidant defense against toxic oxygen intermediates comprises an intricate network which is heavily in
uenced
by nutrition (vitamins A, E, and C and fatty acids). CGS plays an important role in glutathione metabolism and acts as an antioxidant in
glial cells such as astrocytes. Extracellular oxidized cysteine is reduced to cysteine by thioredoxin reductase or glutathione that helps to
maintain the steady state balance between antioxidants and ROS [24, 41, 80]. ROS, reactive oxygen species; NADPH, nicotinamide adenine
dinucleotide phosphate; NOX, NADPH oxidase; SOD, superoxide dismutase (Cu/Zn—copper/zinc, Mn—manganese); CAT, catalase; O2

−∙,
superoxide anion; H2O2, hydrogen peroxide; NO, nitric oxide; ONOO−, peroxynitrite; HOCl, hypochlorous acid; PhO∙, phenoxy radical;
OH∙, hydroxyl radical; GSH, glutathione; GSSG, oxidized glutathione; TRXox/red, thioredoxin reduced and oxidized; TRXred, thioredoxin
reductase; GSHred, glutathione reductase; GPx, glutathione peroxidase; CGS, cystine/glutamate antiporter system.

superoxide dismutase (SOD). H2O2 is a lipophilic molecule,
which crosses lipid membranes into peroxisomes where it is
	nally eliminated by catalase (CAT) releasing H2O and O2
[38]. However, if the antioxidant action of SODs or CATs is
impaired then, the reaction of superoxide with H2O2 yields

toxic OH radicals in the presence of Fe2+ (called Fenton
and Haber-Weiss reaction). �ese OH radicals can also be
generated by superoxides when they react with hypochlorite
(HOCl) [24, 38]. �e hypochlorite (HOCl) arises when
chloride (Cl−) reacts with H2O2 catalyzed by peroxidases.
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�e OH radical is a harmful free radical of oxygen which
has a short half-life but remains highly reactive. Further, the
hydroxyl radical can also react with NO to form peroxinitrate
(ONOO−), a powerful oxidizing agent that can cause lipid
peroxidation, tyrosine nitration, and cytotoxicity [24, 27, 39].

Besides the major pathways of free radical production,
other enzymes and pathways can contribute to excessive
accumulation of ROS/RNS in cells. While they are not the
primary sources of ROS/RNS, these enzymes and pathways
are capable of accelerating the process of neurodegeneration.
NOX also mediates the production of superoxide radicals
in the hippocampus. At basal level, these play a role in
learning andmemory consolidation [40, 41]. However, under
pathological conditions such as TLE, NOX overproduces
superoxide ions to initiate neurodegeneration. Hence, the
compounds that inhibit NOX enzymes could be bene	cial in
the treatment of epilepsy. A review by Sorce and colleagues
describes the advantages of inhibiting ofNOXduring reactive
gliosis and neuronal injury in rat models [42, 43]. In addi-
tion to NOX, the cyclooxygenase-2 (COX-2) enzymes have
been found to upregulate ROS levels via the production of
prostaglandins (speci	cally, F2 and H) [44]. In an in vitro
model of rat cortex, it has been shown that the prostaglandins
stimulate astrocytes to produce proin
ammatory cytokines,
which initiated neuronal death [45]. COX-2 is also respon-
sible for a number of in
ammatory responses in tissues
involving neutrophils of the immune system [46]. COX-2
inhibition prevented lipid peroxidation within themice brain
and hence COX-2 could be another potential drug target for
epilepsy [44, 47].

2.3. Free Radical Neutralization by Endogenous Antioxidant
System. Cells possess native antioxidant systems to neu-
tralize free radicals when produced in excess [68]. In the
cytoplasm, SOD enzyme is coupled to copper and zinc
ions (Cu-Zn SOD, also known as SOD-1), and, in the
mitochondria, it is coupled to manganese (Mn-SOD, also
known as SOD-2). SOD is an important antioxidant enzyme
that scavenges superoxide radicals by catalyzing them into
water and molecular oxygen. SOD-1 levels were low in cere-
brospinal 
uids of human patients with refractory epilepsy
[69] suggesting that low levels of SOD-1 increase ROS.
Intravenous administration of SOD-1 increased the seizure
threshold in amygdala kindling rat models of epilepsy [70].
Experiments with SOD-2 knockout mice have been shown
to be susceptible to kainate induced neurodegeneration and
neuronal cell death [71].

�e fate of H2O2 for conversion intoH2OandO2 is deter-
mined by CAT enzymes (in mitochondria and peroxisomes),
glutathione peroxidase (GSH-Px, in cytosol and also found
extracellularly combined to selenium), and glutathione-S-
transferase (GST, in cytosol and microsomes) [72]. �e
reactions include utilization of reduced glutathione (GSH)
to combine with H2O2 to form H2O to release oxidized
glutathione (GSSG) [73, 74].�us availability of reducedGSH
becomes an important antioxidant reserve of the cell. �e
reduced GSH is resynthesized from GSSG by glutathione
reductase (GSHred) utilizing NADPH. �e NADPH for this

process is generated by thioredoxin reductase (TRXred) found
in endoplasmic reticulum by utilizing oxidized thioredoxin
(TRXox ) [75–77]. In addition to the antioxidant enzymes,
peroxiredoxins, a ubiquitous family of antioxidant enzymes,
degrade H2O2 and peroxynitrites to H2O and nitrites
[78, 79].

