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Abstract: Loosely speaking, the concept of quantum

typicality refers to the fact that a single pure state can

imitate the full statistical ensemble. This fact has given rise

to a rather simple but remarkably useful numerical

approach to simulate the dynamics of quantummany-body

systems, called dynamical quantum typicality (DQT). In this

paper, we give a brief overview of selected applications of

DQT, where particular emphasis is given to questions on

transport and thermalization in low-dimensional lattice

systems like chains or ladders of interacting spins or fer-

mions. For these systems, we discuss that DQT provides an

efficient means to obtain time-dependent equilibrium

correlation functions for comparatively large Hilbert-space

dimensions and long time scales, allowing the quantitative

extraction of transport coefficients within the framework

of, e. g., linear response theory (LRT). Furthermore, it is

discussed that DQT can also be used to study the far-from-

equilibrium dynamics resulting from sudden quench sce-

narios, where the initial state is a thermal Gibbs state of the

pre-quench Hamiltonian. Eventually, we summarize a few

combinations of DQT with other approaches such as nu-

merical linked cluster expansions or projection operator

techniques. In this way, we demonstrate the versatility of

DQT.

Keywords: low-dimensional lattice models; numerical

simulation; quantum many-body dynamics; quantum

typicality; transport and thermalization.

1 Introduction

Unraveling the dynamics of isolated quantummany-body

systems is a central objective of modern experimental and

theoretical physics. On the one hand, new experimental

platforms composed of cold atoms or trapped ions have

opened the door to perform quantum simulations with a

high amount of control over Hamiltonian parameters and

initial conditions [1, 2]. On the other hand, there has been

substantial progress from the theoretical side to under-

stand (i) experimental observations and (ii) long-standing

questions about the fundamentals of statistical me-

chanics [3–7]. One such question is how to reconcile the

emergence of thermodynamic behavior with the unitary

time evolution of isolated quantum systems, i. e., to

explain whether and in which way an isolated system

relaxes towards a stationary long-time state which agrees

with the predictions from standard statistical mechanics.

Another similarly intriguing question in this context is to

explain the onset of conventional hydrodynamic trans-

port, i. e., diffusion, from truly microscopic principles [8–

10]. The numerical analysis of thermalization and trans-

port in isolated quantum many-body systems is at the

heart of this paper.

Generally, the theoretical analysis of quantum many-

body dynamics is notoriously difficult. Given a quantum

system H and an arbitrary nonequilibrium state ρ(0),

universal concepts to describe the resulting dynamics are

rare [11–13], and one is usually required to solve the

microscopic equation of motion for the density matrix ρ(t),

i. e., the von-Neumann equation

d

dt
ρ(t) � −i[H,  ρ(t)] (1)

(ħ � 1)which, in the case of a pure state ρ(t) � |ψ(t)〉〈ψ(t)|,

reduces to the Schrödinger equation

d

dt
|ψ(t)〉 � −iH|ψ(t)〉 . (2)

While the presence of strong interactions often pro-

hibits any analytical solution, numerical studies of Eq. (2)

are plagued by the exponential growth of the Hilbert space

upon increasing the number of degrees of freedom. More-

over, since thermalization and transport can potentially be
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very slow processes, the necessity to study long time scales

adds another layer of complexity.

Of course, for situations close to equilibrium, e. g., a

system being weakly perturbed by an external force,

linear response theory (LRT) provides a successful

framework to describe the system’s response in terms of

dynamical correlation functions evaluated exactly at

equilibrium [14]. However, analogous to Eqs. (1) and (2),

the calculation of such time-dependent correlation func-

tions for large system sizes and long time scales is a severe

challenge in practice.

Despite these difficulties, significant progress has

been made over the years thanks to the augmented avail-

ability of computational resources and the development of

sophisticated numerical techniques. Especially for one-

dimensional systems the time-dependent density matrix

renormalization group (tDMRG), including related

methods based on matrix product states, provides a

powerful approach to dynamical properties in the ther-

modynamic limit (for reviews, see [15, 16]). However, due to

the inevitable build-up of entanglement, this approach is

limited in the time scales which can be reached in simu-

lations.

In the present paper, the focus is on another useful

numerical approach to the dynamics of quantum many-

body systems, which is based on the concept of dynamical

quantum typicality (DQT) [17, 18]. In a nutshell, DQT means

that “the vastmajority of all pure states featuring a common

expectation value of somegeneric observable at a given time

will yield very similar expectation values of the same

observable at any later time” [17]. In fact, the idea of using

random vectors has a long and fruitful history [19–26]. By

virtue of an iterative forward propagation of these vectors in

real or imaginary time, dependencies on time and temper-

ature canbeobtained. SinceDQTcanbe implemented rather

memory efficiently, it is possible to study dynamical prop-

erties of quantum many-body systems with Hilbert-space

dimensions significantly larger compared to standard exact

diagonalization (ED). Moreover, there are no conceptual

limitations on the reachable time scales.

