
1

Selected Ingredients in End-User Programming

Moshe M. Zloo/

Principal Architect, Hewlett-Packard Laboratories

1501 Page Mill Road, PaloAlto, CA 94304 USA

Tel: (650) 857-7485 E-mail: zloof@hpl.hp.com

Abstract

In the area of human computer interaction, over the last twenty years, we have
witnessed considerable progress in an ever-ina-easing bandwidth from the computer

to the user. ApplicatiCll saeens evolved from static text CIlly saeens to interactive
GUI saeens. These saeens contain nmnerous graphical element (I' "widgets",
supporting multiple data types, such as text, voice, image, and video. The widgets
can range from simple ones like a combo box or slida' to more complicated OCX's
such as interactive graphs (l'maps.

On the other hand, the tools to program this application arc still in the dcmain of
programmers. Although there has been much progress in various RAn tools, visoallanguage
and 4GL to improve case of use, they still mostly target programmers. We believe that in
order to allow end-users to develop their own advanced UI applications, it is necessary to

c:rcate higher-level application abstractions ea' 'algebra' f<r stating the application in a

declarative manner. This can be compared to the relational algebra opcraUrs in the data base
area. They were c:rcated as abstractions f<r data base qocrics, enabling end users to exp-css

their own queries in a declarative manner. In doing so, bugs arc mjnimia and program

modifications and maintenance becomes trivial. In this paper, we will motivate the reader to

sec the need fea' these abstractions and classify them into catcgmes, emphasizing areas ripe

f<r fm'ther research.

Keywords

WYSIWYG Programming, Application Abstractions, Declarative Programming

Visual Database Systems 4 Y. loannidis & W. Klas (Eds.)

© 19981F1P. Published by Chapman & Hall

4 Part One Invited Talk

INTRODUCIION

Over the last twenty years, we have wiblessed considerable progress in increasing
the computer-to-human and human-to-computer bandwidth. Business applicatioos
evolved from static screens, with primarily text and tabular records, to sophisticated
interactive GUI screens. These screens containing numerous graphical data
elements or "widgets" support multiple data types such as text, voice, image, or
video. The widgets range from simple ooes like a field, a combo-box or a slider, to
more complicated OCX' s such as graphs, and maps; to even new objects that use

novel visualization techniques like glyphs or other metaphors to depict dynamic
statistical data fall under the category of widgets.

Unfortunately, the tools and languages available to create such applications are still
in the domain of professional programmers. Because of the general-purpose nature
of many RAD tools such as VisnalBasic (1), JavaSaipt, and other 4GL and visual
languages (2), (3), very few cater to real end users. Most of them improved the
textual linear programming by adding tool bars of various widgets that the user can
drop 00 the screen, Fig. 1. Nooetheless, the inter-widget events that take place
when me interacts with these widgets, have to be coded by professional
programmers, the back of Fig. 1.

Current State of RAD Programming

Granted, some improvements have been made by introducing various WIZARDS to
improve the programmer's task, but in almost all cases, programmers still have to

Selected ingredients in end-user programming 5

delve into the code arena. On the other hand, systems targeted to end-users are quite
specialized and limited to a particular Application Domain such as FABRIK (4) or
LabVIEW (5). Perhaps the ooly programming environment that can really be
tooted as an end user tool is the spreadsheet. It is in a way, very general purpose
because it can be applied to a myriad of domains. Yet it is limited to the structure of
the spreadsheet grid. We believe there is a class of applications in the area of
advanced GUI, which can go beyond the power of spreadsheets and sIill remain in
the realm of end-users. It has applicability domains similar to spreadsheets. In order
for end users to create their own advanced GUI applicatioos, it is necessary to create
higher-level application abstractions or 'algebra' for staling the behavior of the
application in a declarative manner. This is alien to the creatioo of data base query
abstractions so end
users can express queries in a declarative manner.

