
Open access to the Proceedings of the

2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Selecta: Heterogeneous Cloud Storage
Configuration for Data Analytics

Ana Klimovic, Stanford University; Heiner Litz, UC Santa Cruz;

Christos Kozyrakis, Stanford University

https://www.usenix.org/conference/atc18/presentation/klimovic-selecta

This paper is included in the Proceedings of the

2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

https://www.usenix.org/conference/atc18/presentation/klimovic-selecta

Selecta: Heterogeneous Cloud Storage Configuration for Data Analytics

Ana Klimovic
Stanford University

Heiner Litz
UC Santa Cruz

Christos Kozyrakis
Stanford University

Abstract

Data analytics are an important class of data-intensive

workloads on public cloud services. However, selecting

the right compute and storage configuration for these ap-

plications is difficult as the space of available options is

large and the interactions between options are complex.

Moreover, the different data streams accessed by analyt-

ics workloads have distinct characteristics that may be

better served by different types of storage devices.

We present Selecta, a tool that recommends near-

optimal configurations of cloud compute and storage re-

sources for data analytics workloads. Selecta uses latent

factor collaborative filtering to predict how an applica-

tion will perform across different configurations, based

on sparse data collected by profiling training workloads.

We evaluate Selecta with over one hundred Spark SQL

and ML applications, showing that Selecta chooses a

near-optimal performance configuration (within 10% of

optimal) with 94% probability and a near-optimal cost

configuration with 80% probability. We also use Se-

lecta to draw significant insights about cloud storage

systems, including the performance-cost efficiency of

NVMe Flash devices, the need for cloud storage with

support for fine-grain capacity and bandwidth allocation,

and the motivation for end-to-end storage optimizations.

1 Introduction

The public cloud market is experiencing unprecedented

growth, as companies move their workloads onto plat-

forms such as Amazon AWS, Google Cloud Platform

and Microsoft Azure. In addition to offering high elastic-

ity, public clouds promise to reduce the total cost of own-

ership as resources can be shared among tenants. How-

ever, achieving performance and cost efficiency requires

choosing a suitable configuration for each given applica-

tion. Unfortunately, the large number of instance types

and configuration options available make selecting the

right resources for an application difficult.

0

200

400

600

800

1000

1200

1400

TPC-DS-q35 BigBench-q3 TPC-DS-q80

E
xe

cu
ti

o
n

 T
im

e
 (

s)
 l-NVMe r-SSD, l-NVMe r-SSD

Figure 1: Performance of three applications on eight

i3.xl instances with different storage configurations.

The choice of storage is often essential, particularly

for cloud deployments of data-intensive analytics. Cloud

vendors offer a wide variety of storage options including

object, file and block storage. Block storage can consist

of hard disks (HDD), solid-state drives (SSD), or high

bandwidth, low-latency NVMe Flash devices (NVMe).

The devices may be local (l) to the cloud instances run-

ning the application or remote (r). These options alone

lead to storage configuration options that can differ by

orders of magnitude in terms of throughput, latency, and

cost per bit. The cloud storage landscape is only becom-

ing more diverse as emerging technologies based on 3D

X-point become available [35, 16].

Selecting the right cloud storage configuration is crit-

ical for both performance and cost. Consider the exam-

ple of a Spark SQL equijoin query on two 128 GB ta-

bles [53]. We find the query takes 8.7× longer when

instances in an 8-node EC2 cluster access r-HDD com-

pared to l-NVMe storage. This is in contrast to a recent

study, conducted with a prior version of Spark, which

found that faster storage can only improve the median job

execution time by at most 19% [50]. The performance

benefits of l-NVMe lead to 8× lower execution cost for

this query, even though NVMe storage has higher cost

per unit time. If we also consider a few options for the

number of cores and memory per instance, the perfor-

mance gap between the best and worst performing VM-

storage configurations is over 30×.

USENIX Association 2018 USENIX Annual Technical Conference 759

Determining the right cloud configuration for analyt-

ics applications is challenging. Even if we limit our-

selves to a single instance type and focus on optimizing

performance, the choice of storage configuration for a

particular application remains non-trivial. Figure 1 com-

pares the performance of three Spark applications using

8 i3.xl AWS instances with l-NVMe, r-SSD, and a hy-

brid (r-SSD for input/output data, l-NVMe for interme-

diate data). The first application is I/O-bound and bene-

fits from the high throughput of NVMe Flash. The sec-

ond application has a CPU bottleneck and thus performs

the same with all three storage options. The third ap-

plication is I/O-bound and performs best with the hybrid

storage option since it minimizing interference between

read and write I/Os, which have asymmetric performance

on Flash [40]. This result should not be surprising. An-

alytics workloads access multiple data streams, includ-

ing input and output files, logs, and intermediate data

(e.g., shuffle and broadcast). Each data stream has dis-

tinct characteristics in terms of access frequency, access

patterns, and data lifetime, which make different streams

more suitable for different types of storage devices. For

example, for TPC-DS query 80 in Figure 1, storing in-

put/output data on r-SSD and intermediate data on l-

NVMe Flash outperforms storing all data on l-NVMe as

it isolates streams and eliminates interference.

We present Selecta, a tool that learns near-optimal VM

and storage configurations for analytics applications for

user-specified performance-cost objectives. Selecta tar-

gets analytics jobs that are frequently or periodically re-

run on newly arriving data [1, 25, 55]. A configuration

is defined by the type of cloud instance (core count and

memory capacity) along with the storage type and capac-

ity used for input/output data and for intermediate data.

To predict application performance for different config-

urations, Selecta applies latent-factor collaborative fil-

tering, a machine-learning technique commonly used in

recommender systems [10, 57, 11, 22, 23]. Selecta uses

sparse performance data for training applications profiled

on various cloud configurations, as well as performance

measurements for the target application profiled on only

two configurations. Selecta leverages the sparse training

data to learn significantly faster and more cost-effectively

than exhaustive search. The approach also improves on

recent systems such as CherryPick and Ernest whose per-

formance prediction models require more information

about the target application and hence require more ap-

plication runs to converge [3, 69]. Moreover, past work

does not consider the heterogeneous cloud storage op-

tions or the varying preferences of different data streams

within each application [71].

We evaluate Selecta with over one hundred Spark SQL

and ML workloads, each with two different dataset scal-

ing factors. We show that Selecta chooses a near-optimal

performance configuration (within 10% of optimal) with

94% probability and a near-optimal cost configuration

with 80% probability. We also analyze Selecta’s sensi-

tivity to various parameters such as the amount of in-

formation available for training workloads or the target

application.

A key contribution of our work is our analysis of cloud

storage systems and their use by analytics workloads,

which leads to several important insights. We find that in

addition to offering the best performance, NVMe-based

configurations also offer low execution cost for a wide

range of applications. We observe the need for cloud

storage options that support fine-grain allocation of ca-

pacity and bandwidth, similar to the fine-grain allocation

of compute and memory resources offered by serverless

cloud services [7]. Disaggregated NVMe Flash can pro-

vide the substrate for such a flexible option for cloud stor-

age. Finally, we showcase the need for end-to-end opti-

mization of cloud storage, including application frame-

works, operating systems, and cloud services, as several

storage configurations fail to meet their potential due to

inefficiencies in the storage stack.

2 Motivation and Background

We discuss current approaches for selecting a cloud stor-

age configuration and explain the challenges involved.

2.1 Current Approaches

Conventional configurations: Input/output files for data

analytics jobs are traditionally stored in a distributed file

system, such as HDFS or object storage systems such

as Amazon S3 [62, 6]. Intermediate data is typically

read/written to/from a dedicated local block storage vol-

ume on each node (i.e., l-SSD or l-NVMe) and spilled to

r-HDD if extra capacity is needed. In typical Spark-as-a-

service cloud deployments, two remote storage volumes

are provisioned by default per instance: one for the in-

stance root volume and one for logs [19].

Existing tools: Recent work focuses on automat-

ically selecting an optimal VM configuration in the

cloud [71, 69, 3]. However, these tools tend to ignore

the heterogeneity of cloud storage options, at best distin-

guishing between ‘fast’ and ‘slow’. In the next section,

we discuss the extent of the storage configuration space.

2.2 Challenges

Complex configuration space: Cloud storage comes in

multiple flavors: object storage (e.g., Amazon S3 [6]),

file storage (e.g., Azure Files [45]), and block storage

(e.g., Google Compute Engine Persistent Disks [29]).