It is worth pointing out that DQT can not only be used

to obtain time-dependent properties [27–29] or spectral

functions [22, 30–32] but also static properties such as the

density of states [33] or thermodynamic quantities [34–37].

However, it is the aim of this paper to discuss the useful-

ness and versatility of DQT especially in the context of

thermalization and transport.

This paper is structured as follows. In Sec. 2, we give a

brief introduction to the concept of typicality and also

elaborate on the differences between typicality and the

eigenstate thermalization hypothesis (ETH). In Sec. 3, we

discuss various applications of typicality to the dynamics

of quantum many-body systems. Finally, we summarize

and conclude in Sec. 4, where we also provide an outlook

on further applications of DQT.

2 What is typicality?

Loosely speaking, the notion of typicality means that even

a single pure quantum state can imitate the full statistical

ensemble, or, more precisely, expectation values of typical

pure states are close to the expectation value of the sta-

tistical ensemble [20, 23–26]. While typicality has been put

forward as an important insight to explain the emergence

of thermodynamic behavior (see e. g., Ref. [23] for an

overview), let us here focus on the practical consequences

of typicality. In particular, let us consider the, e. g.,

canonical equilibrium expectation value 〈A〉eq of some

(quasi-local) operator A defined as

〈A〉eq �
Tr[Ae−βH]

Ƶ
�
Tr[e−βH/2Ae−βH/2]

Ƶ
, (3)

where Ƶ � Tr[exp(−βH)] is the canonical partition

function, β � 1/T(kB � 1) is the inverse temperature, and

we have used the cyclic invariance of the trace. Exploiting

typicality, it is possible to rewrite 〈A〉eq according to

〈A〉eq �
〈ψβ | A |ψβ〉

〈ψβ | ψβ〉
+ ε, (4)

where we have introduced the abbreviation

|ψβ〉 � e−βH/2|ψ〉, which is sometimes referred to as

thermal pure quantum state [36]. The reference pure state

|ψ〉 is drawn at random from the full Hilbert space with

finite dimension d according to the unitary invariant Haar

measure [17], i. e.,

|ψ 〉 � ∑
d

k�1

(ak + ibk)|k〉, (5)

where the coefficients ak and bk are drawn from a Gaussian

distribution with zero mean (other types of randomness

have been suggested as well [19, 38]), and the pure states |k〉

denote orthogonal basis states of the Hilbert space. (Note

that |ψ〉 is almost maximally entangled [39, 40].)

Importantly, the standard deviation of the statistical error

ϵ � ϵ(|ψ〉) of the approximation (4) scales as σ ∝ 1/
���
deff

√
,

where deff � Tr[exp(−β(H − E0))] is the effective dimension
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of theHilbert spacewith E0 being the ground-state energy of

H. Hereweassume thatA is a local operator (or a low-degree

polynomial in system size), which applies to all examples

discussed in this paper. For more details on error bounds

see, e. g., Refs. [18, 36]. For empirical estimates, see, e. g.,

Ref. [41]. Thus, deff is essentially the number of thermally

occupied states and, for β � 0, we have deff � d. As a

consequence, increasing the number of degrees of freedom

of a quantummany-body system, e. g., the number of lattice

sitesL, leads to an exponential improvement of the accuracy

(the higher the temperature, the faster), and Eq. (4) becomes

exact in the thermodynamic limit L→∞.

The typicality approximation (4) has proven to be

very useful to calculate equilibrium quantities of quan-

tum many-body systems such as the specific heat, en-

tropy, or magnetic susceptibility [34–37, 41]. For the

purpose of this review, however, it is most important to

note that typicality is not just restricted to equilibrium

properties, but also extends to the real-time dynamics of

quantum expectation values [17, 27–29, 42–44]. This

dynamical version of typicality forms the basis of the

numerical approach to time-dependent correlation func-

tions and out-of-equilibrium dynamics more generally,

which is discussed in Sec. 3.

Let us briefly discuss the relationship between typi-

cality and the ETH [45–47]. The ETH states that the

expectation values of local observables evaluated within

individual eigenstates |n〉 of generic (nonintegrable)

Hamiltonians coincide with the microcanonical ensemble

average at the corresponding energy density,

Ann � 〈n|A|n〉 � Amc(E). (6)

While this fact (i. e., pure states can approximate

ensemble expectation values) appears similar to our dis-

cussion of typicality in the context of Eq. (4), let us stress

that typicality and ETH are two distinct concepts. On the

one hand, while the ETH is assumed to hold for few-body

operators and nonintegrablemodels [5, 48–55], a rigorous

proof for its validity is still absent. On the other hand,

typicality is no assumption and essentially requires the

largeness of the effective Hilbert-space dimension. This

difference becomes particularly clear from the following

point of view: since the distribution of the ak and bk in Eq.