APPLICATION CHARACl'ERISTICS

Before describing the abstractioos, let us elaborate 00 the characteristics of these
applications. Ben Shneidaman of the University of Maryland, in his Data Type
Taxonomy of Information Visualizations, (6) argues that a good advanced graphical

user interface for multidimensiooal data visualization must allow the user to 1)
overview the data, 2) zoom, 3) filter, 4) get deIails-on-demand 5) relate: view

relaliooships among items, 6) keep historY, and 7) issue parameterized queries.
Normally, these functiooalityS have to be programmed and hardwired for each
application. What we are after is a set of algebra or abstractioos that allow an end
user to build applications of the above power declaratively. These applications have
the following characteristics:

1. Allow the creation of multiple interactive GUI screens with multiple
data and control widgets.

2. Allow browsing, navigatioo and updating of the data.

3. Data sources can come from such multiple sources as databases,

spreadsheets, or instruments.
4. Can be either deployed as a stand-alme applicalim, client, server,

Intranet or Internet

APPLICATION ABSTRACTIONS

Abstractlom In Programming Laaguages.

The concept of abstractions in p"ogramming language is not new. Even early
programming languages had them such as data types, functims, etc. Later in

6 Part One Invited Talk

object-oriented languages. abstractions such as inheritance and encapsuJatioo were
introduced to facilitate the programmer's task to write and maintain repetitive code.

Abstracticp in DBMS:

Pri<r to relational data base management systems (DBMS), the task to program a
data base applicatioo was quite tedious since it dealt with every aspect of the
process, writing low-level code, specifying the selection path and code to optimize
the program code f<r recovery. The advent of DBMS's enabled the programmers to

write declarative programs (SQL. QBE) and basically state queries in a declarative

'what-you-want' manner. The rest, such as choosing selectioo paths, opbmizatioo,

concurrency and recovery, was relegated to the DBMS, thus eliminating the
necessity of programming it !<r each application. However, in <rder to express a

program in a declarative manner, it was necessary to create many data base
abstractions. Examples of such abstracti.oos are: re1atiooal algdn operators;

SELECI10N, JOIN, and PROJECI10N and keys. Pri« to introducing the JOIN
operatOr, !<r example, programmers had to CCDlDlunicate with each other and the
end-user using the semantics of the JOIN. By explicidy introducing the JOIN
abstraction and defining its formal semantics, a CCDlDlOO ground was aeated f<X'
programmers and end-users to communicate in a declarative manner when using
me of the operators as part of the query. Other abstracti.oos are concepts such as
key attributes (i.e., cannot bave duplicates), !<reign key attributes, groupings, and
abstractions !<r modifying the database (such as cascade delete, <r restrict delete).

GUI Application Abstl'actIons

As mentiooed earlier, in <rder to faciUtate the tedious programming eiIM to build
an advanced OUI application, we need to create abstracti.oos at the application level.
The nature of these abstractions must be as follows:

1. They bave to be declarative - i.e., stating 'wbat-you-want' declaratively.
2. They must make sense to end-users, i.e., you can easily explain the

semantics of the abstractions and the user can re1ate to them.

3. Translate into considerable amount of code otherwise it does not make
sense to introduce a new concept that can otherwise be expressed with a

few Jines of code.
As we sball see, nmoally these absttactioos take advantage of coostraints imposed

by the underlying systems <r the data sources.

AREAS OF ABSTRACI'IONS

In aeating abstractioos !<r the class of applicatioos mentiooed above, we identified
five areas within which abstracti.oos are necessary if we want to eliminate 1he

Selected ingredients in end-user programming 7

drudgery of writing code. If you take Ihem collectively, Ihey constitute an 'algebra'

by which end-users can aeate Ihese advanced user interface applications. In this

section, we are going to list Ihese areas and motivate Ihe need for Ihese absttactioos.
But we will address only one in detail- namely Ihe Interaction Absttactions.. The
description of Ihese absttactioos is quite informal and it will be motivated by
examples of why we believe it