Block and object storage are most commonly used for

760 2018 USENIX Annual Technical Conference USENIX Association

data analytics. Block storage is further sub-divided into

hardware options: cold or throughput-optimized hard

drive disk, SAS SSD, or NVMe Flash. Block storage can

be local (directly attached) or remote (over the network)

to an instance. Local block storage is ephemeral; data

persists only as long as the instance is running. Remote

volumes persist until explicitly deleted by the user.

Table 1 compares three block storage options available

in Amazon Web Services (AWS). Each storage option

provides a different performance, cost, and flexibility

trade-off. For instance, l-NVMe storage offers the high-

est throughput and lowest latency at higher cost per bit.

Currently, cloud providers typically offer NVMe in fixed

capacity units directly attached to select instance types,

charged per second or hour. AWS currently charges

$0.023 more per hour for an instance with 475 GB of

NVMe Flash compared to without NVMe. In contrast,

S3 fees are based on capacity ($0.023 per GB/month)

and bandwidth ($0.004 per 10K GET requests) usage.

In addition to the storage configuration, users must

choose from a variety of VM types to determine the right

number of CPU cores and memory, the number of VMs,

and their network bandwidth. These choices often af-

fect storage and must be considered together. For ex-

ample, on instances with 1 Gb/s network bandwidth, the

network limits the sequential throughput achievable with

r-HDD and r-SSD storage volumes in Table 1.

Performance-cost objectives: While configurations

with the most CPU cores, the most memory, and fastest

storage generally provide the highest performance, opti-

mizing for runtime cost is much more difficult. Systems

designed to optimize a specific objective (e.g., predict the

configuration that maximizes performance or minimizes

cost) are generally not sufficient to make recommenda-

tions for more complex objectives (e.g., predict the con-

figuration that minimizes execution time within a spe-

cific budget). By predicting application execution time

on candidate configurations, our approach remains gen-

eral. Unless otherwise specified, we refer to cost as the

cost of executing an application.

Heterogeneous application data: We classify data

managed by distributed data analytics frameworks (e.g.,

Spark [74]) into two main categories: input/output data

which is typically stored long-term and intermediate

data which lives for the duration of job execution. Exam-

Storage Seq
Read
MB/s

Seq
Write
MB/s

Rand
Read
IOPS

Rand
Write
IOPS

Rand
Rd/Wr
IOPS

r-HDD 135 135 132 132 132
r-SSD 165 165 3,068 3,068 3,068
l-NVMe 490 196 103,400 35,175 70,088

Table 1: Block storage performance for 500GB vol-

umes. Sequential IOs are 128 KB, random IOs are 4 KB.

0

1

2

3

4

5

0

20

40

60

80

100

120

E
xe

cu
ti

o
n

 C
o

st
 (

$
)

E
xe

cu
ti

o
n

 T
im

e
 (

m
in

)

Performance

Cost

Figure 2: Comparison of execution time and cost for

TPC-DS query 64 on various VM and storage configu-

rations, defined as <VM size, storage for input/output

data, storage for intermediate data>.

ples of intermediate data include shuffle data exchanged

between mappers and reducers, broadcast variables, and

cached dataset partitions spilled from memory. These

streams typically have distinct access frequency, data

lifetime, access type (random vs. sequential), and I/O

size. For example, input/output data is generally long-

lived and sequentially accessed, whereas intermediate

data is short-lived and most accesses are random.

Storage decisions are complex: Selecting the right

configuration for a job significantly reduces execution

time and cost, as shown in Figure 2, which compares

a Spark SQL query (TPC-DS query 64) on various VM

and storage configurations in an 8-node cluster. We con-

sider 3 i3 VM instance sizes in EC2 (xl, 2xl, and

4xl) and heterogeneous storage options for input/output

and intermediate data. The lowest performing configura-

tion has 24× the execution time of the best performing

configuration. Storing input/output data on r-SSD and

intermediate data on l-NVMe (the lowest cost configura-

tion) has 7.5× lower cost than storing input/output data

on r-HDD and intermediate data on r-SSD.

3 Selecta Design

3.1 Overview

Selecta is a tool that automatically predicts the perfor-

mance of a target application on a set of candidate con-

figurations. As shown in Figure 3, Selecta takes as in-

put: i) execution time for a set of training applications

on several configurations, ii) execution time for the tar-

get application on two reference configurations, and iii) a

performance-cost objective for the target application. A

configuration is defined by the number of nodes (VM in-

stances), the CPU cores and memory per node, as well as

the storage type and capacity used for input/output data

and for intermediate data. Selecta uses latent factor col-

laborative filtering (see §3.2) to predict the performance

USENIX Association 2018 USENIX Annual Technical Conference 761

Profile on 2

reference configs

Profile on 20%

of configs

Training

App
Training

App
Training

App
Training

App

Target

App

2 … 2 1

8 … 1

…
 …

… 5 1

2 3 … 1

2 1

2 2 … 2 1

5 8 … 3 1

…
 …

1 4 … 5 1

2 3 … 7 1

5 2 … 4 1

performance

prediction

Run recommended

config
feedback

update

configurations

a
p

p
li

ca
ti

o
n

s

SVD

Rank configs

Recommended

VM & storage

configuration

SELECTA

Perf/Cost

Objective

e.g., minimize cost

Figure 3: An overview of performance prediction and configuration recommendation with Selecta.

of the target application on the remaining (non-reference)

candidate configurations. With these performance pre-

dictions and the per unit time cost of various VM in-

stances and storage options, Selecta can recommend the

right configuration for the user’s performance-cost ob-

jective. For example, Selecta can recommend configu-

rations that minimize execution time, minimize cost, or

minimize execution time within a specific budget.

As new applications are launched over time, these per-

formance measurements become part of Selecta’s grow-

ing training set and accuracy improves (see § 4.4). We

also feed back performance measurements after running

a target application on a configuration recommended by

Selecta — this helps reduce measurement noise and im-

prove accuracy. Since Selecta takes ∼1 minute to gen-

erate a new set of predictions (the exact runtime de-

pends on the training matrix size), a user can re-run Se-

lect when re-launching the target application with a new

dataset to get a more accurate recommendation. In our

experiments, the recommendations for each target appli-

cation converge after two feedback iterations. The ability

to grow the training set over time also provides Selecta

with a mechanism for expanding the set of configurations

it considers. Initially, the configuration space evaluated

by Selecta is the set of configurations that appear in the

original training set. When a new configuration becomes

available and Selecta receives profiling data for applica-

tions on this configuration, the tool will start predicting

performance for all applications on this configuration.

3.2 Predicting Performance

Prediction approach: Selecta uses collaborative filter-

ing to predict the performance of a target application on

candidate configurations. We choose collaborative filter-

ing as it is agnostic to the details of the data analytics

framework used (e.g., Spark vs. Storm) and it allows us

to leverage sparse training data collected across appli-

cations and configurations [56]. While systems such as

CherryPick [3] and Ernest [69] build performance mod-

els based solely on training data for the target applica-

tion, Selecta’s goal is to leverage training data available

from multiple applications to converge to accurate rec-

ommendations with only two profiling runs of a target

application. We discuss alternatives to collaborative fil-

tering to explain our choice.

Content-based approaches, such as as linear regres-

sion, random forests, and neural network models, build

a model from features such as application characteris-

tics (e.g., GB of shuffle data read/written) and configu-

ration characteristics (e.g., I/O bandwidth or the num-

ber of cores per VM). We find that unless inputs fea-

tures such as the average CPU utilization of the target

application on the target configuration are used in the

model, content-based predictors do not have enough in-

formation to learn the compute and I/O requirements of

applications and achieve low accuracy. Approaches that

require running target applications on all candidate con-

figurations to collect feature data are impractical.

Another alternative is to build performance prediction

models based on the structure of an analytics frame-

work, such as the specifics of the map, shuffle, and re-

duce stages in Spark [36, 75]. This leads to framework-

specific models and may require re-tuning or even re-

modeling as framework implementations evolve (e.g., as

the CPU efficiency of serialization operations improves).

Latent factor collaborative filtering: Selecta’s col-

laborative filtering model transforms applications and

configurations to a latent factor space [10]. This space

characterizes applications and configurations in terms of

latent (i.e., ‘hidden’) features. These features are auto-

matically inferred from performance measurements of

training applications [56]. We use a matrix factoriza-

tion technique known as Singular Value Decomposition

(SVD) for the latent factor model. SVD decomposes an

input matrix P, with rows representing applications and

columns representing configurations, into the product of

762 2018 USENIX Annual Technical Conference USENIX Association

three matrices, U,λ , and V . Each element pi j of P rep-

resents the normalized performance of application i on

configuration j. The latent features are represented by

singular values in the diagonal matrix λ , ordered by de-

creasing magnitude. The matrix U captures the strength

of the correlation between a row in P and a latent feature

in λ . The matrix V captures the strength of the corre-

lation between a column in P and a latent feature in λ .