(5) is invariant under any unitary transformation, the state

|ψ〉 is a random superposition also in the eigenbasis of H

(whereas the ETH just refers to single eigenstates). Due

to this randomness, Eq. (4) holds even in cases where

the ETH breaks down, i. e., where the expectation values

of observables exhibit strong eigenstate-to-eigenstate

fluctuations.

Since typicality is independent of the validity of the

ETH, it can be used in integrable or many-body localized

models, where the ETH is expected to be violated [56–59].

As a side remark, typicality can also be used to test the

ETH [60].

Eventually, let us emphasize that the choice of the

specific basis |k〉 in Eq. (5) is arbitrary. Therefore, the

random state |ψ〉 can be conveniently constructed in

the working basis which is used to set up the Hamiltonian

and all other observables. For instance, when working

with spin-1/2 systems, a common choice is the so-called

Ising basis, i. e., the states |k〉 then denote the 2L different

combinations of ↑ and ↓. Naturally, it is possible to

combine DQT with the use of symmetries [61], where a

random state is then drawn independently within each

subsector.

3 DQT as a numerical tool

We now discuss the use of DQT as a numerical method. To

begin with, we discuss in Sec. 3.1 the iterative forward

propagation of pure states in large Hilbert spaces. After-

ward, as a first application, we demonstrate in Sec. 3.2

how typicality can be used to study the (local) density of

states. In Sec. 3.3, we then show how DQT can be used to

evaluate equilibrium correlation functions within the

framework of LRT. Sec. 3.4 is concerned with the out-of-

equilibrium dynamics in certain quantum-quench sce-

narios. Eventually, in Sec. 3.5, we discuss howDQT can be

combined with other approaches such as numerical

linked cluster expansions or projection operator

techniques.

3.1 Pure-state propagation

From a numerical point of view, a central advantage of the

typicality approach comes from the fact that one can work

with pure states instead of having to deal with full density

matrices. This fact leads to a substantial reduction of the

memory requirements, since it is possible to efficiently

generate time and temperature dependencies of pure

states. (Note that, while it is always possible to purify a

density matrix, the DQT approach in contrast does not

require to square the Hilbert-space dimension [62].)

Specifically, let us consider the pure state

|ψβ〉 � e−βH/2|ψ〉 introduced in Eq. (4). The time evolution of

|ψβ〉 is given by |ψβ(t)〉 � e−iHt|ψβ〉. The full evolution up to

time t can be subdivided into a product of consecutive steps,
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|ψβ(t)〉 � (e−iHδt)N |ψβ〉, (7)

where δt � t/N is a discrete time step. If δt is chosen

sufficiently small, there is a variety of methods to

accurately evaluate the action of the matrix exponential

e−iHδt without diagonalization of H. A particularly simple

approach in this context is a fourth-order Runge-Kutta

(RK4) scheme,where the time evolution is approximated as

[28, 29],

|ψβ(t + δt)〉 ≈ |ψβ(t)〉 + ∑
4

k�1

| f k〉. (8)

The four auxiliary states | f 1〉 − | f 4〉 are constructed

according to [28, 29],

| f k〉 �
−iHδt

k
| f k−1〉, | f 0〉 � |ψβ(t)〉, (9)

and the error of the approximation (8) scales as O(δt5).

Note that the RK4 scheme in Eqs. (8) and (9) is equivalent to

a Taylor expansion of the exponential e−iHδt up to fourth

order. Note further that, in complete analogy to the

propagation in real time, the temperature dependence of

|ψβ〉 can be generated by an evolution in small imaginary

time steps iδβ.

Apart from RK4, other common and more sophisti-

cated methods to propagate pure states without diago-

nalization are, e. g., Trotter decompositions [34, 63],

Krylov subspace techniques [64], as well as Chebyshev

polynomial expansions [65–69]. A unifying property of all

these methods and RK4 is the necessity to calculate ma-

trix-vector products, i. e., to evaluate the action of the

Hamiltonian H onto pure states. Importantly, such ma-

trix-vector multiplications can be carried out relatively

memory efficiently thanks to the sparse matrix structure

of H in models with short-range interactions such as

nearest-neighbor couplings. As a consequence, it is

possible to numerically treat comparatively large system

sizes, i. e., with hugeHilbert-space dimensions far beyond

the range of ED.