Radonale fOl' the Need of the Abstracdom

When Ihere is a large body of multimedia data to be visualized or 'rendered' on Ihe

normally limited saeen or multiple saeens, it is obvious Ihat one cannot present Ihe

entire data in one shot. Consequently, various graphical elements "widgets" like

combo boxes, outliners, and sliders were invented to facilitate the presentation by
displaying at anyone time, a subset of the data. The combo box, for example,
selectively picks a data value from a list, which may have an effect on data,
presented in olher widgets. Picking, for example, a customer name from a combo

will cause Ihe list of ordered products to change for that customer. Moving a knob

on a slider can dynamically filter and eliminate data presented in oIher widgets (as
in dynamic queries)(7). The outliner, on the oIher hand. opens and closes various

directories to save real estate space and also to prevent clutter if all directions were

opened at Ihe same time. Traditiooal programming using a state of the art Gm
builder would require the following steps:

1. Place Ihe widgets on Ihe saeen; i.e., paint Ihe saeen.
2. Program each event f<X' Ihe widgets, wherein Ihe semantics of Ihe interactions

are specified. These include changing data in oIher widgets and
reslrictinglfacilitating Ihe choices of interactims in widgets, Fig. 1.

This type of event programming deals with not only Ihe inter-widget relationships
but also with the idiosyncrasies of the individual widgets and Ihe windowing
envirooment Thus, Ihe resulting code is fairly cmnplex. Further, Ihe semantics of
interacting wilh a widget can potentially affect Ihe data in many oIher widgets. As a

result, the programming complexity grows nm-linearly with the number of widgets

on Ihe saeen. Users/customers telllhe programmers how each saeen must behave

and after it is programmed; Ihe user may tune it by new requirements, which may

require additional programming oc modification of the existing programs.
Furtherm<X'e, any future extensims becoole very tedious because the programmers

who wrote the 'initial code' may not be with Ihe company anymore and very few

programmers like to delve into oIher people's code. And Ihat is why maintenance

of Ihese applicatims cost s m<X'e than Ihe initial development. If one can analyze
and classify the variety of widgets and Ihe interactions that me wants and aeate a
rich set of interactiOll absttactims that cover 80%- 90% of what people normally
need and want, then it becomes relatively easy to specify in a declarative manner

8 Part One Invited Talk

these interactions without the aid of a programmer. Then it becomes the system's
responsibility to translate it into code. Thus, by trial and error, one can get to the

optimal running program. Changing the program becomes like editing a document
because all the user has to do is to substitute one abstraction for another. Thus we

need abstractions in the areas of abstracting for graphical data elements (widgets),

inter-widget interactions, display abstractions, logic abstractions and data source
abstractions.

Area 1: Abstractions for Graphical Data Elements (widgets)

In our definitions, widgets can range from simple graphical elements like a field, a

com~box, a slider to multidimensional widgets like a table, a graph cross-tabs to
more specialized OCX's like interactive maps, glyphs, timeIiners, etc. Without

creating abstractioos for these widgets, each has to be programmed independently

and any import of a new widget into the repertoire of widgets becomes quite

tedious. These widgets can be classified into categories through a set of behavioral
properties: 1) can the widget represent a set (I singleton, 2) can it represent

duplicates, 3) can it represent instances or ranges of data and, 4) can you select a
value or multi-value. Once these properties are identified, not only can the intra
widget behavior be characterized but also the inter-widget behavior can be implied.
For example, if a set of values is rendered in a text-box, which usually can only
represent a singleton value, then the system must provide some means to navigate to
other values in the data such as backJnext buttons. Further, extending the system to
include new widgets can be made semi-automatic using these widget properties. As

a result of this widget categorization, a Gill program has been defined to have
appropriate meaning fir all possible combinatioos of properties. In other words, the
semantics of the program is not based 00 the individual idiosyncrasies of any widget
such as text-box or radio button but of some generic properties. We conclude from
this observation that any widget in a given screen can be replaced by any other
widget and the "meaning" of the new program can be appropriately defined; i.e., the
system will manage the intra-widget and inter-widget behavior appropriately.
Furthermore, if we add some intelligence to the widgets to automatically scale
themselves acc(Iding to the cardinality of the data, it will save the designer the job

of having to specify it.

