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1. INTRODUCTION

We use the terminology from [12, 53, 33]. LetN = {0, 1, 2, ...} and E be the discrete

sum of topological spaces {En : n ∈ N}. We say that En is the space of symbols

of n-ary operations on topological E-algebras. A topological universal algebra of

signature E or a topological E-algebra is a non-empty topological space G on which

there are given the continuous mappings {enG : En×Gn → G : n ∈ N}. The mappings

enG form the algebraical structure on G.

Let G be a topological E-algebra, n ∈ N and u ∈ En. If n = 0, then u(G0) =

e0G({0} ×G0) is a singleton and u : G0 → G is a mapping. If n ≥ 1, then we consider

the n-ary operation u : Gn → G, where u(x1, ..., xn) = enG(u, x1, ..., xn).

The polynomials are constructed in the following way:

- E are polynomials;

- if n ∈ N, n ≥ 1, u ∈ En, pi is an mi-ary polynomial, then p = u(p1, ..., pn) is an

m-ary polynomial, where

m = m1 + m2 + ... + mn and

p(x1, ..., xm) = u(p1(x1, ..., xm1), ..., pn(xmn−1+1, ..., xm)).

Let n ≥ m ≥ 1, p be an n-ary polynomial and q : {1, 2, ..., n} → {1, ...,m} be a

mapping. Then v(x1, ..., xm) = p(xq(1), xq(2), ..., xq(n)) is an m-ary term. The polyno-

mials are terms too. If u is an n-ary term and v is an m-ary term, then u(x1, ..., xn) =

v(y1, ..., ym) is an identity on E-algebras.

Denote by |X| the cardinality of the set X. Any space is considered to be a T−1-

space.

Let i ∈ {−1, 0, 1, 2, 3, 3 1
2
}.
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A class K of topological E-algebra is called a Ti-quasivariety if:

- any algebra G ∈ K is a Ti-space,

- if G ∈ K and B is a subalgebra of G, then B ∈ K,

- the topological product of algebras from K is a topological algebra from K,

- if (G,T) ∈ K, T′ is a Ti-topology on G and (G,T′) is a topological E-algebra,

then (G,T′) ∈ K.

If Ω is a set of identities and V(E,Ω, i) is the class of all topological E-algebras

with identities Φ, which are Ti-spaces, then V(E,Ω, i) is a Ti-variety. Any Ti-variety

is a Ti-quasivariety.

A class V of E-algebras is non-trivial if |G| ≥ 2 for some G ∈ V .

The investigations of topological algebras are effected in the following directions.

DP. Investigation of the relationship between the algebraic and topological prop-

erties of the topological E-algebras G from V(E,Ω, i).
The afore named Problem DP is examined in light of the following problems.

DT. Let G be an E-algebra. Determine the kinds of topologies, which can be

considered on the E-algebra G that makes it a topological E-algebra.

DA. Let G be a topological space. Determine the types of algebraic structures that

can be considered on the space G, which makes it a topological E-algebra.

DC. Application of the Theory of Topological Algebras.

2. COMPATIBILITY AND INCOMPATIBILITY

Fix a signature E = ⊕{En : n ∈ N} and a set Ω of identities. One of the general

problems, determined by the direction DA, is the next.

Problem 2.1. Let G be a topological non-empty space, E be a signature and Ω be

a set of identities. Is it true that G admits a structure of topological E-algebra for

which G ∈ V(E,Ω,−1)?

One of the first results in this direction is the Pontryagin variant of the Frobenius

theorem in the abstract algebra (see [89, 90]).

Theorem 2.1. (Frobenius - Pontryagin). Let D be a connected locally compact divi-

sion ring. Then:

1. If D is associative and commutative, then either D is the ring of reals R, or the

ring C of complex numbers.

2. If D is associative and non-commutative, then D is the ring of quaternions H.

3. If D is non-associative, then D is the ring of octonions D.

The algebra of quaternions was discovered by Hamilton in 1843 and the algebra of

the octonions - by J. T. Graves in 1843. The Cayley-Diskson construction produces

a sequence of topological algebras over the given topological field (in particular over

the reals). In the case of reals, we obtain the algebras R,C,H,D (see [14]).

Really, let R be a topological ring with involution x → x∗. Denote by A(R, ∗) the

set R2 = R × R with the operations:
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(x, y) + (u, v) = (x + u, y + v);

(x, y) · (u, v) = (xu − v∗y, vx + yu∗);

(x, y)∗ = (x∗,−y).

Then A(R, ∗) is a topological ring with the involution and a topological R-module.

The mapping x → (x, 0) is the natural embedding of the ring R into A(R, ∗). As a

rule, the point x ∈ R is identified by the point (x, 0) ∈ A(R, ∗) and one may consider

that R ⊆ A(R, ∗).
If on the field R of reals the identical mapping x→ x∗ = x is the given involution,

then C = A(R, ∗) is the algebra of complex numbers, H = A(C, ∗) is the algebra of

quaternions (hypercomplex) number and D = A(H, ∗) is the algebra of octonions.

The algebras H1 = A(H, ∗) and Hn+1 = A(Hn, ∗) relatively to the multiplication are

not with division for all n.

Corollary 2.1. Let G be an infinite connected and locally compact space. If dim

G < {1, 2, 4, 8}, then G does not admit the structure of the topological division ring.

Obviously, any topological space G admits structures of topological E-algebras.

For this it is sufficient to fix some continuous mapping enG : En × Gn → G for

any n ∈ N. In particular, the operation xy = x determines on G the structure of a

topological semigroup with a right identity: the element e ∈ G is a right (respectively,

left) identity if xe = x (respectively, ex = x) for any x ∈ G.

Remark 2.1. There exists a metrizable connected compact space A such that if xy is

a structure of a topological groupoid with right identity, then xy = x for all x, y ∈ A.

In this case any continuous mapping φ : A × A → A is one of the projections or a

constant mapping. The space A is called the Cook continuum (see [89, 90]).

Theorem 2.2. (L. M. James, [63, 64]) If n < {0, 1, 3, 7}, then on the sphere S n from

the (n + 1)-dimensional Euclidean space En+1 does not exist the structure of a topo-

logical groupoid xy with the identity e ∈ S n.

Theorem of L.M.James and the fixed point principle have many applications.

Corollary 2.2. Let n ≥ 1, Bn = {x ∈ En : ∥x∥ ≤ 1}, and e ∈ S n−1 ⊆ Bn ⊆ En. The

following assertions are equivalent:

1. On the sphere S n−1 there exists the structure xy of a topological groupoid with

the identity e ∈ S n−1.

2. On Euclidean space En there exists the structure xy of a topological groupoid

with the identity e ∈ S n−1 such that S n−1 and Bn are subgroupoids.

3. On Euclidean space En there exists the structure xy of a topological groupoid

with the identity e ∈ S n−1 such that Bn \ {xy : x, y ∈ S n−1} , ∅.
4. n ∈ {1, 2, 4, 8}

Proof. Implications 1→ 4→ 1 immediately follows from the James’ Theorem 2.2.
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Assume that x · y is a structure of a topological groupoid on S n−1 with the identity

e ∈ S n−1. Let 0 = (0, ..., 0) be the neutral element of the Euclidean space En. If

x ∈ En and x , 0, then there exists a unique point p(x) ∈ S n−1 such that p(x) = 1
∥x∥ x.

The mapping h : En \ {0} −→ S n−1 is continuous. Now we put x ∗ 0 = 0 ∗ x = 0

for each x ∈ En and y ∗ z = ∥y∥ · ∥z∥ · h(y) · h(z) for all y, z ∈ En \ {0}. Then (En, ∗)
is a topological groupoid with the identity e and (S n−1, ·), (Bn, ∗) are subroupoids.

Obviously x · y = x ∗ y for x, y ∈ S n−1. Implication 1 → 2 is proved. Implication

2→ 3 is obvious.

Assume that xy is a structure of a topological groupoid on En with the identity e ∈
S n−1 and Bn \ {xy : x, y ∈ S n−1} , ∅. We can suppose that 0 ∈ Bn \ {xy : x, y ∈ S n−1}.
Then x ◦ y = h(xy) is a structure of a topological groupoid on S n−1 with the identity

e ∈ S n−1. Implication 3→ 1 is proved. The proof is complete.

