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Abstract In the paper we introduce a new method how to use only an orthonormality relation

of coefficients of Dirichlet series defining given L-functions from the Selberg class to prove

joint universality.
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1 Introduction

In 1975, Voronin [22] discovered the so-called universality property, which is one of the most

remarkable result concerning the value-distribution of ζ(s). The modern version states that
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2 Y. Lee et al.

for any continuous non-vanishing function f (s) on a compact set with connected complement

K ⊂ {s ∈ C : 1/2 < Re(s) < 1}, analytic in the interior of K , we have

∀ε>0 lim inf
T →∞

1

T
meas

{

τ ∈ [0, T ] : max
s∈K

|ζ(s + iτ) − f (s)| < ε

}

> 0,

where meas{·} denotes the Lebesgue real measure.

Voronin’s universality theorem has been generalized for many zeta and L-functions from

number theory. For example, a universality theorem is known for: Dirichlet L-functions

[22], Dedekind zeta functions (Reich 1980), Artin L-functions (Bauer 2003), L-functions

associated with newforms (Laurinčikas et al. 2003), and many others. A quite general class

of universal L-functions with polynomial Euler product was introduced by Steuding [21],

and recently, his result was generalized by Nagoshi and Steuding [17] to all L-functions from

the Selberg class with coefficients a(n) of Dirichlet series representation satisfying

lim
x→∞

1

π(x)

∑

p≤x

|a(p)|2 = κ, (1)

for some positive constant κ depending on L; here π(x), as usual, counts the number of

primes not exceeding x .

Let us recall that the Selberg class S consists of functions L(s) defined by a Dirichlet

series
∑∞

n=1 aL(n)n−s in the half-plane σ := Re(s) > 1 satisfying the following axioms:

(i) Ramanujan hypothesis: aL(n) ≪ε nε for every ε > 0;

(ii) analytic continuation: there exists a non-negative integer mL such that

(s − 1)mL L(s) is an entire function of finite order;

(iii) functional equation: L(s) satisfies the following functional equation

�(s) = θ�(1 − s),

where

�(s) := L(s)Qs

k
∏

j=1

Ŵ(λ j s + μ j ),

|θ | = 1, Q, λ j ∈ R, and μ j ∈ C with Re(μ j ) ≥ 0;

(iv) Euler product: for σ > 1 we have

log L(s) =
∑

p

∞
∑

k=1

bL(pk)

pks
,

where bL(pk) are complex numbers satisfying bL(pk) ≪ pkθ for some θ < 1/2.

Note that almost all known proofs of universality requires existing of the mean-square,

which is rather difficult problem in the general setting of Selberg class. For example, the best

known result (see [18] or [21, Corollary 6.11]) says that, for L ∈ S, we have

lim
T →∞

1

2T

∫ T

−T

|L(σ + i t)|2dt =
∞
∑

n=1

|aL(n)|2

n2σ
< ∞, σ > max

{

1

2
, 1 −

1

dL

}

,

where dL denotes the degree of L defined by 2
∑k

j=1 λ j , whereλ j ’s are given by the functional

equation of L . Therefore, it is natural that Nagoshi’s and Steuding’s universality theorem of
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L-function from the Selberg class was proved only in the strip {s ∈ C : σm(L) < Re(s) < 1},
where σm(L) denotes the abscissa of the mean-square half-plane for L .

Voronin [23] (see also [9, Chapter VII, Theorem 3.2.1]) proved also the so-called joint

universality theorem for Dirichlet L-functions associated with pairwise non-equivalent

Dirichlet characters. Roughly speaking, he proved that any collection of analytic non-

vanishing functions f1, f2, . . . , fn can be approximated, in the Voronin sense, by the

shift L(s + iτ ;χ1), L(s + iτ ;χ2), . . . , L(s + iτ ;χn), where χ1, . . . , χn are pairwise non-

equivalent Dirichlet characters. Joint universality was also proved for many other zeta and

L-functions from number theory. However, it is still open problem put forward by Steuding

[21], whether a collection of L-functions from Selberg class is jointly universal under the

assumption of the following so-called Selberg’s orthonormality conjecture, which is widely

believed to be true in the Selberg class.

Conjecture 1.1 (Selberg) For any function 1 
= L ∈ S there is a positive integer κL such

that
∑

p≤x

|aL(p)|2

p
= κL log log x + R(x) (2)

and, for any distinct primitive functions L1, L2 ∈ S, we have

∑

p≤x

aL1(p)aL2(p)

p
= R(x), (3)

where R(x) ≪ 1.

The last equation can be called the orthonormality relation.

Obviously, to expect joint universality for at least two functions L1 and L2 we need some

kind of their independence, so Selberg’s conjecture seems to be the most natural assumption

of this kind in the Selberg class. Interesting evidence for the truth of this conjecture was

given by Bombieri and Hejhal [3], where they showed the statistical independence of any

collection of L-functions under a stronger version of Selberg’s conjecture. Moreover, it is

known that Selberg’s conjecture with R(x) ≪ 1 is not sufficient to prove joint universality.

The second author in [15, Example 7.5] observed that, for non-principle Dirichlet character

χ , the Dirichlet L-functions L(s, χ) and L(s − i, χ) cannot be jointly universal, whereas it

is easy to observe that

∑

p≤x

χ(p)χ(p)p−i

p
=

∑

p≤x
χ(p)
=0

pi−1 ≪ 1,

so Selberg’s conjecture with R(x) ≪ 1 holds.

