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Abstract. Let π and π′ be automorphic irreducible unitary cuspidal representa-

tions of GLm(QA) and GLm′(QA), respectively. Assume that π and π′ are self contra-

gredient. Under the Ramanujan conjecture on π and π ′, we deduce a prime number

theorem for L(s, π × π̃′), which can be used to asymptotically describe whether

π′ ∼= π, or π′ ∼= π⊗|det(·)|iτ0 for some non-zero τ0 ∈ R, or π′ 6∼= π⊗|det(·)|it for any

t ∈ R. As a consequence, we prove the Selberg orthogonality conjecture, in a more

precise form, for automorphic L-functions L(s, π) and L(s, π ′), under the Ramanujan

conjecture. When m = m′ = 2 and π and π′ are representations corresponding to

holomorphic cusp forms, our results are unconditional.

1. Introduction. Let π be an irreducible unitary cuspidal representation of GLm(QA).

Then the global L-function attached to π is given by products of local factors for Re s > 1

(Godement and Jacquet [3]):

L(s, π) =
∏

p

Lp(s, πp),

Φ(s, π) = L∞(s, π∞)L(s, π),

where

Lp(s, πp) =

m
∏

j=1

(

1 − απ(p, j)p−s
)−1

and

L∞(s, π∞) =

m
∏

j=1

ΓR(s + µπ(j)).

Here ΓR(s) = π−s/2Γ(s/2), and απ(p, j) and µπ(j), j = 1, . . . ,m, are complex numbers

associated with πp and π∞, respectively, according to the Langlands correspondence. De-
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note

(1.1) aπ(pk) =
∑

1≤j≤m

απ(p, j)k.

Then for Re s > 1, we have

(1.2)
d

ds
log L(s, π) = −

∑

n≥1

Λ(n)aπ(n)

ns
,

where Λ(n) = log p if n = pk and = 0 otherwise. If π′ is an automorphic irreducible cuspidal

representation of GLm′(QA), we define L(s, π′), απ′(p, i), µπ′(i), and aπ′(pk) likewise, for

i = 1, . . . ,m′. If π and π′ are equivalent, then m = m′ and {απ(p, j)} = {απ′(p, i)} for

any p. Hence aπ(n) = aπ′(n) for any n = pk, when π ∼= π′.

The Selberg orthogonality conjecture for automorphic L-functions L(s, π) was proposed

in 1989 (Selberg [19]). See also Ram Murty [15] [16].

Conjecture 1.1. (i) For any automorphic irreducible cuspidal representation π of

GLm(QA)

(1.3)
∑

p≤x

|aπ(p)|2
p

= log log x + O(1).

(ii) For any automorphic irreducible cuspidal representations π and π ′ of GLm(QA) and

GLm′(QA), respectively,

(1.4)
∑

p≤x

aπ(p)āπ′(p)

p
� 1,

if π is not equivalent to π′.

The asymptotic formula in (1.3) was proved by Rudnick and Sarnak [17] under a con-

jecture on the convergence of a series on prime powers (Hypothesis H below), and uncon-

ditionally for m ≤ 4.

Hypothesis H. For k ≥ 2,

∑

p

|aπ(pk)|2 log2 p

pk
< ∞.

This Hypothesis H is trivial for m = 1, and follows from bounds toward the Ramanujan

conjecture for m = 2. For m = 3 it was proved by Rudnick and Sarnak [17], while the

case of m = 4 was proved by Kim and Sarnak [9]. For m > 4, Hypothesis H is an easy

consequence of the Ramanujan conjecture. In this paper, we will assume the Ramanujan

conjecture for primes p:
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Conjecture 1.2. Let π be an irreducible unitary cuspidal representation of GLm(QA).

For any unramified p, we have

(1.5) |απ(p, j)| = 1.

Note that in Conjecture 1.2 we do not include the Archimedean Ramanujan conjecture,

Re µπ(j) = 0.