We need some definitions. A topological quasigroup is a non-empty space G with

three binary operations {·, r, l} and identities x · l(x, y) = r(y, x) · x = l(x, x · y) =

l(r(x, y) · x)) = r(y · x, x) = y.

A homogeneous algebra is a non-empty space G with two binary operations {+, ·}
and the identities x + x · y = x · (x + y) = y, x · x = y · y.

A biternary Mal’cev [72] algebra is a non-empty space with two ternary operations

{p, q} and identities p(y, y, x) = q(p(x, y, z), y, z) = p(q(x, y, z), y, z) = x.

A Mal’cev algebra is a non-empty space with one ternary operation {p} and iden-

tities p(x, x, y) = p(y, x, x) = y.

A topological quasigroup with the identity is a loop. Every topological group is a

loop. A space admits a structure of a topological quasigroup if an only if it admits

a structure of a topological loop (A. I. Mal’cev, 1956, [72]). Any biternary Mal’cev

algebra is a Mal’cev algebra (A. I. Mal’cev, 1956, [72]). Any topological quasigroup

admits a structure of a biternary Mal’cev algebra (A. I. Mal’cev, 1956, [72]). A

space admits a structure of a homogeneous algebra if and only if admits a structure

of a biternary Mal’cev algebra (M. M. Choban [28]). A space X admits a structure

of a homogeneous algebra if and only if X is a rectifiable space, i.e. there exist a

homeomorphism h : X × X → X × X and a point c ∈ X such that h(x × X) = x × X

and h(x, x) = (x, c) for any x ∈ X (M. Choban [28]). The mapping h is called a

rectification on X.

A space X is homogeneous if for any two points a, b ∈ X there exists a homeomor-

phism hab : X → X such that hab(a) = b.

Let {+, ·} be a structure of a homogeneous algebra on a space G, a, b ∈ G and x · y
= c for all x ∈ G. Then Pa(x) = a · x, Qa(u) = a + x are homeomorphisms, P−1

a =

Qa, Pa(a) = c and Qa(c) = a. On G there exists a structure {+, ·} of homogeneous

algebra such that c is the a priori given point. The mapping Ψ(x, y) = (x, x · y) is a

homeomorphism of G × G onto G × G such that Ψ(x, x) = (x, c) and Ψ({x} × G) =

{x} ×G for any x ∈ G.
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Assume now that c ∈ X and h : G × G → G × G is a homeomorphism such that

h(x, x) = (x, c) and h({x} × G) = {x} × G for any x ∈ G. Let p : G × G → G be the

projection p(x, y) = y. We put p(h(x, y)) = x ·y and p(h−1(x, y)) = x+y for all x, y ∈ G.

Then {+, ·} is a structure of a homogeneous algebra on a space G.

Let now fb(x) = x + b. Since h−1(G × c) = {(x, x) : x ∈ G} and h−1(G × {b}) is the

graphic of the mapping fb, then for b , c we have fb(x) , x for any x ∈ G. Thus

the mapping fb does not contains fixed points for any b , c. In particular, G is not a

fixed point space. This simple fact was observed by A. S. Gul’ko ([58], Proposition

4.1). From this fact it follows.

Corollary 2.3. Any homogeneous algebra G is a homogeneous space. If |G| ≥ 2,

then G is not a fixed point space.

Let X ⊆ Y . The mapping r : Y → X is a retraction if r(x) = x for all x ∈ X.

If p : Y3 → Y is a Mal’cev ternary operation on Y , then q(x, y, z) = r(p(x, y, z)) is

a ternary Mal’cev operation on X. Thus a retract of a Mal’cev algebra is a Mal’cev

algebra. In particular, any AR-space admits a structure of a Mal’cev algebra.

Corollary 2.4. For any cardinal τ ≥ 1 the cube Iτ is a Mal’cev algebra and it

does not admit a structure of homogeneous algebra. For τ infinite the space Iτ is

homogeneous.

Corollary 2.5. Any AR-space is a fixed point space, admits a structure of a Mal’cev

space and does not admit a structure of a homogeneous algebra.

If a compact space X admits a structure of a Mal’cev algebra, then X is a Dugundji

space (see [31, 32, 33, 79, 95]). In [8] it was proved that for a Hausdorff compact-

ification bX of a rectifiable space X the remainder bX\X is a pseudocompact or a

Lindelöf space. The last assertion is not true for Mal’cev algebras [8].

The next questions are open.

Problem 2.2. Is it true that any Mal’cev algebra is a retract of some homogeneous

algebra, or of some topological quasigroup?

Problem 2.3. (A.V.Arhangel’skii). Is it true that any compact Mal’cev algebra is a

retract of some compact group?

Problem 2.4. Let X be a first-countable completely regular space, the Souslin num-

ber c(Xτ) is countable for any cardinal τ and Xm admits a structure of a homoge-

neous algebra for some cardinal m. Is it true that the space Xℵ0 admits a structure of

a homogeneous algebra?

The minimal infinite cardinal number τ for which |γ| ≤ τ for any disjoint family

γ of open subsets of a space X is called the Souslin number of the space X and it is

noted by c(X).
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Remark 2.2. Let X be a space and A be a non-empty set. Fix a point 0 ∈ X and

an element α ∈ A. For any x ∈ X we put e(x) = (xβ : β ∈ A) ∈ XA, where xα = x

and xβ = 0 for all β , α. Then h : X −→ XA is an embedding. We identify X and

h(X) and consider that X = h(X) ⊆ XA. Then the mapping r : XA −→ X, where

r(xβ : β ∈ A) = h(xα), is a retraction. Thus the following assertions are equivalent:

1. The space X admits a structure of a Mal’cev algebra.

2. The space Xτ admits a structure of a Mal’cev algebra for any cardinal number

τ.

3. The space Xτ admits a structure of a Mal’cev algebra for some cardinal number

τ ≥ 1.

3. PRECOMPACT TOPOLOGIES ON ALGEBRAS

Fix a discrete signature E = ⊕{En : n ∈ N}. A topological E-algebra G is precom-

pact if G is a topological E-algebra of some Hausdorff compact E-algebra. In this

section any space is considered to be completely regular.

Let G be a topological E-algebra. A pair (B, φ) is an a-compactification or an

almost periodic compactification of G if B is a compact E-algebra, φ : G → B is a

continuous homomorphism and the set φ(G) is dense in B.

If (B, φ) and (H, ψ) are a-compactifications of G, then (H, ψ) ≤ (B, φ) if there exists

a continuous homomorphism g : B → H such that ψ = g ◦ φ. For any topological

E-algebra the class AC(G) of all a-compactifications of G is a complete lattice. The

maximal a-compactification (bhG, bG) of G is called the Bohr-Holm compactification

of G. The mapping bG : G → bhG is an embedding if and only if G is precompact.

The Bohr-Holm compactifications were studied in [62, 60, 61, 37, 38, 42, 43, 76, 86].

Let G be a topological E-algebra and Gd be the algebra G with the discrete topol-

ogy. A pair (H, φ) is called an ap-extension of G if (H, φ) is an a-compactification of

Gd and (bhG, bG) ≤ (H, φ). Thus the class EP(G) of all ap-extensions of G is a com-

plete lattice with the maximal element (apG, aG) and minimal element (bhG, bG). If

the space G is discrete, then apG = bhG.

Let C be the field of complex numbers and C(X) be the Banach algebra of all

continuous bonded complex-valued functions on the space X. By B(X) denote the

Banach-algebra of bounded Baire-measurable complex-valued functions on X. The

algebra Ba(X) of Baire-measurable sets of the space X is the σ-algebra generated by

the class of functionally closed sets { f −1(0) : f ∈ C(X)} of the space X. A function

g : X −→ C is Baire-measurable if g−1(U) ∈ Ba(X) for each open subset U of C.

The algebra of functional-measurable sets Fun(X) of the space X is the σ-algebra

generated by the class of functionally sets { f −1(H) : f ∈ C(X),H ⊆ C} of the space

X. A function g : X −→ C is functionally-measurable if g−1(U) ∈ Fun(X) for each

open subset U ⊆ C. By Φ(X) denote the Banach-algebra of bounded functional-

measurable complex-valued functions on X. By F(X) denote the Banach-algebra of
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all bounded complex-valued functions on X. Obviously, C(X) ⊆ B(X) ⊆ Φ(X) ⊆
F(X).