Although the model does not tell us what the latent fea-

tures physically represent, a hypothetical example of a

latent feature is random I/O throughput. For instance,

Selecta could infer how strongly an application’s perfor-

mance depends on random I/O throughput and how much

random I/O throughput a configuration provides.

One challenge for running SVD is the input matrix P

is sparse, since we only have the performance measure-

ments of applications on certain configurations. In par-

ticular, we only have two entries in the target applica-

tion row and filling in the missing entries corresponds

to predicting performance on the other candidate con-

figurations. Since performing SVD matrix factorization

requires a fully populated input matrix P, we start by

randomly initializing the missing entries and then run

Stochastic Gradient Descent (SGD) to update these un-

known entries using an objective function that minimizes

the mean squared error on the known entries of the ma-

trix [13]. The intuition is that by iteratively decompos-

ing and updating the matrix in a way that minimizes the

error for known entries, the technique also updates un-

known entries with accurate predictions. Selecta uses the

Python sci-kit surprise library for SVD [33].

3.3 Using Selecta

New target application: The first time an application is

presented to Selecta, it is profiled on two reference con-

figurations which, preferably, are far apart in their com-

pute and storage resource attributes. Selecta requires that

reference configurations remain fixed across all applica-

tions, since performance measurements are normalized

to a reference configuration before running SVD. Profil-

ing application performance involves running the appli-

cation to completion and recording execution time and

CPU utilization (including iowait) over time.

Defining performance-cost objectives: After pre-

dicting application performance across all configura-

tions, Selecta recommends a configuration based on a

user-defined ranking function. For instance, to mini-

mize runtime cost, the ranking function is min(runtime

× cost/hour). While choosing a storage technology

(e.g., SSD vs. NVMe Flash), Selecta must also consider

the application’s storage capacity requirements. Selecta

leverages statistics from profiling runs available in Spark

monitoring logs to determine the intermediate (shuffle)

data and and input/output data capacity [63].

Adapting to changes: Recurring jobs and their input

datasets are likely to evolve. To detect changes in appli-

cation characteristics that may impact the choice of op-

timal configuration, Selecta relies on CPU utilization in-

formation from both initial application profiling and sub-

sequent executions rounds. When an application is first

introduced to the system, Selecta assigns a unique ID to

store application specific information such as iowait CPU

utilization. Whenever an application is re-executed, Se-

lecta compares the current iowait time to the stored con-

figuration. Depending on the difference in iowait time,

Selecta will either compute a refined prediction based on

available measurements or treat the workload as new ap-

plication, starting a new profiling run.

Dealing with noise in the cloud: An additional chal-

lenge for recommending optimal configurations is noise

on public cloud platforms, which arises due to interfer-

ence with other tenants, hardware heterogeneity, or other

sources [59]. To account for noise, Selecta relies on the

feedback of performance and CPU utilization measure-

ments. Initially, with few profiling runs, Selecta’s perfor-

mance predictions are affected by noise. As more mea-

surements are fed into the system, Selecta averages per-

formance and CPU utilization and uses reservoir sam-

pling to avoid high skew from outliers [70]. Selecta

keeps a configurable number of sample points for each

entry in the application-configuration matrix (e.g., three)

to detect changes in applications as described above.

If a particular run is heavily impacted by noise such

that the compute and I/O bottlenecks differ significantly

from previous runs, Selecta’s mechanism for detecting

changes in applications identifies the outlier.

4 Selecta Evaluation

Selecta’s collaborative filtering approach is agnostic to

the choice of applications and configurations. We evalu-

ate Selecta for data analytics workloads on a subset of the

cloud configuration space with the goal of understanding

how to provision cloud storage for data analytics.

4.1 Methodology

Cloud configurations: We deploy Selecta on Amazon

EC2 and consider configurations with the instance and

storage options shown in Tables 2 and 3. Among the

possible VM and storage combinations, we consider sev-

enteen candidate configurations. We trim the space to

stay within our research budget and to focus on experi-

ments that are most likely to uncover interesting insights

about cloud storage for analytics. We choose EC2 in-

stance families that are also supported by Databricks, a

popular Spark-as-a-service provider [18]. i3 is currently

the only instance family available with NVMe Flash and

USENIX Association 2018 USENIX Annual Technical Conference 763

Instance CPU cores RAM (GB) NVMe
i3.xlarge 4 30 1 x 950 GB
r4.xlarge 4 30 -
i3.2xlarge 8 60 1 x 1.9 TB
r4.2xlarge 8 60 -
i3.4xlarge 16 120 2 x 1.9 TB
r4.4xlarge 16 120 -

Table 2: AWS instance properties

Storage Type Locality
Use for

Input/Output
Data?

Use for
Intermediate

Data?
r-HDD Block Remote X -
r-SSD Block Remote X X

l-NVMe Block Local X X

S3 Object Remote X -

Table 3: AWS storage options considered

r4 instances allow for a fair comparison of storage op-

tions as they have the same memory to compute ratio.

We only consider configurations where the intermediate

data storage IOPS are equal to or greater than the in-

put/output storage IOPS, as intermediate data has more

random accesses. Since we find that most applications

are I/O-bound with r-HDD, we only consider r-HDD for

the instance size with the least amount of cores. We limit

our analysis to r-HDD because our application datasets

are up to 1 TB whereas instances with l-HDD on AWS

come with a minimum of 6 TB disk storage, which would

not be an efficient use of capacity. We do not consider

local SAS/SATA SSDs as their storage capacity to CPU

cores ratio is too low for most Spark workloads. We use

Elastic Block Store (EBS) for remote block storage [5].

We use a cluster of 9 nodes for our evaluation. The

cluster consists of one master node and eight executor

nodes. The master node runs the Spark driver and YARN

Resource Manager. Unless input/output data is stored in

S3, we run a HDFS namenode on the master server as

well. We configure framework parameters, such as the

JVM heap size and number of executors, according to

Spark tuning guidelines and match the number of execu-

tor tasks to the VM’s CPU cores [15, 14].

Applications: We consider Spark [74] as a represen-

tative data analytics framework, similar to previous stud-

ies [50, 68, 3]. We use Spark v2.1.0 and Hadoop v2.7.3

for HDFS. We evaluate Selecta with over one hundred

Spark SQL and ML applications, each with two different

dataset scales, for a total of 204 workloads. Our appli-

cation set includes 92 queries of the TPC-DS benchmark

with scale factors of 300 and 1000 GB [67]. We use the

same scale factors for Spark SQL and ML queries from

the TPC-BB (BigBench) benchmark which has of struc-

tured, unstructured and semi-structured data modeled af-

ter the retail industry domain [27]. Since most BigBench

queries are CPU-bound, we focus on eight queries which

have more substantial I/O requirements: queries 3, 8,

14, 16, 21, 26, 28, 29. We also run 100 and 400 GB

sort jobs [52]. Finally, we run a SQL equijoin query on

two tables with 16M and 32M rows each and 4KB en-

tries [53]. For all input and output files, we use the un-

compressed Parquet data format [26].

Experiment methodology: We run each application

on all candidate configurations to obtain the ground truth

performance and optimal configuration choices for each

application. To account for noise in the cloud we run

each experiment (i.e., each application on each candidate

configuration) three times and use the average across

runs in our evaluation. Two runs are consecutive and one

run is during a different time of day. We also validate our

results by using data from one run as input to Selecta and

the average performance across runs as the ground truth.

To train and test Selecta, we use leave-one-out cross val-

idation [58], meaning one workload at a time serves as

the target application while the remaining workloads are

used for training. We assume training applications are

profiled on all candidate configurations, except for the

sensitivity analysis in §4.4 where we investigate training

matrix density requirements for accurate predictions.