3.2 Calculating the (local) density of states

As a first useful application, let us describe how pure

states, in combination with a forward propagation in real

time, can be used to evaluate the (local) density of states

[33]. To begin with, we note that the density of states of

some HamiltonianHwith eigenvalues En can be written as

Ω(E) �∑
n

δ(E − En) (10)

�
1

2π
∫
∞

−∞
eitETr[e−iHt]dt, (11)

where we have used the definition of the δ function. In the

spirit of Eq. (4), we can approximate the trace in Eq. (11) by

a scalar product with a randomly drawn pure state |ψ〉,

Tr[e−iHt]∝ 〈ψ|e−iHt|ψ〉 � 〈ψ | ψ(t)〉, (12)

such that Eq. (11) can be approximated as

Ω(E)∝ ∫
+tmax

−tmax

eitE〈ψ | ψ(t)〉dt, (13)

where 〈ψ(0) | ψ(−t)〉 � 〈ψ(0) | ψ(t)〉∗, and tmax is the

maximum time to which |ψ(t)〉 is evolved. Due to this

cutoff time, the resulting energy resolution ofΩ(E) is given

by ΔE � π/tmax. Thus, the density of states of some

Hamiltonian H can be obtained from the Fourier

transform of the survival probability 〈ψ | ψ(t)〉 of a

random pure state [33].

In fact, the relation (13) turns out to be useful for any

arbitrary pure state |ψ̃〉 (which is not necessarily drawn at

random). The local density of states P(E) of |ψ̃〉, i. e., the

spectral distribution of |ψ̃〉, is then defined as

P(E) � ∑
n

|〈n | ψ̃〉 |2 δ(E − En), (14)

where |n〉 are the eigenvectors of H with corresponding

eigenvalues En. Analogous to Eq. (13), P(E) can be written

as the Fourier transform of the survival probability of |ψ̃〉

[33, 70],

P(E)∝ ∫
+tmax

−tmax

eitE〈ψ̃ | ψ̃(t)〉dt. (15)

Relying on the forward propagation of pure states dis-

cussed in Sec. 3.1, it is thus possible to access Ω(E) and

P(E). Note that Eqs. (13) and (15) only provide the overall

shape (within the resolution ΔE) of Ω(E) and P(E), while

single eigenstates are difficult to resolve [71, 72].

As an example, let us consider the spin-1/2 XXZ chain,

H � J ∑
L

ℓ�1
(Sx

ℓ
Sx
ℓ+1 + Sy

ℓ
Sy
ℓ+1 + ΔSz

ℓ
Sz
ℓ+1), (16)

where Si
ℓ
, i ∈ {x,  y,  z} are the components of the

corresponding spin-1/2 operators at the site ℓ, L is the

number of lattice sites, J � 1 describes the antiferromagnetic

coupling constant, and Δ > 0 is the anisotropy in the
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z-direction. In Figure 1, the density of states Ω(E) is shown

for the XXZ chain (16) with L � 24 and Δ � 1.5, obtained via

Eq. (13) with two independently drawn random states |ψ1〉

and |ψ2〉. As can be seen in Figure 1, Ω(E) has a broad and

Gaussian shape. Moreover, Ω(E) is essentially the same for

the two random states, which confirms the accuracy of the

typicality approach. In addition, we show P(E) for a

nonrandom state |ψ3〉, which is sharply peaked at the

borders of the spectrum [71].

3.3 Time-dependent equilibrium
correlation functions

Let us now turn to quantum many-body dynamics within

the framework of LRT. Within LRT, central quantities of

interest are time-dependent correlation functions CAB(t) of

two operators A and B evaluated in equilibrium,

CAB(t) � 〈A(t)B〉eq �
Tr[A(t)Be−βH]

Ƶ
, (17)

where Ƶ is again the canonical partition function as defined

in Eq. (3), and A(t) is the time-evolved operator in the

Heisenberg picture. Analogous to Eq. (4), CAB(t) can be

rewritten according to [27–29],

〈A(t)B〉eq ≈
〈ψβ(t) | A | φβ(t)〉

〈ψβ(0) | ψβ(0)〉
, (18)

where we have introduced two auxiliary pure states,

|φβ(t)〉 � e−iHtBe−βH/2|ψ〉, (19)

|ψβ(t)〉 � e−iHte−βH/2|ψ〉, (20)

and |ψ〉 is a random state drawn from the full Hilbert space,

cf. Eq. (5). Importantly, in contrast to Eq. (17), the time (and

temperature) argument in Eq. (18) is now a property of the

pure states and not of the operators anymore. According to,

e. g., Eq. (8), |φβ(t)〉 and |ψβ(t)〉 can be evolved in real (and

imaginary) time.

In the context of transport, an interesting quantity is

the current autocorrelation functionCjj(t), which is defined

according to Eq. (17) with A � B � j, where j is the current

operator. Note that the Fourier transform of Cjj(t) is related

to the conductivity via the Kubo formula [14, 73].

