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Abstract: Quantum state tomography (QST) refers to any method that allows one to reconstruct
the accurate representation of a quantum system based on data obtainable from an experiment. In
this paper, we concentrate on theoretical methods of quantum tomography, but some significant
experimental results are also presented. Due to a considerable body of literature and intensive
ongoing research activity in the field of QST, this overview is restricted to presenting selected
ideas, methods, and results. First, we discuss tomography of pure states by distinguishing two
aspects—complex vector reconstruction and wavefunction measurement. Then, we move on to the
Wigner function reconstruction. Finally, the core section of the article is devoted to the stroboscopic
tomography, which provides the optimal criteria for state recovery by including the dynamics in the
scheme. Throughout the paper, we pay particular attention to photonic tomography, since multiple
protocols in quantum optics require well-defined states of light.
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1. Introduction

The goal of quantum state tomography (QST) is to reconstruct an accurate repre-
sentation of a physical system. There are many possible mathematical representations
of a quantum system, including the quantum wavefunction, the state vector, the Wigner
function, and the density matrix [1,2]. As a result, there is a wide range of methods and
techniques related to QST [3]. The importance of QST is associated with the need to
manipulate well-characterized quantum objects, which is particularly relevant to quan-
tum key distribution [4] and quantum computing [5], including linear optics with photon
counting [6].

Via QST, any state of a microscopic system, including the spin of an electron or the
polarization of a photon, can be characterized using an ensemble of identical particles.
Quantum measurements of distinct types provide different information about the state.
It is analogous to classical tomography that can investigate a three-dimensional object by
scanning it from different physical perspectives [7,8].

The simplest algorithm for QST relies on linear inversion. This method leads to an
explicit formula for the tomographic reconstruction of the density matrix. However, due to
measurement uncertainties, the result of linear inversion may not satisfy the conditions that
are necessary for any density matrix of a physical system [9]. To avoid this problem, we can
apply methods that can reliably estimate the density matrix based on data burdened with
experimental errors. In this context, we often talk about maximum likelihood estimation
(MLE), which guarantees positivity and normalization of the result, with the additional
benefit of a substantial reduction in statistical errors [10,11]. The concept of MLE has
evolved into many specific methods, including superfast MLE [12], hedged MLE [13], and
the scalable maximum likelihood algorithm [14]. Apart from MLE, one can also follow
the least-squares method [15] or χ2-estimation to obtain an unknown state [16]. Different
estimation methods used in QST can be compared in terms of their efficiency [17].
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The stroboscopic approach to quantum tomography, which is discussed in the core
section of the paper, originated in 1983 when A. Jamiołkowski published a theorem on
the minimal number of distinct observables required for tomography of systems evolving
according to the von Neumann equation [18]. The approach was developed in subse-
quent articles and applied to open quantum systems with evolution given by the Gorini–
Kossakowski–Sudarshan–Lindblad (GKSL) generators [19–21]. Among other things, a
general formula was proved for the minimal number of distinct observables for quantum
tomography of systems with evolution given by the GKSL generator [22].

In the stroboscopic tomography, we assume that the source can repeatedly prepare
quantum systems in the same unknown initial state ρ(0). Thus, the researcher has access to
a large number of identically prepared copies. Each individual system is measured only
once. For this reason, we can neglect the changes in the state due to measurements. This
assumption is in line with other models of QST, where an ensemble of multiple equally
prepared systems is required to obtain information about a quantum system.

In Section 2, we discuss tomography of pure states, paying special attention to phase
retrieval [23]. Then, in Section 3, measurement of the Wigner function is presented. Finally,
in Section 4, we focus on stroboscopic tomography while discussing concepts related to
mixed state reconstruction. In each section, particular consideration is devoted to the
tomography of quantum states encoded on photons.

2. Quantum Tomography of Pure States

A quantum system is said to be pure if we have unambiguous knowledge about the
state of the system. In such a case, the properties of the system are encoded in the state
vector, i.e., a complex normalized vector |ψ〉 that belongs to a Hilbert space H such that
dimH = d < ∞ (in this paper we do not consider Hilbert spaces of infinite dimension).
Mathematically, the Hilbert spaceH is isomorphic with the space of complex vectors Cd.
Throughout the paper, we follow the Dirac notation and denote the inner product by 〈ψ|φ〉.
By convention, in quantum mechanics, the scalar product is defined to be linear in the
second argument [24].

If the basis of the Hilbert spaceH is given, we can represent any vector |ψ〉 ∈ H as a
linear combination of the basis vectors:

|ψ〉 = ∑
i

ci|ki〉, (1)

where |ki〉 are the basis elements and ci are complex coefficients. In physical terms, we
say that |ψ〉 has been expressed as a quantum superposition of the states |ki〉. Usually, we
operate with an orthonormal basis, which means that 〈ki|k j〉 = δij and ci = 〈ki|ψ〉.

In quantum mechanics, the decomposition (1) plays an important role in the theory of
measurement. To be more specific, if we take such basis vectors {|ki〉} that are the eigen-
vectors of a certain observable that is measured on the state |ψ〉, then the probability that
the measurement gives |ki〉 can be expressed by |ci|2. In particular, we are often interested
in the position basis, which consists of eigenvectors |r〉 (corresponding to eigenvalues
r). If the basis elements |r〉 are non-degenerate, any state vector |ψ〉 is equivalent to a
complex-valued three-dimensional function:

ψ(r) ≡ 〈r|ψ〉, (2)

which is called the wavefunction corresponding to the state |ψ〉. As a result, we can
conclude that under these assumptions, the wavefunction can be considered the accurate
representation of a pure quantum system.

Therefore, when it comes to pure states, in this section, we shall review quantum to-
mography methods concerning the reconstruction of both the state vector and the quantum
wavefunction. Although these two quantum representations can be treated as equivalent
under specific circumstances, the tomography methods are different because of the distinct
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mathematical nature of these objects—the first is a vector, and the second is a complex
function. The methods and results outlined in the two subsequent parts are only a small
fraction of the whole picture.

2.1. Complex Vector Reconstruction

In the case of pure state tomography, we are analyzing the problem of recovering a
complex vector from experimentally accessible data—it is commonly referred to as phase
retrieval [25]. The very same type of research problem is investigated in many other
areas of science, including pure mathematics [26], speech recognition [27], ptychographic
microscopy [28], and signal processing [29,30]. Thus, there is vast literature concerning
phase retrieval. In recent years, it has been indicated that the problem of complex vector
reconstruction can be efficiently studied within the theory of frames; see, for example,
references [31,32]. This concept has led to numerous applications in physical sciences. For
example, in quantum optics, frames have been proposed as an efficient tool for determining
the quantum state of photons [33–35].