2.4. Susceptibility of Brain to Oxidative Stress. While brain
accounts for about 2% of body weight, it consumes 20%
of the total inspired oxygen at rest [89]. �is is due to
a high metabolic rate of the neurons and the need for
large amounts of ATP to maintain ionic gradient to sustain
normal neurotransmission. Hence, mitochondria are found
abundant in neurons’ synaptic terminals to supply ATP,
which is generated through oxidative phosphorylation [90].
In mitochondria, during normal oxidative phosphorylation,
free radicals are also generated in small quantities from
electron transport chain (ETC) complexes 1 and 3 [91]. In
addition, brain contains large amounts of readily oxidizable
polyunsaturated fatty acids which are necessary for the
lipid membrane’s structure and function. During oxidative
stress, polyunsaturated fatty acids become susceptible to lipid
peroxidation. �is a�ects the permeability of the membrane
to ions and signal transduction [92, 93]. Further, neurons
are also rich source of iron, an important element in many
cellular processes and physiological functions. During oxida-
tive stress, high amounts of iron can prove harmful as iron
participates in the redox reactions to generate ROS via Fenton
and Haber-Weiss reaction [94]. Furthermore, CAT enzyme
levels (essential for the cleavage of H2O2) are low in the
brain compared to other organs, for example, 1/10th of liver
CAT activity, making it susceptible to oxidative damage
[38, 39, 95, 96]. However, under normal conditions, the
innate antioxidant systems provide antioxidant protection
against the ROS/RNS damage during metabolic processes
[97, 98].

3. Seizure Insult Increases Oxidative Stress

Oxidative stress and mitochondrial dysfunction have been
long recognized as key mechanisms in several neurological
disorders. Emerging evidence con	rms that oxidative stress
manifests as a consequence of the 	rst seizure insult, which
turns out later to become the cause of epileptogenesis [99].
During brain injury that results from seizures in rodent
models, a signi	cant increase in neuronal glucose uptake and
metabolism was observed [81, 100]. Cerebral blood 
ow is
found to increase in order to cope with hypermetabolism
of glucose, thus resulting in buildup of lactate, thus over-
whelming the normal glycolysis and tricarboxylic acid (TCA)
cycle.�e recurrent seizures can also result in overproduction
of mitochondrial superoxide radicals in rodent models [48]
that can be converted to hydroxyl radical via Fenton and
Haber-Weiss reaction.�e hydroxyl radical in the presence of

Cu2+ and Fe2+ ions readily oxidizes proteins, lipids, and DNA
resulting in altered protein function,membrane permeability,
and gene expression, respectively. �ese events increase
neuronal excitability and also decrease seizure threshold.
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Figure 2: Post-SE pathways in neurodegeneration. SE increases glutamate receptors subunits interactions (NMDA, AMPA, and
metabotropic), receptor turn-over, and their tra�cking to the postsynaptic membrane. �is leads to rapid calcium in
ux and calcium
overload. As a result of this, several calcium dependent enzymes get activated in uncontrolled manner. �is results in the activation of
several signaling pathways that causes mitochondrial swelling, decrease in ATP, and increase in ROS, which results in oxidization of protein,
lipid, and DNA, causing neuronal death. In addition, hypermetabolism, overwhelming glycolysis, and TCA cycle during SE further increase
ROS/RNS. High production of lactate can cause cerebral lactic acidosis thereby increasing the production of ROS causing further damage
due to mitochondrial dysfunction. Excessive calcium and ROS leads to the collapse of mitochondrial membrane potential, activation of
mitochondrial matrix enzymes, and opening of mitochondrial permeability transition pores, decreasing ATP production. ROS are produced
in mitochondria through the activity of ETC as a by-product of oxidative phosphorylation. CoASH/CoASSG and GSH/GSSG (described
in Figure 3) ratio also decrease in brain tissues during this process and following SE, due to increased oxidative stress [44, 81–84]. TCA:
tricarboxylic acid cycle; ETC: electron transport chain; mtDNA: mitochondrial DNA; Cyt C NAD: cytochrome NADH reductase; CoASH:
coenzyme A; CoASSG: coenzyme A glutathione disul	de; SE: status epilepticus.

Several lines of evidence showing the link between oxidative
stress and themitochondrial dysfunction due to seizures have
been observed in human patients and rodent models of TLE
(Table 1; Figures 2 and 4). Brie
y, it is summarized here.

(i) An increase in calcium overload due to excitotoxicity
and increased ROS production during seizures pre-
disposing neurons to degeneration [101–103]. �ere

is an increased oxidation of macromolecules of the
neurons a�er SE prior to the neuronal loss [104, 105].

(ii) Presence of neuronal death predominantly in CA3
and/CA1 regions of hippocampus following the 	rst
seizure [106], thus the TLE. Another example for CA1
hippocampal neurodegeneration is shown in Figure 4
(7 days a�er seizure).
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involved in these disorders are common in all types of insult (SE, latent period, and SRS), as described in Figures 1 and 2, but with subtle
di�erences.�e concentration of antioxidant enzymes rises a�er an initial insult (imitating their protective role) such as glutamine synthetase
in SE; later it reduces which may or may not recover a�er few days/weeks depending upon the severity of the insult. Latent period is generally
characterized by a series of slow neurodegenerative changes in the brain leading to epileptogenesis. �e concentration of GST falls during
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ion channels and transporters will further lead to hyperexcitability of neurons [24, 48, 82, 83, 85, 86]. SRS: spontaneous recurrent seizures;
GST: glutamine synthetase; mtDNA: mitochondrial DNA; X: reverse reaction does not occur; Li-Pilo: lithium- pilocarpine model.