What we will prove as a consequence of Conjecture 1.2 is the following orthogonality.

Denote α(g) = |det(g)|.

Theorem 1.3. Let π and π′ be irreducible unitary cuspidal representations of GLm(QA)

and GLm′(QA), respectively, such that at least one of π and π ′ is self contragredient: π ∼= π̃

or π′ ∼= π̃′. Assume the Ramanujan Conjecture 1.2 for both π and π ′. Then

∑

n≤x

(log n)Λ(n)aπ(n)āπ′(n) =
x1+iτ0

1 + iτ0
log x − x1+iτ0

(1 + iτ0)2
+ O{x exp(−c

√

log x)}

if π′ ∼= π ⊗ αiτ0 for some τ0 ∈ R;

=O{x exp(−c
√

log x)}

if π′ 6∼= π ⊗ αit for any t ∈ R,

where c is a positive constant.

Note that for m = m′ = 2 and π and π′ being representations corresponding to holo-

morphic cusp forms, i.e., when their Archimedean local components are discrete series or

limits of discrete series, the Ramanujan conjecture was proved by Deligne. Therefore in

this case, Theorem 1.3 is an unconditional result.

Theorem 1.3 is indeed a version of prime number theorem for the the Rankin-Selberg

L-function L(s, π×π′). It is stronger than the following Mertens theorem on orthogonality

with a weight (log n)Λ(n)/n:

Corollary 1.4. Let π and π′ be given as in Theorem 1.3. Assume either (i) Ra-

manujan Conjecture 1.2 for both π and π′, or (ii) that m = m′ = 2 and π and π′ are
3



representations corresponding to holomorphic cusp forms. Then

∑

n≤x

(log n)Λ(n)aπ(n)āπ′(n)

n
=

1

2
log2 x + c1 + O{exp(−c

√

log x)}

if π′ ∼= π;(1.6)

=
xiτ0

iτ0
log x +

xiτ0 − 1

τ2
0

+ c2 + O{exp(−c
√

log x)}

if π′ ∼= π ⊗ αiτ0 for some τ0 ∈ R×;

=c3 + O{exp(−c
√

log x)}

if π′ 6∼= π ⊗ αit for any t ∈ R,

where c, c1, ..., c3 are positive constants.

A remarkable feature of this corollary is that it describes the orthogonality of aπ(n) and

aπ′(n) in three cases with different main terms. As we are assuming Ramanujan and hence

the Hypothesis H, we can control sums over prime powers and easily get an orthogonality

over primes. Selberg’s orthogonality conjecture 1.1 is then a consequence of Corollary 1.4

by partial summation.

Corollary 1.5 (Selberg’s orthogonality). Let π and π ′ be given as in Theorem

1.3. Assume either (i) Ramanujan Conjecture 1.2 for both π and π ′, or (ii) m = m′ = 2

and that π and π′ are representations corresponding to holomorphic cusp forms. Then

∑

p≤x

aπ(p)āπ′(p)

p
= log log x + c4 + O{exp(−c

√

log x)}(1.7)

if π′ ∼= π;

=c5 + Ei(iτ0 log x) + O{exp(−c
√

log x)}

if π′ ∼= π ⊗ αiτ0 for some τ0 ∈ R×;

=c6 + O{exp(−c
√

log x)}

if π′ 6∼= π ⊗ αit for any t ∈ R.

Here Ei is the exponential integral, and c, c4, ..., c6 are positive constants.

Recall that

Ei(iτ0 log x) =
xiτ0

iτ0 log x

(

n
∑

k=0

k!

(iτ0 log x)k

)

+ O
(

(log x)−n−2
)

.