Metrics: We measure the quality of Selecta’s predic-

tions using two metrics. First, we report the relative root

mean squared error (RMSE), a common metric for rec-

ommender systems. The second and more relevant met-

ric for Selecta is the probability of making an accurate

configuration recommendation. We consider a recom-

mendation accurate if the configuration meets the user’s

cost-performance objective within a threshold T of the

true optimal configuration for that application. For ex-

ample, for a minimum cost objective with T = 10%, the

probability of an accurate prediction is the percentage

of Selecta’s recommendations (across all tested applica-

tions) whose true cost is within 10% of the true optimal

cost configuration. Using a threshold is more robust to

noise and allows us to make more meaningful conclu-

sions about Selecta’s accuracy, since a second-best con-

figuration may have similar or significantly worse per-

formance than the best configuration. Our performance

metric is execution time and cost is in US dollars.

4.2 Prediction Accuracy

We provide a matrix with 204 rows as input to Selecta,

where one row (application) is designated as the target

application in each test round. We run Selecta 204 times,

each time considering a different application as the tar-

get. For now, we assume all remaining rows of train-

ing data in the matrix are dense, implying the user has

profiled training applications on all candidate configu-

rations. The single target application row is sparse, con-

taining only two entries, one for each of the profiling runs

on reference configurations.

764 2018 USENIX Annual Technical Conference USENIX Association

Figure 4: Probability of accurate

recommendations within a thresh-

old from optimal. Dotted lines are

after one feedback iteration.

Figure 5: Probability of accu-

rate configuration recommendation

for performance within threshold,

given strict cost restrictions.

perf-predict-using-small

cost-predict-using-small

cost*perf-predict-using-small

perf-predict-using-large

cost-predict-using-large

cost*perf-predict-using-large

Figure 6: Accuracy with large

datasets using predictions from

small dataset vs. re-computing pre-

diction with large dataset.

Selecta predicts performance with a relative RMSE

of 36%, on average across applications. To understand

how Selecta’s performance predictions translate into rec-

ommendations, we plot accuracy in Figure 4 for perfor-

mance, cost and cost*performance objectives. The plot

shows the probability of near-optimal recommendations

as a function of the threshold T defining what percentage

from optimal is considered close enough. When search-

ing for the best performing configuration, Selecta has a

94% probability of recommending a configuration within

10% of optimal. For a minimum cost objective, Selecta

has a 80% probability of recommending a configuration

within 10% of optimal. Predicting cost*performance is

more challenging since errors in Selecta’s relative execu-

tion time predictions for an application across candidate

configurations are squared: cost*performance = (execu-

tion time)2 * config cost per hour.

The dotted lines in Figure 4 show how accuracy im-

proves after a single feedback round. Here, we assume

the target application has the same dataset in the feed-

back round. This provides additional training input for

the target application row (either a new entry if the rec-

ommended configuration was not a reference configura-

tion, or a new sample to average to existing data if the

recommended configuration was a reference configura-

tion). The probability of near-optimal recommendations

increases most noticeably for the cost*performance ob-

jective, from 52% to 65% after feedback, with T =10%.

Figure 5 shows the probability of accurate recommen-

dations for objectives of the form “select the best per-

forming configuration given a fixed cost restriction C.”

For this objective, we consider Selecta’s recommenda-

tion accurate if its cost is less than or equal to the budget

and if its performance is within the threshold of the true

best configuration for the objective. Selecta achieves be-

tween 83% and 94% accuracy for the cost restrictions in

Figure 5 assuming T =10%. The long tail is due to per-

formance prediction errors that lead Selecta to underesti-

mate the execution cost for a small percentage of config-

urations (i.e., cases where Selecta recommends a config-

uration that is actually over budget).

In Figure 7, we compare Selecta’s accuracy against

four baselines. The first baseline is a random forest pre-

dictor, similar to the approach used by PARIS [71]. We

use the following features: the number of CPU cores,

disk IOPS and disk MB/s the configuration provides, the

intermediate and input/output data capacity of the appli-

cation, and the CPU utilization, performance, and total

disk throughput measured when running the application

on each of the two reference configurations. Although

the random forest predictor leverages more features than

Selecta, it has lower accuracy. Collaborative filtering

is a better fit for the sparse nature of the training data.

We find the most important features in the random for-

est model are all related to I/O (e.g., the I/O throughput

measured when running the application on the reference

configurations and the read/write IOPS supported by the

storage used for intermediate data), which emphasizes

the importance of selecting the right storage.

The second baseline (labeled ‘default’) in Figure 7

uses the recommended default configurations docu-

mented in Databricks engineering blog posts: l-NVMe

for intermediate data and S3 for input/output data [19,

21, 20]. The ‘max cost per time’ baseline uses the simple

heuristic of always picking the most expensive instance

per unit time. The ’min cost per time’ baseline chooses

the least expensive instance per unit time. Selecta out-

performs all of these heuristic strategies, confirming the

need for a tool to automate configuration selection.

4.3 Evolving Datasets

We study the impact of dataset size on application per-

formance and Selecta’s predictions using the small and

large dataset scales described in §4.1. We train Selecta

using all 102 workloads with small datasets, then evalu-

ate Selecta’s prediction accuracy for the same workloads

with large datasets. The dotted lines in Figure 6 plots Se-

USENIX Association 2018 USENIX Annual Technical Conference 765

lecta’s accuracy when recommending configurations for

applications with large datasets solely based on profil-

ing runs of the application with a smaller dataset. The

solid lines show accuracy when Selecta re-profiles appli-

cations with large datasets to make predictions. For ap-

proximately 8% of applications, profiling runs with small

datasets are not sufficient indicators of performance with

large datasets.

We find that in cases where the performance with a

small dataset is not indicative of performance with a

large dataset, the relationship between compute and I/O

intensity of the application is affected by the dataset size.

As described in §3.3, Selecta detects these situations by

comparing CPU utilization statistics for the small and

large dataset runs. Figure 8 shows an example of a work-

load for which small dataset performance is not indica-

tive of performance with a larger dataset. We use the

Intel Performance Analysis Tool to record and plot CPU

utilization [34]. When the average iowait percentage for

the duration of the run changes significantly between the

large and small profiling runs on the reference configura-

tion, it is generally best to profile the application on the

reference configurations and treat it as a new application.

4.4 Sensitivity Analysis

We perform a sensitivity analysis to determine input ma-

trix density requirements for accurate predictions. We

look at both the density of matrix rows (i.e., the percent-

age of candidate configurations that training applications

are profiled on) and the density of matrix columns (i.e.,

the number of training applications used). We also dis-

cuss sensitivity to the choice of reference configurations.

Figure 9a shows how Selecta’s accuracy for perfor-

mance, cost and cost*performance objectives varies as a

function of input matrix density. Assuming 203 training

applications have accumulated in the system over time,

we show that, on average across target applications, rows

only need to be approximately 20 to 30% dense for Se-

lecta to achieve sufficient accuracy. This means that at

steady state, users should profile training applications on

about 20-30% of the candidate configurations (including

reference configurations). Profiling additional configura-

tions has diminishing returns.

Next, we consider a cold start situation in which a user

wants to jump start the system by profiling a limited set

of training applications across all candidate configura-

tions. Figure 9b shows the number of training applica-

tions required to achieve desired accuracy. Here, for each

target application testing round, we take the 203 training

applications we have and randomly remove a fraction of

the rows (training applications). We ensure to drop the

row corresponding to the different dataset scale factor

run of the target application, to ensure Selecta’s accu-

Figure 7: Selecta’s accuracy compared to baselines.

(a) Query on 300GB is CPU-bound. (b) Query on 1TB is IO-bound.

Figure 8: CPU utilization over time for TPC-DS query

89 on r4.xlarge cluster with r-SSD. For this query,

performance with a small dataset is not indicative of per-

formance with a larger dataset. Selecta detects difference

in average iowait percentage (blue dotted line).

racy does not depend on a training application directly

related to the target application. Since the number of

training applications required to achieve desirable accu-

racy depends on the size of the configuration space a user

wishes to explore, the x-axis in Figure 9b represents the

ratio of the number of training applications to the number

of candidate configurations, R. We find that to jump start

Selecta with dense training data from a cold start, users

should provide 2.5× more training applications than the

number of candidate configurations to achieve desirable

accuracy. In our case, jump starting Selecta with more

than 43 = ⌈2.5×17⌉ training applications profiled on all

17 configurations reaches a point of diminishing returns.

Finally, we investigate whether, a cold start requires

profile training applications on all configurations. We

use R=2.5, which for 17 candidate configurations corre-

sponds to using 43 training applications. Figure 9c plots

accuracy as we vary the percentage of candidate config-

urations on which the training applications are profiled

(including reference configurations, which we assume

are always profiled). The figure shows that for a cold

start, it is sufficient for users to profile the initial train-

ing applications on 40% to 60% of candidate configu-

rations. As Selecta continues running and accumulates

more training applications, the percentage of configura-

766 2018 USENIX Annual Technical Conference USENIX Association

(a) Sensitivity to input matrix density in

steady state: 20% density per row suffices

for accurate predictions.