(iii) Changes in the mitochondrial membrane potential
and increased NADPH levels as a consequence to
seizures in rodent models and human patients [107].

(iv) A signi	cant increase in neuronal glucose uptake
and enhanced metabolism in brain following the 	rst
seizure [81, 100].

(v) Inactivation ofmitochondrial aconitase levels a�er SE
[48].

(vi) A reduction of mitochondrial N-acetyl aspartate (a
metabolite synthesized from aspartate and acetyl-
coenzyme A) in hippocampus from human epileptic
patients [108–110].

(vii) Dysfunctional electron transport chain complexes (1,
3, and 4) a�er SE [82, 111–113].

(viii) A rise in mitochondrial H2O2 production, lipid per-
oxidation (increased malondialdehyde, MDA, and

thiobarbituric acid, TBA), and mitochondrial DNA
(mtDNA) damage following a seizure [58, 85, 114–
116].

(ix) An increase in seizure susceptibility in aging mice
and/or SODmice due to compromised innate antiox-
idant mechanisms [117, 118].

(x) NMDA receptor antagonists [119] and antioxidant
supplements (SOD mimetics, vitamin C, vitamin E,
and melatonin) administration preventing seizure-
induced neuronal death [120–124].

4. Oxidative Stress Increases
Hyperexcitability during Epileptogenesis

�eperiod of epileptogenesis (latent period) follows immedi-
ately a�er an initial insult from the seizures. �ere is a tran-
sient increase in glutamine synthetase enzyme during this
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glutamate uptake, thus increasing the concentration of glutamate at the synapse. �ese events contribute to further hyperexcitability of
neurons as evident from increased spiking activity on EEG. �ese changes in turn lead to neurodegenerative changes a�er 3 days following
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Table 1: Time dependent changes in the biomarkers of oxidative stress in rodent models of epilepsy and in human epileptic patients.

(a)

Rat kainate model 4 hr 8 hr 16 hr 24 hr 48 hr 3–7 d 3 week Human patients

GSH/GSSG ratio ↑ ↑ GSH/GSSG ratio ↓
Lipid peroxidation (TBA assay) ↑ ↑ ↑ ↑ ↓ ↓ ↓ Lipid peroxidation (TBA assay) ↑
Protein oxidation ↑ ↑ Protein oxidation ↑
SOD ↑ ↑ SOD ↑
NADPH oxidase ↑ ↑ catalase ↑
catalase ↑ aconitase

aconitase ↓ ↓ ↓ DNA damage (OdG assay) ↑
DNA damage (OHdG assay) ↑ ↑ ↑

(b)

Rat kindling model 4 hr 8 hr 16 hr 24 hr 48 hr 3–7 d 3 week

GSH/GSSG ratio ↓ ↓ ↓
Lipid peroxidation (TBA assay) ↑ ↑
SOD ↓
aconitase ↓ ↓

(c)

Rat Pilocarpine model 4 hr 8 hr 16 hr 24 hr 48 hr 3–7 d 3 week

GSH/GSSG ratio ↓
Lipid peroxidation (TBA assay) ↑ ↑ ↑ ↑ ↑
SOD ↑ ↑ ↑ ↑ ↑
catalase ↑

(d)

Mice kainic acid model 4 hr 8 hr 16 hr 24 hr 48 hr 3–7 d 3 week

GSH/GSSG ratio ↓
Lipid peroxidation (TBA assay) ↑ ↑ ↓
Rat kainate model [48–52], Rat kindling model [53–57], Rat pilocarpine model [58–60], Mouse kainate model [61–64], Human patients [65–67].
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period in nonreactive astrocytes, which converts excess gluta-
mate to inactive glutamine in the thalamus of human epileptic
patients [108]. During the later course, glutamine synthetase
activity gets downregulated in reactive astrocytes. As a result,
excessive amount of nonmetabolized glutamate is released
from astrocytes which accumulate in the extracellular space
[125–129]. �is results in hyperexcitability of neurons and
later an onset of SRS. Astrocyte mediated glutamate release
is discussed in later paragraphs. Although H2O2 increases
during SE, it later decreases during the latent period due to
activation of antioxidant systems [85, 130]. As the neuronal
excitability increases, the SRS develops, which results in time
dependent increase in H2O2 due to gradual depletion of
antioxidant systems (GSH, coenzyme-A-SH) [131, 132]. As a
consequence, accumulation of oxidized form of antioxidant
enzymes, namely, GSSG and coenzyme-A-SSG, increases in
the brain. A steady increase in ROS causes mitochondrial
DNA damage resulting in downregulation of mitochondrial
enzyme synthesis that is required for oxidative phospho-
rylation. Further electron transport chain complexes (1, 3,
and 4) are a�ected [82, 111, 112]. �e ROS also modi	es the
proteins subunits of excitatory ion channels and inactivates
the energy-dependent glutamate transporters contributing
to a further increase in neuronal hyperexcitability [71, 83].
An increase in ROS production is also contributed to a
decrease in SOD and aconitase activity [48] (Figures 2 and
3). �e neuronal hyperexcitability is further compounded
by the loss of inhibitory GABAergic neuron populations of
hippocampus and dentate gyrus leading to increased seizure
susceptibility (Figures 4 and 5) [106, 133].