Our Corollary 1.5 is thus in a more precise form than Selberg’s Conjecture 1.1.
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The error terms in our theorem and corollaries are in a form that reflects very much our

presesnt knowledge of zero free regions for our Rankin-Selberg L-functions (see §4). The

proofs of Corollaries 1.4 and 1.5 proceed along standard arguments, based on variations

of Abel summation. We will thus not give these proofs here, but only point out that in

the proof of Corollary 1.5, Hypothesis H is used to control sums over prime powers in the

expression on the left side of (1.6). This way we can obtain a sum taken over primes as in

(1.7).

We would like to express our heartfelt thanks to F. Shahidi for information on zero-free

regions of automorphic L-functions, to the referee for detailed, in depth comments and

suggestions, and to P. Sarnak for constructive remarks on an early draft of this paper.

2. Rankin-Selberg L-functions. We will use the Rankin-Selberg L-functions

L(s, π × π̃′) as developed by Jacquet, Piatetski-Shapiro, and Shalika [4], Shahidi [20],

and Moeglin and Waldspurger [12], where π and π ′ are automorphic irreducible cuspidal

representations of GLm and GLm′ , respectively, over Q with unitary central characters.

This L-function is given by local factors:

(2.1) L(s, π × π̃′) =
∏

p

Lp(s, πp × π̃′
p)

where

Lp(s, πp × π̃′
p) =

m
∏

j=1

m′

∏

k=1

(

1 − απ(p, j)ᾱπ′ (p, k)p−s
)−1

.

The Archimedean local factor L∞(s, π∞ × π̃′
∞) is defined by

L∞(s, π∞ × π̃′
∞) =

m
∏

j=1

m′

∏

k=1

ΓR(s + µπ×π̃′(j, k))

where the complex numbers µπ×π̃′(j, k) satisfy the trivial bound

(2.2) Re µπ×π̃′(j, k) > −1.

Denote

Φ(s, π × π̃′) = L∞(s, π∞ × π̃′
∞)L(s, π × π̃′).

We will need the following properties of the L-functions L(s, π × π̃ ′) and Φ(s, π × π̃′).

RS1. The Euler product for L(s, π × π̃′) in (2.1) converges absolutely for Re s > 1

(Jacquet and Shalika [5]).
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RS2. The complete L-function Φ(s, π × π̃′) has an analytic continuation to the entire

complex plane and satisfies a functional equation

Φ(s, π × π̃′) = ε(s, π × π̃′)Φ(1 − s, π̃ × π′),

with

ε(s, π × π̃′) = τ(π × π̃′)Q−s
π×π̃′

where Qπ×π̃′ > 0 and τ(π × π̃′) = ±Q
1/2
π×π̃′ (Shahidi [20], [21], [22], and [23]).

RS3. Denote α(g) = |det(g)|. When π′ 6∼= π ⊗ αit for any t ∈ R, Φ(s, π × π̃′) is

holomorphic. When m = m′ and π′ ∼= π ⊗ αiτ0 for some τ0 ∈ R, the only poles of

Φ(s, π × π′) are simple poles at s = iτ0 and 1 + iτ0 coming from L(s, π × π̃′) (Jacquet and

Shalika [5], [6], Moeglin and Waldspurger [12]). We will only consider the latter case in

the proof of Theorem 1.3.

RS4. Φ(s, π × π̃′) is meromorphic of order one away from its poles, and bounded in

vertical strips (Gelbart and Shahidi [2]).

RS5. Φ(s, π × π̃′) and L(s, π × π̃′) are non-zero in Re s ≥ 1. (Shahidi [20])

3. Estimation of logarithmic derivatives. Let C(m) be the complex plane with

the discs

|s − 2n + µπ×π̃′(j, k)| <
1

8m2
, n ≤ 0, 1 ≤ j, k ≤ m,

excluded. Here we give a remark about the structure of C(m). For j, k = 1, · · · ,m, denote

by β(j, k) the fractional part of Re(µπ×π̃′(j, k)). In addition we let β(0, 0) = 0 and β(m +

1,m + 1) = 1. Then all β(j, k) ∈ [0, 1], and hence there exist β(j1, k1), β(j2, k2) such that

β(j2, k2)−β(j1, k1) ≥ 1/(3m2) and there is no β(j, k) lying between β(j1, k1) and β(j2, k2).