(b) Sensitivity to number of training ap-

plications, profiled on all configurations:

2.5× the number of configs suffices.

(c) Sensitivity to input matrix density for

cold start: ∼50% density per row (train-

ing application) required.

Figure 9: Sensitivity analysis: accuracy as a function of input matrix density

tions users need to profile for training applications drops

to 20-30% (this is the steady state result from Figure 9a).

We experimented with different reference configura-

tions for Selecta. We find that accuracy is not very sen-

sitive to the choice of references. We saw a slight bene-

fit using references that have different VM and storage

types. Although one reference configuration must re-

main fixed across all application runs since it is used to

normalize performance, we found that the reference con-

figuration used for the second profiling run could vary

without significant impact on Selecta’s accuracy.

5 Cloud Storage Insights

Our analysis of cloud configurations for data analytics

reveals several insights for cloud storage configurations.

We discuss key takeaways and their implications for fu-

ture research on storage systems.

NVMe storage is performance and cost efficient for

data analytics: We find that configurations with NVMe

Flash tend to offer not only the best performance, but

also, more surprisingly, the lowest cost. Although NVMe

Flash is the most expensive type of storage per GB/hr, its

high bandwidth allows applications to run significantly

faster, reducing the overall job execution cost.

On average across applications, we observe that l-

NVMe Flash reduces job completion time of applica-

tions by 27% compared to r-SSD and 75% compared to

r-HDD. Although we did not consider l-SSD or l-HDD

configurations in our evaluation, we validate that local

versus remote access to HDD and SDD achieves simi-

lar performance since our instances have sufficient net-

work bandwidth (up to 10 Gb/s) and modern networking

adds little overhead on top of HDD and SSD access la-

tency [8]. In contrast, a previous study of Spark applica-

tions by Ousterhout et al. concluded that optimizing or

eliminating disk accesses can only reduce job completion

time by a median of at most 19% [50]. We believe the

main reason for the increased impact of storage on end-

to-end application performance is due to the newer ver-

sion of Spark we use in our study (v2.1.0 versus v1.2.1).

Spark has evolved with numerous optimizations target-

ing CPU efficiency, such as cache-aware computations,

code generation for expression evaluation, and serializa-

tion [17]. With ongoing work in optimizing the CPU

cycles spent on data analytics computations, for example

by optimizing the I/O processing path [66], we expect

the choice of storage to be of even greater importance.

The need for flexible capacity and bandwidth allo-

cation: Provisioning storage involves selecting the right

capacity, bandwidth, and latency. Selecta uses statistics

from Spark logs to determine capacity requirements and

applies collaborative filtering to explore performance-

cost trade-offs. However, the cost-efficiency of the stor-

age configuration selected is limited by numerous con-

straints imposed by cloud providers. For example, for re-

mote block storage volumes, the cloud provider imposes

minimum capacity limits (e.g., 500 GB for r-HDD on

AWS) and decides how data in the volume is mapped to

physical devices, which directly affects storage through-

put (e.g., HDD throughput is proportional to the number

of spindles). A more important restriction is for local

storage, such as l-NVMe, which is only available in fixed

capacities attached to particular instance types. The fixed

ratio between compute, memory and storage resources

imposed by cloud vendors does not provide the right bal-

ance of resources for many of the applications we stud-

ied. For example the SQL equijoin query on two 64 GB

tables saturates the IOPS of the 500 GB NVMe device on

a i3.xl instance, but leaves half the capacity underuti-

lized. Furthermore, local storage is ephemeral, meaning

instances must be kept on to retain data on local devices.

Thus, although we showed it is cost-efficient to store in-

put/output and intermediate data on l-NVMe for the du-

ration of a job, storing input/output files longer term on

USENIX Association 2018 USENIX Annual Technical Conference 767

l-NVMe would dramatically increase cost compared to

using remote storage volumes or an object storage sys-

tem such as S3.

We make the case for a fast and flexible storage op-

tion in the cloud. Emerging trends in cloud comput-

ing, such as serverless computing offerings like AWS

Lambda, Google Cloud Functions and Azure Functions,

provide fine-grain, pay-per-use access to compute and

memory resources [31, 7, 28, 46]. Currently, there is no

option that allows for fine-grain capacity and bandwidth

allocation of cloud storage with low latency and high

bandwidth characteristics [41]. Although S3 provides

pay-per-use storage with high scalability, high availabil-

ity and relatively high bandwidth, we show that data an-

alytics applications benefit from even higher throughput

(i.e., NVMe Flash). S3 also incurs high latency, which

we observed to be a major bottleneck for short-running

SQL queries that read only a few megabytes of data.

Disaggregated NVMe is a promising option for

fast and flexible cloud storage: Disaggregating NVMe

Flash by enabling efficient access to the resource over

the network is a promising option for fast and flexi-

ble cloud storage. Recent developments in hardware-

assisted [49, 44] and software-only [40] techniques en-

able access to remote NVMe devices with low latency

overheads over a wide range of network options, includ-

ing commodity Ethernet networking with TCP/IP pro-

tocols. These techniques allow us to build disaggre-

gated Flash storage that allows fine-grain capacity and

IOPS allocation for analytics workloads and independent

scaling of storage vs. compute resources. Applications

would allocate capacity and bandwidth on demand from

a large array of remotely accessible NVMe devices. In

this setting, Selecta can help predict the right capacity

and throughput requirements for each data stream in an

analytics workload to guide the allocation of resources

from a disaggregated Flash system.

There are several challenges in implementing flexi-

ble cloud storage based on disaggregated Flash. First,

networking requirements can be high. Current NVMe

devices on AWS achieve 500 MB/s to 4 GB/s sequen-

tial read bandwidth, depending on the capacity. Write

throughput and random access bandwidth is also high.

The networking infrastructure of cloud systems must be

able to support a large number of instances accessing

NVMe Flash remotely with the ability to burst to the

maximum throughput of the storage devices. An addi-

tional challenge with sharing remote Flash devices is in-

terference between read and write requests from differ-

ent tenants [40, 61]. We observed several cases where

separating input/output data and intermediate data on r-

SSD (or S3) and l-NVMe, respectively, led to higher

performance (and lower cost) than storing all data on l-

NVMe. This occurred for jobs where large input data

reads overlapped with large shuffle writes, such as for

TPC-DS query 80 shown in Figure 1. A disaggregated

Flash storage system must address interference using ei-

ther scheduling approaches [40, 47, 61, 51, 60] or device-

level isolation mechanisms [12, 54, 38]. Finally, the are

interesting trade-offs in the interfaces used to expose dis-

aggregated Flash (e.g., block storage, key-value storage,

distributed file system, or other).

The need for end-to-end optimization: In our ex-

periments, remote HDD storage performed poorly, de-

spite its cost effectiveness for long-living input/output

data and its ability to match the sequential bandwidth of-

fered by SSD. Using the Linux blktrace tool [37] to

analyze I/O requests at the block device layer, we found

that although each Spark task reads/writes input/output

data sequentially, streams from multiple tasks running on

different cores interleave at the block device layer. Thus,

the access stream seen by a remote HDD volume consists

of approximately 60% random I/O operations, dramati-

cally reducing performance compared to fully sequen-

tial I/O. This makes solutions with higher throughput for

random accesses (e.g., using multiple HDDs devices or

Flash storage) more appropriate for achieving high per-

formance in data analytics. Increasing random I/O per-

formance comes at a higher cost per unit time. In addi-

tion to building faster storage systems, we should attempt

to optimize throughout the stack for sequential accesses

when these accesses are available at the application level.

Of course, there will always be workloads with intrinsi-

cally random access patterns that will not benefit from

such optimizations.

6 Discussion

Our work focused on selecting storage configurations

based on their performance and cost. Other impor-

tant considerations include durability, availability, and

consistency, particularly for long-term input/output data

storage [42]. Developers may also prefer a particular

storage API (e.g., POSIX files vs. object interface).

Users can use these qualitative constraints to limit the

storage space Selecta considers. Users may also choose

different storage systems for high performance process-

ing versus long term storage of important data.