The main purpose of this paper is to introduce a new method how to use only orthonormal-

ity to prove joint universality of L-functions with Euler product. In order to illustrate this idea

we prove a general joint universality theorem for any collection of L-functions L1, . . . , Lm

from the Selberg class satisfying some stronger analogue of Selberg’s conjecture, namely

∑

p≤x

|aLk
(p)|2 =

2m+1
∑

j=1

c
(k)
j x

(log x) j
+ O

(

x

(log x)2m+2

)

(1 ≤ k ≤ m), (4)
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4 Y. Lee et al.

and

∑

p≤x

aLk
(p)aLl

(p) =
2m+1
∑

j=2

c
(k,l)
j x

(log x) j
+ O

(

x

(log x)2m+2

)

(1 ≤ k 
= l ≤ m), (5)

where c
(k)
j , c

(k,l)
j are some constants and c

(k)
1 > 0. It is easy to observe, by partial summation,

that it is equivalent to the Selberg’s conjecture (2) and (3), where

R(x) =
2m+2
∑

j=0

c j

(log x) j
+ O

(

1

(log x)2m+3

)

for suitable c j depending on given L-functions.

Although the above formulas are obviously stronger than the original Selberg’s conjec-

ture, it is quite likely that they are fulfilled by all L-functions. We refer to Sect. 4 for a

detailed discussion of this matter, where several unconditional joint universality theorems

for automorphic L-functions are deduced from our method. Here we only mention that the

evidence for the truth of this conjecture is the fact that there is a grand hypothesis that each

L-function from Selberg class can be defined as a suitable automorphic L-function and, so

far, all automorphic L-functions satisfying Selberg’s conjecture fulfill in fact (4) and (5).

Theorem 1.2 Let L1, . . . , Lm be elements of S, K1, . . . , Km ⊂ {s ∈ C : max j=1,2,...,m σm

(L j ) < Re s < 1} be compact sets with connected complements and g j , j = 1, . . . , m be

continuous non-vanishing function on K j , and analytic in the interior of K j . Then, if (4)

and (5) hold, we have, for every ε > 0, that

lim inf
T →∞

1

T
meas

{

τ ∈ [0, T ] : max
j=1,...,m

max
s∈K j

|L j (s + iτ) − g j (s)| < ε

}

> 0.

Noteworthy is the fact that most of proofs of universality rely on periodicity and orthonor-

mality property of coefficients of L-functions. Recently, Mishou [14] invented a new approach

to prove joint universality without periodicity, which works for a pair of L-functions with

real coefficients under the assumption of some analogue of (4) and (5). The purpose of this

paper is to introduce another new approach how to use only orthonormality relation to prove

joint universality for any collection of L-functions with complex coefficients. It should be

noted here that Mishou’s result was formulated in the language of automorphic L-functions,

which belong to the Selberg class only conjecturally. Nevertheless, one can easily compare

his result to Theorem 1.2 and notice that the essential difference is that our approach works

even for more than two L-functions and, moreover, it does not require the assumption that

coefficients of Dirichlet series defining given L-functions are real.

This method can be easily generalized to other zeta and L-functions, which joint universal-

ity property relies on some independence of coefficients of Dirichlet series representation. For

example, in [11] the authors proved joint universality for a collection of Lerch zeta functions

L(s;α, λ j ) =
∑∞

n=0
exp(2π iλ j )

(n+α)s , j = 1, 2, . . . , m, associated to transcendental α ∈ (0, 1]
and distinct λ j ’s with λ j ∈ (0, 1].

As standard consequences of universality, one can easily prove the following corollaries.

For the proofs we refer, for example, to [14, Section 8], where Mishou showed similar results

for a pair of L-functions. However, the modifications needed are straightforward and can be

left to the reader (see [21, Section 10]).
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Corollary 1.3 Let m ≥ 2, 0 
= a1, . . . , am ∈ C and L1, . . . , Lm ∈ S satisfy (4) and (5).

Then the function

L(s) =
m

∑

j=1

a j L j (s)

is strongly universal in the strip max1≤ j≤m σm(L j ) =: σL < σ < 1, which means that

Theorem 1.2 holds also for functions g j having zeros on K j .

Moreover, the function L(s) has infinitely many zeros in the strip σL < σ < 1, namely for

any σ1, σ2 with σL < σ1 < σ2 < 1 and sufficiently large T there exist ≫ T zeros ρ = β + iγ

of L(s) in the rectangle σ1 ≤ β ≤ σ2, 0 ≤ γ ≤ T .

Corollary 1.4 Let N ∈ N, L1, . . . , Lm ∈ S satisfy (4) and (5) and σ0 be a real number

satisfying max1≤ j≤m σm(L j ) < σ0 < 1. Then the set

{(

L1(σ0 + i t), . . . , Lm(σ0 + i t), . . . , L
(N−1)
1 (σ0 + i t), . . . , L(N−1)

m (σ0 + i t)
)

: t ∈ R

}

is dense in Cm N .

Corollary 1.5 Let N ∈ N and L1, . . . , Lm ∈ S satisfy (4) and (5). If continuous functions

fl : Cm N → C, l = 0, 1, . . . , L satisfy

L
∑

l=0

sl fl

(

L1(s), . . . , Lm(s), . . . , L
(N−1)
1 (s), . . . , L(N−1)

m (s)
)

≡ 0

for all s ∈ C, then fl ≡ 0 for all 0 ≤ l ≤ L.

2 A denseness lemma

Let us fix L-functions L1, . . . , Lm ∈ S and compact sets K1, . . . , Km ⊂ {s ∈ C :
max j=1,2,...,m σm(L j ) < Re s < 1}. Take σ1 > max j=1,2,...,m{σm(L j )} and σ2 < 1 such that

K j , j = 1, 2, . . . , m, are the subset of the strip D := {s ∈ C : σ1 < Re s < σ2} and denote

the space of analytic functions on D equipped with the topology of uniform convergence on

compacta by H(D).