5. Mitochondrial Dysfunction
and Lipid Peroxidation in TLE

�e brain, being an organ with a low tolerance for hypoxic
conditions due to neuronal need for oxygen, is particularly
susceptible to ROS/RNS changes in mitochondria. Mito-
chondrial degeneration a�ects the stability of nuclear DNA
(leading to chromosomal alterations), RNA, proteins, and
lipids of the cell and also leads to defective calcium and gluta-
mate homeostasis [41].�is increases the modulation of neu-
ronal excitability and the synaptic transmission, an underly-
ing mechanism in seizure production [84]. Waldbaum and
colleagues investigated the changes that occur in the brain
during the latency period that leads to the development of
epilepsy [130]. Mitochondrial DNA gets repaired soon a�er
the acute brain insult as a defensive mechanism; however this
could be prolonged if the production of ROS/RNS during the
insult is high. �e concentration of H2O2 returns back to the
basal levels during latency period but the production of ROS
and RNS continues leading to the development of SRS [130].
It has also been suggested that certain protective enzymes,
antioxidants, and coenzymes may be permanently damaged
during this process [83, 113, 134, 135]. Furthermore, changes in
DNA/RNA structure, compromised glutamate and calcium
homeostasis, and depletion of antioxidant defense mecha-
nism could lead to epileptogenesis [81, 85, 100]. According
to Waldbaum and Patel, these changes a�ect all age groups.

�ese disorders are most prevalent in the older people due
to a reduced activity of antioxidant system which leads to the
accumulation of free radicals resulting in neurodegeneration
[117]. Waldbaum and Patel further proposed that ROS-
inducedmitochondrial DNAdamage and decreased function
of the electron transport chain are the major detrimental
factors of neuronal death [136]. Oxidative stress leading
to mitochondrial DNA alterations is also documented in
patients with myoclonic epilepsy [137, 138].

Several hours a�er SE, the aconitase enzyme levels were
found to reduce inmitochondria. Aconitase [an iron-sulphur
protein] converts citrate into isocitrate in the TCA cycle. As
TCA gets a�ected, the production of NADPH, 
avin adenine
dinucleotide (FADH2), and ATP reduces, which contributes
to the development of SRS [48].

Lipid peroxidation, in general, is the conversion of fatty
acids in the lipid bilayer to reactive species, resulting in
neurodegeneration. As described earlier, polyunsaturated
fatty acids are also present in large amounts within the inner
membrane matrix of the mitochondria and are especially
susceptible to lipid peroxidation by generating ROS [4].
Lipid peroxidation a�ects the permeability of the membrane,
calcium pump activity, and most of the membrane bound
enzymes [26, 92]—this is repeated. Studies revealed increased
malondialdehyde (MDA) (measured as thiobarbituric acid
reactive substances, TBARS) and F2-isoprostane levels that
are derived from arachidonic acid cycle demonstrating that
the lipid peroxidation indeed occurs during seizures [49, 139,
140]. Hydroxyl radicals that produce lipid peroxidation have
also been found in the brains of rodent models of epilepsy
[26, 93, 114, 116].

6. Role of Glia during Inflammation
and Epileptogenesis

Gliosis (astrogliosis and microgliosis) occurs as a response
to brain injury, which is characterized by proliferation and
hypertrophy of the glial cells. Representative brain sections
from 7 days a�er SE that were immunostained with glial
markers are shown in Figures 4 and 5. Gliosis leads to
formation of glial scar around the neurons that are under
oxidative stress. Gliosis has both bene	cial and detrimental
consequences, which depends on their reactive state [141,
142].

6.1. Role of Astrogliosis. Astrocytes are the important source
of antioxidants (neurotrophins) in the central nervous system
(CNS) and play key role in cellular defense mechanism.
�eir protective role is regulated by nuclear factor erythroid
related factor 2 (Nrf2), a transcription factor that mediates
the production of antioxidants [143]. �e Nrf2 activation is
responsible for the regulation of antioxidant enzymes such
as SOD, CAT, glutathione peroxidase (GSH-Px), and reduced
form of GSH (GSHred). Astrocytes also play important roles
inmaintaining potassiumhomeostasis; glutamate uptake and
release; lining of the blood brain barrier (BBB); providing
nutritional, structural, trophic, and metabolic support to
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Figure 5: Immunohistochemistry (IHC) of the brain sections from kainate mouse and rat models of epilepsy at 2 h, 24 h, and 7 days a�er SE.
(a) c-Fos ((A), (B)) expressionwasmorewidespread in the hippocampal formation at 2 h a�er SE (B).More than 3-4-fold increased expression
(quanti	ed data not shown) of c-Fos in CA3 pyramidal cell layer was observed (B). CCR2 ((C), (D)) and astrocytic NF�B expression ((F),
orange) at 24 hours a�er SE. (b) By 7 days a�er SE, there was increased astrogliosis ((H), GFAP, green) andmicrogliosis ((J), IB1A ismarker for
microglia, green) compared to controls ((G), (I)). SE induced neurodegeneration (FJB +ve neurons) was observed in CA3 of hippocampus
(L). �ere were increased FJB +ve cells in CA3 of hippocampus (green label in (L), all scale bars 100�m). �e same area was invaded by
reactive astrocytes and microglia (green cells in (H) and (J)). Hematoxylin and Eosin stained hippocampal sections ((M), (N)) with pyknotic
nucleus and shrunken cytoplasm are evident due to SE-induced changes at 7 days post-SE.

neurons; modulating synaptic activity; free radical scav-
enging; water transport and production of cytokines and
NO [144]. Nonreactive astrocytes have also been found
to play a neuroprotective role in recovering the neurons
from brain injury by releasing trophic factors. �e trophic
factors include nerve growth factors, 	broblast growth fac-
tors, transforming growth factor-�, platelet-derived growth
factor, brain-derived growth factor, and ciliary neurotrophic
factor [141, 144]. All these factors play a part in stimulating
neurite growth [144–147] and also promote angiogenesis,
in case of cerebral ischemia, by expressing neuropilin-1
[144, 148].