Let us start with the following definition.

Definition 1 (Frame). By an N-element complex frame in Cd we mean a set of complex vectors
that span Cd. A frame is denoted by Θ = {|θ1〉, . . . , |θN〉}, where |θi〉 ∈ Cd and i = 1, . . . , N.

In other words, a frame is a collection of vectors that provide a robust and usually
non-unique representation of vectors from the analyzed space [33]. We say that a frame
Θ generates intensity measurements {mi(|x〉)} for any complex vector |x〉 from the same
space. The intensity measurements are represented by mi(|x〉) := |〈θi|x〉|2 for i = 1, . . . , N.
These figures can be interpreted in two ways. On a purely mathematical level, mi(|x〉) is
the squared modulus of the inner product of |x〉 with the corresponding frame vector. In
physics, for any two state vectors, the inner product 〈ψ|φ〉 is typically interpreted as the
probability amplitude for the state |φ〉 to collapse into the state |ψ〉 [1]. Therefore, on the
grounds of quantum physics, mi(|x〉) represents the result of a projective measurement
performed on the state |x〉 with the measurement operator Πi = |θi〉〈θi|.

Then, we ask whether the non-linear map JΘ defined by a frame Θ

JΘ : |x〉 →
(
|〈θi|x〉|2

)
i=1,...,N

(3)

is sufficient to determine the complex vector |x〉. General criteria for complex vector recon-
struction remain unknown. Let us revise recent theoretical results and their applications to
photonic state tomography.

We say that phase retrieval is feasible when for a fixed set of intensity measurements,
we can get vectors that differ only by a scalar of norm one. In other words, if |x〉 and |x′〉
denote the results of vector reconstruction, then |x〉 = eiω |x′〉 where ω ∈ R [36]. This
statement is in line with the convention of quantum information theory, where the overall
phase factor is neglected, since it does not affect the result of a projective measurement. In
other words, it is possible to reconstruct a complex vector |x〉 if and only if the non-linear
map JΘ (generated by a frame Θ) is injective. Throughout the paper, we say that the
frame Θ generates (or defines) injective measurements to refer to the situations when phase
retrieval is feasible.

A relevant research problem of phase retrieval relates to the minimal number of
elements in the frame to guarantee the reconstruction of a complex vector. In reference [32],
A. S. Bandeira et al. proposed a conjecture according to which a frame that comprises less
than 4d− 4 vectors cannot define injective intensity measurements if we want to reconstruct
a vector |x〉 such that |x〉 ∈ Cd. Furthermore, also in reference [32], the authors formulated
the second part of the conjecture that a generic frame consisting of 4d− 4 vectors (or more)
generates injective measurements on Cd. The latter part of the conjecture was proved
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in [36], where it was demonstrated that the map JΘ is injective for a generic frame Θ with
at least 4d− 4 elements.

However, the first part of the conjecture from reference [32] has been rejected. In
reference [37], the author proved a result that contradicted the hypothesis on the number
4d− 4 vectors being a threshold for phase retrieval. C. Vinzant proposed a frame in C4

that consisted of 11 vectors and proved that it generated injective measurements on C4.
Consequently, this result is highly significant, as it shows that the figure 4d− 4 cannot be
considered the boundary number of intensity measurements.

As a consequence, the current knowledge about phase retrieval does not give a precise
answer to the problem: for a complex vector space Cd, what is the minimal number of
elements of the frame Θ so that the map JΘ can be injective? For physical applications,
it would be desirable to know how many intensity measurements are needed, in general,
to reconstruct an unknown complex vector. Nevertheless, in [32], the authors proposed
a relatively efficient way to verify whether a frame Θ generates injective measurements.
Their approach is presented below as a theorem.

Theorem 1 (Bandeira et al. 2014 [32]). A frame Θ = {|θ1〉, . . . , |θN〉} (where |θi〉 ∈ Cd) defines
injective measurements, which implies that one can reconstruct an unknown vector |x〉 ∈ Cd based
on |〈θi|x〉|2 where i = 1, . . . , N, if and only if the linear space

LΘ := {Q ∈ Cd×d : 〈θ1|Q|θ1〉 = . . . = 〈θN |Q|θN〉 = 0} (4)

does not contain any non-zero Hermitian matrix of the rank ≤ 2.

Theorem 1 precisely states the sufficient condition that has to be satisfied so that a
frame Θ defines injective measurements, and as a result, it is possible to reconstruct a
complex vector on the basis of the intensity measurements generated by the frame. One can
quickly verify for a given frame Θ whether the condition (4) is satisfied or not. However,
there has been no proposition concerning the procedure of how to algebraically construct
such a sufficient frame.

The theory of frames has been applied to the QST of pure states. In reference [34], two
models of qubit tomography were compared—one was constructed based on four frame
vectors that correspond to the symmetric, informationally complete, positive operator-
valued measure (SIC-POVM) [38], whereas the other scheme utilized an overcomplete frame
with six vectors taken from mutually unbiased bases (MUBs) [39]. The latter measurement
is particularly important for quantum optics because the vectors from MUBs are usually
used to reconstruct the polarization state of light, since they represent vertical/horizontal,
diagonal/antidiagonal, and right/left circular polarization states [40]. Such a method can
be used not only for qubit tomography but also for polarization-entangled photon pairs.
It was demonstrated experimentally that the MUBs significantly improve the fidelity in
two-qubit polarization state estimation [41].

In reference [34], both detection models (SIC-POVM and MUBs) were implemented
numerically for QST of single photons with simulated measurement results that were
distorted by dark counts and the shot noise. The results demonstrated that the overcomplete
frame had only a slight advantage over the minimal frame.

Furthermore, in reference [35], the scope of analysis was extended by proposing a
similar model for 4-level quantum systems, and particular attention was paid to entangled
photon pairs. In that paper, two frames were again compared—one was the minimal frame
for C4 introduced by C. Vinzant [37], and the other contained 20 vectors from the MUBs
associated with C4. The results showed a modest advantage of the overcomplete frame
over the minimal one.