If G is a topological E-algebra and (H, φ) is an a-compactification of G, then

APC(H,φ)(G) = { f ◦ φ : f ∈ C(H)}. If (H, φ) is an ap-extension of G, then AP(H,φ)(G)

= { f ◦ φ : f ∈ C(H)}. Let AP(G) = AP(apG,aG)(G) and APC(G) = APC(bhG,bg)(G).

Then AP(G) is the Banach algebra of all almost periodic functions on G and APC(G)

is the Banach algebra of all almost periodic continuous functions on G.

If G is a topological group, then the function f ∈ F(G) is almost periodic if the

closure of the set { fa : a ∈ G}, where fa(x) = f (ax) for all a, x ∈ G, in F(G) is a

compact set.

Remark 3.1. For a subalgebra L ⊆ AP(G) the following assertions are equivalent:

AP1. L = AP(H,φ)(G) for some ap-extension (H, φ) of G.

AP2. The algebra L has the next properties:

- APC(G) ⊆ L;

- L is closed in AP(G);

- if f ∈ L, then f ∈ L.

Theorem 3.1. Let X be a pseudocompact space. Then there exists a one-to-one

mapping Ψ : Φ(βX)→ Φ(X) with the properties:

1. Ψ( f ) = f |X and ∥ f ∥ = ∥Ψ( f )∥.
2. Ψ( f + g) = Ψ( f ) + Ψ(g) and Ψ( f · g) = Ψ( f ) · Ψ(g).

3. If the sequence { fn ∈ Φ(βX) : n ∈ N} converges pointwise to the function

f ∈ F(X), then f ∈ Φ(βX) and the sequence {Ψ( fn) : n ∈ N} converges pointwise to

Ψ( f ).

4. Ψ(C(βX) = C(X), Ψ(B(βX) = B(X) and Ψ(Φ(βX) = Φ(X).

5. If X is a topological group, then the function f ∈ B(βX) is almost periodic on

βX if and only if the function Ψ( f ) is almost periodic on X.

Proof. Assertions 1 - 4 were proved in [27]. Really, for any bounded continuous

function f ∈ C(X) there exists a unique continuous function β f on βX such that

f = β f |X. Thus for each functionally-measurable set L of the space X there exists

a functionally-measurable set Lβ of the space βX such that L = Lβ ∩ X. For the set

Lβ and any point x ∈ Lβ there exists a Gδ-subset E of βX such that x ∈ E ⊆ Lβ.

Hence, since the space X is pseudocompact, the set Lβ is unique. Therefore, for each

function g ∈ Φ(X) there exists a unique function βg ∈ Φ(βX) such that g = βg|X
and the operator Ψ( f ) = f |X is a one-to-one mapping of Φ(βX) onto Φ(X). This fact

proves the assertions 1 - 4. Assertion 5 is obvious. The proof is complete.

Let G be a pseudocompact E-algebra. If (H, φ) is an ap-extension of G, then

denote by GH = φ(G) the algebra G as a topological subalgebra of the compact

algebra H. The ap-extension (H, φ) is called B-measurable if APH,φ ⊆ B(G). The

ap-extension (H, φ) is called ap-pseudocompact if the space GH is pseudocompact.
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Theorem 3.2. Let G be a pseudocompact group and (H, φ) be an ap-pseudo-compact

ap-extension of G. Then AP(H,φ)(G) ∩ Φ(G) = C(G).

Proof. Let βG be the Stone-Čech compactification of the pseudocompact group.

Then βG is a topological group and G be a dense subgroup of βG (see [12]). There ex-

ists a continuous homomorphism ϕ : H −→ βG such that ϕ(x) = x for any x ∈ G ⊆ H.

Assume that f ∈ (AP(H,φ)(G) ∩ Φ(G)). Then, by virtue of Theorem 3.1, there exist

g ∈ Φ(βG)) and g1 ∈ C(H) such that f = g|G and g(ϕ(z)) = g1(z) for each z ∈ H. If

B is a closed subset of C, then, since the function g1 is continuous, the set g−1
1

(B) is

closed in H. Since the mapping ϕ is closed, the set ϕ(g−1
1

(B)) = g−1(B) is closed in

βG. Hence the functions g and f are continuous. The proof is complete.

Therefore the almost periodicity of the functional-measurable function is in op-

posite with pseudocompactness. In this context it is interesting to mention the next

three results.

Theorem 3.3. (P. Kirku [70]) Let G be a divisible torsion-free Abelian group of the

uncountable cardinality |G| = 2α = τ. Then G admits exactly 2τ-many compact group

topologies.

Theorem 3.4. (W. W. Comfort and D. Remus [48, 46]). Let (G, T ) be a compact

Abelian group. Then G has a pseudocompact group topology W ⊇ T such that the

weight w(G,W) ≥ 2w(G,T ).

Existence of compact and pseudocompact topologies on groups and rings were

studied in [44, 68, 69, 94].

Let (G,T ) be a compact group and W be a pseudocompact group topology on G

such that T ⊆ W. Then the Stone-Čech compactification H of the group (G,W) is an

ap-pseudocompact ap-compactification of the group G.

Theorem 3.5. (W. Comfort, S. U. Ruczkowski and F. J. Trigos-Arrieta [47]). Every

infinite Abelian group G admits a family A of totally bounded group topologies with

|A| = 22|G| and the spaces (G,T ), (G,w) are not homeomorphic for distinct (T,W) ∈
A.

A cardinal number τ is a strong limit cardinal if 2m < τ provided m < τ. By virtue

of Theorem 9.11.2 from ([12], p. 672) it follows:

Corollary 3.1. Let τ be a sequential strong limit cardinal. Then no group of cardi-

nality τ admits a pseudocompact group topology.

There exist many sequential strong limit cardinals. Let τ ≥ 2. We put 1(τ) =

2τ, (n + 1)(τ) = 2n(τ) and ω(τ) = sup{n(τ) : n ∈ N}. Then ω(τ) is a sequential strong

limit cardinal.

Under Martin’s Axiom MA the infinite Abelian group G admits a pseudocompact

group topology if and only if G admits a countable compact group topology without
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non-trivial convergent sequence. ([12], Theorem 9.12.9, D. Dikranjan and M. G.

Tkachenko).

The following questions are intriguing.

Problem 3.1. Let G admits some totally bounded topology and consider G as a sub-

space of the space apG.

a. Is it true that any bounded subset of G is finite?

b. Is G as a subspace of apG a Dieudonné complete space?

c. Is G closed in apG relatively to the Gδ-topology on apG?

A space X is Dieudonné complete if it is complete relatively to the maximal uni-

formity. A subset L of a space X is bounded if any continuous function f : X → R

is bounded on L. For Abelian groups the answer to the question in Problem 3.1.a is

”Yes” ([12],Theorem 9.9.42 of F. J. Trigos-Arrieta). The finiteness of compact sub-

sets F ⊆ G of apG for Abelian G was established by H. Leptin [71] and I. Glicksberg

[55].

If H is a measurable subgroup of the compact group G with the Haar measure λ,

then or H is open in G or λ(H) = 0. Let λ be the Haar measure on apG, where G is a

group with some precompact topology. Then or λ(G) = 0, or G is not measurable in

apG and λ(U) = 1 for any measurable set U of apG which contains G. For example

λ(G) = 0, if |G| < 2ℵ0 , and λ(U) = 1 for any measurable set U of apG which contains

G, if G admits pseudocompact group topologies. Under which conditions λ(G) = 0?

4. PARATOPOLOGICAL AND
SEMITOPOLOGICAL ALGEBRAS

Fix a discrete signature E = ⊕{En : n ∈ N} and the subspaces S ⊆ E and P ⊆ E.

An E-algebra G with the topology T is called:

- an S -semitopological E-algebra if the operation u : Gn → G is separately con-

tinuous for all n ∈ N and u ∈ S ∩ En;

- a P-paratopological E-algebra if the operation u : Gn → G is continuous for all

n ∈ N and u ∈ P ∩ En;

- a (P, S )-quasitopological E-algebra if G is an S -semitopological and a

P-paratopological E-algebra.