Our study showed that separating input/output data

and intermediate data uncovers a richer configuration

space and allows for better customization of storage re-

sources to the application requirements. We can further

divide intermediate data into finer-grained streams such

as shuffle data, broadcast data, and cached RDDs spilled

from memory. Understanding the characteristics of these

finer grain streams and how they should be mapped to

storage options in the cloud may reveal further benefits.

Compression schemes offer an interesting trade-off

768 2018 USENIX Annual Technical Conference USENIX Association

between processing, networking, and storage require-

ments. In addition to compressing input/output files, sys-

tems like Spark allow compressing individual interme-

diate data streams using a variety of compression algo-

rithms (lz4, lzf, and snappy) [64]. In future work, we

plan to extend Selecta to consider compression options

in addition to storage and instance configuration.

We used Selecta to optimize data analytics applica-

tions as they represent a common class of cloud work-

loads. Selecta’s approach should be applicable to other

data-intensive workloads too, as collaborative filtering

does not make any specific assumptions about the appli-

cation structure. In addition to considering other types

of workloads, in future work, we will consider scenarios

in which multiple workloads share cloud infrastructure.

Delimitrou et al. have shown that collaborative filter-

ing can classify application interference sensitivity (i.e.,

how much interference an application will cause to co-

scheduled applications and how much interference it can

tolerate itself) [22, 23]. We also believe Selecta’s collab-

orative filtering approach can be extended to help con-

figure isolation mechanisms that limit interference be-

tween workloads, particularly on shared storage devices

like NVMe which exhibit dramatically different behavior

as the read-write access patterns vary [40].

7 Related Work

Selecting cloud configurations: Several recent sys-

tems unearth near-optimal cloud configurations for target

workloads. CherryPick uses Bayesian Optimization to

build a performance model that is just accurate enough to

distinguish near-optimal configurations [3]. Model input

comes solely from profiling the target application across

carefully selected configurations. Ernest predicts perfor-

mance for different VM and cluster sizes, targeting ma-

chine learning analytics applications [69]. PARIS takes

a hybrid online/offline approach, using random forests to

predict application performance on various VM config-

urations based on features such as CPU utilization ob-

tained from profiling [71]. These systems do not con-

sider the vast storage configuration options in the cloud

nor the heterogeneous data streams of analytics applica-

tions which can dramatically impact performance.

Resource allocation with collaborative filtering:

Our approach for predicting performance is most similar

to Quasar [23] and Paragon [22], which apply collabora-

tive filtering to schedule incoming applications on shared

clusters. ProteusTM [24] applies collaborative filtering

to auto-tune a transactional memory system. While these

systems consider resource heterogeneity, they focus on

CPU and memory. While Selecta applies a similar mod-

eling approach, our exploration of the cloud storage con-

figuration space is novel and reveals important insights.

Automating storage configurations: Many previ-

ous systems provide storage configuration recommen-

dations [9, 65, 2, 48, 4, 30, 39]. Our work analyzes

the trade-offs between traditional block storage and ob-

ject storage available in the cloud. We also considering

how heterogeneous streams in data analytics applications

should be mapped to heterogeneous storage options.

Analyzing performance of analytics frameworks:

While previous studies analyze how CPU, memory,

network and storage resources affect Spark perfor-

mance [50, 68, 66, 43], our work is the first to evalu-

ate the impact of new cloud storage options (e.g., NVMe

Flash) and provide a tool to navigate the diverse storage

configuration space.

Tuning application parameters: Previous work

auto-tunes data analytics framework parameters such as

the number of executors, JVM heap size, and compres-

sion schemes [32, 73, 72]. Our work is complementary.

Users set application parameters and then run Selecta to

obtain a near-optimal hardware configuration.

8 Conclusion

The large and increasing number of storage and com-

pute options on cloud services makes configuring data

analytics clusters for high performance and cost effi-

ciency difficult. We presented Selecta, a tool that learns

near-optimal configurations of compute and storage re-

sources based on sparse training data collected across

applications and candidate configurations. Requiring

only two profiling runs of the target application, Se-

lecta predicts near-optimal performance configurations

with 94% probability and near-optimal cost configura-

tions with 80% probability. Moreover, Selecta allowed

us to analyze cloud storage options for data analytics

and reveal important insights, including the cost benefits

of NVMe Flash storage, the need for fine-gain alloca-

tion of storage capacity and bandwidth in the cloud, and

the need for cross-layer storage optimizations. We be-

lieve that, as data-intensive workloads grow in complex-

ity and cloud options for compute and storage increase,

tools like Selecta will become increasingly useful for

end users, systems researchers, and even cloud providers

(e.g., for scheduling ‘serverless’ application code).

Acknowledgements

We thank our anonymous reviewers as well as Christina

Delimitrou, Francisco Romero, and Neeraja Yadwadkar

for their feedback. This work is supported by the Stan-

ford Platform Lab, Samsung, Huawei and NSF grant

CNS-1422088. Ana Klimovic is supported by a Stan-

ford Graduate Fellowship and Microsoft Research PhD

Fellowship.

USENIX Association 2018 USENIX Annual Technical Conference 769

References

[1] AGARWAL, S., KANDULA, S., BRUNO, N., WU,

M.-C., STOICA, I., AND ZHOU, J. Re-optimizing

data-parallel computing. In Proceedings of the 9th

USENIX Conference on Networked Systems Design

and Implementation (2012), NSDI’12, pp. 21–21.

[2] ALBRECHT, C., MERCHANT, A., STOKELY, M.,

WALIJI, M., LABELLE, F., COEHLO, N., SHI, X.,

AND SCHROCK, C. E. Janus: Optimal flash provi-

sioning for cloud storage workloads. In Proceed-

ings of the 2013 USENIX Conference on Annual

Technical Conference (2013), USENIX ATC’13,

pp. 91–102.

[3] ALIPOURFARD, O., LIU, H. H., CHEN, J.,

VENKATARAMAN, S., YU, M., AND ZHANG,

M. CherryPick: Adaptively unearthing the best

cloud configurations for big data analytics. In 14th

USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 17) (Boston, MA,

2017), pp. 469–482.

[4] ALVAREZ, G. A., BOROWSKY, E., GO, S.,

ROMER, T. H., BECKER-SZENDY, R., GOLDING,

R., MERCHANT, A., SPASOJEVIC, M., VEITCH,

A., AND WILKES, J. Minerva: An automated re-

source provisioning tool for large-scale storage sys-

tems. ACM Trans. Comput. Syst. 19, 4 (Nov. 2001),

483–518.

[5] AMAZON. Amazon elastic block store (EBS).

https://aws.amazon.com/ebs, 2017.

[6] AMAZON. Amazon simple storage service. https:

//aws.amazon.com/s3, 2017.

[7] AMAZON. AWS lambda. https:

//aws.amazon.com/lambda, 2017.

[8] ANANTHANARAYANAN, G., GHODSI, A.,

SHENKER, S., AND STOICA, I. Disk-locality in

datacenter computing considered irrelevant. In

Proc. of USENIX Hot Topics in Operating Systems

(2011), HotOS’13, pp. 12–12.

[9] ANDERSON, E., HOBBS, M., KEETON, K.,

SPENCE, S., UYSAL, M., AND VEITCH, A. Hip-

podrome: Running circles around storage adminis-

tration. In Proc. of the 1st USENIX Conference on

File and Storage Technologies (2002), FAST ’02,

USENIX Association.

[10] BELL, R., KOREN, Y., AND VOLINSKY, C. Mod-

eling relationships at multiple scales to improve ac-

curacy of large recommender systems. In Proceed-

ings of the 13th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining

(2007), KDD ’07, pp. 95–104.

[11] BELL, R. M., KOREN, Y., AND VOLINSKY, C.

The BellKor 2008 Solution to the Netflix Prize.

Tech. rep., 2008.

[12] BJØRLING, M., GONZALEZ, J., AND BONNET,

P. Lightnvm: The linux open-channel SSD sub-

system. In 15th USENIX Conference on File and

Storage Technologies (FAST 17) (2017), pp. 359–

374.

[13] BOTTOU, L. Large-Scale Machine Learning with

Stochastic Gradient Descent. Physica-Verlag HD,

2010, pp. 177–186.

[14] CLOUDERA. How-to: Tune your apache spark

jobs. https://blog.cloudera.com/blog/

2015/03/how-to-tune-your-apache-spark-

jobs-part-2/, 2015.

[15] CLOUDERA. Tuning spark applica-

tions. https://www.cloudera.com/

documentation/enterprise/5-9-x/topics/

admin spark tuning.html, 2017.