Then, the main purpose of this section is to prove the so-called denseness lemma in the

space H(D)m , which plays a crucial role in the proof of universality and says that any

collection of analytic functions from H(D)m can be approximated by given L-functions

L1, . . . , Lm twisted by certain sequence of complex numbers with absolute value 1.

In order to show it, let γ := {s ∈ C : |s| = 1} and � :=
∏

p γp be an infinite-dimensional

torus with product topology and pointwise multiplication, where γp = γ for each prime p.

It is well known that � is a compact topological abelian group, so there is a normalized Haar

measure m H on (�, B(�)), where B(�) denotes the class of Borel sets of �.

Let ω(p) denote the projection of ω ∈ � to the coordinate space γp and ω : N → C be a

unimodular completely multiplicative extansion of ω. Then for any L ∈ S defined for σ > 1

by the series
∑∞

n=1 aL(n)n−s we put

L(s, ω) =
∞
∑

n=1

aL(n)ω(n)

ns
, s ∈ D.
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6 Y. Lee et al.

It turned out (see for example [21, Lemma 4.1]) that L(s, ω) is a random element on the

probabilistic space (�, B(�), m H ) and for almost all ω ∈ � we have (see [17, Eq. (3.17)])

log L(s, ω) =
∑

p

∞
∑

k=1

bL(pk)ω(p)k

pks
, (s ∈ D).

Thus, for L j ∈ S, j = 1, 2, . . . , m, let us put

gp, j (s, ω(p)) =
∞
∑

k=1

bL j
(pk)ω(p)k

pks
, ω ∈ �

and

g
p
(s, ω(p)) = (gp,1(s, ω(p)), . . . , gp,m(s, ω(p))).

Therefore, the main result of this section is the following proposition, which strongly

relies on Selberg’s conjecture.

Proposition 2.1 If we assume the truth of (4) and (5), then the set of convergent series
{

∑

p

g
p
(s, ω(p)) : ω ∈ �

}

is dense in the space H(D)m .

Let U be a bounded simply connected smooth Jordan domain satisfying U ⊂ D and

K j ⊂ U for every j = 1, 2, . . . , m. Let L2(U ) be the complex Hilbert space of all square

integrable complex functions on U with the inner product

〈 f, g〉 =
∫∫

U

f (s)g(s)dσdt.

Define the Bergman space H1 as the closure of H(D) in L2(U ). Then Hm
1 is the complex

Hilbert space with the inner product given, for f = ( f1, . . . , fm) and g = (g1, . . . , gm), by

〈 f , g〉 =
m

∑

j=1

∫∫

U

f j (s)g j (s)dσdt.

Now, define

h p(s) = (h p,1(s), . . . , h p,m(s)) :=
(

aL1(p)

ps
, . . . ,

aLm (p)

ps

)

.

Then, by the fact that bL(pk) ≪ pkθ for some θ < 1/2, one can easily prove that

∑

p

rp, j (s, ω) :=
∑

p

(

gp, j (s, ω(p)) − ω(p)h p, j (s)
)

, ( j = 1, . . . , n, |ω(p)| = 1)

is absolutely convergent on U .

Hence, in order to prove Proposition 2.1 it suffices to prove that the set of all convergent

series
{

∑

p>v

ω(p)h p(s) : ω ∈ �

}

(6)
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is dense in Hm
1 for an arbitrary given v > 0. Indeed, let v be a sufficiently large number such

that

m
∑

j=1

max
s∈U

∣

∣

∣

∣

∣

∑

p>v

rp, j (s, ω)

∣

∣

∣

∣

∣

<
ε

2
for all ω ∈ �.

The fact that for every f ∈ H1 with the norm || f || and s ∈ U we have | f (s)| <
|| f ||√

π dist(s,∂U )

(see for example [6, Chapter I, Section 1, Lemma 1]) clearly implies that the approximation

with respect to the norm ‖ · ‖ in H1 gives the uniform approximation on every compact

subset K of U . Hence, from the fact that the set (6) is dense in Hm
1 , we obtain that, for every

f = ( f1, . . . , fm) ∈ H(D)m , there exists a sequence ω′(p) such that

max
1≤ j≤m

max
s∈K j

∣

∣

∣

∣

∣

∑

p>v

ω′(p)h p. j (s) − f j (s) +
∑

p≤v

gp, j (s, 1)

∣

∣

∣

∣

∣

<
ε

2
.

Therefore, putting

ω(p) =

{

1 if p ≤ v,

ω′(p) if p > v

gives that

max
1≤ j≤m

max
s∈K j

∣

∣

∣

∣

∣

∑

p

gp. j (s, ω(p)) − f j (s)

∣

∣

∣

∣

∣

< ε. (7)

In order to prove that the set (6) is dense in Hm
1 we shall use the following lemma for the

sequence h p(s) and the Hilbert space Hm
1 .

Lemma 2.2 Let H be a complex Hilbert space. Assume that a sequence un ∈ H, n ∈ N, is

such that

(i) the series
∑

n ||un ||2 < ∞;

(ii) for any element 0 
= e ∈ H the series
∑

n |〈un, e〉| is divergent.

Then the set of convergent series
{

∑

n

anun ∈ H : |an | = 1

}

is dense in H.

Proof This is [21, Theorem 5.4].

Since Re s > σ1 > 1/2 for all s ∈ U , one can easily show that
∑

p

||h p(s)||
2 < ∞

and the condition (i) holds.