Any P-paratopological E-algebra is a topological P-algebra. In natural way the

notion of a Ti-quasivariety of (P, S )-quasitopological E-algebra is defined.

Theorem 4.1. (M. Choban [28]) Let V be a Ti-quasivariety of (P, S )-quasitopological

E-algebras. Then for any non-empty space X there exists an algebra F(X,V) ∈ V and

a continuous mapping φX : X → F(X,V) such that:

1. The set φX(X) algebraically generates the E-algebra F ⇁ (X,V).

2. For any continuous mapping g : X → G ∈ V there exists a continuous homo-

morphism g : F(X,V)→ G such that g = g ◦ φX .
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The pair (F(X,V), φX) is called a free (P, S )-quasitopological E-algebra of the

space X in the class V .

The algebra F(X,V) is abstract free if for any mapping g : X → G ∈ V there exists

a homomorphism g : F(X,V)→ G such that g = g ◦ φX .

Problem 4.1. Assume that there exists a space G ∈ V with a proper open subset.

a. Under which conditions the mapping φX : X → F(X,V) is an embedding?

b. Under which conditions the algebra F(X,V) is abstract free?

For varieties of topological E-algebras the Problems 4.1 were formulated by A. I.

Mal’cev [72]. The answers are positive for any completely regular Hausdorff space

[28].

Let {·,−1 , e} be the signature of groups. If S = P = {·} then an S -semitopological

group is called a semitopological group and a P-paratopological group is called a

paratopological group.

Let Z be the discrete group of integers.

If V is a Ti-quasivariety of semitopological groups and Vp = {G ∈ V : G is a

paratopological group}, Vg = {G ∈ V : G is a topological group}, then:

1. Vg ⊆ Vp ⊆ V;

2. If G ∈ V and Gd is the group G with the discrete topology, then Gd ∈ Vg;

3. If (F(X,V), φX), (F(X,Vp), φpX) and (F(X,Vg), φgX) are the free objects of a

space X, then there exist the continuous homomorphisms ψX : F(X,V) → F(X,Vp)

and θX : F(X,Vp)→ F(X,Vg) such that φpX = ψX ◦ φX and φgX = θX ◦ φpX;

4. For any completely regular space X the mappings ψX and θX are continuous

isomorphisms.

Theorem 4.2. Let i ∈ {−1, 0, 1, 3 1
2
}, V be a Ti-quasivariety of semitopological groups

and Z ∈ V. Then for any Ti-space X:

1. φX : X → F(X,V) and φpX : X → F(X,Vp) are embeddings.

2. The groups F(X,V) and F(X,Vp) are abstract free in V and Vp respectively.

Proof. Consider the following four cases.

Case 1. i = 3 1
2
.

This case was proved in [28].

Case 2. i = 1.

On any set X consider the cofinite topology Tc f = {X} ∪ {X\F : F is a finite set}.
Then (X,Tc f ) is a compact T1-space. If G is a group, then (G,Tc f ) is a semitopo-

logical compact group. We can assume that X = φXd
(X) ⊆ F(Xd,V) as a set. Fix a

T1-space X. The group F(Xd,V) is the abstract free group of the set X in the class V .

Since (F(Xd,V),Tc f ) ∈ V , there exists a unique continuous homomorphism g :

F(X,V) −→ (F(Xd,V),Tc f ) such that g(φX(x)) = x for each x ∈ X. Then g is an

isomorphism and the object F(X,V) is abstract free in V . Obviously, that φX is an

embedding for the space (X,Tc f ). Since any T1-space X for some cardinal number τ
admits an embedding in (F(Xd,V),Tc f )

τ, the mapping φX is an embedding.
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Case 3. i = 0.

Let Dω be the group Z with the topology {∅} ∪ {Un = {m ∈ Z : m ≥ n} : n ∈ }.
Then Dω ∈ Vp ⊆ V . Let a, b be two distinct points of a T0-space X. Assume that U

is open in X, a < U and b ∈ U. Then the mapping g : X → Dω, where g−1(1) = U

and g−1(0) = X \ U is continuous. Thus φpX : X → F(X,Vp) is an embedding. The

assertion 1 is proved. The proof of the assertion 2 is proved in [36].

Case 4. i = −1.

Let X be a space. Let G0 be the group Z × Z with the topology {∅} ∪ {Vn = {m ∈
Z : m ≥ n} × Z : n ∈ Z}. The space X admits an embedding in G

w(X)

0
. Thus φX is

an embedding and we can assume that X = φX(X) ⊆ F(X,V). Let GX be the group

F(Xd,V) with the anti-discrete topology {∅, F(Xd,V)} and X = φXd
(X) ⊆ F(Xd,V) as

a set. Then the identical mapping f : X −→ GX , where f (x) = x for each x ∈ X is

a continuous mapping and there exists a continuous homomorphism g : F(X,V) −→
GX such that f = g|X. Since g is an isomorphism, the group F(X,V) is abstract free

in the class V .

The proof is complete.

Theorem 4.3. Let i ∈ {1, 3 1
2
}, V be a non-trivial Ti-quasivariety of semitopological

groups and Z < V. Then for any Ti-space X:

1. φX : X → F(X,V) and φpX : X → F(X,Vp) are embeddings.

2. The groups F(X,V) and F(X,Vp) are abstract free in V and Vp respectively.

Proof. Consider the following two cases.

Case 1. i = 3 1
2
.

This case is proved in [28].

Case 2. i = 1.

This case is similar to the case 2 in the proof of the previous theorem.

A group G with a topology is called a left (respectively, right) topological group

if the left translation La(x) = ax (respectively, the right translation Ra(x) = xa) is

continuous for any a ∈ G.

A class V of left topological groups is called a Ti-quasivariety of left topological

groups if:

(LF1) the class V is multiplicative;

(LF2) if G ∈ V and A is a subgroup of G, then A ∈ V;

(LF3) every space G ∈ V is a Ti-space;

(LF4) if G ∈ V, T is a compact Ti-topology on G and (G,T) is a left topological

group, then (G,T) ∈ V;

From Theorems 4.2 and 4.3 it follows

Corollary 4.1. Let i ∈ {−1, 0, 1, 3 1
2
}, V be a Ti-quasivariety of left topological groups

and Z ∈ V. Then for any Ti-space X:

1. φX : X → F(X,V) and φpX : X → F(X,Vp) are embeddings.

2. The groups F(X,V) and F(X,Vp) are abstract free in V and Vp respectively.
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Corollary 4.2. Let i ∈ {1, 3 1
2
}, V be a non-trivial Ti-quasivariety of left topological

groups and Z ∈ V. Then for any Ti-space X:

1. φX : X → F(X,V) and φpX : X → F(X,Vp) are embeddings.

2. The groups F(X,V) and F(X,Vp) are abstract free in V and Vp respectively.

The following assertion completes Theorem 4.3 and Corollary 4.2.

Lemma 4.1. Let G be a left topological group and for any x ∈ G there exists n(x) ∈ N
such that xn(x) = e. Then G is a T1-space.

Proof. Any finite T0-space contains a closed one-point subset. Thus any finite left

topological group is a T1-space. By hypothesis, any point a ∈ G is contained in the

finite subgroup G(a) = {ai : 0 ≤ i ≤ n(a)}. Thus {e} is a closed subset of the group G

and G is a T1-space.

Remark 4.1. The similar assertions are true for classes of right topological groups.

Remark 4.2. Let V be the class of all paratopological groups, or of all paratopo-

logical Abelian groups. In [88] it was proved that the answers to the questions from

Problems 4.1 are positive for any T0-space X. For this the authors of [88] use the

method of left (right) invariant pseudo-quasi-metrics. Since topology generated by

the left (right) invariant pseudo-quasi-metrics may not be a paratopological topol-

ogy [74, 12, 17], this point of view may create dangerous moments. Nevertheless,

the extensions of the quasi-metrics from [88] are invariant quasi-metrics. For this in

[36] we use the method of invariant pseudo-quasi-metrics. The method of left (right)

invariant pseudo-metrics was proposed in [74] and [17]. The method of invariant

pseudo-metrics on free objects was developed in [57, 30].