In conclusion, in the case of pure state tomography, there is a long-standing debate
about the minimal number of projective measurements required to achieve this goal. The
5-bases based pure-state quantum tomographic method (5BB-QT) is one of the proposals
for selecting vectors sufficient for QST [42]. The 5BB-QT method requires five observables,
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or equivalently, 5 d projective measurements. This proposal was subsequently improved by
demonstrating that fewer measurements also suffice for the pure state reconstruction. In
reference [43], the authors proved that three measurement bases (3 d projectors) could be
effectively implemented for QST. First, the measurement results of 2 d projectors are used
to generate a set of 2d−1 pure states. Then, the maximum value of the likelihood function is
evaluated using the measurement results of the remaining d projectors, which leads to the
state that fits optimally to the data. Other modern methods of QST enable approaching the
Gill–Massar lower bound, which is a fundamental limit for the estimation accuracy of pure
quantum states in high dimensions [44].

2.2. Wavefunction Measurement

One of the first problems of quantum tomography was formulated in 1933 when
W. Pauli asked whether the quantum wavefunction of a physical system could be uniquely
determined by its position and momentum probability distributions [45,46]. The difficulty
stems from the complex nature of the quantum wavefunction—from an experiment, one can
get real values, which implies that we need special methods to reconstruct the wavefunction
from such data. In this context, we can also talk about phase retrieval, since the key problem
in the wavefunction measurement relates to determining the phase factor.

Currently, it is commonly known that in general, Pauli’s problem is not uniquely
solvable for an arbitrary wavefunction [45,47]. The Gerchberg–Saxton algorithm is one of
the tools that allow one to compute the quantum wavefunction when it is feasible [48]. The
algorithm is iterative and requires repeatedly performing the Fourier transform and its
inverse. This method has been widely applied in all areas of science where the problem
of phase retrieval occurs. In optics, not only does it apply to the photonic wavefunction
reconstruction [49], but it also applies to image recovery [50].

For a long time, it was believed that there could exist only indirect methods of wave-
function reconstruction. However, in 2011, J. S. Lundeen et al. demonstrated that the
quantum wavefunction could be measured in a direct way by implementing the concept
of weak measurement [51]. Since 2011, their approach has received much attention, and
many other tomography models based on weak measurement have been proposed. Some
researchers consider weak measurement as a tool to increase the efficacy of the quantum
tomography process, whereas others look at this approach more critically [52].

In spite of the critics, the approach to quantum tomography that is based on the weak
measurement has been successfully developed and generalized so that it can be applied to
density matrix reconstruction as well [53,54].

3. Wigner Function Measurement

Apart from the state vector and the wavefunction, there is another quantum represen-
tation that deserves to get special attention. The Wigner function, which can be defined
for both pure and mixed states, was introduced by E. Wigner in 1932 to study quantum
corrections to classical statistical mechanics (for a review on the Wigner function, one
can see, for example, reference [55]). Due to its ability to describe quantum phenomena
by using the classical-like concept of phase space, the Wigner function seems to be an
appealing approach to the mathematical description of quantum systems [56].

The definition of the Wigner function combines the distributions of the quantum
particle’s coordinate and momentum in terms of the wavefunction (in the most basic
version, the quantum wavefunction is 1-dimensional) [56]:

W(x, p) =
1
π

∫ ∞

−∞
ψ∗(x + y)ψ(x− y)e2ipy dy, (5)

where ψ(x) denotes the wavefunction; x and p stand for position and momentum, respec-
tively. W(x, p) is a real-valued function but is not everywhere positive. Therefore, the
expression (5) is commonly called the Wigner quasiprobability distribution. It was proved
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by E. Wigner that the position and momentum distributions are given by the marginals
of (5):

|ψ(x)|2 =
∫ ∞

−∞
W(x, p)dp and |ϕ(p)|2 =

∫ ∞

−∞
W(x, p)dx. (6)

In 1949, J. Moyal proved that the Wigner function provides the expectation value of
any quantum observable by phase space integration with an appropriate Wigner–Weyl
ordered expression [57]. Ever since, the Wigner function has played a major role in the
phase space formulation of quantum mechanics [58,59].

The definition of the Wigner function given in (5) can be generalized in such a way
that it also relates to a mixed quantum state characterized by the density matrix ρ:

W(x, p) =
1
π

∫ ∞

−∞
〈x + y|ρ|x− y〉e2ipy dy, (7)

which means that the Wigner function can be understood as a more general representation
than the state vector and the wavefunction.

The definition given in (7) is called the Wigner transformation of the density matrix
and can be perceived as the inverse of the Weyl transform (which maps functions in the
quantum phase space formulation into operators acting in the Hilbert space).

The Wigner function received experimental significance in the 90s due to the introduc-
tion of optical homodyne tomography [60]. The researchers proposed a complete quantum
procedure to obtain the density matrix of a quantum system from experimental data. The
method is not straightforward and requires a sophisticated algorithm to process the data.
The experiment provides the probability distributions of quadrature-field amplitude. The
Wigner function is reconstructed from its marginal projections, which are related to the
statistics of a selected sample of homodyne events. The technique allows one to obtain both
the Wigner function and the density matrix of the mode.

The method of optical homodyne tomography was developed in [61]. The authors
provided a complete experimental characterization of a family of squeezed states of light.
In another significant article [62], the researchers introduced the first method of direct
measurement of the Wigner function of a light mode. The main advantage of the technique
is the fact that it does not require a complicated numerical algorithm to obtain the Wigner
function from experimental data, since it is based on photon counting. The Wigner function
at a fixed phase space point can be considered a well-defined quantum observable. What is
more, this observable can be measured for optical fields by implementing an arrangement
employing an auxiliary coherent probe beam. Then, the Wigner function is measured at the
point in the phase space that is indicated by the amplitude and the phase of the probe field.
The experiment from reference [62] was limited by the efficiency of the detectors (avalanche
photodiodes), since the equipment was not able to resolve the number of simultaneously
absorbed photons. However, continuous progress in single-photon detection technology
has led to significant improvements in the capabilities of the off-the-shelf detectors [63].

Apart from quantum optics, the Wigner function is also relevant to atomic physics.
Clusters of atoms can feature interference and diffraction phenomena, just like waves of
light. For a coherent beam of helium atoms, the Wigner function was reconstructed, in
a double-slit experiment, from measurements of the quantum-mechanical analog of the
classical phase-space distribution [64]. This experiment demonstrated that beams of atoms
behave in a strongly non-classical manner.