For concreteness, let us (again) consider the XXZ chain

(16). In this case, the spin current operator j takes on the

form [73],

j � J ∑
L

ℓ�1
(Sx

ℓ
Sy
ℓ+1 − Sy

ℓ
Sx
ℓ+1). (21)

In Refs. [29, 74], Cjj(t)was studied by means of DQT for the

XXZ chain with particular focus on infinite temperature

β � 0. This infinite-temperature current autocorrelation

function is exemplarily shown in Figure 2 for Δ � 1 and

L � 33. To demonstrate the smallness of the statistical error

of DQT, we show results obtained from two independently

drawn random states. As can be seen in Figure 2, both

curves agree very well with each other for this choice of β

and L, even in the semi-logarithmic plot used. (For further

numerical data of Cjj(t) see also Figure 8 below.)

In addition to the XXZ chain, DQT has been used to

study Cjj(t) for a variety of other low-dimensional systems,

such as spin chains with next-nearest neighbor in-

teractions [71] and with spin quantum number S > 1/2 [59],

spin ladders [75–77] (also for energy currents), as well as

Fermi-Hubbard chains [78]. The possibility to calculate

Cjj(t) by means of DQT for large systems and long time

scales has proven to be very useful to extract transport

Figure 1: (Color online) Density of states Ω(E) of a spin-1/2 XXZ

chain with Δ � 1.5 and L � 24 sites, obtained from two independently

drawn random states
∣∣∣∣ψ1〉 and

∣∣∣∣ψ2〉. The local density of states P(E)

is shown for a nonrandom state
∣∣∣∣ψ3〉. Data is adapted from [71].

Figure 2: (Color online) Current autocorrelation function Cjj(t) at

β � 0 for the spin-1/2 XXZ chain with Δ � 1, obtained by DQT for

L � 33 sites. The calculation is done for two independently drawn

states (from the symmetry subsector with momentum k � 0). Data is

adapted from Ref. [74].
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coefficients, including (the finite-size scaling of) dc con-

ductivities, diffusion constants, and Drude weights, for

integrable andnonintegrablemodels [29, 56, 59, 71, 74–78].

Another interesting quantity in the context of transport

are the spatio-temporal correlation functions Cℓ, ℓ′(t) of,

e. g., spin, which are defined according to Eq. (17) with

A � Sz
ℓ
and B � Sz

ℓ′
,

Cℓ, ℓ′(t) � 〈Sz
ℓ
(t)Sz

ℓ′
〉eq. (22)

While a calculation of Cℓ, ℓ′(t) can be done according to Eq.

(18), a simplification is possible at infinite temperature

β � 0. Namely, at β � 0, one can introduce the pure state

[77]

|ψ′(0)〉 �

�����
Sz
ℓ′
+ c

√
|ψ〉������

〈ψ | ψ〉
√ , (23)

where |ψ〉 is again drawn randomly according to Eq. (5),

and the constant c is chosen such that Sz
ℓ′
+ c has non-

negative eigenvalues. Using Eq. (23), one finds

Cℓ, ℓ′(t) ≈ 〈ψ′(t) | Sz
ℓ
| ψ′(t)〉. (24)

Thus, it is possible to calculate Cℓ, ℓ′(t) just from one

auxiliary state [59], in contrast to the current autocorrela-

tions Cjj(t), where two states have to be evolved in time, cf.

Eqs. (19) and (20).

As an example, the equal-site spin-spin correlation

functionCL/2, L/2(t) at lattice site ℓ � L/2 is shown inFigure3 for

spin-1/2 XXZ chains with two different lengths L � 14 and

L � 28 [79]. (Note thatdue toperiodicboundaryconditions, the

specific lattice site ℓ is arbitrary.) As a demonstration of the

accuracy of the DQT approach, the calculation is done for two

independently drawn pure states |ψ〉. While the DQT data

closely follows theexact result atL � 14, the residual statistical

fluctuations disappear almost completely for L � 28. Note that

while we have chosen the XXZ chain to demonstrate the ac-

curacy of DQT for Cjj(t) [Figure 2] and for CL/2, L/2(t) [Figure 3],

similar curves can be obtained for other models and observ-

ables as well. For additional comparisons between DQT data

and exact ensemble averages, see, e. g., Refs. [29, 60].

As another example, the full time-space profileCℓ, L/2(t)

is shown in Figure 4 for a spin-1/2 XXZ chain with next-

nearest neighbor interactions and L � 36 sites [71]. While at

β � 0 different lattice sites are uncorrelated at t � 0, corre-

lations start to build up for t > 0.