Area 2: Inter-widget Abstractions

As men timed earlier, when as entire screen is populated with various widgets that

are linked to data sources, each interaction with a widget may affect the data in

other widgets. Furthermore, it is possible that the user is interacting with a pair of
widgets at a time such as dragging some elements from one widget and dragging it

Selected ingredients in end-user programming

on another widget. Here we give the rationale for creating enough absttactions so
that inter-widget event programming will not be needed for 90% of the cases.

Abstractions for a single widget interaction

1. Nested levels hierarchy abstraction

9

In order to make the interaction with the screen widgets ma-e manageable, inter

widgets effects in any rendering are typically localized by some grouping of

widgets that are either visually or semantically obvious to the user. Sub-forms and
two-level forms are examples of this type of grouping. Such groups are necessary
because if every widget can potentially affect every other widget on the screen then
the rendering is likely to become incomprehensible. But groups of widgets can

affect other groups, which means that the same incomprehensibility problem for

widget can also affect the groups, if there are lots of groups. In a-der to avoid this

===- ===-
-_. ___ ::.lII

~'-.'.-.""
-_. -_.

~ I,gll
Fig. 2: Nested Levels

recurrent problem, groups are typically hierarchically a-dered in most renderings
and groups can only affect the groups below and not vice versa. Such a hierarchical
decomposition of the set of widgets on the saeen is an assumption widely used in
rendering applications. We make the same assumption and term. each group in the
hierarchy a LEVEL (Fig. 2). The rendering semantics can be recursively defined

based on the hierarchy and the semantics of a single level. Note that specifying the
levels can be done graphicallya- by declaring the parent of each widget. A

selection in multiple widgets in a level constitutes a conjunct filter to the levels

below. In this way, by systematically going down the hierarchy and selecting data
instances from various widgets, one can zoom at the desired data in the lower
levels. This is the technique used in dynamic query interfaces. Note that ifthe
designer drags a widget from one level to another. the entire underlying code
changes but the designer is not aware armis because he/she is using the level
abstraction.

10 Part One Invited Talk

2. Inter-widget Abstractions within a Single Level

We have grouped the widgets by levels, where a selection in multiple widgets in

one level constitute a conjunct filter to the data in the levels below. The question is
how does a widget affect other widgets in the same level? After careful analysis,

we identified three categories that a designer may want to use to affect the inter

widget behavior depending on the requirements of the application. We demonstrate

this by an example. In Fig. 3, we have three screens all of which have two levels

but are part of three different applications. In the first contact application we have
two widgets, Subject and Date. This level category is called SYNCHRONIZED

because when a subject is picked, the Date value changes to synchrmize it with the
database record. Similarly, if the user picks a Date value first, the subject changes
to Synchronize with the database. In the real estate application below, a different
behavior is required. This level category is called ANCHORED. When you pick a

price for a house, you don't want the number of bedrooms to change. In other

words, these selections are independent of each other and choice in one has no

effect on the others. The third category found in the Video applicatioo 00 the right

is called REDUCED. This category makes sense when the volume of data is large.

If you pick a "Action" under category and then click on "Actors", you expect the set

of actors to be reduced to only those appropriate for actioo movies. Similarly, if

you start with "Actors" first, by picking a particular actor and click on category, the
system should reduce the set to only categories of that actor. At first glance, it may

seem that the two widgets could have been placed in two different levels but then

~. ~.

IFl. Ilulr I

Fig. 3: Inter-widget abstractions in a single level

you are constrained to filter from the top level. Whereas what we have here is like a

dynamic hierarchy, i.e., you can start from any widget It can be argued that these

three categories are comprehensive for most renderings. Thus, the inter-widget
effects of any interactioo can be expressed by declaring the category of the level.
Note that a category of any level can be changed to another and the net effect is to

Selected ingredients in end-user programming

give a new behavior amongst the widgets in the level. This is true irrespective of

the set of widgets in that level.

Since these abstractions are not available in RAD programming, the programmei'
bas to write code for every event. Specifically, in the example of REDUCABLE
level, if you have ten widgets in a level and the designel' adds an eleventh me, the
code that was written for those ten widgets bas to be cbanged to acammlJdate the
introduction of the eleventh widget. Whereas with REDUCABLE abstraction, the

system produces the appropriate code.