4. Stroboscopic Quantum Tomography of Mixed States

In the case of mixed states, the goal of quantum tomography is to determine (recon-
struct) the density matrix ρ of a quantum system on the basis of data accessible from an
experiment. There is a fundamental assumption connected with the methods described
in the paper—we expect that the source can repeatedly perform the same procedure of
preparing quantum systems in an identical (but unknown) quantum state. Therefore, we
are able to have a relatively large number of identical quantum systems at our disposal.



Optics 2022, 3 274

As a result, each physical copy of the quantum system is measured only once, and for
that reason, we do not take into account the post-measurement state. In this context, we
often talk about an ensemble of identical quantum states that is necessary to reconstruct a
quantum state.

For comparison, we distinguish two approaches to the problem of density matrix
reconstruction. The first approach to quantum tomography is called static, and in this case,
there is no connection between tomography and the evolution of the quantum system;
see more in Section 4.1. The other approach, which is the center of attention of this
paper, is called stroboscopic tomography and is discussed in Section 4.3. The fundamental
assumption behind the latter method claims that we know how the system changes over
time. A model of evolution is applied to a set of identically prepared quantum systems, and
then we can perform measurements of some selected observables at distinct time instants.
Naturally, as it has already been mentioned, each physical copy is measured only once.

The main hypothesis behind the stroboscopic approach to quantum tomography
states that the knowledge about evolution can improve the effectiveness of quantum state
reconstruction; i.e., performing the same kind of measurement at different time instants
(on distinct physical copies but identically prepared) can provide more information about
the initial quantum state than a single measurement. In quantum tomography, there is
a tendency to look at the problem from the point of view of economy of measurements,
which means that one would like to reconstruct the initial density matrix by measuring
the minimal number of distinct observables. Each Hermitian operator is associated with a
distinct physical quantity, and each measurement requires, in general, preparing a different
experimental setup. Therefore, the stroboscopic approach to quantum tomography can
be considered more economical, as it aims to determine the optimal criteria for quantum
state reconstruction.

4.1. Static Approach to Quantum Tomography of Mixed States

It is well-known that the concept of the Bloch vector can be applied in order to obtain
a description of a d-level quantum system [65]. By using a proper set of matrices, we are
able to decompose any density matrix in such a way that it depends directly on measurable
quantities. Any density matrix associated with the Hilbert spaceH such that dimH = d
contains, in general, d2 − 1 independent parameters. Therefore, in this approach, one
needs to find d2 − 1 observables (i.e., Hermitian operators) that can be used as a basis for
density matrix decomposition. Let us denote those observables by λ̂i, and λ̂∗i stands for
the Hermitian conjugate. The observables suitable for such a decomposition of ρ are the
generators of the special unitary group of degree d, which is denoted by SU(d). The SU(d)
group consists of d × d unitary matrices with determinant 1. The dimension of SU(d)
as a real manifold equals d2 − 1.Topologically, SU(d) is compact and simply connected;
see more in reference [66]. Based on the properties of SU(d), we can enumerate a set of
conditions that the observables λ̂i have to satisfy [67]:

1. λ̂∗i = λ̂i,

2. Tr λ̂i = 0,

3. Tr
(
λ̂iλ̂j

)
= 2δij,

4.
[
λ̂i, λ̂j

]
= 2 i fijk λ̂k,

5.
{

λ̂i, λ̂j
}
=

4
d

δij Id + 2 gijk λ̂k,

where fijk denotes the completely antisymmetric tensor and gijk the completely symmetric
tensor. If the operators λ̂i have been selected so that they satisfy the above conditions, one
is able to write a formula for the density matrix in the following way [67]:
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ρ =
1
d
Id +

1
2

d2−1

∑
i=1

βi λ̂i, (8)

where Id denotes the identity operator and βi = Tr(ρλ̂i). The vector defined as s :=
(β1, β2, . . . , βd2−1), which consists of the expectation values of the operators λ̂i, is usually
referred to as the Bloch vector (or coherence vector). The decomposition (8) means that if
the basis λ̂i is established, any density matrix is fully characterized by the mean values of
the observables λ̂i. The formula (8) shows a direct link between the concept of the density
matrix understood as a mathematical representation of a quantum system and real values
coming from experiments.

To reconstruct the unknown density matrix ρ, one needs to determine an information-
ally complete set of observables, and this role can be fulfilled by λ̂1, λ̂2, . . . , λ̂d2−1. Then,
one finds the mean value of each observable measured on the state ρ. We should bear in
mind that the number of distinct observables required for quantum tomography in this
approach increases quadratically. For this reason, the problem of determining ρ, which
may belong to a high-dimensional Hilbert space, appears rather demanding. Therefore,
there is a need to develop more effective methods of quantum tomography.

In the static approach to the tomography of 2-level systems, we can take the set of
the Pauli matrices, denoted by {σ1, σ2, σ3}, as the required observables; see, for example,
reference [7]. The reconstruction of the density matrix is possible due to the decomposition
in the basis {I2, σ1, σ2, σ3} that takes the form

ρ =
1
2

(
I2 +

3

∑
i=1

si σi

)
, (9)

where si is the expectation value of σi in state ρ.
Let us clarify that we do not have to directly measure the expectations values {s1, s2, s3}

related to the Pauli matrices. For example, the polarization state of light can be characterized
by the Stokes parameters [7]

s1 = 〈D| ρ |D〉 − 〈A| ρ |A〉 ,

s2 = 〈R| ρ |R〉 − 〈L| ρ |L〉 ,

s3 = 〈H| ρ |H〉 − 〈V| ρ |V〉 ,

where |H〉, |V〉, |D〉, |A〉, |R〉, and |L〉 denote the horizontal, vertical, diagonal, anti-
diagonal, right-circular, and left-circular polarization states, respectively.

Thus, in the static approach to qubit tomography, we have to perform three different
measurements to reconstruct the density matrix of our system. In general, for a d-level
system, we need to measure d2− 1 different observables—more about the general approach
can be found in references [67,68]. This observation implies that the standard approach can
be challenging, in particular, for high-dimensional quantum states.