Let S ⊆ E, G be an E-algebra, n ≥ 1, j ∈ {1, 2, ..., n}, u ∈ En∩S and a1, a2, ..., an ∈
G. We put R(G, j, u, a1, ..., an) = {x ∈ G : u(a1, ..., a j−1, x, a j+1, ..., an) = a j}.

The E-algebra G is called an S -simple E-algebra if for all n ≥ 1, j ∈ {1, 2, ..., n},
u ∈ En ∩ S and a1, a2, ..., an ∈ G we have R(G, j, u, a1, ..., an) = G or the set

R(G, j, u, a1, ..., an) is finite.

All quasigroups are simple algebras.

Theorem 4.4. Let S ⊆ E, i ∈ {−1, 0, 1} and V be a non-trivial Ti-quasivariety of

S -semitopological S -simple E-algebras. Then for any T1-space X:

1. the mapping φX : X → F(X,V) is an embedding.

2. the algebra F(X,V) is abstract free.

Proof. Let G ∈ V . Denote by Tc f = {∅} ∪ {G \ F : F is a finite set} the co-finite

topology on G. Since G is an S -semitopological S -simple E-algebra the operation

u : Gn → G is separately continuous for all n ∈ N and u ∈ S ∩En. Thus (G,Tc f ) ∈ V .

Fix a non-empty T1-space X. Denote by Xd the set X with the discrete topology.

Then the E-algebra (F(Xd,V), φXd
) is the abstract free algebra of the space X in the



Selected problems and results of topological algebra 13

class V . Let GX be the algebra F(Xd,V) with the co-finite topology Tc f . Then GX ∈
V , the mapping g = φXd

: X −→ GX is continuous and an injection. There exists a

continuous homomorphism h : F(X,V) −→ GX such that h(φX(x)) = g(x) for each

x ∈ X. Hence g is an isomorphism and the algebra F(X,V) is abstract free. Since

|X| ≤ |GX |, then for some cardinal τ the space X admits an embedding in Gτ
X

. Thus

the mapping φX : X → F(X,V) is an embedding. The proof is complete

Now we mention the following open problems.

Problem 4.2. a. Let i ∈ {2, 3} and V be a non-trivial Ti-quasivariety of semitopolog-

ical groups. Are Theorems 4.2 and 4.3 true?

b. Let i ∈ {2, 3} and V be a non-trivial Ti-quasivariety of left topological groups.

Are Corollaries 4.1 and 4.6 true?

5. THEOREMS OF MONTGOMERY AND ELLIS

In 1936 D. Montgomery [75] set the following problems.

Problem 1G. Under which conditions a semitopological group is a paratopologi-

cal group?

Problem 2G. Under which conditions a paratopological group is a topological

group?

D. Montgomery [75] has proved that every complete matrizable semitopological

group is a paratopological group and every complete metrizable separable semitopo-

logical group is a topological group. In 1957 R. Ellis (see [52, 12]) showed that any

locally compact semitopological group is a topological group.

In 1960, W. Zelazko [100] established that any complete metrizable semitopolog-

ical group is a topological group. Then in 1982 N. Brand [22] proved that a Čech

complete paratopological groups is a topological group. A. Bouziad [19, 20, 21]

proved this assertion for semitopological groups. Many interesting results were ob-

tained in [7, 6, 10, 65, 23, 54, 59, 80, 83, 87, 97].

We mention the following two result.

Theorem 5.1. ( P. Kenderov, I. S. Kortezov and W. B. Moors [65, 10]) If a regu-

lar semitopological group G contains a dense Čeeh complete subspace, then G is a

topological group.

Theorem 5.2. (A. Arhangelskii and M. M. Choban [6, 7, 10]) If a regular paratopo-

logical group G contains a dense subspace which is a dense Gδ-subspace of some

pseudocompact space, then G is a topological group and a dense Gδ-subspace of

some pseudocompact space.

Let {·, r, l} be the signature of quasigroups.

A quasigroup G with a topology is called:

- a paratopological quasigroup if the multiplicative operation {·} and the transla-

tions la = l(a, x), ra = r(x, a), a ∈ G, are continuous;
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- a semitopological quasigroup if the translations La(x) = a · x, Ra(x) = x · a,

la = l(a, x), ra = r(x, a), a ∈ G, are continuous.

Any paratopological (respectively, semitopological) group is a paratopological (re-

spectively, semitopological) group. Any paratopological quasigroup is a semitopo-

logical quasigroup. In a semitopological quasigroup all translations La(x) = a · x,

Ra(x) = x · a, la = l(a, x), ra = r(x, a), a ∈ G, are homeomorphisms. Moreover,

la = L−1
a and ra = R−1

a for each a ∈ G.

The next problems are similar to the Montgomery’s problems.

Problem 5.1. Under which conditions a semitopological quasigroup is a paratopo-

logical quasigroup?

Problem 5.2. Under which conditions a paratopological quasigroup is a topological

quasigroup?

Let (G, ·) be a groupoid. Denote by P(G, ·) the minimal semigroup of mappings

g : G −→ G such that La,Ra ∈ P(G, ·) for each a ∈ G.

A T -groupoid (or a Toyoda groupoid) is a non-empty set G with one binary oper-

ation {·} and four unary operations {a1, a2, b1, b2} such that:

if x ◦ y = a1(x) · b1(y)), then (G, ◦) is a group;

a1(a2(x)) = b1(b2(x)) = x for each x ∈ G;

{a1, a2} ∩ P(G, ·) , ∅ and {b1, b2} ∩ P(G, ·) , ∅.

In this case we say that (G, ◦) is the group associated to the T -groupoid

(G, ·, a1, a2, b1, b2). By definitions, a2 = a−1
1

and b2 = b−1
1

.

Any T -groupoid is a quasigroup.

Let (G, ◦) be the topological group associated to a topological T -groupoid

(G, ·, a1, a2, b1, b2). By virtue of Albert’s theorem [2, 3], all topological groups (G, ◦)
associated to the given T -groupoid are topologically isomorphic. In this sens that

group is unique. Hence, if the topological quasigroup (G, ·, r, l) for some mappings

{a1, a2, b1, b2, c1, c2} is a topological T -groupoid, then:

- we have x · y = a2(x) ◦ b2(y), l(x, y) = b1(a2(x)−1 ◦ y) and r(x, y) = a1(x ◦ b2(y)−1);

- there exists many structures of the kind {a1, a2, b1, b2} on G;

- all topological groups associated to the T -groupoids (G, ·, a1, a2, b1, b2) are topo-

logically isomorphic.

Therefore any topological T -groupoid is considered a topological quasigroup, too.

Moreover,we assume that the T -groupoid (G, ·) as a universal algebra is the quasi-

group (G, ·, r, l). Distinct classes of T -quasigroups were introduced and studied in

[66, 67, 15, 16, 41]. For this general case we use the notion of a ”T -groupoid”. Since

any Hausdotff topological group is a completely regular space, then the space of a

topological T -groupoid is completely regular provided it is a T0-space.

A T -groupoid (G, ·, a1, a2, b1, b2) with a topology is called:
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- a topological T -groupoid if the operation (G, ·, a1, a2, b1, b2) are continuous and

G is a topological quasigroup;

- a paratopological T -groupoid if the operation {·, a1, a2, b1, b2} are continuous;

- a semitopological T -groupoid if the multiplicative operation {·} is separate con-

tinuous and the operation {a1, a2, b1, b2} are continuous.

If a (G, ·, a1, a2, b1, b2) is a semitopological T -groupoid, then the operations

{a1, a2, b1, b2} are homeomorphisms. Moreover, if a T -groupoid (G, ·, a1, a2, b1, b2)

is a semitopological quasigroup, then the operation {a1, a2, b1, b2} are homeomor-

phisms.

We mention that a T -groupoid (G, ·, a1, a2, b1, b2) with topology:

- is a topological T -groupoid if and only if (G, ·, r, l) (G, ·r, l) is a topological quasi-

group;

- is a paratopological T -groupoid if and only if (G, ·, r, l) (G, ·r, l) is a paratopolog-

ical quasigroup;

- is a semitopological T -groupoid if and only if (G, ·, r, l) (G, ·r, l) is a semitopo-

logical quasigroup.