Astrocytic glutamate transporters and neuronal gluta-
mate receptors are known to play an important role in the
pathogenesis of epilepsy. In normal brain, glutamate is taken
up via astrocyte glutamate transporters from the extracellular
space and metabolized to inactive glutamine to prevent
excessive excitatory e�ects on neurons. Eid and cowork-
ers have also shown a defect in the glutamine-glutamate
cycle in hippocampal sclerosis patients that contributes to
epileptogenesis [127, 129, 149]. Any alteration in this cycle
is deleterious and can contribute to the hyperexcitability of
neurons [150]. During the seizure insult, these astrocytic
glutamate transporters become dysfunctional and lead to
massive accumulation glutamate in astrocytes. �is results
in a release astrocytic glutamate (due to impaired astrocyte

glutamate metabolism) into the extracellular spaces through
a calcium dependent mechanism [150, 151]. �is astrocytic
glutamate release is also thought to be involved in amplifying
the excitotoxicity of neurons [142, 152, 153]. �e role of
astrocytic glutamate in epileptogenesis has been debated for
some time. However, it is largely agreed that the synaptic
modulation by reactive astrocytes is one of the many causes
of SRS [154]. Decreased expression and/or dysfunctional
glutamate transporters in astrocytes, GLT-1 and GLAST, have
been shown to be one of the key factors of human epilepsy
[155].

�e astrocytes become reactive, a�er the 	rst seizure,
due to changes at genetic, molecular, and cellular levels
[141, 156]. A majority of these changes are observed at the
transporter level in TLE during hippocampal sclerosis [157,
158]. In a normal astrocyte, the amount of glial 	brillary
acidic protein (GFAP) was low as revealed by immuno-
histochemistry (Figure 5). Seven days a�er SE, GFAP was
overexpressed, a hallmark of reactive astrocytes [159–161]
(Figure 5). �ese reactive astrocytes secrete cytokines and
chemokines such as IL-1B, tumor necrosis factor (TNF-
alpha), interleukins (IL-1, IL-6, IL-10), and interferons (IFN-
�, IFN-�) [162, 163], and chemoattractant protein-1 (MCP1).
In addition to these factors, MCP1 may increase the calcium
mediated glutamate release to worsen the epileptic state
by producing hyperexcitability and a further production
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of ROS/RNS [164–167]. However, it is di�cult to predict
the e�ects of individual cytokine in reactive astrogliosis,
as we can observe only net combined e�ects of all the
cytokines in in vivo models. �e cytokines are also known
to produce pleiotropic e�ects. For example, excessive pro-
duction of IL-6 and TNF-� promotes demyelination, throm-
bosis, leukocyte in	ltration, and BBB disruption [162, 163],
while under normal conditions IL-6 and TNF-alpha have
neuroprotective e�ects in ischemic injury and excitotoxic
injury models [168, 169]. Hence, the speci	c contribution
of astrocyte cytokine release to the processes involved in
the development of epilepsy remains to be established.
Perhaps, the role of astrocytes changes at di�erent stages of
epileptogenesis.

6.2. Role ofMicrogliosis. Under normal conditions, microglia
cells play a bene	cial role to engulf the cellular debris and
prevent cellular toxicity from spreading to the bystander
neurons and also to recruit distant microglia to the site of
injury.�e inactive or rami	edmicroglia has a small cell body
with thin and slender branches. Activated microglia shows
di�erent morphology at di�erent stages of activation [170].
Generally activated microglia, by 7 days a�er SE, has large
cell body with/without thick projections/branches (Figure 4).
At the time of injury or during excitotoxicity, these rami	ed
microglia become active/reactive and undergo morpholog-
ical changes [171–174]. However, during the early stages
of insult, microglia are involved in neuroprotection and
neurogenesis by releasing neurotropic and anti-in
ammatory
molecules [175]. Nonreactive microglia secrete neuroprotec-
tive factors such as brain derived neurotropic factor (BDNF)
and NGF [176–180] and thrombospondin [174]. Microglia
are mobile; they move to the site of injury and secrete
proin
ammatory cytokines and upregulate the expression of
cell-surface molecules and membrane proteins [181, 182]. On
the other hand when microglial cells becomes reactive, they
can activate several in
ammatory pathways/cyclooxygenase-
2 (COX-2), interleukin (IL)-3, IL-6, Il-1B, tumor necrosis
factor alpha (TNF-�), prostaglandins, tissue plasminogen
activator (tPA), MCP-1, vascular endothelial growth factors,
lymphotoxin, matrix metalloproteinases, and macrophage
in
ammatory protein-1� [172–178]. �e amount of secretion
of such factors depends upon the severity of the insult. For
example, activation of tPA, along with other factors, has
been shown to play a role in the mossy 	ber sprouting
(MFS) which is observed in chronic epilepsy [183–186].
Further, an increased number of activated microglia near
the damaged tissues [36, 187], especially at CA1 and CA3
regions of the hippocampus, prove their harmful role during
epilepsy (Figure 5). It has also been proposed that microglial
activation can sustain the development of SRS by initiating
aberrant neurogenesis and also the migration of neuroblasts
in the dentate gyrus [188]. Our ongoing work demonstrates
increased expression of chemokine receptor 2 (CCR2), the
receptor for MCP-1 (Figure 5). Incidentally, MCP-1 produc-
tion by astrocytes is mediated through nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) and was
also found upregulated following 24 h a�er SE (Figure 5).