Additionally, in a realistic scenario, one usually performs d2 measurements to ensure
proper normalization. As a result, the qubit decomposition (9) can be rewritten [9]:

ρ =
1
2

3

∑
i=0

Si
S0

σi, where σ0 := |H〉 〈H|+ |V〉 〈V| ≡ I2. (10)

A realistic representation of the coefficients can be expressed as

S0 = N (〈H| ρ |H〉+ 〈V| ρ |V〉), S1 = N (〈D| ρ |D〉 − 〈A| ρ |A〉),
S2 = N (〈R| ρ |R〉 − 〈L| ρ |L〉), S3 = N (〈H| ρ |H〉 − 〈V| ρ |V〉),

where N is a constant that depends on the detector efficiency and light intensity.
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Due to the quadratic increase in the number of observables needed for state tomog-
raphy, there is a need to develop methods that operate with fewer measurements. In this
paper, we investigate whether we can reconstruct an unknown density matrix ρ from
an informationally incomplete set of observables {Q1, . . . , Qr} (where r < d2 − 1). This
problem has considerable significance from both theoretical and experimental points of
view. One way to state explicit conditions required to perform quantum tomography with
such a set is to follow the stroboscopic approach to quantum tomography [18].

4.2. Measurement in the Stroboscopic Quantum Tomography

In the paper, we assume that the measurable information about a quantum system is
provided from an experiment by mean values of certain observables Q1, . . . , Qr. Mathemat-
ically, measurement results can be computed through the formula:

〈Qi〉 = Tr(Qi ρ), (11)

where Qi is a self-adjoint operator that represents a particular physical quantity.
The very same approach to quantum measurement was applied to many other physical

problems; see, for example, reference [69], where mean values were used in the context
of NMR spectroscopy. In reference [69], the authors presented a computational model
in which the result of measurement is the expectation value of the observable. This
approach is connected with the fact that NMR is a bulk phenomenon—an aggregate signal
from an ensemble of particles is necessary for practical observation. Thus, the result of
a measurement of an observable is not a random eigenvalue, but it is the expectation
value of the observable evaluated on the ensemble. Such a computational model can be
realized by NMR spectroscopy on macroscopic ensembles of quantum spins. The model
introduced in reference [69] can be understood as an NMR computer—a macroscopic
analog of the quantum computer. This approach to quantum computing realization was
quickly developed; cf. reference [70].

As it has been already mentioned, in the case of ensemble quantum tomography,
we assume that we have a large number of identically prepared systems at our disposal.
Similarly to [69], we assume that we can access the knowledge about the mean values
of certain observables {Q1, . . . , Qr}, which mathematically relate to the density matrix ρ
according to the formula (11).

Furthermore, the model requires assuming that the expectation values can be measured
up to arbitrarily high precision (the same assumption can be found in [69]), which implies
that the problem of measurement inaccuracy is not considered. The mean values of selected
observables are treated as specific values that can be accessed from an experiment, and the
problem of ensemble quantum tomography focuses on determining the relation between
the set of mean values of the observables and the unknown density matrix ρ.

4.3. Stroboscopic Approach to Quantum Tomography of Mixed States

In the paper, we elaborate on the stroboscopic approach to quantum tomography,
which was first proposed in reference [18] and then expanded in references [22,71]. In the
stroboscopic approach, we consider a set of observables {Qi}r

i=1, where we assume that
r < d2 − 1, which means that the set of observables is not informationally complete and
a single measurement of the mean value of each observable does not provide sufficient
knowledge for the initial density matrix reconstruction.

However, each of the observables can be measured at several time instants {tj}s
j=1.

Every measurement provides the expectation value of the observable that can be denoted
by Ei(tj). Based on the Born rule, we represent the measurements as Ei(tj) = Tr(Qiρ(tj)).
Since, in this approach, the measurements are performed at different time instants, it is
necessary to assume that we can precisely describe the dynamics of the quantum sys-
tem. In particular, the stroboscopic tomography is formulated on the assumption that
the GKSL quantum generator [19–21] is known or, equivalently, the collection of Kraus
operators. Knowledge about the evolution makes it possible to determine not only the
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initial density matrix ρ(0), but also the complete trajectory of the state since one can com-
pute ρ(t) = exp(Lt)[ρ(0)], where L stands for the GKSL quantum generator. To make the
problem of state reconstruction clearer, from now on, we assume the following definition;
see, for example, reference [22].

Definition 2. A d-level open quantum system is said to be (Q1, . . . , Qr)-reconstructible on an
interval [0, T] if there exists at least one set of time instants {tj}s

j=1 ordered as 0 ≤ t1 < . . . <
ts ≤ T such that the trajectory of the state can be uniquely determined by the correspondence

[0, T] 3 tj → Ei(tj) = Tr(Qiρ(tj)) (12)

for i = 1, . . . , r and j = 1, . . . , s.

The results that we collect from the measurements can be presented in a matrix form as
E1(t1) E1(t2) · · · E1(ts)
E2(t1) E2(t2) · · · E2(ts)

...
...

. . .
...

Er(t1) Er(t2) · · · Er(ts)

. (13)

Then, we consider a fundamental question of the stroboscopic tomography.
What conditions should be satisfied so that we can reconstruct the initial density

matrix ρ(0) for a given quantum generator L based on the measurement record presented
in (13)?

Other relevant questions that are studied within the stroboscopic tomography concern
the minimal number of observables for a given quantum generator L, the properties of
observables, and the minimal number of time instants—and which ones. The general
criteria for quantum tomography of systems with a given GKSL generator have been
determined and are recapped here by formulating theorems. The proofs can be found in
other papers; for examples, see references [18,22,71].

Theorem 2 (The index of cyclicity). For a quantum system with evolution given by a linear
master equation of the form

dρ(t)
dt

= L [ρ(t)], (14)

where L denotes the generator of evolution in the GKSL form [19–21], the minimal number of
distinct observables required to reconstruct the density matrix ρ(0) is denoted by η and can be
computed from [22]:

η := max
λ∈σ(L)

{dim Ker(L− λI)}, (15)

where σ(L) denotes the spectrum of the generator of evolution (i.e., the set of all eigenvalues of L)
and I is the identity operator. The figure defined in (15) is termed the index of cyclicity.

According to Theorem 2, for every generator of evolution, there always exists a set of
η observables such that the system is (Q1, . . . Qη)-reconstructible. Moreover, if the system
is also (Q1, . . . Qη′)-reconstructible, then η′ ≥ η. Naturally, it does not mean that any η
observables suffice to reconstruct ρ(0). The necessary condition for the set of observables
can be obtained through the algebraic analysis of measurement results.