Any group with the identical mappings {a1, a2, b1, b2} is considered a T -groupoid

too. Therefore:

- any semitopological group is a a semitopological T -groupoid;

- any paratopological group is a a paratopological T -groupoid;

- any topological group is a a topological T -groupoid.

By virtue of K. Toyoda theorem [93] it follows that:

- any medial quasigroup is a T -groupoid;

- any semitopological medial quasigroup is a a semitopological T -groupoid;

- any paratopological medial quasigroup is a a paratopological T -groupoid;

- any topological medial quasigroup is a a topological T -groupoid.

Theorem 5.3. Let K be a class of topological spaces. Then:

1. Any semitopological T-groupoid G ∈ K is a topological quasigroup if and only

if any semitopological group H ∈ K is a topological group.

2. Any paratopological T-groupoid G ∈ K is a topological quasigroup if and only

if any paratopological group H ∈ K is a topological group.

Proof. Let H = (G, ◦) be the associated group at the T -groupoid (G, ·, a1, a2, b1, b2)

with the topology and {a1, a2, b1, b2}.
Then:

- H is a semitopological group if and only if G is a semitopological T -groupoid ;

- H is a paratopological group if and only if G is a paratopological T -groupoid;

- H is a topological group if and only if G is a topological quasigroup, i.e a topo-

logical T -groupoid.

The proof is complete.

Hence, Theorems 5.1 and 5.2 are true for medial quasigroups and for paramedial

quasigroups.
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Problem 5.3. Is Theorem 5.2 true for any quasigroups? In particular, is Theorem

5.2 true for IP-quasigroups?

Problem 5.4. Is Theorem 5.2 true for any quasigroup? In particular, is Theorem 5.2

true for IP-quasigroups?

Distinct classes of spaces and algebras were studied in [5, 6, 8, 9, 10, 11, 13, 29,

18, 24, 45, 49, 73, 77, 78, 84, 85, 91, 96, 98, 99].

6. SOLVABILITY OF ALGEBRAS

Let X be a space and τ be a cardinal. The space X is called τ-solvable if there

exists a family {Xα : α ∈ A} of pairewise disjoint dense subspaces such that |A| ≥ τ.

A 2-solvable space is called solvable. A |X|-solvable space is called totally solvable.

Let T be a topology on a quasigroup G. The topology T is weakly bounded if for

any non-empty set U ∈ T there exists a finite set L ⊆ G such that G = L · U. We do

not suppose that (G,T) is a topological, or a semitopological quasigroup.

Example 6.1. Denote by T1(G) = {X}∪ {X \F : F is a finite subset of G} the minimal

T1-topology on the quasigroup G, i.e. the cofinite topology on G. If b ∈ G, then

T0(G, b) = {U ∈ T1(G) : b ∈ U} is a T0-topology on G. Then:

- if T ⊆ T1(G), then T is a weakly bounded topology on G;

- (G, T1(G)) is a semitopological quasigroup;

- if the set G is infinite, then (G,T1(G)) is not a paratopological quasigroup;

- let G contains two distinct points and b ∈ G, then (G, T0(G, b)) is not a semitopo-

logical quasigroup.

Theorem 6.1. (M. Choban and L. Chiriac [39]) Let G be an infinite group of car-

dinality τ. Then there exists a disjoint family {Bµ : µ ∈ M} of subsets of G such

that:

1. |M| = |G|.
2. G = ∪{Bµ : µ ∈ M}.
3. (G \ Bµ) · K , G for all µ ∈ M and every finite subset K of G.

4. The sets {Bµ : µ ∈ M} are dense in all totally bounded topologies on G.

This theorem generalized a result of I. Protasov [81]. In [39] Theorem 6.1 is

proved for IP-quasigroups. More general result was proved in [26].

Problem 6.1. Let G be a topological quasigroup (or IP-quasigroup). Is it true that

G ×G is a solvable space?

The answer is positive for groups (I. P. Protasov).

7. ON ALGEBRAS WITH DIVISIONS

Let E be a signature. If n ≥ 1, g ∈ En and 1 ≤ i ≤ n, then
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g(a1, ..., ai−1, x, ai+1, ..., an) = ai

is an equation on E-algebras. Denote by e(g, n, i) this equation.

Let φ be a set of equations on E-algebras. By V(E, φ) we denote the class of

all topological E-algebras on which the equations e(g, n, i) ∈ φ are solutions, i.e.

for any a1, a2, ..., an ∈ G there exists b ∈ G such that g(a1, ..., ai−1, b, ai+1, an) =

ai. By V(E, uφ) we denote the class of all algebras G ∈ V(E, φ) on which the

equations e(g, n, i) ∈ φ are unique solutions. Let e(g, n, i) be an equation from φ.

We say that there exists a primitive solution on G of this equation if there exists

a term h(y1, y2, ..., yn) such that g(a1, ..., ai−1, h(a1, ..., ai, ..., an), ai+1, ..., an) = ai for

any a1, a2, ..., an ∈ G. Let V(E, φ,Π) be the class of E-algebras G ∈ V(E, φ) with

the primitive solutions for all equations from φ. Obviously V(E, φ,Π) ⊆ V(E, φ). In

some cases we may extend the signature E and consider that the solutions from φ are

operations from the signature.

There exists E-algebras in which some equations are solutions but does not exist

primitive continuous solutions. From this point of view it seems to be important the

next notions.

Definition 7.1. The equation g(a1, ..., ai−1, x, ai+1, an) = ai is with continuous divi-

sion on G if for any b ∈ G for which g(a1, ..., ai−1, b, ai+1, an) = ai and any open set

U ∋ b there exist the open sets U1 ∋ a1, U2 ∋ a2,...,Un ∋ an such that for all c1 ∈ U1,

c2 ∈ U2,..., cn ∈ Un there exits c ∈ V such that g(c1, ..., ci−1, c, ci+1, cn) = ci.

There exists equations with continuous division and without primitive continuous

division.

Example 7.1. Let G = {(x, y) : x2 + y2 = 1} and (x, y) · (u, v) = (xy − yv, xv + yu).

Then (G, ·) is a compact group. We put z ◦ w = z · w · w for any z,w ∈ G. Then (G, ◦)
is a topological groupoid. Consider on G the equations a ◦ x = b and y ◦ a = b. The

equation y ◦ a = b has a primitive continuous h(a, b) = b · a−1 · a−1 = b ◦ a−1, where

a−1 is the inverse element of a in the group (G, ·). If u = (cos(φ), sin(φ)) ∈ G and

0 ≤ φ ≤ 2π, then r(u) = (cos(φ/2), sin(φ/2)). In this case λ(a, b) = r(a−1 · b) is a

primitive solution of the equation a ◦ x = b. But for the equation a ◦ x = b does not

exist some continuous primitive solution. The equation a ◦ x = b is with continuous

solution. The equation a ◦ x = b has two distinct solutions for any pair (a, b).

Definition 7.2. A pair (F(X, E, φ), θX) is a topological free E-algebra of a space X

in the class V(E, φ) if the following conditions hold:

1. F(X, E, φ) ∈ V(E, φ) and θX : X → F(X, E, φ) is a continuous mapping.

2. If θX(X) ⊆ G ⊆ F(X, E, φ) and G ∈ V(E, φ), then F(X, E, φ) = G.

3. For any continuous mapping g : X → G ∈ V(E, φ) there exists a continuous

homomorphism g : F(X, E, φ)→ G such that g = g ◦ θX .

Theorem 7.1. For any non-empty space X the free object (F(X, E, φ), θX) exists and

is unique.
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Proof. For any G ∈ V(E, φ) and any equation e(g, n, i) from φ we consider the map-

pings h(gi) : Gn → G for which g(a1, ..., ai−1, h(gi)(a1, ..., ai, ..., an), ai+1, ..., an) = ai.

Consider that hgi is a symbol of a new operation. Now we put H = {h(gi) :

e(g, n, i) ∈ φ} and φE = E ∪ H. Then any algebra G ∈ V(E, φ) states an φE-algebra.