6.3. Crosstalk between Neuron and Glia during Epileptoge-
nesis. Seizures during the SE subsequent spiking activity
and repeated SRS activate the resident glial cells (astrocytes
and microglia) to become hypertrophic and reactive (Fig-
ures 4 and 5). As discussed above, the reactive glial cells
release proin
ammatory mediators which in turn act on the
neurons to decrease their seizure threshold. �ere is also
increased expression of redox-sensitive transcription factors
activator protein-1 (AP-1) and NF�B leading to an activation
of NADPH oxidase in microglia cells. �e activation of
NADPH oxidase on microglia cells results in the formation
of cytochrome b558 in the electron transport chain, which
leads to an increase in extracellular superoxide production
through iNOS. �ese factors may a�ect neuroblasts and/or
those neurons that were recovering during post-SE phase of
epileptogenesis (Figure 4).

Overall, the chain of events that occur following seizures
is summarized below; (a) increase in intracellular calcium
due to activation of NMDAR during and soon a�er SE
or seizure (illustrated in Figure 4); (b) activation of phos-
pholipase A2 (arachidonate release) and phospholipase C
(not shown); (c) immediate early gene expression such as
c-Fos; (d) altered kinase activity, altered phosphorylation
of enzymes, receptors, and ion channels (not shown); (e)
altered ion channel function as evident from increase spik-
ing activity; (f) change in subunit expression of excitatory
and inhibitory receptors; (g) altered synaptic morphology,
remodelled dendritic spines; (h) enhanced neurogenesis in
dentate gyrus; (i) MFS leading to altered connectivity; (j)
oxidative damage to proteins, lipids, and DNA; and (k)
neurodegeneration through apoptosis inducing factor (AIF)
or caspase-3 mediated pathway (illustrated in Figure 4). �e
emerging hypothesis in our laboratory is that targeting the
postsynaptic membrane proteins could be protected against
the recurrence of seizures. �e postsynaptic density protein-
95 (PSD-95), a sca�olding protein that links the nNOS with
glutamate receptors, is depicted in Figure 4. Modulating
protein-protein interactions involved in disease pathways is
an attractive strategy for developing drugs but remains a
challenge though. One approach is to target certain domains
within proteins that mediate these interactions. One example
of such a domain is the PDZ domain of PSD-95, which is
involved in interactions between many di�erent proteins in
a variety of cellular contexts. Because PDZ domains have
well-de	ned binding sites, they are promising targets for drug
discovery in epilepsy research.

7. Treatment Options for TLE

7.1. AntiepilepticDrugs: Bene
cial andAdverse E�ects. Several
AEDs have been tried for TLE. AEDs used to suppress
seizures in epileptic patients have multiple mechanisms of
action [189]. For example, phenytoin reduces the amplitude of
sodium channels by inactivating them; ethosuximide blocks

Ca2+ channels; phenobarbital blocks GABAA receptors and
possibly sodium channels; and carbamazepine (CBZ) pre-
vents convulsions by potentiating certain GABA receptors
subtype containing �1, �2, and �2 subunits [190]. A long
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term use of AEDs leading to impairment of the endogenous
antioxidant system has been investigated. AEDs, namely,
valproic acid, phenytoin, CBZ, and levetiracetam, are shown
to increase lipid peroxidation and decrease GSH/GSH-Px
[4]. CBZ is implicated in reduction of CAT enzyme activ-
ity while phenobarbital valproic acid (VPA) and CBZ are
shown to reduce SOD enzyme activity [4]. In rat cortical
astrocyte cell culture assays CBZ, oxcarbazepine, and topi-
ramate are demonstrated to cause oxidative stress leading to
reduced activity of astrocyte glutamine synthetase [191, 192].
Phenobarbital, CBZ, and valproic acid a�er their hepatic
metabolism result in reactive intermediates that can lead to
covalent binding to macromolecules [193, 194]. From our
ongoing proteomics studies from 7 days post-SE mouse
model (kainate), we have identi	ed downregulation of VPA
transporter protein. VPA is a broad spectrumAEDand one of
the most widely prescribed drugs for epilepsy worldwide. Its
e�ects are mediated by an action on the inhibitory system, �-
aminobutyric acid (GABA), through enhancement of GABA
synthesis and release [195]. VPA is also histone deacetylase
(HDAC) inhibitor and has a neuroprotective role [196]. A
review by Cárdenas-Rodŕıguez et al. summarizes the e�ects
of AEDs on themarkers of oxidative stress in human epileptic
patients [197]. Although AEDs control seizures, their role to
elicit systemic toxicity and to contribute to oxidative stress
needs to be carefully considered during therapy. Moreover,
since AEDs only control symptomatic seizures, an adjunct
therapy such as dietary supplements and neuroprotectants
would be bene	cial. In this review, the role of dietary
supplements in epilepsy is brie
y discussed below.