It is worth noting that the definition of the index of cyclicity is formulated based on
the spectrum of the generator of evolution L. Every linear operator can be transformed
into its matrix representation, which allows us to study algebraic properties of L. However,
starting from 5× 5 matrices, we do not have general formulas to compute the eigenvalues.
Nevertheless, by making specific assumptions about the structure of the generator, we are



Optics 2022, 3 278

able to determine the value of the index of cyclicity even in the case of dimH = d, and for
generators that depend on parameters; see, for example, reference [71].

The index of cyclicity is the most important factor that indicates the performance of
the stroboscopic tomography because it tells how many different self-adjoint operators we
have to measure to be able to reconstruct the initial density matrix. From the experimental
point of view, this figure indicates how many distinct experimental setups we would have
to prepare to perform state tomography. The index of cyclicity is a natural number from the
set {1, 2, . . . , d2− 1} (where d = dimH), and the lower the number, the more advantageous
it is to employ the stroboscopic approach instead of the standard static tomography. It is
worth noting that generators such that η = 1 are known as the optimal evolution models
for quantum tomography. Specific forms of such generators have been determined for
dimH = 2 and dimH = 3 [72]. To sum up, the performance of the framework presented
in this section depends on the properties of the evolution of an open quantum system that
are encoded in the GKSL generator.

Another problem that we investigate relates to the necessary condition that the mea-
surement operators (Q1, . . . Qη) have to satisfy so that the system with dynamics given by
(14) can be (Q1, . . . Qη)-reconstructible. First, by 〈A|B〉, let us denote the Hilbert–Schmidt
inner product in the space B(H), which is defined as

〈A|B〉 = Tr(A∗ B). (16)

Furthermore, one can notice that assuming the evolution is given by (14) with the
GKSL generator, the formula for ρ(t) at an arbitrary time instant can be expressed in terms
of the semigroup:

ρ(t) = exp(Lt)[ρ(0)] =
∞

∑
k=0

tk

k!
Lk [ρ(0)]. (17)

However, the expansion (17) does not bring any progress to the problem of quantum
tomography, as it contains an infinite sum. There are two ways to simplify this formula
and make it more applicable. One way would be to apply the Cayley–Hamilton theorem,
and the other approach would be to introduce the notion of the minimal polynomial.
We shall focus on the latter, as it enables one to represent the exponential form of an
operator by the lowest number of elements in the sum. There are many mathematical
papers presenting algebraic methods that can be employed to analyze the properties of the
minimal polynomials of evolution generators—e.g., references [73,74].

Let us denote by µ(ζ,L) the minimal polynomial of the generator of evolution L. Let
us also assume the structure of the polynomial by:

µ(ζ,L) =
m

∑
k=0

dk ζk, (18)

where m, throughout this section, stands for the degree of the minimal polynomial and
dm = 1 (the minimal polynomial is always monic). Sometimes, it is written that m =
deg µ(ζ,L).

The generator L has to satisfy its minimal polynomial, which means that

m

∑
k=0

dkLk = 0.

Consequently, the mth power of L (and every higher power) can be represented as
a linear combination of L0,L1, . . . ,Lm−1. For the mth power of L, we can easily get the
formula by means of the coefficients of the minimal polynomial in the following way:

Lm = −
m−1

∑
k=0

dkLk. (19)
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Therefore, the semigroup from (17) can be rewritten by using a finite number of
elements:

Φ(t) = exp(Lt) =
m−1

∑
k=0

αk(t)Lk, (20)

where αk(t) are some time-dependent functions, and it can be proved that they are mutually
linearly independent [75].

Interestingly, there exists an explicit relation between the set of functions {αk(t)} and
the coefficients {dk} of the minimal polynomial of L. If we calculate the time derivative of
the map from (20), we obtain:

d Φ(t)
d t

=
m−1

∑
k=0

d αk(t)
d t

Lk, (21)

but, on the other hand, the same derivative can be expressed as:

d Φ(t)
d t

= L exp(Lt) =
m−1

∑
k=0

αk(t)Lk+1

=
m−2

∑
k=0

αk(t)Lk+1 + αm−1(t)Lm

=
m−2

∑
k=0

αk(t)Lk+1 −
(

m−1

∑
k=0

dkLk

)
αm−1(t),

(22)

where the last expression has been obtained by substituting Lm with the formula based on
the minimal polynomial (19). If we compare the expressions (21) and (22), we obtain a set
of differential equations that demonstrate the interdependence between the coefficients of
the minimal polynomial of L and the functions {αk(t)} [71]

d α0(t)
d t

= −d0 αm−1(t),

d α1(t)
d t

= α0(t)− d1 αm−1(t),

d α2(t)
d t

= α1(t)− d2 αm−1(t),

...

d αm−1(t)
d t

= αm−1(t)− dm−1 αm−1(t).

(23)

The functions {αk(t)} can be computed from the above set of differential equations,
provided the structure of the minimal polynomial of the generator L is known. Thus, the
ability to determine, for a given generator of evolution, the structure of its minimal polyno-
mial, appears to be one of the crucial algebraic methods that are required to implement the
stroboscopic approach to quantum tomography.

Assuming that we can calculate the functions {αk(t)}, which constitute the map Φ(t)
according to (20), we can expand the formula for the results of measurements (12) in the
following way:

Ei(tj) = Tr(Qiρ(tj)) = 〈Qi|ρ(tj)〉 = 〈Qi|Φ(tj)[ρ(0)]〉 =
m−1

∑
k=0

αk(tj)〈Qi|Lk[ρ(0)]〉

=
m−1

∑
k=0

αk(tj)〈(L∗)k[Qi]|ρ(0)〉,
(24)

where L∗ is the dual operator to L, or in other words, L in the Heisenberg representation.
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Therefore, the measurement record generated in the time domain (13) allows us to
calculate the projections 〈(L∗)k[Qi]|ρ(0)〉 for k = 0, 1, . . . , m− 1 and i = 1, 2, . . . , η. It can be
observed that the initial state ρ(0) (and consequently the trajectory ρ(t) ≡ exp(Lt)[ρ(0)])
can be uniquely determined if and only if the operators (L∗)k[Qi] (for k = 0, 1, . . . , m− 1
and i = 1, . . . , η) span the vector space of all self-adjoint operators on H. This space
shall be denoted by B∗(H) and will be referred to as the Hilbert–Schmidt space. Now,
if the evolution of the system is given by (14), this observation can be presented as a
formal theorem.