It follows that the strip S0 = {s : β(j1, k1) + 1/(8m2) ≤ Re s ≤ β(j2, k2) − 1/(8m2)} is

contained in C(m). Consequently, for all n = 0,−1,−2, · · · , the strips

(3.1) Sn = {s : n + β(j1, k1) + 1/(8m2) ≤ Re s ≤ n + β(j2, k2) − 1/(8m2)}

are subsets of C(m). This structure of C(m) will be used later.

In Liu and Ye [10] and [11], we proved the following lemmas. It is believed that a much

sharper result than Lemma 3.1 could be obtained using Selberg’s explicit formula. This

and generalization to a wider class of L-functions will be studied in a subsequent paper.

Lemma 3.1. Assume m = m′ and π′ ∼= π ⊗ αiτ0 for some nonzero τ0 ∈ R. (a) Let

T > 2. The number N(T ) of zeros of L(s, π × π̃′) in the region 0 ≤ Re s ≤ 1, |Im s| ≤ T

satisfies

N(T + 1) − N(T ) � log(Qπ×π̃′T )
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and

N(T ) � T log(Qπ×π̃′T ).

(b) For any |T | > 2, we have

∑

|T−Im ρ|>1

1

(T − Im ρ)2
� log(Qπ×π̃′ |T |).

(c) Let s = σ + it with −2 ≤ σ ≤ 2, |t| > 2. If s ∈ C(m) is not a zero of L(s, π × π̃ ′), then

d

ds
logL(s, π × π̃′)

=
∑

|t−Im ρ|≤1

1

s − ρ
− 1

s − 1 − iτ0
− 1

s − iτ0
+ O

(

log(Qπ×π̃′ |t|)
)

.

(d) For |T | > 2, there exists τ with T ≤ τ ≤ T + 1 such that when −2 ≤ σ ≤ 2

d

ds
log L(σ + iτ, π × π̃′) � log2(Qπ×π̃′ |τ |).

(e) For |T | > 2, there exists τ with T ≤ τ ≤ T + 1 such that when −2 ≤ σ ≤ 2

d2

ds2
log L(σ + iτ, π × π̃′) � log3(Qπ×π̃′ |τ |).

Lemma 3.2. Assume m = m′ and π′ ∼= π ⊗ αiτ0 for some nonzero τ0 ∈ R as before. If

s is in some strip Sn as in (3.1) with n ≤ −2, then

d2

ds2
log L(s, π × π̃′) �m 1.

4. Zero free regions. We need a zero free region for the Rankin-Selberg L-function

L(s, π×π̃′) which was proved by Moreno [13] and [14]. See also Gelbart, Lapid, and Sarnak

[1], and Sarnak [18]. In order for later usage, we formulate the theorem for automorphic

L-functions attached to cuspidal representations of GLm over an algebraic number field F .

Similar formulation can also be made to Moreno’s zero free region near the possible pole.

As in [13] and [14], the constant c′ in (4.1) below can be made more precise in terms of

the infinite types of the representations.

Denote by qv the number of elements in the residue field of Fv at a non Archimedean

place v of F . Let π and π′ be any automorphic irreducible cuspidal representations of

GLm(FA) and GLm′(FA), respectively. Then their Rankin-Selberg L-function is defined

by

L(s, π × π̃′) =
∏

v<∞

Lv(s, πv × π̃′
v)
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where

Lv(s, πv × π̃′
v) =

m
∏

j=1

m′

∏

k=1

(

1 − απ(v, j)ᾱπ′ (v, k)q−s
v

)−1

for Re s > 1 and by analytic continuation to C. We define its Archimedean local factors

in the standard way. This Rankin-Selberg L-function satisfies the same properties RS1

through RS5, and the lemmas in §3 also hold.