[16] CORPORATION, I. Intel Optane SSD DC

P4800X Available Now on IBM Cloud.

https://www.ibm.com/blogs/bluemix/

2017/08/intel-optane-ssd-dc-p4800x-

available-now-ibm-cloud, 2017.

[17] DATABRICKS. Project tungsten: Bring-

ing apache spark closer to bare metal.

https://databricks.com/blog/2015/04/

28/project-tungsten-bringing-spark-

closer-to-bare-metal.html, 2015.

[18] DATABRICKS. AWS configurations for Spark.

https://docs.databricks.com/user-guide/

clusters/aws-config.html#ebs-volumes,

2016.

[19] DATABRICKS. Supported instance types.

https://databricks.com/product/pricing/

instance-types, 2016.

[20] DATABRICKS. Accelerating workflows on

databricks. https://databricks.com/blog/

2017/10/06/accelerating-r-workflows-

on-databricks.html, 2017.

[21] DATABRICKS. Benchmarking big data sql plat-

forms in the cloud. https://databricks.com/

blog/2017/07/12/benchmarking-big-data-

sql-platforms-in-the-cloud.html, 2017.

770 2018 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/ebs
https://aws.amazon.com/s3
https://aws.amazon.com/s3
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/admin_spark_tuning.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/admin_spark_tuning.html
https://www.cloudera.com/documentation/enterprise/5-9-x/topics/admin_spark_tuning.html
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane- ssd-dc-p4800x-available- now-ibm- cloud
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane- ssd-dc-p4800x-available- now-ibm- cloud
https://www.ibm.com/blogs/bluemix/2017/08/intel-optane- ssd-dc-p4800x-available- now-ibm- cloud
https://databricks.com/blog/2015/04/28/project- tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project- tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project- tungsten-bringing-spark-closer-to-bare-metal.html
https://docs.databricks.com/user-guide/clusters/aws-config.html#ebs-volumes
https://docs.databricks.com/user-guide/clusters/aws-config.html#ebs-volumes
https://databricks.com/product/pricing/instance-types
https://databricks.com/product/pricing/instance-types
https://databricks.com/blog/2017/10/06/accelerating-r-workflows-on-databricks.html
https://databricks.com/blog/2017/10/06/accelerating-r-workflows-on-databricks.html
https://databricks.com/blog/2017/10/06/accelerating-r-workflows-on-databricks.html
https://databricks.com/blog/2017/07/12/benchmarking-big-data-sql-platforms-in-the-cloud.html
https://databricks.com/blog/2017/07/12/benchmarking-big-data-sql-platforms-in-the-cloud.html
https://databricks.com/blog/2017/07/12/benchmarking-big-data-sql-platforms-in-the-cloud.html

[22] DELIMITROU, C., AND KOZYRAKIS, C. Paragon:

Qos-aware scheduling for heterogeneous datacen-

ters. In Proceedings of the Eighteenth International

Conference on Architectural Support for Program-

ming Languages and Operating Systems (2013),

ASPLOS ’13, pp. 77–88.

[23] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:

Resource-efficient and qos-aware cluster manage-

ment. In Proceedings of the 19th International

Conference on Architectural Support for Program-

ming Languages and Operating Systems (2014),

ASPLOS ’14, pp. 127–144.

[24] DIDONA, D., DIEGUES, N., KERMARREC, A.-

M., GUERRAOUI, R., NEVES, R., AND ROMANO,

P. Proteustm: Abstraction meets performance in

transactional memory. In Proc. of the 21st Inter-

national Conference on Architectural Support for

Programming Languages and Operating Systems

(2016), ASPLOS ’16, pp. 757–771.

[25] FERGUSON, A. D., BODIK, P., KANDULA, S.,

BOUTIN, E., AND FONSECA, R. Jockey: Guar-

anteed job latency in data parallel clusters. In Pro-

ceedings of the 7th ACM European Conference on

Computer Systems (2012), EuroSys ’12, pp. 99–

112.

[26] FOUNDATION, A. S. Apache parquet. https://

parquet.apache.org/, 2014.

[27] GHAZAL, A., RABL, T., HU, M., RAAB, F.,

POESS, M., CROLOTTE, A., AND JACOBSEN, H.-

A. Bigbench: Towards an industry standard bench-

mark for big data analytics. In Proceedings of

the 2013 ACM SIGMOD International Conference

on Management of Data (2013), SIGMOD ’13,

pp. 1197–1208.

[28] GOOGLE. Cloud functions. https:

//cloud.google.com/functions, 2017.

[29] GOOGLE. Google compute engine persistent disk.

https://cloud.google.com/persistent-

disk, 2017.

[30] GULATI, A., SHANMUGANATHAN, G., AHMAD,

I., WALDSPURGER, C., AND UYSAL, M. Pesto:

Online storage performance management in virtu-

alized datacenters. In Proc. of the 2Nd ACM Sym-

posium on Cloud Computing (2011), SOCC ’11,

pp. 19:1–19:14.

[31] HENDRICKSON, S., STURDEVANT, S., HARTER,

T., VENKATARAMANI, V., ARPACI-DUSSEAU,

A. C., AND ARPACI-DUSSEAU, R. H. Server-

less computation with openlambda. In 8th USENIX
Workshop on Hot Topics in Cloud Computing (Hot-

Cloud 16) (2016).

[32] HERODOTOU, H., LIM, H., LUO, G., BORISOV,

N., DONG, L., CETIN, F. B., AND BABU, S.

Starfish: A self-tuning system for big data analyt-

ics. In In CIDR (2011), pp. 261–272.

[33] HUG, N. Surprise, a Python library for rec-

ommender systems. http://surpriselib.com,

2017.

[34] INTEL. Performance analysis tool (PAT). https:

//github.com/intel-hadoop/PAT, 2016.

[35] INTEL. Intel optane technology. https:

//www.intel.com/content/www/us/en/

architecture-and-technology/intel-

optane-technology.html, 2017.

[36] JALAPARTI, V., BALLANI, H., COSTA, P., KARA-

GIANNIS, T., AND ROWSTRON, A. Bridging the

tenant-provider gap in cloud services. In Proceed-

ings of the Third ACM Symposium on Cloud Com-

puting (2012), SoCC ’12, pp. 10:1–10:14.

[37] JENS AXBOE, A. D. B., AND SCOTT, N. blk-

trace man page. https://linux.die.net/man/

8/blktrace, 2006.

[38] KANG, J.-U., HYUN, J., MAENG, H., AND CHO,

S. The multi-streamed solid-state drive. In Pro-

ceedings of the 6th USENIX Conference on Hot

Topics in Storage and File Systems (2014), HotStor-

age’14, pp. 13–13.

[39] KEETON, K., SANTOS, C., BEYER, D., CHASE,

J., AND WILKES, J. Designing for disasters. In

Proc. of the 3rd USENIX Conference on File and

Storage Technologies (2004), FAST ’04, pp. 59–62.

[40] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C.

ReFlex: Remote flash == local flash. SIGPLAN

Not. 52, 4 (Apr. 2017), 345–359.

[41] KLIMOVIC, A., WANG, Y., KOZYRAKIS, C.,

STUEDI, P., PFEFFERLE, J., AND TRIVEDI, A.

Understanding ephemeral storage for serverless an-

alytics. In Proc. of the USENIX Annual Technical

Conference (2018), ATC’18.

[42] KOVACS, G. EBS, EFS, or Amazon S3:

which is the best cloud storage system for you?

https://cloud.netapp.com/blog/ebs-efs-

amazons3-best-cloud-storage-system,

2017.

USENIX Association 2018 USENIX Annual Technical Conference 771

https://parquet.apache.org/
https://parquet.apache.org/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
http://surpriselib.com
 https://github.com/intel-hadoop/PAT
 https://github.com/intel-hadoop/PAT
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system

[43] LI, H., GHODSI, A., ZAHARIA, M., SHENKER,

S., AND STOICA, I. Tachyon: Reliable, memory

speed storage for cluster computing frameworks.

In Proceedings of the ACM Symposium on Cloud

Computing (2014), SOCC ’14, pp. 6:1–6:15.

[44] METZ, J., HUFFMAN, A., SARDELLA, S., AND

MINTRUN, D. The performance impact of NVM

Express and NVM Express over Fabrics. http://

www.nvmexpress.org/wp-content/uploads/

NVMe-Webcast-Slides-20141111-Final.pdf,

2015.

[45] MICROSOFT. Azure files. https:

//azure.microsoft.com/en-us/services/

storage/files, 2017.