Now let g = (g1, . . . , gm) ∈ Hm
1 be a non-zero element. Then

〈h p(s), g(s)〉 =
m

∑

j=1

aL j
(p)� j (log p),

where � j (z) =
∫∫

U
e−sz g j (s)dσdt . Then, in order to complete the proof of Propositon 2.1

it suffices to prove the following lemma.
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8 Y. Lee et al.

Lemma 2.3 Let g(s) = (g1(s), . . . , gm(s)) ∈ Hm
1 be a non-zero element and � j (z) =

∫∫

U
e−sz g j (s)dσdt. Then, assuming Selberg’s conjecture (4) and (5) for L1, . . . , Lm ∈ S

gives that the series
∑

p

∣

∣aL1(p)�1(log p) + · · · + aLm (p)�m(log p)
∣

∣

is divergent.

Before we prove the above lemma, we need to obtain good estimation for �(log p) =
∫∫

U
p−s g(s)dσdt , where g(s) is a given non-zero element of H1. In order to prove it we use

Markov’s inequality.

Lemma 2.4 (Markov’s inequality) Suppose that P(t) is a polynomial of degree n with real

coefficients, which satisfies

max
t∈[−1,1]

|P(t)| ≤ 1.

Then for every t ∈ [−1, 1] we have

|P ′(t)| ≤ n2.

Proof For a proof see for example [1]. ⊓⊔

Corollary 2.5 Let P(s) be polynomial of degree n with complex coefficients. Then for every

a, b with a < b and every real t ∈ [a, b] we have

|P ′(t)| ≤
2n2

b − a
max

t∈[a,b]
|P(t)|.

Proof Let t0 ∈ [a, b] be such that |P(t0)| = maxt∈[a,b] |P(t)|. Then let us define

P1(t) =
P

(

b−a
2

t + a+b
2

)

|P(t0)|
.

Now, let us take an arbitrary t ∈ [−1, 1] and let c ∈ C with |c| = 1 be such that cP ′
1(t) be

real. Then applying Markov’s inequality for P2(t) := Re(cP1(t)) gives

|P ′
1(t)| = |cP ′

1(t)| = |P ′
2(t)| ≤ n2,

so

max
t∈[−1,1]

|P ′
1(t)| ≤ n2.

On the other hand, we can easily observe that

max
t∈[−1,1]

|P ′
1(t)| =

b − a

2|P(t0)|
max

t∈[a,b]
|P ′(t)|

and the proof is complete. ⊓⊔

Lemma 2.6 Let U ⊂ C be an open and bounded set and g be a Lebesgue square integrable

function on U. For z ∈ C we put

�(z) =
∫∫

U

e−sz g(s)dσdt.
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Selberg’s orthonormality conjecture and joint universality... 9

Then for every A > 0 and every interval I = [x, x + B
x M ] ⊂ [x, x + 1] with B > 0, M ≥ 0,

x > 2 there exist an interval I ′ ⊂ I of length |I ′| ≥ B′

x M+2 with B ′ := B ′(B, A) > 0 and

x0 ∈ I ′ such that for all ξ ∈ I ′ we have

1

2
|�(x)| + O

(

e−Ax
)

≤
1

2
|�(x0)| + O

(

e−Ax
)

≤ |�(ξ)| ≤ |�(x0)| + O
(

e−Ax
)

.

Moreover, for every ξ ∈ I we have

|�′(ξ)| ≪ x M+2|�(x0)| + O(x M+2e−Ax ).

Proof Let c0 > 0, K = [c0x] and C > 0 be such that maxs∈U |s| ≤ C . Then, for every

ξ ∈ [x, x + 1], by Stirling’s formula we get

e−sξ =
K

∑

l=0

(−sξ)l

l!
+ O

( ∞
∑

l=0

(xC)l+K+1

(l + K + 1)!

)

=
K

∑

l=0

(−sξ)l

l!
+ O

(

(xC)K+1

(K + 1)!

∞
∑

l=0

(xC)l(K + 1)!
(l + K + 1)!

)

=
K

∑

l=0

(−sξ)l

l!
+ O

(

exC exp

(

−(K + 1) log

(

K + 1

xC

)))

=
K

∑

l=0

(−sξ)l

l!
+ O

(

exC exp
(

−c0x log
(c0

C

)))

.

Similarly,

(−s)e−sξ =
K−1
∑

l=0

(−s)l+1ξ l

l!
+ O

(

exC exp
(

−(c0x − 1) log
( c0

2C

)))

.

Hence, for every A > 0 there exists sufficiently large c0 = c0(A, C) such that

e−sξ =
K

∑

l=0

(−sξ)l

l!
+ O

(

e−x(A+C)
)

and

(−s)e−sξ =
K−1
∑

l=0

(−s)l+1ξ l

l!
+ O

(

e−x(A+C)
)

for every ξ ∈ [x, x + 1].
Therefore, for ξ ∈ [x, x + 1] we have

�(ξ) = P(ξ) + O(e−Ax ) and �′(ξ) = P ′(ξ) + O(e−Ax ), (8)

where P(ξ) =
∑K

l=0
ξ l

l!
∫∫

U
(−s)l g(s)dσdt is a polynomial of degree ≪ x .

Let x0 ∈ I be such that |P(x0)| = maxξ∈I |P(ξ)|. Then by Corollary 2.5 we get

max
ξ∈I

|P ′(ξ)| ≪ x M+2|P(x0)|

and hence

|�′(ξ)| = |P ′(ξ)| + O(e−Ax ) ≪ x M+2|�(x0)| + O(x M+2e−Ax ).