A very similar example is shown in Figure 5, where the

spatio-temporal correlations for spin and energy densities

are depicted at fixed times. Yet, the model is a spin-1/2

Heisenberg ladder,

H � J∥ ∑
L

l�1

∑
2

k�1

Sl, k ⋅ Sl+1, k + J⊥ ∑
L

l�1

Sl, 1 ⋅ Sl, 2, (25)

where J∥(J⊥) denotes the coupling on the legs (rungs). The

data in Figure 5 are obtained for J∥ � J⊥ � 1 and L � 20, i. e.,

40 lattice sites in total [77]. For all times shown in Figure 5,

one finds that the profiles Cℓ, L/2(t) are convincingly

Figure 3: (Color online) Equal-site spin-spin correlation function

CL/2, L/2(t) for spin-1/2 XXZ chains (Δ � 1) with (a) L � 14 sites and (b)

L � 28 sites. For L � 14, ED is compared to DQT for two different

random pure states. While ED is unfeasible for L � 28, the statistical

fluctuations of the typicality approximation become negligible for

this system size. Data is adapted from Ref. [79].

Figure 4: (Color online) Time-space plot of the infinite-temperature

spin-spin correlation function Cℓ, L/2(t) � 〈Sz
ℓ
(t)Sz

L/2〉eq for a spin-1/2

XXZ chain of length L � 36, nearest neighbor (Δ � 1.5) and next-

nearest neighbor (Δ′ � 1.5) coupling. Data is adapted from Ref. [71].
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described by Gaussians, which illustrates once again the

high accuracy of the DQT approach in the semi-logarithmic

plot used. Such a Gaussian spreading has been interpreted

as a clear signature of high-temperature spin and energy

diffusion in this and other models [57, 59, 71, 80, 81].

In addition, DQT has been used to obtain spatio-tem-

poral correlation functions Cℓ, ℓ′(t) in a number of other

models. Remarkably, clean Gaussian profiles have been

found in various parameter regimes, even for integrable

models such as the spin-1/2 XXZ chain [57] or the one-

dimensional Fermi-Hubbard model [80]. Other classes of

models which have been studied in this way include the

spin-1 XXZ chain [59] as well as spinmodels with quenched

disorder [59, 82].

3.4 Applications to far-from-equilibrium
dynamics

Nonequilibrium scenarios in isolated quantum systems

can be induced via explicitly time-dependent Hamilto-

nians or, e. g., by means of quantum quenches [83]. For

instance, the system can be initially in an eigenstate of

some Hamiltonian H1 while the subsequent dynamics are

governed by a different Hamiltonian H2.

Here, we discuss an alternative type of quench, where

the system starts in a Gibbs state with respect to (w.r.t.)

some initial Hamiltonian H1 (see Figure 6),

ρ(0) �
e−βH1

Ƶ
. (26)

We then consider a quantum quench, whereH1 is changed

to some other Hamiltonian H2. The system then is in a

nonequilibrium state and evolves unitarily according to the

new Hamiltonian,

ρ(t) � e−iH2tρ(0)eiH2t . (27)

The post-quench Hamiltonian can, for instance, be created

by adding or removing a static (weak or strong) force of

strength ϵ to the initial Hamiltonian, i. e., H2 �H1 ± ϵA,

where the operator A is conjugated to the force [13, 58, 84,

85]. The resulting expectation value dynamics of, e. g., the

operator A is given by

〈A(t)〉 � Tr[ρ(t)A], (28)

and its evaluation in principle requires complete

diagonalization of both H1 and H2. As before, this

Figure 5: (Color online) Spin-spin correlation function Cℓ, L/2(t) at

fixed times, t � 0 (δ peak) and t � 1, 2, 4 (arrow), for a spin-1/2

Heisenberg ladder of length L � 20 (i. e., 40 lattice sites), at high

temperaturesβ � 0. Dashed lines areGaussianfits to the data. Panel

(a) shows spin densities, while panel (b) shows local energies. Data

is adapted from Ref. [77].

Figure 6: (Color online) Sketch of the quench

protocol. The system starts in a Gibbs state

with respect to some initial HamiltonianH1.

For times t > 0, the system evolves unitarily

according to some other HamiltonianH2 as

per ρ(t) � e−iH2t  ρ(0) eiH2t . This protocol

can also be modified by switching back to

the original Hamiltonian H1 (shown in the

upper branch on the right hand side) or by

further changes of the Hamiltonian in time.
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diagonalization can be circumvented by preparing a

typical pure state [13, 43, 58, 84, 85],

|Ψ(0)〉 �
e−βH1/2|ψ〉�����������
〈ψ | e−βH1 |ψ〉

√ , (29)

which mimics the density matrix (26), and the reference

state |ψ〉 is again randomly drawn from the full Hilbert

space, cf. Eq. (5). Both the imaginary-time evolution w.r.t.

H1 and the real-time evolution w.r.t. H2 can be done

following Sec. 3.1. In this way, one gets

〈A(t)〉 ≈ 〈Ψ(t)|A|Ψ(t)〉. (30)

It is worth pointing out that the (simple) quench pro-

tocol above can be modified by additional changes of the

Hamiltonian in time. A static force switched on at time t � 0

can, for instance, be removed again at some later time t > 0,

see also Figure 6. Even for such protocols, the additional

efforts of the DQT approach are minor compared to ED,

where the diagonalization of multiple Hamiltonians has to

be carried out.