Theorem 3. The quantum system is (Q1, . . . Qη)-reconstructible if and only if the operators
{Q1, . . . , Qη} satisfy the condition [22]

η⊕
i=0

Km(L, Qi) = B∗(H), (25)

where
⊕

denotes the Minkowski sum of subspaces, m is the degree of the minimal polynomial of L,
and Km(L, Qi) denotes the Krylov subspace that is defined as

Km(L, Qi) := Span
{

Qi,L∗[Qi], (L∗)2[Qi], . . . , (L∗)η−1[Qi]
}

. (26)

Remark 1. In the Theorem 3 by Q0, we denote an identity matrix of the appropriate dimension.
One can notice that for any generator of evolution L, we have Km(L, I) = I.

When discussing the usefulness of the stroboscopic tomography, it is important to
notice that if we consider a Hermitian operator Q̃ that belongs to the invariant subspace
of the Heisenberg generator L∗, then Km(L, Q̃) = Q̃. Therefore, repeated measurements
of the same observable Q̃ do not lead to projections of ρ(0) into distinct operators. To
benefit from the stroboscopic approach, we can allow for only such observables that do not
belong to the invariant subspace of L∗. Thus, if one considers the implementation of the
stroboscopic tomography in an experiment, its performance depends on whether we can
implement such measurement operators that do not belong to the invariant subspace of the
Heisenberg generator.

The last theorem that will be presented in this section gives the condition for the choice
of time instants. Assuming that for a given generator of evolution L, we can determine the
index of cyclicity η and a set of observables {Q1, . . . , Qη} that satisfy the condition in the
Theorem 3, then the last question that should be answered relates to the number and the
choice of time instants {t1, . . . , ts}. If the mean value of each observable Qi is measured at s
time instants {t1, . . . , ts}, then we get a set of s equations:

Ei(t1) =
m−1

∑
k=0

αk(t1)〈(L∗)k[Qi]|ρ(0)〉,

Ei(t2) =
m−1

∑
k=0

αk(t2)〈(L∗)k[Qi]|ρ(0)〉,

...

Ei(ts) =
m−1

∑
k=0

αk(ts)〈(L∗)k[Qi]|ρ(0)〉,

(27)



Optics 2022, 3 281

which can be combined into one matrix equation:
Ei(t1)
Ei(t2)

...
Ei(ts)

 =


α0(t1) α1(t1) . . . αm−1(t1)
α0(t2) α1(t2) . . . αm−1(t2)

...
...

. . .
...

α0(ts) α1(ts) . . . αm−1(ts)



〈(L∗)0[Qi]|ρ(0)〉
〈(L∗)[Qi]|ρ(0)〉

...
〈(L∗)m−1[Qi]|ρ(0)〉

. (28)

On the left-hand side of the matrix Equation (28), we have a vector that contains the
data accessible from an experiment, whereas on the right-hand side there is a matrix [αk(tj)]

multiplied by the vector that comprises the projections 〈(L∗)k[Qi]|ρ(0)〉. From the physical
point of view, the optimal situation takes place when the matrix [αk(tj)] is square and
invertible. Then, one can solve the Equation (28) by multiplying it by the matrix inverse
to [αk(tj)]. Thus, we can conclude that in the optimal case, the number of time instants
is equal to the degree of the minimal polynomial of L, i.e., s = m. We can formulate the
following theorem.

Theorem 4. For a quantum system that is (Q1, . . . , Qη)-reconstructible and evolves according
to the GKSL Equation (14), we can determine the initial density matrix ρ(0) if the time instants
{tj}m

j=1 satisfy the condition [71]:
det
[
αk(tj)

]
6= 0, (29)

where
[
αk(tj)

]
is a m×m matrix. In the above relation, αk(tj) denotes the functions that appear in

the polynomial representation of the semigroup Φ(t) = exp(Lt); see (20).

In this section, the theoretical foundations of the stroboscopic tomography have been
revised. To sum up, we may conclude that to construct a complete quantum tomography
model for a specific generator of evolution, we can follow a four-step procedure.

1. Calculate the index of cyclicity for the generator L according to Theorem 2.
2. Select η distinct observables such that the condition from Theorem 3 is satisfied.
3. Determine the degree and the coefficients of the minimal polynomial of L; then, select

m time instants in such a way that det
[
αk(tj)

]
6= 0 (i.e., follow Theorem 4).

4. Write η matrix equations of the form (28), and by solving them, calculate the projec-
tions 〈(L∗)k[Qi]|ρ(0)〉 (where k = 0, 1, . . . , m− 1 and i = 1, . . . , η).

If we select a very specific generator of evolution, it may be possible to construct a
complete quantum tomography model, which means that at every step we will be able to
obtain a concrete result, and at the end, we will get an explicit formula for the unknown ini-
tial density matrix ρ(0). However, for high-dimensional cases or for parametric-dependent
generators of evolution, we may have to narrow the analysis only to formulating existential
theorems or performing only one step of the procedure (such as determining the minimal
number of distinct observables required for quantum tomography).

There are two well-known GKSL generators of evolution that were thoroughly studied
in the context of the stroboscopic tomography.

In 1983, the optimal criteria for quantum tomography of systems with evolution given
by the von Neumann equation were introduced in reference [18]. The author assumed that
the quantum system is isolated, and the evolution of its density matrix can be expressed by
the equation:

d ρ(t)
d t

= L[ρ(t)] = −i[H, ρ(t)], (30)

where H is the system’s Hamiltonian. Then, the minimal number of distinct observables
required for quantum tomography was determined on the basis of the algebraic properties
of the Hamiltonian. In general, one would have to distinguish between the geometric and
the algebraic multiplicity of the eigenvalues of H. In the stroboscopic tomography, we take
into account the geometric one; see (15). However, in the case of self-adjoint operators (for
example, the Hamiltonian), both multiplicities are equal. If we assume that the spectrum of
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H consists of ξ unique eigenvalues, i.e., σ(H) = {λ1, . . . , λξ}, and to each eigenvalue λi we
can assign its geometric multiplicity ni, then we can formulate the following theorem.