Abstractions 0/ Interactions through a Pair o/Wulgets

11

As advanced direct manipuJatim applications evolve, user interactims are
beaming more sophisticated. One of these is the "drag-and-drop" feature as in (8)

and (9). The user can idcDtify data elements fr<m me widget and drag and drq> it
on anothel' widget to achieve a desired task. For example, the user identifies a

couple of names on a name list, drags it to a different unrelared list to see whethel'
any of the names match the names on the second list. In anothel' example, one can
drag an item from a list of items and drq> it in an order form for the purpose of
ordering that itan. The introduction of the web bas made the users familiar with the
concept of navigation throogh URL's. Ha'e we can dIaractaize these interactims
as abstractions, whel'e the user navigates a set of values and drq>s them m another
data widget with a ditferent set of values.

1. Relational Algebra Revisited for Navigation

When relational algebra operabn were introduced, they were noonally used to

write a query on the schema. Even in QBB, the user expressed a qOel'Y program by
entering expressions directly into the schcmas of the dalabase. In today's GUI
applications, especially those that are deplo)'eCl on the web, we cannot expect an
Internet user to write a QBE qOel'Y, let alone an SQL statement, even though he/she
is <DDfortable navigating through URL's. Ha'e we propose to revisit an the
relational algebra operatms for the purpose of applying them directly on inSlaDces
of data elements rather than the schema. So when me drags a set of elements and
drops them on another set, the specified operation is performed dynamically.
Examples of such operations are Join, Semi-Join, InSel't aod Delete. The choice of
these operations will be detamined by the designel' to set the requirements of the

application. Here again, the designel' states them declaratively and need not
program them for each applicatim.

12 Part One Invited Talk

2. Inducing a Query from a Sequence of Navigations

In this model, a query becomes a sequence of navigations and operations on data.
In order not to repeat the sequence, the system should be able to automatically

induce the query from the sequence of navigational operations and allow the user to
name it and parameterize it for later use.

As mentimed earlier, the focus of this paper was to informally describe the
Interactim Abstractims. Here we will briefly elaborate m the remaining three

areas without going into much detail.

Area 3: Presentation Abstractions

Although various widgets can be used to hide large amounts of data, the limited

saeen can very easily and quickly becoole cluttered with widgets. To mitigate this

problem, various presentatim abstractims can be introduced.

a. An abstraction that allows the user to specify pop-ups to be triggered on certain
conditims

b. Abstractim for automatically mutating widgets when the data set gets larger or

smaller.

Area 4: Logic Abstractions

In additim to displaying values from data sources, the designer should have enough
abstractions to:
a. Derive fields from instances.
b. Set aggregate data from a set of instances
c. Use decisim trees fir expressing simple logic
It should be noted that fir the class of applications that we are considering, we are
assuming relatively simple logic expressims. Anything beyond that should be dooe
by some extensims to the underlying system.

Area 5: Data Source Abstractions

When the data source is structured like ODBC data source, the designel' visually
connects the attribute data source to the desired widget. On the other hand, if the

data source is less structured, like 8p't3Jsbeet data or pure text found in web pages,
we need abstractions to perfmn the mapping through specifying various tags to
induce the structure. We are currendy w<ri:iog with Cm<D'dia University,
Montreal, Canada, (10) to define an engine and algorithms to map 8p'eadsbeet data

Selected ingredients in end-user programming 13

into relational schema This is needed to define user gesture abstractions to specify
the visual mapping of the data from a spreadsheet to a relational database.

.0Id ... ". ...

..... _by

... .".., III-

.". -

Fig. 4: CAPS System

At Hewlett-Packard Laboratories for the past five years, we have been working to

define these abstractims (11) and build a system called CAPS, (12), to process the
declarative language called Applicatim-By-Example, Fig. 4. The system is
currently demonstratable and Fig. 5 demmstrates an example of an interactive
saeen that was constructed without a single line of code.