Theorem 4.1. Let π (resp. π′) be any automorphic irreducible cuspidal representation

of GLm(FA) (resp. GLm′(FA)). Assume that at least one of π and π′ is self-contragredient:

π ∼= π̃ or π′ ∼= π̃′. Then there is an effectively computable constant c′ such that there is no

zero of L(s, π × π̃′) in the region

(4.1) σ ≥ 1 − c′

log(Q|t| + 1)
, |t| ≥ 1.

Here Q is the largest of Qπ×π̃, Qπ×π̃′ = Qπ′×π̃, and Qπ′×π̃′.

5. Proof of Theorem 1.3. We now prove Theorem 1.3 when π ′ ∼= π⊗αiτ0 for some

τ0 ∈ R. The proof for case of π and π′ being not twisted equivalent, in particular, when

m 6= m′, is the same with all terms related to τ0 removed. By RS1, we have for Re s > 1

that
d

ds
log L(s, π × π̃′) = −

∞
∑

n=1

Λ(n)aπ(n)āπ′(n)

ns
,

and therefore

K(s) :=
d2

ds2
log L(s, π × π̃′) =

∞
∑

n=1

(log n)Λ(n)aπ(n)āπ′(n)

ns
.

By RS3 and RS5, K(s) is holomorphic in Re s > 1. On Re s = 1, L(s, π × π̃ ′) is nonzero

(RS5) and has only a simple pole at s = 1 + iτ0. Thus

(5.1) K(s) =
1

(s − 1 − iτ0)2
+ G(s)

has only a double pole in Re s ≥ 1, where G(s) is analytic for Re s ≥ 1. On C, K(s) also

has a double pole at each of the pole at iτ0, trivial zeros, and nontrivial zeros of L(s, π×π̃ ′).

By Conjecture 1.2 and (1.1), we have

|aπ(pk)| ≤ m, |aπ′(pk)| ≤ m′.

Therefore,

|(log n)Λ(n)aπ(n)āπ′(n)| ≤ mm′ log2 n,
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and for σ > 1,

∞
∑

n=1

|(log n)Λ(n)aπ(n)āπ′(n)|
nσ

� 1

(σ − 1)2
.

Let T = exp(
√

log x) and set b = 1 + 1/ log x. By Perron’s summation formula (see e.g.

Theorem 5.1 in [7]), we have

∑

n≤x

(log n)Λ(n)aπ(n)āπ′(n)

=
1

2πi

b+iT
∫

b−iT

K(s)
xs

s
ds + O

( xb

T (b − 1)2

)

+ O
(x log3 x

T

)

=
1

2πi

b+iT
∫

b−iT

K(s)
xs

s
ds + O

(x log3 x

T

)

.(5.2)

Here we used the Ramanujan Conjecture 1.2 to control the size of error terms in (5.2).

Choose a with −2 < a < −1 such that the line Re s = a is contained in the strip

S−2 ⊂ C(m); this is guaranteed by the structure of C(m). Let T be the τ such that

Lemma 3.1(e) holds, by adding a constant d with 0 < d < 1 to our T = exp(
√

log x) if

necessary. Now we consider the contour

C1 : b ≥ σ ≥ a, t = −T ;

C2 : σ = a, −T ≤ t ≤ T ;

C3 : a ≤ σ ≤ b, t = T.