123



10 Y. Lee et al.

Therefore, for ξ ∈ I satisfying |ξ − x0| ≤ B′

x M+2
0

with sufficiently small B ′ > 0 we have

|P(x0)| − |P(ξ)| ≤ |P(ξ) − P(x0)| ≤ |ξ − x0| max
ξ∈I

|P ′(ξ)| ≤
1

2
|P(x0)|. (9)

Therefore, for ξ ∈ I ′ := I ∩
[

x0 − B′

x M+2
0

, x0 + B′

x M+2
0

]

it holds

1

2
|P(x)| ≤

1

2
|P(x0)| ≤ |P(ξ)| ≤ |P(x0)|,

and hence, by (8), the proof is complete. ⊓⊔

Corollary 2.7 Let U ⊂ C be open and bounded and g j , j = 1, 2, . . . , m, be Lebesgue

square integrable functions on U. For z ∈ C we put

� j (z) =
∫∫

U

e−sz g j (s)dσdt.

Then for every A > 0 and every x > 1 there exist B1 > · · · > Bm > 0, x
(0)
0 =

x, x
(1)
0 , . . . , x

(m)
0 and intervals I j ⊂ [x, x + 1] of length |I j | ≥ B j

x2 j such that x
( j)
0 ∈ I j ,

I j+1 ⊂ I j , and for all ξ ∈ I j we have

1

2
|� j (x

( j−1)
0 )| + O

(

e−Ax
)

≤
1

2
|� j (x

( j)
0 )| + O

(

e−Ax
)

≤ |� j (ξ)| ≤ |� j (x
( j)
0 )| + O

(

e−Ax
)

.

Moreover, for every t ∈ I j we have

|�′
j (ξ)| ≪ x2 j |� j (x

( j)
0 )| + O(x2 j e−Ax ).

Proof Firstly, let us apply the last lemma for �1(z) and the interval I0 := [x, x + 1]. Then

there is an interval I1 ⊂ I0 of length |I1| ≥ B1

x2 and x
(1)
0 ∈ I1 such that for ξ ∈ I1 we have

1

2
|�1(x)| + O

(

e−Ax
)

≤
1

2
|�1(x

(1)
0 )| + O

(

e−Ax
)

≤ |�1(ξ)| ≤ |�1(x
(1)
0 )| + O

(

e−Ax
)

and

|�′
1(ξ)| ≪ x2|�1(x

(1)
0 )| + O(x2e−Ax ).

Next, we apply again the last lemma for �2(z) and the interval I1 = [x ′, x ′ + B1

x2 ] ⊂

[x, x + 1]. Thus there is an interval I2 ⊂ I1 of length |I2| ≥ B′
2

x ′4 ≥ B2

x4 and x
(2)
0 ∈ I2 such

that

1

2
|�2(x

(1)
0 )|+O

(

e−Ax
)

≤
1

2
|�2(x

(2)
0 )|+O

(

e−Ax
)

≤ |�2(ξ)| ≤ |�2(x
(2)
0 )| + O

(

e−Ax
)

and

|�′
2(ξ)| ≪ x4|�2(x

(2)
0 )| + O(x4e−Ax ).

Next, repeating the application of the last lemma for each function � j , 3 ≤ j ≤ m, completes

the proof. ⊓⊔
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Proof of Lemma 2.3 Without loss of generality we can assume that g1 is a non-zero element,

since the fact that g 
= 0 implies that at least one of g j ’s is a non-zero element.

Obviously, �1(z) ≪ eC |z| for some positive constant C depending on U . Let us recall that

for all s ∈ U we have 1/2 < σ1 < Re s < σ2 < 1. Then for sufficiently small η = η(U ) > 0

and for all complex z with | arg(−z)| ≤ η we have

|eσ2z�1(z)| ≪ 1.

Moreover, �1 
≡ 0, since otherwise for every positive integer k we have 0 = �
(k)
1 (0) =

∫∫

U
(−s)k g1(s)dσdt , which means that g1 is orthogonal to all polynomials in L2(U ) and we

get contradiction to the fact that g1 is a non-zero element and the linear space of polynomials

is dense in the Bergman space H1 (see for example [19, Theorem 7.2.2]). Hence, by [8,

Lemma 3], which proof based on the Phragmén-Lindelöf theorem, there is a real sequence

xk tending to ∞ such that

|�1(xk)| ≫ e−σ2xk .

Let us fix k and put x = xk . Hence, using Corollary 2.7, for every A > 0 and x = xk

there exist B1 > · · · > Bm > 0, x
(0)
0 = x, x

(1)
0 , . . . , x

(m)
0 and intervals I j ⊂ [x, x + 1] of

length |I j | ≥ B j

x2 j such that x
( j)
0 ∈ I j , I j+1 ⊂ I j , and for all ξ ∈ I j we have

1

2
|� j (x

( j−1)
0 )| + O

(

e−Ax
)

≤
1

2
|� j (x

( j)
0 )| + O

(

e−Ax
)

≤ |� j (ξ)| ≤ |� j (x
( j)
0 )| + O

(

e−Ax
)

(10)

and

|�′
j (ξ)| ≪ x2 j |� j (x

( j)
0 )| + O(x2 j e−Ax ). (11)

Now let I := Im =
[

x ′, x ′ + Bm

x ′2m

]

⊂ [x, x + 1]. Since I ⊂ I j for every j = 1, 2, . . . , m,

the above inequalities hold also for all ξ ∈ I .

In particular, since x
(0)
0 = x , for ξ ∈ I we have

|�1(ξ)| ≥
1

2
|�1(x

(0)
0 )| ≫ e−σ2x .

Moreover, for every j = 1, 2, . . . , m we have

|� j (ξ)| ≪ e−σ1x (ξ ∈ [x, x + 1]).

Now, let
∑

p
∗

denote the sum over primes p ∈
[

ex ′
, e

x ′+ Bm

x ′2m

]

. Then for these p we have

log p ∈ I .