7.2. Role of Enzymatic and Nonenzymatic Antioxidants. �e
cells possess endogenous antioxidant system to neutral-
ize and scavenge free radicals when produced in exces-
sive amounts. As explained earlier in this paper, these
scavengers are enzymes such as SODs, catalases, glutathi-
one/glutathione peroxidase system, and thioredoxin red-
uctases.�e other nonenzymatic antioxidant systems include
cysteine/glutamate antiporter and dietary supplements such
as vitamins E and C, polyphenols, melatonin, and ketogenic
diet.

7.3. Glutathione andCysteine/Glutamate Antiporter. GSHhas
been found to be low in epileptic patients by about 150%
when compared to nonepileptic patients [131]. Reduced glu-
tathione, a tripeptide with a free sul�ydryl group, is required
to combat oxidative stress and to maintain homeostasis in
the cell. Selenium (Se) acts as a catalyst for GSH-Px activity
and has similarly been studied in children with epilepsy.
It has been found that blood serum Se concentrations are
lower in epileptic children than healthy children [198, 199].
But low levels of selenium detected in epileptic patients
did not exhibit typical signs of selenium de	ciency such as
generalized fatigue, light sensitivity, and heart palpitations
[193].

Cysteine/glutamate antiporter system (CGS) is a protec-
tive antioxidant mechanism. �e neurons exchange intra-
cellular excitotoxic glutamate for oxidized cysteine from the

extracellular space. GCS is found in both neurons and glial
cells (astrocytes, microglia) in the brain [200–204]. Gluta-
mate exported by CGS is responsible for the extracellular
glutamate concentration in the brain which is later taken
up astrocytes to be converted into inactive glutamine. �e
oxidized cysteine imported into the cell is essential for the
synthesis GSH by enzyme thioredoxin reductase 1.�us CGS
acts like a bridge that connects the antioxidant defense with
neuronal excitability. �e CGS system gets impaired dur-
ing an increased extracellular glutamate (during astrocytic
glutamate release) and/low intracellular cysteine. �us an
increase in extracellular glutamate apart from inhibiting CGS
is also responsible for hyperexcitability of neurons. �us
an inhibition of CGS can lead to depletion of endogenous
glutathione reserves succumbing to oxidative stress and cell
death termed as “oxidative glutamate toxicity.” Impaired
CGS system has also been implicated in other neurological
disorders apart from epilepsy [205–209].�erefore, the drugs
that enhance CGS can be bene	cial.

7.4. Antioxidant Diet Supplements. (i) Vitamin C. Vitamin
C, due to its water soluble nature, was found to be e�ective
in eliminating free radicals within the brain circulation. �e
recommended dietary allowance (RDA) for vitamin C is 75–
90mg/day for adults. Red peppers, oranges, grape fruits, and
kiwi fruits are the rich sources of vitamin C [210]. In rat
models of epilepsy, pilocarpine increased lipid peroxidation
during SE. Vitamin C caused a decrease in lipid peroxidation
and increase in CAT enzyme activity. Further, vitamin C also
increased the latency to the onset of seizures a�er SE while
reducing the mortality rates in rat models [211].

(ii)Vitamin E. Vitamin Ewas found to exert its anticonvulsive
e�ects by upregulating catalase activity in pilocarpine rodent
models of epilepsy [123, 124, 211]. �e RDA for vitamin E
is 15mg/day (22.4 IU) for adults. Wheat germ oil, sun
ower
seeds, almonds, and hazelnuts are the rich sources of vita-
min E [210]. During pilocarpine induced seizures, vitamin
E concentrations were found to decrease in brain cortex
[212]. Frantseva and colleagues in kindling rat models of
epilepsy showed that antioxidant treatment (vitamin E and
glutathione) reduced neuronal death and lipid peroxidation;
however, it did not prevent development of recurrent seizures
[53].

(iii) Polyphenols. Cloves, peppermint, cocoa, oregano,

axseeds, and chestnuts are the rich sources of polyphenols
[213]. Food groups such as polyphenols derived from
commercial and organic grape juice and yerba mate have
been demonstrated to prevent neurodegeneration and
seizures [214, 215]. Branco and colleagues have found that
organic yerba mate is found to reduce seizures by increasing
SOD and CAT activity in rodent models [215].

(iv)Melatonin. Melatonin has been found to act as scavenger
of hydroxyl radicals to prevent lipid peroxidation in the
CNS [216]. Melatonin rich plant sources include St. John’s
wort, fennel seed, sun
ower seed, fenugreek seed, and black
mustard seed [217, 218]. Although not approved by FDA,
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0.3–5mg/day for an adult was found to be bene	cial in
sleep disorders [219]. Since melatonin has both lipophilic
and hydrophilic properties, it is speculated that it could be
an e�ective antioxidant. In a mice study, when melatonin
was given concurrently or 30min prior to induction of
seizurewith kainate, it attenuated the lipid peroxidation [122].
Interestingly, in the same study melatonin when given 15
minutes a�er SE had no e�ect on the seizure suggesting
that a high level of melatonin prior to seizure induction has
bene	cial e�ects.

(v) Ketogenic Diet. A typical ketogenic diet is a high-fat,
low carbohydrate diet containing long chain fatty acids
providing 3-4 grams of fat for every gram of carbohydrate
and protein [220]. �e ketogenic diet has been demon-
strated to reduce mitochondrial ROS/RNS due to a change
in source of energy using fewer carbohydrates and more
fat-derived ketone bodies [221–224]. �is protective e�ect
can be traced to high acetone concentrations present in
the brains of human patients on ketogenic diet. Ketogenic
diet demonstrated anticonvulsive e�ects in epileptic children
with congenital abnormalities such as mutations glutamate
transporter, GLUT-1 [225], and a de	ciency of pyruvate
dehydrogenase [223, 226]. High-fat diet was found to initiate
epilepsy in infant mice that lack mitochondrial uncoupling
protein (UCP) isoforms and this e�ect was neutralized by a
low-fat diet [227, 228]. �ese data infer the protective e�ects
of a high-fat diet during epileptic seizures, however, the age
of the individual being an important criterion.