In ABE, a OUI program is constructed as follows:
1. Place the widgets m the saeen: i.e., paint the saeen
2. lfierarcbically partition the set of widgets on the saeen,

i.e., LEVEL specifications

3. Declare the category of each level, i.e., SYNCHRONIZED,
ANCHORED, REDUCED

4. Bind the widgets to the attributes from the database.

14 Part One Invited Talk

. This results in a rendering program that is devoid of events programming and other
such procedural coding. Even though these steps may seem slraightforward and
simple, it is still a dalDlting task for a user to conceptualize hislher GUI applications
in terms of the above abstractions such as level categories, widget classifications,
etc. We address this problem next

WYSIWYG PROGRAMMING ENVIRONMENT

There are two major problems with programming:
1. Where to begin? This is the age-old writers' block problem faced by any author.
The designer has the same problem in deciding where to begin in constructing the
GUI program.
2. Indirect orogrnmming: Programming has always been indirect in the sense that
the execution of the program. is the ultimate goal and a program is an indirect
statement of that ultimate goal.
Consider text with HI'ML tags that represents a web page. Obviously
editing/constructing this HI'ML file is an indirect specification of the ultimate web
page. In contrast, a WYSIWYG web page editor is a direct manipulation of that
page and a vast improvement over editing the HI'ML file. In our current
implementatioo, we have addressed these two problems to enable web publishers to

construct rendering applicatioos easily.

We address the writers' block problem by letting the system suggest a GUI program
that the user can edit through trial and error until the optimal goal is achieved.
Initially, the user must only point at the attributes of the data source. The system
analyzes the cardinality of each data source and suggests a suitable widget. For
example, for a GENDER attn"bute, it will suggest a radio button widget. Similarly,
if the cardinality is small, it may suggest to place the entire widget in a higher level
than the rest of the data assmning the user may want to make a selection 00 these
attributes, i.e., give me only the male or the female or both.

The latter is achieved by performing the modification to the running application in a
WYSIWYG fashion.

WYSIWYG modification of a running application is the process of changing the
rendering application to another rendering application. This is very similar to the
spreadsheet programming wherein the formulae are edited directly into a

spreadsheet that is a running application and the etIect of the modificatioos are
immediately seen. In a GUI applicatioo, the repertoire of WYSIWYG modificatioo
includes changes to the interactions with the widgets. If each such modification
results in a new applicatiOli program that also works and can be "test run", then the
designer can make inaemental changes until the final program matdles exactly
what they have in their mind The well-known advantages of WYSIWYG editing

Selected ingredients in end-user programming 15

are the direct specification of the cbanges to the applicatioo, immediate feedback of
those changes and the ability for trial and error. All of these are very useful
advantages that enable the web publisher to construct the rendering applicatioo that
behaves exactly in the manner ooe wishes. Further, it also facilitates making
inaemental modification to the application to cope with future needs.

The WYSIWYG modus operandi is possible because every GUI program can be

mutated by a sequence of modifications to any other program. This reachability

property is mainly due to the fact that the declarative specification of level
categories and widget categories allow all combinatioos with appropriate semantics
for interactions. Therefore, mutating by changing leveJlwidget categories as well as
adding new leveJ/widgets ensure that any application can be constructed through a
series of mutatioos.

REASONING ABOUT THE PROGRAM

Since the designer constructs the program with declarative abstractioos, it is easier
for the system to reason at any time about the COITectness of that program and

generate dynamic messages aloog the constructioo process preventing the
construction of ambiguous or incomplete programs. For example, if a level
contains a single field, the system will automatically display a "back" and "next"

button so one can reach other values in this field. But the m<ment a com~box is

placed in the level, the system deletes the "back" and "next" buttons, since all the
data values are now accessible through the combo-box selection.
Another example: consider two widgets, one is multi-selectable like a list and the
other is single selectable like a combo-box. H they are placed in the same level, the
system will not allow the user to select more than one item in the list. Otherwise, it
becomes ambiguous as to what item to display in the combo-box.