It is easy to notice that

S(x) :=
∑

p

∗ ∣

∣aL1(p)�1(log p) + · · · + aLm (p)�m(log p)
∣

∣

2

=
m

∑

j=1

∑

p

∗
|aL j

(p)|2|� j (log p)|2

+
∑

1≤k 
=l≤m

∑

p

∗
aLk

(p)aLl
(p)�k(log p)�l(log p).
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12 Y. Lee et al.

Using (5) it is easy to prove that for any 1 ≤ k 
= l < m we have

φk,l(u) :=
∑

p≤u

aLk
(p)aLl

(p) =
2m+1
∑

j=2

c
(k,l)
j u

(log u) j
+ O

(

u

(log u)2m+2

)

.

For log u ∈ I , by (11), we get

d

du
� j (log u) =

1

u
�′

j (log u) ≪
x2m

u
|� j (x

( j)
0 )| + O(x2me−Ax )

and, since � j (log u) = 〈u−s, g j (s)〉 = 〈u−s, g j (s)〉, we have

d

du
� j (log u) =

1

u

∫∫

U

−su−s g j (s)dσdt =
1

u
�′

j (log u)

≪
x2m

u
|� j (x

( j)
0 )| + O(x2me−Ax ).

Hence, using partial summation and (10), gives

∑

1≤k 
=l≤m

∑

p

∗
aLk

(p)aLl
(p)�k(log p)�l(log p)

=
∑

1≤l 
=k≤m

∫ X2

X1

�k(log u)�l(log u)dφk,l(u)

≪
ex

x2m+2

∑

1≤k 
=l≤m

|�k(x
(k)
0 )||�l(x

(l)
0 )| + O(e(−A+1−σ1)x )

+
∑

1≤k 
=l≤m

∫ X2

X1

u

(log u)2m+2

∣

∣

∣

∣

(

�k(log u)�l(log u)
)′

∣

∣

∣

∣

du

≪
ex

x2m+2

∑

1≤ j≤m

|� j (x
( j)
0 )|2 + O(e(−A+1−σ1)x )

+ x2m
∑

1≤ j≤m

|� j (x
( j)
0 )|2

∫ X2

X1

1

(log u)2m+2
du

≪
ex

x2m+2

∑

1≤ j≤m

|� j (x
( j)
0 )|2 + O(e(−A+1−σ1)x ) := E(x),

where X1 = ex ′
, X2 = e

x ′+ Bm

x ′2m .
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Therefore, by (4), we get

S(x) =
∑

p

∗ m
∑

j=1

|aL j
(p)|2|� j (log p)|2 + E(x)

≫
m

∑

j=1

(

|� j (x
( j)
0 )|2 + |� j (x

( j)
0 )|O(e−Ax ) + O(e−2Ax )

)

∑

p

∗
|aL j

(p)|2 + E(x)

≫
ex

x2m+1

m
∑

j=1

|� j (x
( j)
0 )|2 + O(e(−A+1−σ1)x ) + E(x)

≫
ex

x2m+1

m
∑

j=1

|� j (x
( j)
0 )|2 + O(e(−A+1−σ1)x ) + O

⎛

⎝

ex

x2m+2

m
∑

j=1

|� j (x
( j)
0 )|2

⎞

⎠

≫
ex

x2m+1

⎛

⎝

m
∑

j=1

|� j (x
( j)
0 )|

⎞

⎠

2

+ O(e(−A+1−σ1)x )

≫
e(1−σ2)x

x2m+1

m
∑

j=1

|� j (x
( j)
0 )| + O(e(−A+1−σ1)x ).

On the other hand, since aL j
(p) ≪ pε for every ε > 0, we have

S(x) ≪ eεx
∑

p

∗

∣

∣

∣

∣

∣

∣

m
∑

j=1

aL j
(p)� j (log p)

∣

∣

∣

∣

∣

∣

m
∑

j=1

|� j (log p)|

≪ eεx
∑

p

∗

∣

∣

∣

∣

∣

∣

m
∑

j=1

aL j
(p)� j (log p)

∣

∣

∣

∣

∣

∣

m
∑

j=1

|� j (x
( j)
0 )| + O(e(−A+1+ε−σ1)x ).

Finally, dividing the last inequalities by
∑m

j=1 |� j (x
( j)
0 )| and taking sufficiently large A > 0

gives

∑

p

∗

∣

∣

∣

∣

∣

∣

m
∑

j=1

aL j
(p)� j (log p)

∣

∣

∣

∣

∣

∣

≫
ex(1−σ2−ε)

x2m+1

and the proof is complete. ⊓⊔

3 Proof of Theorem 1.2

Now we shall use the denseness lemma proved above, to give the proof of joint universality

for a collection of L-functions L1, . . . , Lm from the Selberg class. In order to do it we need a

joint limit theorem for the following probabilistic measure on (H(D)m, B(H(D)m)), where

B(H(D)m) denotes the class of Borel sets of H(D)m . Basically, the proof of the joint limit

theorem and the remaining steps of the proof of Theorem 1.2 are based on [21, Chapter

12], where Steuding proved conditional joint universality (see [21, Theorem 12.5]) for a

slightly different class of L-functions. The modification needed are easy and straightforward.

Nevertheless, we give a sketch of the proof for sake of completeness.
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14 Y. Lee et al.

For

L(s) = (L1(s), . . . , Lm(s))

define a probabilistic measure P
L

T by

P
L

T (A) =
1

T
meas

{

τ ∈ [0, T ] : L(s + iτ) ∈ A
}

, for A ∈ B(H(D)m).