7.5. NOS Inhibitors to Prevent Epileptogenesis. NOS inhib-
itors such as N-propyl-L-arginine (L-NPA) and nitro-L-
arginine methylester (L-NAME) have been tested in exper-
imental rodent models of epilepsy [31, 36, 229–233]. L-
NPA, a selective nNOS inhibitor, reduced the frequency of
epileptiform spikes, severity, and duration of seizures during
7 days a�er SE in kainatemouse (C57BL/6J)model of epilepsy
[36]. Studies showed that a broad spectrum NOS inhibitor,
L-NAME, had a controversial role on hippocampal damage
or protection in rat models (quote our papers from Siobhan
and 200), while aminoguanidine selective iNOS inhibitor
signi	cantly reduced seizures in a kainate mouse model of
epilepsy [229]. Another potent and highly selective inhibitor
of iNOS, 1400W, has been studied for its e�ects on inhibiting
iNOS in both in vivo and in vitromodels [87, 234]. 1400W is
a slow, tight binding, and a highly selective pharmacological
inhibitor of human iNOS with a dissociation constant (Kd)
value of 7 nM and a selectivity of 5,000-fold for iNOS [30,
234]. Due to its selective action, 1400W is found to have little
or no cardiovascular side e�ects and does not interfere with
the physiological activities mediated by nNOS [234]. 1400W
was found to be most e�ective during pathological increase
in iNOS levels in various organs [30, 234–236]. 1400W is
BBB permeable and biologically active in vivo and e�ective
in ameliorating the neuropathological changes in traumatic
brain injury and stroke models by decreasing glutamate
release [237–239]. Additional advantage of iNOS inhibitors is
that they attenuate BBB leakage [240]. Serum albumin (SA) is

considered as a biomarker for BBB leakage [241, 242]. Recent
studies in the hippocampus suggest that increased SA levels
are responsible for hyperexcitability of neurons and SRS due
induction of reactive astrogliosis as validated by increased
GFAP levels [240, 242]. Our recent proteomics studies of
hippocampus from 7 days post-SE mice provide evidence for
concomitant increased levels of both SA and GFAP. In those
studies, 1400W reduced SA and GFAP to their basal levels
(63-64). From our ongoing work, immunohistochemistry of
brain sections from 7 days a�er SE in an organophosphate rat
model revealed an important polarizing e�ect of 1400W on
gliosis. It decreased reactive microglia, which could be due
to decreased levels of glutamate and SA, but increased the
number of nonreactive glial cells (data not shown). A recent
article highlights the therapeutic importance of drugs that
polarize glial cells from reactive to nonreactive state [243].
Nonreactive gliosis is neuroprotective [244–247]. Our EEG
analyses from 1400W treated rats at 7 days a�er SE con	rmed
a decrease in spike rate when compared to vehicle treated
in a diisopropyl 
uorophosphate (DFP) model suggesting
that 1400Wdecreases neuronal hyperexcitability by reducing
proin
ammatory cytokines and by promoting neurotropic
activity. Although 1400W is a highly speci	c iNOS inhibitor
and is emerging as a promising disease modifying drug for
epilepsy, its mechanism of action is not yet clear. It has
been found that 1400W was able to reduce phosphorylation
of c-Jun N-terminal kinase (JNK), but it was unable to
prevent seizures from occurring [229, 234], possibly due
to inappropriate dosing regimen. JNK acts as a signaling
molecule during stress, such as UV radiation and oxidative
stress and phosphorylation. JNK is also responsible for
neurodegeneration and apoptosis [38]. Hence, an inhibition
of JNK prevents neurodegeneration [248, 249] and may o�er
antiepileptic therapeutic option by iNOS inhibitors.

8. Conclusion

In summary, oxidative stress plays a key role in epileptogene-
sis a�er the 	rst seizure.�rough progressive neurobiological
changes, the 	rst seizure later becomes a cause for recurrent
seizures in TLE. �e acute e�ect of oxidative stress is
neurodegeneration, which is mediated by seizure-induced
reactive gliosis. Oxidative stress targets mitochondrial DNA
and lipid peroxidation which a�ect ATP depletion and
further contributes to excessive production of ROS/RNS.
�ese changes override endogenous antioxidant protective
mechanisms. �ese changes will induce rearrangement neu-
ral circuits, neuronal loss and neurogenesis, and aberrant
migration of neuroblasts thus contributing to hyperexcitabil-
ity and SRS onset. Breaking this vicious cycle is critical
by developing new and e�ective drugs which can prevent
epileptogenesis. �e current AEDs in combination with
neuroprotectants and/or antioxidants could be e�ective in
disrupting the vicious cycle. Role of antioxidant supplements,
ketogenic diet, COX-2 inhibitors, NOS inhibitors, and PSD-
95 blocking peptide are some of the options currently being
explored to complement existing AEDs to control epilepsy.
Initial success of these treatment options in di�erent animal
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models and some human patients is encouraging. However,
intense investigation is required to fully evaluate the potential
of a combination of drugs to cure established epilepsy and
refractory epilepsy.
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