In Figure 7, the nonequilibrium dynamics 〈j(t)〉 of the

spin current is exemplarily depicted for a XXZ chain which

is initially prepared in a thermal state at the finite tem-

perature β � 1 (see caption of Figure 7 and Ref. [44] for a

more detailed description of the protocol). Here, the ac-

curacy of the DQT approach is demonstrated by comparing

to data obtained by ED.

3.5 DQT and its extensions

In addition to the direct applications discussed above, DQT

also is a useful tool to “boost” other (numerical or analyt-

ical) techniques, which can profit from accurate data for

large system sizes. Two examples of such techniques,

which have recently been combined with DQT, are nu-

merical linked-cluster expansions (NLCE) and projection

operator techniques.

3.5.1 NLCE

The key feature used in NLCE is the fact that the per-site

value of an extensive quantity on an infinite lattice can be

expanded in terms of its respective weights on all linked

(sub-)clusters that can be embedded in the lattice. While

NLCE is described in detail and generality in [86, 87], this

section focuses on practical aspects of NLCE, particularly on

its combination with DQT to calculate, e. g., current-current

correlation functions of one-dimensional systems. The

starting point of a corresponding NLCE is the expression

〈j(t)j〉eq

L
� ∑

c

LcWc(t), (31)

whereWc is theweight of a cluster cwithmultiplicityLc. To

avoid redundant computations, the multiplicity factor

(divided by the total number of lattice sites) accounts for

all clusters, which are symmetrically or topologically

related to one representative cluster and therefore yield

the sameweight. The weight of each cluster is evaluated by

the inclusion-exclusion principle

Wc(t) � 〈 j(t)j〉
(c)

eq − ∑
s⊂c
W s(t), (32)

where theweights of all embedded clusters s are subtracted

from 〈j(t)j〉
(c)
eq evaluated on the cluster c.

Since the maximum treatable cluster size is naturally

limited by the available computational resources, the sum

in Eq. (31) has to be truncated to a maximum size cmax. In

one dimension, this truncated sum reduces to the differ-

ence of the autocorrelation functions of the two largest

open-boundary chains with length cmax and cmax − 1, i. e.,

∑
c�2

cmax

Wc(t) � 〈 j(t)j〉
(cmax)

eq − 〈 j(t)j〉
(cmax−1)
eq . (33)

As demonstrated in Ref. [88], this rather simple formula

can have a better convergence towards the thermodynamic

limit than a standard finite-size scaling at effectively equal

computational cost.

Figure 7: (Color online) Out-of-equilibrium dynamics of the spin

current j in the spin-1/2 XXZ chain with Δ � 0.5 and L � 16, starting

from a thermal state with β � 1. For times 0 < t < 5, an external force

acts on the system, which gives rise to an additional term∝ j within

the Hamiltonian. Results from the typicality approach are compared

to ED. DQT data are averaged over N � 100 random initial states and

the shaded area indicates the standard deviation. Data is adapted

from Ref. [44].
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As shown in Figure 8, the current autocorrelation

function for the spin-1/2 Heisenberg chain directly ob-

tained by DQT for a large system with L � 36 still exhibits

notable finite-size effects for times t > 20, whereas corre-

sponding DQT + NLCE data is already converged for these

times. Due to the truncation to a maximum cluster size

cmax, however, the expansion eventually breaks down and

only yields reliable results up to a maximum time, which

increases with cmax [88–90]. For the specific example in

Figure 8, this maximum time is tmax ∼ 40 for the maximum

cluster size cmax � 39 calculated.

When studying thermodynamic quantities, for which

the NLCE was originally introduced, using larger cluster

sizes similarly improves the convergence of the expansion

down to lower temperatures [87, 91]. Either way, it is thus

desirable to access cluster sizes as large as possible andDQT

can be used to evaluate the contributions of clusters beyond

the range of ED. Since the difference in Eq. (33) could be

sensitive to small statistical errors, it might be recom-

mended to average the DQT results over multiple random

pure states, in particular in higher dimensions, where the

NLCE expression is not just a single difference.

3.5.2 Projection operator techniques

The DQT approach can also be used in the context of pro-

jection operator techniques, e. g., the so-called time-con-

volutionless (TCL) projection operator method. These

techniques can be applied to situations where a closed

quantum system with Hamiltonian H0 is perturbed by an

operator V with strength λ, such that the total Hamiltonian

takes on the form

H �H0 + λV. (34)

In this setting, one then chooses a suitable projection on

the relevant degrees of freedom to obtain a systematic

perturbation expansion for the reduced dynamics.We refer

to [92–95] for a detailed description of the TCL method and

do not discuss it here in full generality.