[46] MICROSOFT. Azure functions. https:

//azure.microsoft.com/en-us/services/

functions, 2018.

[47] NANAVATI, M., WIRES, J., AND WARFIELD, A.

Decibel: Isolation and sharing in disaggregated

rack-scale storage. In 14th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 17) (2017), pp. 17–33.

[48] NARAYANAN, D., THERESKA, E., DONNELLY,

A., ELNIKETY, S., AND ROWSTRON, A. Migrat-

ing server storage to ssds: Analysis of tradeoffs.

In Proceedings of the 4th ACM European Confer-

ence on Computer Systems (2009), EuroSys ’09,

pp. 145–158.

[49] NVM EXPRESS INC. NVM Express

over Fabrics Revision 1.0 . http://

www.nvmexpress.org/wp-content/uploads/

NVMe over Fabrics 1 0 Gold 20160605.pdf,

2016.

[50] OUSTERHOUT, K., RASTI, R., RATNASAMY, S.,

SHENKER, S., AND CHUN, B.-G. Making sense

of performance in data analytics frameworks. In

Proceedings of the 12th USENIX Conference on

Networked Systems Design and Implementation

(2015), NSDI’15, pp. 293–307.

[51] PARK, S., AND SHEN, K. FIOS: a fair, efficient

flash I/O scheduler. In Proc. of USENIX File and

Storage Technologies (2012), FAST’12, p. 13.

[52] PERFORMANCE IO RESEARCH GROUP AT IBM

RESEARCH ZURICH, H. Example terasort

program. https://github.com/zrlio/crail-

spark-terasort, 2017.

[53] PERFORMANCE IO RESEARCH GROUP AT IBM

RESEARCH ZURICH, H. Spark sql bench-

marks. https://github.com/zrlio/sql-

benchmarks, 2017.

[54] PETERSEN, C., AND HUFFMAN, A. Solving

latency challenges with NVM express SSDs at

scale. https://www.flashmemorysummit.com/

English/Collaterals/Proceedings/2017/

20170809 SIT6 Petersen.pdf, 2017.

[55] POPESCU, A. D., ERCEGOVAC, V., BALMIN,

A., BRANCO, M., AND AILAMAKI, A. Same

Queries, Different Data: Can we Predict Query

Performance? In Proceedings of the 7th Interna-

tional Workshop on Self Managing Database Sys-

tems (2012).

[56] RICCI, F., ROKACH, L., SHAPIRA, B., AND

KANTOR, P. B. Recommender Systems Handbook,

1st ed. Springer-Verlag New York, Inc., 2010.

[57] SALAKHUTDINOV, R., AND MNIH, A. Probabilis-

tic matrix factorization. In Proceedings of the 20th

International Conference on Neural Information

Processing Systems (2007), NIPS’07, pp. 1257–

1264.

[58] SAMMUT, C., AND WEBB, G. I., Eds. Leave-One-

Out Cross-Validation. Springer US, 2010, pp. 600–

601.

[59] SCHAD, J., DITTRICH, J., AND QUIANÉ-RUIZ,

J.-A. Runtime measurements in the cloud: Observ-

ing, analyzing, and reducing variance. Proc. VLDB

Endow. 3, 1-2 (Sept. 2010), 460–471.

[60] SHEN, K., AND PARK, S. FlashFQ: A fair queue-

ing I/O scheduler for flash-based SSDs. In Proc.

of USENIX Annual Technical Conference (2013),

ATC’13, USENIX, pp. 67–78.

[61] SHUE, D., AND FREEDMAN, M. J. From applica-

tion requests to virtual IOPs: provisioned key-value

storage with Libra. In Proc. of European Con-

ference on Computer Systems (2014), EuroSys’14,

pp. 17:1–17:14.

[62] SHVACHKO, K., KUANG, H., RADIA, S., AND

CHANSLER, R. The Hadoop distributed file sys-

tem. In Proc. of IEEE Mass Storage Systems and

Technologies (2010), MSST ’10, IEEE Computer

Society, pp. 1–10.

[63] SPARK, A. Monitoring and instrumentation.

https://spark.apache.org/docs/latest/

monitoring.html, 2017.

[64] SPARK, A. Spark configuration. https:

//spark.apache.org/docs/latest/

configuration.html, 2017.

772 2018 USENIX Annual Technical Conference USENIX Association

http://www.nvmexpress.org/wp-content/uploads/NVMe-Webcast-Slides-20141111-Final.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe-Webcast-Slides-20141111-Final.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe-Webcast-Slides-20141111-Final.pdf
https://azure.microsoft.com/en-us/services/storage/files
https://azure.microsoft.com/en-us/services/storage/files
https://azure.microsoft.com/en-us/services/storage/files
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605.pdf
http://www.nvmexpress.org/wp-content/uploads/NVMe_over_Fabrics_1_0_Gold_20160605.pdf
https://github.com/zrlio/crail-spark-terasort
https://github.com/zrlio/crail-spark-terasort
https://github.com/zrlio/sql-benchmarks
https://github.com/zrlio/sql-benchmarks
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_SIT6_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_SIT6_Petersen.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2017/20170809_SIT6_Petersen.pdf
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html

[65] STRUNK, J. D., THERESKA, E., FALOUTSOS, C.,

AND GANGER, G. R. Using utility to provision

storage systems. In 6th USENIX Conference on File

and Storage Technologies, FAST 2008, February

26-29, 2008, San Jose, CA, USA (2008), pp. 313–

328.

[66] STUEDI, P., TRIVEDI, A., PFEFFERLE, J., STO-

ICA, R., METZLER, B., IOANNOU, N., AND

KOLTSIDAS, I. Crail: A high-performance i/o ar-

chitecture for distributed data processing. IEEE

Data Eng. Bull. 40, 1 (2017), 38–49.

[67] TPC, T. P. P. C. TPC-DS is a Decision Sup-

port Benchmark. http://www.tpc.org/tpcds/,

2017.

[68] TRIVEDI, A., STUEDI, P., PFEFFERLE, J., STO-

ICA, R., METZLER, B., KOLTSIDAS, I., AND

IOANNOU, N. On the [ir]relevance of network per-

formance for data processing. In Proceedings of

the 8th USENIX Conference on Hot Topics in Cloud

Computing (2016), HotCloud’16, pp. 126–131.

[69] VENKATARAMAN, S., YANG, Z., FRANKLIN,

M., RECHT, B., AND STOICA, I. Ernest: Ef-

ficient performance prediction for large-scale ad-

vanced analytics. In 13th USENIX Symposium

on Networked Systems Design and Implementation

(NSDI 16) (Santa Clara, CA, 2016), pp. 363–378.

[70] VITTER, J. S. Random sampling with a reservoir.

ACM Trans. Math. Softw. 11, 1 (Mar. 1985), 37–57.

[71] YADWADKAR, N. J., HARIHARAN, B., GONZA-

LEZ, J. E., SMITH, B., AND KATZ, R. H. Se-

lecting the best VM across multiple public clouds:

a data-driven performance modeling approach. In

Proceedings of the 2017 Symposium on Cloud

Computing (2017), SOCC’17, pp. 452–465.

[72] YEH, C. C., ZHOU, J., CHANG, S. A., LIN,

X. Y., SUN, Y., AND HUANG, S. K. Bigexplorer:

A configuration recommendation system for big

data platform. In 2016 Conference on Technologies

and Applications of Artificial Intelligence (TAAI)

(Nov 2016), pp. 228–234.

[73] YIGITBASI, N., WILLKE, T. L., LIAO, G., AND

EPEMA, D. Towards machine learning-based auto-

tuning of mapreduce. In 2013 IEEE 21st Interna-

tional Symposium on Modelling, Analysis and Sim-

ulation of Computer and Telecommunication Sys-

tems (Aug 2013), pp. 11–20.

[74] ZAHARIA, M., CHOWDHURY, M., FRANKLIN,

M. J., SHENKER, S., AND STOICA, I. Spark:
Cluster computing with working sets. In Proceed-

ings of the 2Nd USENIX Conference on Hot Topics

in Cloud Computing (2010), HotCloud’10, pp. 10–

10.

[75] ZHOU, P., RUAN, Z., FANG, Z., SHAND, M.,

ROAZEN, D., AND CONG, J. Doppio: I/o-aware

performance analysis, modeling and optimization

for in-memory computing framework.

USENIX Association 2018 USENIX Annual Technical Conference 773

http://www.tpc.org/tpcds/