Theorem 5 (Index of cyclicity for the von Neuman generator [18]). Let S denote an isolated
quantum system described by a Hamiltonian H. The minimal number of distinct observables
{Q1, . . . , Qη} such that the system S can be (Q1, . . . , Qη)-observable is given by the formula:

η =
ξ

∑
i=1

n2
i , (31)

where
ni = dim Ker (λiI− H) and i = 1, . . . , ξ. (32)

Apart from the explicit formula for the index of cyclicity of the generator in the
von Neumann form (30), in reference [18] the author also formulated the necessary and
sufficient conditions concerning the choice of the observables.

In 2004, the stroboscopic approach was applied in order to introduce a dynamic quan-
tum tomography model for d-level systems governed by the Gaussian semigroup [71]. The
GKSL generator of evolution, in this case, can be expressed by means of a
double commutator:

dρ(t)
dt

= L[ρ(t)] = 1
2
{[H, ρ(t)H] + [Hρ(t), H]} =

= −1
2
[H, [H, ρ(t)]].

(33)

Assuming again that the spectrum of H consists of ξ unique eigenvalues, i.e.,
σ(H) = {λ1, . . . , λξ}, and each eigenvalue has a corresponding multiplicity ni, we can
notice that the spectrum of the generator L is expressed by:

σ(L) = {uij ∈ R : uij = (λi − λj)
2, for i, j = 1, . . . , ξ}. (34)

In this case, it is not possible to uniquely determine the multiplicities of the eigenvalues
of L without making further assumptions. In reference [71], the author analyzed the worst-
case scenario such that the eigenvalues of H constituted an arithmetic sequence:

λk = λ1 + (k− 1)c, (35)

where k = 1, . . . , ξ and c is a positive constant. This assumption concerning the eigenvalues
of H was necessary to obtain a formula for the index of cyclicity of the generator (33).

Theorem 6 (Index of cyclicity for the Gaussian semigroup [71]). Let S denote a d-level open
quantum system with evolution given by the GKSL generator of the form (33). The index of cyclicity
of the generator L can be computed from the formula:

η = max{κ, γ1, . . . , γr}, (36)

where r = ξ−1
2 if ξ is odd or r = ξ−2

2 when ξ is even. Figures κ and γk are defined based on the
multiplicities of the eigenvalues of H:

κ =
ξ

∑
i=1

n2
i ,

γk =
ξ−k

∑
i=1

nini+k.
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Apart from the theorem on the minimal number of observables for quantum tomog-
raphy of d-level systems with evolution given by (33), in reference [71], the author also
proved a theorem regarding the choice of the moments of measurement.

Finally, let us notice that the stroboscopic tomography, which was originally formu-
lated for systems with dynamics given by a GKSL generator, inspired a dynamic approach
to state reconstruction of systems subject to pure decoherence (phase-damping channels).
In this case, the dynamical map representing the trajectory of the state is expressed by
the Hadamard product of the initial state with a time-dependent matrix that contains
information about the interactions. By implementing algebraic properties of the Hadamard
product, it was possible to propose a comprehensive model for dynamic state recovery [76].
The model was utilized to solve several QST problems, including systems governed by the
Gaussian semigroup (33), which is also an example of pure decoherence. In this way, an
alternative theoretical approach confirmed the result presented in Theorem 6; see more in
reference [76].

The research into the stroboscopic approach to quantum tomography is strictly con-
nected with other modern methods of quantum tomography. The postulate to measure the
ensemble average of quantum states for certain observables is widespread and has been
applied in numerous models of quantum tomography; see, for example, reference [77],
Chapter 2 of reference [78], or reference [79]. In the latter reference, a noteworthy QST
scheme was introduced—the observables whose expectation values were assumed to be
achievable from an experiment were constructed as projectors. This method was devised
as a minimalistic and experimentally feasible scheme for the reconstruction of a density
operator describing the state of a single optical field mode.

5. Conclusions and Outlook

Quantum tomography has become a key component of emerging quantum technology,
since it allows one to characterize quantum states, processes, and devices. A wide scope of
applications drives the search for tomographic methods that achieve better efficiency and
precision. In this paper, we have reviewed some results on quantum state reconstruction.
These methods provide complete information about a microscopic system by determining
its mathematical representation. In particular, we focused on the tomography of state
vectors, the quantum wavefunction, the Wigner function, and the density operator. Many
specific examples of photonic systems characterization were discussed. Finally, stroboscopic
tomography was revised in connection with the possibility of reducing the number of
measurements needed for state recovery. Utilizing the knowledge of the system’s dynamics
appears to be one of the ways to perform economical state reconstruction.

Multiple quantum tomography schemes start from the assumption that we can use a
set of informationally complete measurement operators; see, for example, references [80,81].
The stroboscopic approach differs considerably from such models, as with it we assume
that the initial set of observables is not complete. However, knowledge about the evolution
of the system allows us to generate a set of data that is sufficient for state identification. In
this regard, stroboscopic tomography is not the only framework that implements quantum
dynamics. For example, it was demonstrated that suitable unitary dynamics could facilitate
quantum state distinguishability [82]. Moreover, quantum state reconstruction can be
conducted from a measurement record obtained as a sequence of expectation values of an
observable evolving under repeated application of a single dynamical map [83]. Further-
more, continuous measurements on an ensemble of evolving cesium atomic spins have
been performed to obtain the quantum state from incomplete data [84]. In the future, we
can expect that the importance of QST frameworks enhanced by quantum dynamics will
increase due to the ability to characterize quantum states with incomplete measurements.
In addition, measurements generated in the time domain can open up future research fields
for quantum tomography. This relates to situations where the state is well defined, but its
dynamics remains unidentified. In such cases, the measurement record in the time domain
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can provide information about the system’s Hamiltonian or Kraus operators, which is
known as quantum process tomography.

Rapid experimental progress of quantum-enhanced technologies leads to an increased
demand for efficient methods of quantum state reconstruction. Recent proposals have
indicated that machine learning methods can shape the future of quantum tomography.
In particular, Bayesian models have been intensively studied, since they can optimize
the data collection process by adaptive measurements in state reconstruction; see, for
example, references [85,86]. Finally, neural networks were proposed to facilitate QST in
high dimensions. Recent experiments have proved that a neural network architecture
can provide a reliable tool for QST [87]. We can forecast that if dynamic QST models are
combined with machine learning algorithms, it will lead to further improvement in the
subfield of quantum state reconstruction.
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