REFERENCES:

1. Visual Basic, Miaosoft Corporatioo, Redmond, Washingtm
2. Cox, P.T., Giles, FA & Piettzykowski, T. (1989) PROGRAPH: A step

towards liberating programming from textual conditioning. In: IEEE Workshop
on Visual Languages. Rome, Italy, 4-6 October, pp. 150-156.

3. Borges, J.A (1990) Multiparadigm visual programming languages. Ph.D.
dissertation, Department of Computer Science, University of Illinois at Urbana

Champaign.
4. Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F. & Doyle, K. (1988) Fabrik: a

visual programming envirooment Proceedings ACM OOPSLA. '88. September,
pp.176-190.

16 Part One Invited Talk

5. National Instruments C<XpOfation (1987) LabVIEW: a demonstration. National
Instruments Corp., 12109 Technology Blvd., Austin, Texas 78727-6204

6. Shneiderman, B., "The Eyes Have It: A Task by Data Type Taxonomy for
Information Visualizations", Proceedings IEEE Symposium o/Visual
Languages, 1996

7. Ahlger, Christopher, Williamson, Christopher, and Shneiderman, Ben,
"Dynamic Queries for Information Expl<ration: An Implementation and
~valuatioo", Proceedings ACM CHI, 1992 Human Factors in Computing
Systems, 619-626

8; Roth, S.F., Lucas, P., Senn, I.A., Gomberg, C.C., Burks, M.B., Stroffolino, P.I.,
Kolohehchick 1.A & Dtmmire, C., Visage: A User Interface Environment/or
Exploring In/ormation, Proceedings '96 IEEE: Information Visualization

9. Uvny, M., Ramakrishnan, R, Beyer, K., Chen, G., Donjerkovic, D., Lawande,
S., Myllymaki 1. & Wenger, K., Proceedings ACM SIGMOD '97, DEVise:
Integrated QUerying and Visual Exploratioo of Large Datasets (DEMO
ABSTRACT)

10. Lakshmanan, V.S., Sulx'amanian, S.N., Goyal, N., Krishnamurthy, R, On

Querying Spreadsheets, ICDE, February 1998, Florida
11. (KZ95) Krisbnamurthy, R, andZloof, M. M., "RBE: Rendering-By-Example",

intI. Conference 00 Data Engineering, Taipei, 1995.
12. (GHKMS 95) Goyal, N., Hoch, C., Krishnamurthy, R, Meckler, B., and

Suckow, M. "Is GUI Programming a Database Research Problem'r', SIGMOD
96, Montreal, Canada.

Selected ingredients in end-user programming 17

Biography

Dr. Moshe M. Zloof

Dr. Moshe Zloof, Principal Architect at Hewlett-Packard Laboratories, is considered a

pioneer researcher in the area of data base languages and user interfaces. Back in the

1970's, during a complete departure from the traditional approach, Dr. Zloof created

QUERY-BY-EXAMPLE (QBE), the first visual programming language which not only
set the stage for considerable research agenda but also has been incorporated in many

successful products such as PARADOX, DBASE IV, ACCESS and many more.

At Hewlett-Packard, Dr. Zloofis currently involved in developing the IC-BY-EXAMPLE
language - a new paradigm to enable non-programmer professionals to construct their
own applications.

Dr. Zloofstarted at mM TJ. Watson where he worked for 13 years and became senior

manager of office automation and visual programming. There he worked on QBE and

later on OFFICE-BY-EXAMPLE (OBE). Subsequently he formed a start-up company to
develop technology for PC software which was later sold to Ashton-Tate Corporation.

He also joined Ashton-Tate and worked as a Chief Architect in Advance Development.

Dr. Zloof has published numerous papers and articles, has chaired and selVed as invited
and keynote speaker at many national and international conferences and universities. He
has also received several awards including the most prestigious mM Corporate Award.
He has also selVed as an adjunct professor at the Courant Institute of NYU and
Columbia University.

Dr. Zloofreceived his BS. from the Technion Institute of Haifa, Israel, and his MS. and
Ph.D. from the University of California at Berkeley in 1969 and 1972 respectively.