Moreover, it is known that

L(s, ω) := (L1(s, ω), . . . , Lm(s, ω)), (ω ∈ �),

is an H(D)m-valued random element on (�, B(�), m H ). Therefore, denoting the distribution

of L(s, ω) by PL on (H(D)m, B(H(D)m)), gives the following joint limit theorem.

Theorem 3.1 [21, Theorem 12.1] For L1, . . . , Lm ∈ S the probability measure P
L

T con-

verges weakly to PL , as T → ∞.

The immediate consequence of the above theorem is the following result.

Corollary 3.2 Let L1, . . . , Lm ∈ S and DM := {s ∈ C : σ1 < Re(s) < σ2, |t | < M} for

any M > 0. Then the probability measure

Q
L

T (A) :=
1

T
meas

{

τ ∈ [0, T ] : L(s + iτ) ∈ A
}

,

for A ∈ B(H(DM )m), converges weakly, as T → ∞, to

QL(A) := m H

{

ω ∈ � : L(s, ω) ∈ A
}

for A ∈ B(H(DM )m).

Hence, in order to prove Theorem 1.2 it remains to determine the support of the measure

Q
L

T , which is implied by Hurwitz’s classical result on zeros of uniformly convergent sequence

of functions. Let us recall that the support of the probabilistic space (S, B(S), P) is the

minimal closed set with measure 1. It means that the support consists of all elements x ∈ S

satisfying P(V ) > 0 for every neighborhood V of x . By using (7), [21, Lemma 12.7] and the

definition of support, and modifying the proof of [21, Lemma 12.6], we have the following

lemma.

Lemma 3.3 The support of the measure Q
L

T is the set

SM := {ϕ := (ϕ1, . . . , ϕm) ∈ H(DM )m : ϕ(s) 
= 0 for s ∈ DM , or ϕ ≡ 0}.

Now, we are ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 By Mergelyan’s approximation theorem it suffices (see the proof of

[21, Theorem 12.5]) to assume that g1, . . . , gm have non-vanishing analytic continuation to

DM , where M > 0 is such that K1, . . . , Km ⊂ DM . Then, by the last lemma, (g1, . . . , gm)

is an element of the support SM . Therefore, using the fact that Q
L

T converges weakly to QL

and the fact that the set � of functions ϕ ∈ H(DM )m satisfying

max
1≤ j≤m

max
s∈K j

|ϕ j (s) − g j (s)| < ε
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Selberg’s orthonormality conjecture and joint universality... 15

is open, yields

lim inf
T →∞

1

T
meas

{

τ ∈ [0, T ] : max
1≤ j≤m

max
s∈K j

|L j (s + iτ) − g j (s)| < ε

}

= lim inf
T →∞

Q
L

T (�) ≥ QL(�) > 0,

which completes the proof. ⊓⊔

4 Examples

In this section we give examples of L-functions from analytic number theory satisfying

Selberg’s conjecture, and, particularly, the assumptions of Theorem 1.2.

Let us start with a general discussion about joint universality of the Riemann zeta function

ζ(s) and L-function L(s) from the Selberg class. In this case, it suffices to assume that L(s)

satisfies (4) and
∑

p≤x

aL(p) ≪
x

(log x)A
, for arbitrary A > 0.

It is well known, that there is a strong relation between the error term in the above estimation

and zero-free region of L(s). For example, [7, Theorem 5.13] states that the prime number

theorem for general L-function holds under the assumption of existence of the zero-free

region. More precisely, one can deduce that for any function 1 
= L ∈ S with polynomial

Euler product we have

∑

p≤x

aL(p) ≪ mL li x + O
(

xe−c′√log x
)

for some c′ > 0,

provided there exists c > 0 such that

L(σ + i t) 
= 0 for σ > 1 −
c

log(|t | + 2)
, t ∈ R (12)

except a real zero β < 1. Therefore, we can easily deduce joint universality of the Riemann

zeta function ζ(s) and any entire L-function from the Selberg class with zero-free region of the

form (12). It means that, for example, we can show ζ(s) and any Hecke L-function LK(s;χ)

associated to a finite extension K of Q and a non-principle primitive grössencharacker χ

are jointly universal in the strip σm(LK(s;χ)) < σ < 1. Similarly, we can show that

the Riemann zeta function and Artin L-function associated to a finite Galois extension are

jointly universal. The last example of this kind can be delivered by the theory of classical

automorphic L-functions. For instance, the normalized L-function L(s, f ) associated to

holomorphic primitive cusp form. Here, we refer to Iwaniec and Kowalski [7, Chapter 5] for

the proofs of needed prime number theorems for Hecke, Artin and automorphic L-functions

and more examples of L-functions jointly universal with the Riemann zeta function.

Next, consider the joint universality property for ζ(s) and L-function L(s) with a pole

at s = 1 of order mL satisfying 0 < mL < dL . Then it turns out that instead of (5) it

suffices to assume the truth of Selberg’s conjecture (3) with R(x) ≪ 1 and the existence of a

zero-free region for L(s). Indeed, it is well known (see [4] or [5, Theorem 2.4.1]) that every

function in S can be factored into primitive elements. Let us recall that F ∈ S is primitive

if F = F1 F2 for F1, F2 ∈ S implies F1 = 1 or F2 = 1. Furthermore, Selberg’s conjecture

(3) with R(x) ≪ 1 implies that the Riemann zeta function is the only primitive element of S
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16 Y. Lee et al.

with a pole (see [4] or [5, Theorem 2.5.2]). More precisely, under Selberg’s Conjeture 1.1,

every given function L ∈ S with a pole at s = 1 of order mL can be factored into mL -th

power of ζ(s) and an entire function from S. Therefore, assuming (12) for a given L ∈ S

with 0 < mL < dL and recalling again [7, Theorem 5.13] gives that we can factor L(s) into

ζ(s)mL and an entire function 1 
= L∗(s) ∈ S, which, obviously, has no zeros at least in the

same region as L(s) and satisfies (5). Moreover, L∗ satisfies (4) as L does, since one can

easily observe that Selberg’s conjecture (3) with R(x) ≪ 1 gives

ml log log x + O(1) =
∑

p≤x

|aL(p)|2

p
=

∑

p≤x

|aζmL (p) + aL∗(p)|2

p

=
∑

p≤x

|aζmL (p)|2

p
+

∑

p≤x

|aL∗(p)|2

p
+ O(1)

= mL log log x +
∑

p≤x

|aL∗(p)|2

p
+ O(1).