Note that the two poles, some trivial zeros, and certain nontrivial zeros of L(s, π × π̃ ′),

as well as the pole at s = 0 are passed by the shifting of the contour. The trivial zeros

can be determined by the functional equation in RS2: s = −µπ×π̃′(j, k) with a < −1 −
Re(µπ×π̃′(j, k)) < 0. Here we used the facts that Re(µπ×π̃′(j, k)) > −1 and −2 < a < −1.
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Then we have

1

2πi

b+iT
∫

b−iT

K(s)
xs

s
ds(5.3)

=
1

2πi

(

∫

C1

+

∫

C2

+

∫

C3

)

K(s)
xs

s
ds(5.4)

+ Res
s=0

K(s)
xs

s
(5.5)

+ Res
s=iτ0,1+iτ0

K(s)
xs

s
(5.6)

+
∑

a+1<−Re(µ
π×π̃

′ (j,k))<1

Res
s=−µ

π×π̃
′(j,k)

K(s)
xs

s
(5.7)

+
∑

|Im ρ|≤T

Res
s=ρ

K(s)
xs

s
.(5.8)

By Lemma 3.1(e), we get

(5.9)

∫

C1

�
b

∫

a

log3(Qπ×π̃′T )
xσ

T
dσ � x log3(Qπ×π̃′T )

T log x
,

and the same upper bound also holds for the integral on C3. By Lemma 3.2, then

(5.10)

∫

C2

�
T

∫

−T

xa

|t| + 1
dt � log T

x
.

Obviously, (5.5) is

(5.11) Res
s=0

K(s)
xs

s
= K(1).

Since the poles at s = iτ0 and s = 1 + iτ0 are double poles, the residues in (5.6) give

lim
s→iτ0

d

ds
(s − iτ0)

2K(s)
xs

s
+ lim

s→1+iτ0

d

ds
(s − 1 − iτ0)

2K(s)
xs

s
.

For the second term, we have, by (5.1),

lim
s→1+iτ0

d

ds
(s − 1 − iτ0)

2K(s)
xs

s

= lim
s→1+iτ0

d

ds

(

1 + (s − 1 − iτ0)
2G(s)

)xs

s

= lim
s→1+iτ0

d

ds

xs

s

=
x1+iτ0

1 + iτ0
log x − x1+iτ0

(1 + iτ0)2
.(5.12)
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The first term can be estimated similarly, and we get

lim
s→iτ0

d

ds
(s − iτ0)

2K(s)
xs

s
= lim

s→iτ0

d

ds

xs

s
� log x.

Consequently (5.6) is

(5.13)
x1+iτ0

1 + iτ0
log x − x1+iτ0

(1 + iτ0)2
+ O(log x).

Near a trivial zero s = −µπ×π̃′(j, k) of order l in (5.7), we can express K(s) as −l/(s +

µπ×π̃′(j, k))2 plus an analytic function, like in (5.1). The residues in (5.7) can therefore

computed similar to what we did in (5.12). By (2.2), we know that Re(µπ×π̃′(j, k)) ≥ δ−1

for some δ > 0. Consequently (5.7) is bounded

(5.14)
∑

a<−1−Re(µ
π×π̃

′ (j,k))<0

Res
s=−µ

π×π̃
′(j,k)

K(s)
xs

s
� x1−δ log x.

To compute the residues corresponding to nontrivial zeros in (5.8), we note that Φ(s, π×
π̃′) is of order 1 (RS4), and Φ(1, π × π̃′) 6= 0 (RS5). Using a standard argument, we see

that
∑

|γ|≤T

1

|ρ| � log2 T.

Consequently, (5.8) becomes

∑

|Im ρ|≤T

Res
s=ρ

K(s)
xs

s
= −

∑

|Im ρ|≤T

Res
s=ρ

1

(s − ρ)2
xs

s

�
∑

|Im ρ|≤T

∣

∣

∣

xρ log x

ρ

∣

∣

∣
.

Using Moreno’s zero free region in Theorem 4.1, we get

(5.15) � x exp

(

−c′
log x

log T

)

(log x) log2 T

By taking T = exp(
√

log x) + d for some d with 0 < d < 1, we can bound (5.9), (5.10),

(5.15), and the error term in (5.2) by O{x exp(− c′

2

√
log x)} for the c′ in Theorem 4.1.

Using the main term from (5.13) and other error terms from (5.10), (5.11), (5.14), and

(5.15), we get a proof of Theorem 1.3. �
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