Choosing a simple projection onto A only and consid-

ering the specific initial conditions ρ(0) ∼ A yields in sec-

ond order of the perturbation [92, 95]

〈A(t)〉H � 〈A(t)〉H0
exp[− λ2 ∫

t

0

dt ′ γ2(t′)], (35)

where the second-order damping rate γ2(t) is given by

γ2(t) � −∫
t

0

Tr{[A,  VI(t′)][A,  V]}

〈A2〉
dt′ (36)

and the index I indicates operators in the interaction

picture.

The calculation of Eq. (36) can be conveniently done

using typical states and becomes especially simple in the

case where the observable of interest is conserved under

the unperturbed Hamiltonian, i. e., [A,  H0] � 0. By

definingK � [A,  V] andKI(t) � eiH0tKe−iH0t, the numerator

of Eq. (36) can be calculated as

Tr[KI(t)K]∝〈ψ(t)|K|φ(t)〉, (37)

with the auxiliary states

Figure 8: (Color online) Current-current correlation function

〈j(t)j〉eq/L in the XXZ chain (Δ � 1) at β � 0. Dashed line indicates

data obtained by DQT for L � 36 and periodic boundary conditions.

Solid lines are obtained by the combination of DQT and NLCE for

expansion orders cmax � 18,  32,  34,  36,  38,  39 (arrow). Data is

adapted from Refs. [88, 92].

Figure 9: (Color online) Current-current correlation function for

spin-1/2 XX ladders (J∥ � 1) with different interchain couplings J⊥
(shifted for better visibility). Symbols denote exact data obtained by

DQT for length L � 14, i. e., 28 spins in total. The solid lines indicate

the prediction from the (second order) TCL projection operator

method, cf. Eq. (35). Data is adapted from Ref. [92].
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|ψ(t)〉 � e−iH0t|ψ〉, (38)

|φ(t)〉 � e−iH0tK|ψ〉. (39)

In [92], the quality of the second-order prediction

(35) was numerically studied for the example of the

current autocorrelation functions 〈j(t)j〉eq in spin-1/2

ladder systems, where the interactions on the rungs

of the ladder are treated as a perturbation to the

otherwise uncoupled legs. As depicted in Figure 9, the

second-order prediction agrees convincingly with exact

data obtained by DQT for different strengths of the

perturbation.

4 Conclusion

To summarize, we have discussed several applications of

DQT and its usefulness as a numerical approach to the real-

time dynamics of quantum many-body systems. The main

idea of this typicality approach is to approximate ensemble

expectation values via single pure states which are

randomly drawn from a high-dimensional Hilbert space. In

particular, time (temperature) dependencies of expectation

values can be obtained by iteratively solving the Schrö-

dinger equation in real (imaginary) time, e. g., by means of

Runge-Kutta schemes or more sophisticated methods.

First, we have described that DQT can be used to study

the (local) density of states as well as equilibrium corre-

lation functions for long time scales and comparatively

large system sizes beyond the range of standard ED.

Especially in the context of transport, the calculation of

current autocorrelations and density-density correlations

by means of DQT is possible. Furthermore, we have out-

lined that DQT is suitable to investigate also the far-from-

equilibrium dynamics resulting from certain quench pro-

tocols. For instance, an initial Gibbs state is properly

imitated by a typical pure state and nonequilibrium con-

ditions are induced by removing or adding an external

force. Eventually, we have discussed that DQT can addi-

tionally be combined with other approaches. As one

example, we have shown that the convergence of NLCE can

be improved by evaluating the contributions of larger

clusters by means of DQT. As another example, we have

discussed that DQT allows to compute memory kernels

which arise in projection operator methods such as the TCL

technique.

While this paper has illustrated the usefulness of DQT

for selected applications in the context of transport and

thermalization, we should stress that there certainly are

other applications of DQT which have not been mentioned

by us. One such application, as done in, e. g., [96], is the

spreading of quantum information measured by so-called

out-of-time-ordered correlators (OTOCs) of the form [97],

C(t) �
Tr[A(t)BA (t)B]

d
, (40)

where the operators A and B are, for instance, local

magnetization densities Sz
ℓ
at two different lattice sites.

Similar to the correlation functions discussed in Eq. (17),

the OTOC in Eq. (40) can be approximated as the overlap

C(t) ≈ 〈ψ2(t) | ψ1(t)〉 of the two auxiliary states |ψ1(t)〉�

A(t)B|ψ〉 and |ψ2(t)〉 � BA(t)|ψ〉, where |ψ〉 is again a

Haar-random state [96].

In conclusion, the concept of DQT offers a rather sim-

ple yet remarkably useful approach to study the real-time

dynamics of quantum many-body systems. It is our hope

that the examples discussed in this paper motivate its

application in other areas as well.
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