Since, additionally, L∗ is entire, we can show, by the previous reasoning, that ζ(s) and L∗(s)
are jointly universal in the strip σm(L∗) < σ < 1. Thus, it is easy to see that ζ(s) and L(s) are

jointly universal in the same strip, provided L(s) satisfies (4), (12) and Selberg’s conjecture

(3) holds for every L-function with R(x) ≪ 1.

As an example of application of this observation, we can consider Dedekind zeta function

ζK(s) associated to any algebraic number field K. Then it is known that (12), (4) and (5) hold

for any algebraic number field (cf. [7, Section 5.10]). Hence, ζK can be written as ζ(s)L∗(s),
which implies the joint universality theorem for ζ(s) and ζK(s) in the strip σm(L∗) < σ < 1

under the assumption of Selberg’s orthonormality conjecture.

Let us note that usually the abscissa of the mean-square is smaller for L-functions of

smaller degree dL , namely [21, Corollary 6.11] says that σm(L) < max( 1
2
, 1− 1

dL
). Therefore,

the above approach by factorization of L-function usually gives universality for a wider strip

than the direct proof of joint universality for given L-functions. For example, following

[14, Section 2] let us consider a normalized holomorphic Hecke eigen cusp form f , the

automorphic L-function L(s, f ) and the symmetric square L-function L(s, sym2 f ) (for the

definition see [14, Eq. (2.4) and (2.6)]). It is known that the Rankin-Selberg L-function

L(s, f ⊗ g) is a function of degree 4 and it is universal (see [13] and [16]) in the strip

3/4 < σ < 1. However, one can easily show that

L(s, f ⊗ f ) = ζ(s)L(s, sym2 f )

and it is known that the abscissa of the mean-square of L(s, sym2 f ) is at most 2/3. Therefore,

using [14, Eq. (3.8)], we obtain joint universality for ζ(s) and L(s, sym2 f ) in the strip. It

implies joint universality for the Riemann zeta function and the automorphic L-function in

the wider strip 2/3 < σ < 1.

It turns out that the theory of the Rankin-Selberg convolution delivers more examples

for application of our Theorem 1.2. It is known that the Rankin-Selberg convolution and

the Rankin-Selberg square are powerful tools to investigate the existence of prime number

theorem for automorphic L-functions. For example, Iwaniec and Kowalski [7, Section 5]

showed that the existence of the Rankin-Selberg L-function L(s, f ⊗g) implies the existence

of its zero-free region, provided some additional conditions related to automorphic forms f ,

g hold. Moreover, they proved that zero-free region for automorphic L-function gives prime

number theorem (see [7, Theorem 5.13]). Note that the coefficients λ f ⊗g(p) of the Rankin-

Selberg convolution L(s, f ⊗ g) satisfy λ f ⊗g(p) = λ f (p)λg(p), where λ f (p) and λg(p)
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Selberg’s orthonormality conjecture and joint universality... 17

are coefficients of automorphic L-functions L(s, f ) and L(s, g) associated to automorphic

forms f and g, respectively. In particular, the coefficients of the Rankin-Selberg square

L(s, f ⊗ f ) satisfy λ f ⊗ f (p) = |λ f (p)|2. Therefore, we obtain that the existence of the

Rankin-Selberg convolution and the Rankin-Selberg square implies the strong version of

Selberg’s conjecture, namely

∑

p≤x

|λ f (p)|2 = κ f li x + O
(

xe−c
√

log x
)

(κ f > 0), (13)

∑

p≤x

λ f (p)λg(p) = O
(

xe−c
√

log x
)

( f 
= g). (14)

The existence of the Rankin-Selberg convolution and square as well as zero-free region

are well investigated for many automorphic L-functions. For example, it is known (see [7,

Theorem 5.41]) that L(s, f ⊗ g) has no zero in the region (12) except possibly a one simple

zero β < 1, provided f and g are classical primitive modular forms. Hence, we get that

(13) and (14) hold and we get joint universality for any collection of automorphic L-function

L(s, f1), . . . , L(s, fm) with distinct classical primitive modular forms, provided they belong

to S.

Similarly, the result of Liu and Ye [12, Theorem 2.3] implies joint universality for a

quite general automorphic L-functions L(s, π j ), j = 1, 2, . . . , m, associated to irreducible

unitary cuspidal representation π j of GLm(QA) satisfying πi ≇ π j ⊗| det |iτ for any τ ∈ R,

provided they are elements of the Selberg class.

It should be noted that, most likely, the Selberg class consists only of automorphic L-

functions in which case it is widely believed and known for many examples that instead of

Selberg’s Conjecture 1.1 we can expect (13) and (14). It means that probably there is no

example of L-functions from Selberg class satisfying Selberg’s Conjecture 1.1, which do

not fulfill (4) and (5). Thus, we conjecture that we do not loss of generality by assuming the

stronger version of Selberg’s conjecture.
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