In this case, the operations from E are continuous. Thus the φE-algebras G ∈ V(E, φ)

are E-paratopological φE-algebras. Let V(φE) be the class of all E-paratopological

φE-algebras with the primitive solution from H for all equations φ. Obviously, any

G ∈ V(φE) as a topological E-algebra is from V(E, φ). Reversely, any G ∈ V(E, φ)

as a topological E-algebra with some fixed operations of the type hgi, e(g, n, i) ∈ φ, is

from V(φE). The object (F(X, E, φ), θX) = (F(X,V(φE)), θX) is the free object of the

space X in the quasivariety V(φE) of φE-algebras and the desired free object in the

class V(E, φ). The proof is complete.

For abstract algebra the following Theorem 7.2 was proved in [40] (see also [26],

Theorem 5.3.5).

Theorem 7.2. Let X be a non-empty space and the free object (F(X, E, φ), θX) is

abstract free in the class V(E, φ). Then any equation e(g, n, i) ∈ φ has no more than

two solutions in the free algebra F(X, E, φ).

Corollary 7.1. Let X be a non-empty completely regular space. Then any equation

g ∈ φ has no more than two solutions in the free algebra F(X, φE).

Remark 7.1. Let Ω be a set of identities and φ be a set of equations on E-algebras.

By V(E,Φ, φ, i) = V(E,Φ, i) ∩ V(E, φ) we denote the class of all topological E-

algebras with identitiesΦ, which are Ti-spaces, and on which the equations e(g, n, i) ∈
φ are solutions. The definition of the free object (F(X, E,Φ, φ, i), θX) of a space X in

the class V(E,Φ, φ, i) is as in Definition 7.2. Then, as in Theorem 7.1, one can estab-

lish that for any non-empty space X the free object (F(X, E,Φ, φ, i), θX) exists and is

unique. The Theorem 7.2 remain true for the identities of commutativity and associa-

tivity types. For any set Φ of identities that assertion is an open question.

8. TOPOLOGICAL BIGROUPOIDS

A topological bigroupoid is a topological space G with two binary continuous

operations {◦, ∗} for which there exists an element e ∈ G such that x ◦ e = x for each

x ∈ G.

A bigroupoid G is a bigroupoid with a division or, briefly a d-bigroupoid if for

each two elements a, b ∈ G there exist two elements c, p ∈ G such that a ◦ c = b and

p ◦ a = b.

A bigroupoid G is called an a-bigroupoid if x∗ (y◦ z) = (x◦y)∗ z for all x, y, z ∈ G.

There exists a general construction of bigroupoids.

Construction 8.1, [35]. Let (G1,+) be a topoloical groupoid with a right unity e1

and (G2,+) be a topological groupoid with a right unity e2. We put G = G1 ×G2, e =
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(e1, e2) and π : G1×G2 → G1 is the projection π(x, y) = x. Fix a continuous mapping

g : G1 → G. Now we consider on G the next two binary operations:

(x1, x2) ◦ (y1, y2) = (x1 + y1, x2 + y2);

(x1, x2) ∗ (y1, y2) = g(x1 + y1) = g(π((x1, x2) ◦ (y1, y2))).

By construction:

A8.1. The operations {◦, ∗} are continuous.

A8.2. (G, ◦, ∗, e) is a topological bigroupoid.

A8.3. G is a d-bigroupoid if and only if G1 and G2 are d-bigroupoids.

A8.4. If G1 is a group, then (G, ◦, ∗, e) is an a-bigroupoid.

These properties of the groupoid G constructed above are completed by the next

general fact.

Theorem 8.1. Let (G, ◦, ∗, e) be an a-groupoid, x ∗ e = y ∗ e if and only if x = y and

g(x) = x ∗ e for each x ∈ G. Then:

1. x ∗ y = g(x ◦ y) for all x, y ∈ G.

2. (G, ◦) is a semigroup.

3. If G is a division a-groupoid, then (G, ◦) is a group.

Proof. By definition, x ∗ y = x ∗ (y ◦ e) = (x ◦ y) ∗ e = g(x ◦ y). Fix x, y, z ∈ G. Then

((x◦ y)◦ z) ∗ e = (x◦ y) ∗ (z◦ e) = (x◦ y ∗ z) = x ∗ (y◦ z), (x◦ (y◦ z)) ∗ e = x ∗ ((y◦ z)◦ e)

= x ∗ (y ◦ z) and ((x ◦ y) ◦ z) ∗ e = (x ◦ (y ◦ z)) ∗ e, i.e. (x ◦ y) ◦ z = x ◦ (y ◦ z). The

assertions 1 and 2 are proved. The assertion 3 follows from the assertion 2.

Corollary 8.1. Let (G, ◦, ∗, e) be an a-groupoid and (G, ∗) be a quasigroup. Then

(G, ◦) is a semigroup.

9. TOPOLOGICAL E-AUTOMATA

Fix a signature E of topological algebras and a set Ω of identities on the class of

all topological E-algebras. Let V = V(E,Ω) be the class of all E-algebras with the

identities Ω.

Definition 9.1. A topological E-automaton is a seven-tuple M = (A, S , B, σ, δ, a0, F),

where:

- A and B are topological E-algebras, A is the space of states and B is the output

space;

- S is a topological semigroup and it is the space of inputs;

- F is a closed subset of A and is called the subspace of accepting states;

- a0 ∈ F is the initial state;

- δ : A × S → A and σ : A × S → B are continuous mappings, δ is the translation

function and σ is the output function;
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- δ(x, α ·β) = δ(δ(x, α), β) and σ(x, α ·β) = σ(δ(x, α), β) for all x ∈ A and α, β ∈ S ;

- for any s ∈ S the mappings δs : A → A and σs : A → B, where δs(x) = δ(x, s)

and σs(x) = σ(x, s), are homomorphisms.

For F = A and E = ∅ the automata M is called a Mealy machine. A topological

E-automaton M = (A, S , B, σ, δ, a0, F) is called a Meally topological E-automaton

(or E-machine) if there exists a continuous homomorphism µ : A → B such that

σ(x, s) = φ(δ(x, s)) for all x ∈ A and s ∈ S .

Assume that the topological semigroup S is fixed and F = A for any automa-

ton M = (A, S , B, σ, δ, a0, F). Denote by M(E,Ω) the class of all topological E-

automaton M = (A, S , B, σ, δ, a0, F) for which A, B ∈ V(E,Ω).

We say that φ = (φ1, φ2) : M1 → M2 is a homomorphism of an E-automaton

M1 = (A1, S , B1, σ1, δ1, a1, F1) into an E-automaton M2 = (A2, S , B2, σ2, δ2, a2, F2)

if φ1 : A1 → A2 and φ2 : B1 → B2 are continuous homomorphisms, φ1(a1) =

a2, φ1(F1) ⊆ F2 and φ1(δ1(x, s)) = δ2(φ(x), s), φ2(σ1(x, s)) = σ2(φ1(x), s) for all

x ∈ A1 and s ∈ S .

There exists a Mealy automaton which is not a Moore automaton. In this context

the next assertion is interesting .

Proposition 9.1. Any topological E-automaton is a continuous homomorphic image

of some topological Moore E-automaton.

Proof. Fix the topological E-automaton M = (A, S , B, δ, σ, a0, F). As in ([82],

Proposition 3.5) we put A′ = A × B, B′ = B, δ′((x, y), α) = (δ(x, α)σ(y, α)) and

σ′((x, y), α) = σ(x, α) for all x ∈ A, y ∈ B, α ∈ S . Fix b ∈ B. We put a1 = (a0, b)

and F′ = F × B. Then M′ = (A′, S , B′, δ′, σ′, a1, F
′) is a Moore E-automaton for the

homomorphism µ : A×B→ B, where µ(x, y) = y. We put φ1(x, y) = x and φ2(y) = y.

Then φ(φ1, φ2) is a continuous homomorphism of the automaton M′ onto M. The

class M(E,Ω) is closed under the topological product and on a subautomata.

Theorem 9.1. Let M = (X, S ,Y, δ, σ, a0, F) be a topological automaton, S be a dis-

crete space, F(X) and F(Y) be the free topological E-algebras of the spaces X and Y

in the class V(E,Ω), δ : F(X)×S → F(X) andσ : F(X)×S → F(Y) be the homomor-

phisms generated by the mappings δ and σ. Then F(M) = (F(X), S , F(Y), δ, σ, a0, F)

is a topological E-automaton.

Proof. Is obvious.

If a topological E-algebra A is a bigroupoid, then we say that A is an E-bigroupoid.

For E′
2
= E2 ∪ {◦, ∗} and E′ = E2 ∪ {◦, ∗}, any topological E-bigroupoid is a topo-

logical E′-algebra. Let M = (A, S , B, δ, σ, a0, F) be a topological E-automaton, Q

be a topological E-bigroupoid, a and B be E-subalgebras of the E-algebra Q, S be a

subgoupoid of the groupoid (Q, ◦) and δ(x, α) = x ◦ α, σ(x, α) = x ∗ α for all x ∈ A

and α ∈ S . Then we say that the topological E-automaton is an automaton in the

category of E-bigroupoids.



Selected problems and results of topological algebra 21

Theorem 9.2. For every topological E-automaton M = (A, S , B, δ, σ, a0, F) there

exists a topological E-bigroupoid such that M is an automaton in topological E-

bigroupoid Q.

Universal algebras and automata represent an important field of research in modern

mathematics and computer science. Interesting results in this field were obtained in

[1, 4, 25, 35, 50, 51, 56, 82].
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finite iterated p−order, when A j ( j = 0, 1, ..., k − 1) are entire functions of finite iterated

p−order in order to generalize and extend the results given by Wang and Lü, Liu and
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1. INTRODUCTION AND MAIN RESULT

In this paper, we shall assume that the reader is familiar with the fundamental re-

sults and the standard notations of the Nevanlinna value distribution theory of mero-

morphic functions (see [3] , [8]). For the definition of the iterated order of a mero-

morphic function, we use the same definition as in [4] ,
[
2, p. 317

]
,
[
5, p. 129

]
. For

all r ∈ R, we define exp1 r := er and expp+1 r := exp
(
expp r

)
, p ∈ N. We also define

for all r sufficiently large log1 r := log r and logp+1 r := log
(
logp r

)
, p ∈ N. More-

over, we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1. ([4] , [5]) Let f be a meromorphic function. The iterated p−order

ρp ( f ) of f is defined by

ρp ( f ) = lim
r→+∞

logp T (r, f )

log r
(p ≥ 1 is an integer) , (1.1)

where T (r, f ) is the Nevanlinna characteristic function of f (see [3] , [8]) .
For p = 1, this notation is called: order, and for p = 2 : hyper-order.

Definition 1.2. ([4] , [5]) The finiteness degree of the order of a meromorphic func-

tion f is defined by

27
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i ( f ) =



0, for f rational,

min
{
j ∈ N : ρ j ( f ) < +∞

}
, for f transcendental for which

some j ∈ N with ρ j ( f ) < +∞ exists,

+∞, for f with ρ j ( f ) = +∞ for all j ∈ N.

(1.2)

Definition 1.3. ([4]) Let f be a meromorphic function. The iterated exponent of

convergence of the sequence of distinct zeros of f (z) is defined by

λp ( f ) = lim
r→+∞

logp N
(
r, 1

f

)

log r
; p ≥ 1 is an integer, (1.3)

where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {|z| < r}. For p = 1,

this notation is called: exponent of convergence of the sequence of distinct zeros, and

for p = 2, we get the hyper-exponent of convergence of the sequence of distinct zeros.

Definition 1.4. ([6]) Let f be a meromorphic function. Then the iterated exponent of

convergence of the sequence of distinct fixed points of f (z) is defined by

τp ( f ) = λp ( f − z) = lim
r→+∞

logp N
(
r, 1

f−z

)

log r
; p ≥ 1 is an integer. (1.4)

For p = 1, this notation is called: exponent of convergence of the sequence of distinct

fixed points. However, for p = 2, we get the hyper-exponent of convergence of the

sequence of distinct fixed points (see [7]). Thus τp ( f ) = λp ( f − z) is an indication

of oscillation of distinct fixed points of f (z) .

Definition 1.5. The growth index of the iterated convergence exponent of the se-

quence of zero points of a meromorphic function f with iterated order is defined by

iλ ( f ) =



0 if n
(
r, 1

f

)
= O

(
log r

)

min {n ∈ N : λn ( f ) < ∞} if λn ( f ) < ∞ for some n ∈ N.
∞ if λn ( f ) < ∞ for all n ∈ N

Similarly, we can define the growth index iλ ( f ) of λp ( f ) and iτ ( f ) , iτ ( f )

of τp ( f ) , τp ( f ) .

For k ≥ 2, we consider the linear differential equation

f (k) + A (z) f = 0, (1.5)

where A (z) is a transcendental meromorphic function of finite iterated order ρp (A) =

ρ > 0. Many important results have been obtained on the fixed points of general tran-

scendental meromorphic functions for almost four decades (see [11, 13]). However,

there are a few studies on the fixed points of solutions of differential equations. In
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[15] , Wang and Lü have investigated the fixed points and hyper-order of solutions

of second order linear differential equations with meromorphic coefficients and their

derivatives. They have obtained the following result:

Theorem A ([15]) Suppose that A (z) is a transcendental meromorphic function sat-

isfying δ (∞, A) = lim
r→+∞

m(r,A)
T (r,A)

= δ > 0, ρ (A) = ρ < +∞. Then every meromorphic

solution f (z) /≡ 0 of the equation

f
′′
+ A (z) f = 0 (1.6)

is such that f , f
′

and f
′′

have infinitely many fixed points and

τ ( f ) = τ
(

f
′)
= τ

(
f
′′)
= ρ ( f ) = +∞, (1.7)

τ2 ( f ) = τ2

(
f
′)
= τ2

(
f
′′)
= ρ2 ( f ) = ρ. (1.8)

Theorem A has been generalized to higher order differential equations by Liu

and Zhang as follows (see [13]):

Theorem B ([13]) Suppose that k ≥ 2 and A (z) is a transcendental meromorphic

function satisfying δ (∞, A) = lim
r→+∞

m(r,A)
T (r,A)

= δ > 0, ρ (A) = ρ < +∞. Then every

meromorphic solution f (z) , 0 of (1.4) , has the property: f and f
′
, f
′′
, ..., f (k) all

have infinitely many fixed points and

τ ( f ) = τ
(

f
′)
= τ

(
f
′′)
= ... = τ

(
f (k)

)
= ρ ( f ) = +∞, (1.9)

τ2 ( f ) = τ2

(
f
′)
= τ2

(
f
′′)
= ... = τ2

(
f (k)

)
= ρ2 ( f ) = ρ. (1.10)

Theorem A and B have been generalized by B. Belaidi for iterated p-order

(see [2]):

Theorem C ([2]) Let k > 2 and A (z) be transcendental meromorphic function of

finite iterated order ρp (A) = ρ > 0 such that δ (∞, A) = lim
r→+∞

m(r,A)
T (r,A)

= δ > 0.

Suppose, moreover, that either:

(i) all poles of f are of uniformly multiplicity or that

(ii) δ (∞, f ) > 0.
If φ , 0 is a meromorphic function with finite iterated p−order ρp (φ) < +∞, then

every meromorphic solution f (z) , 0 of (1.5), satisfies

λp ( f − φ) = λp

(
f
′ − φ

)
= ... = λp

(
f (k) − φ

)
= ρp ( f ) = +∞, (1.11)

and
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λp+1 ( f − φ) = λp+1

(
f
′ − φ

)
= ... = λp+1

(
f (k) − φ

)
= ρp+1 ( f ) = ρ. (1.12)

For k ≥ 2, we consider the linear differential equation

f (k) + Ak−1 f (k−1) + ... + A0 f = 0, k ≥ 2, (1.13)

where A j ( j = 0, 1, ..., k − 1) are entire functions of finite iterated p−order.

The main purpose of this paper is to study the relation between solutions and

their derivatives of the differential equation (1.13) and entire functions of finite iter-

ated p−order where we generalize and extend the results of Wang and Lü, Liu and

Zhang and Belaidi. In fact, we prove the following result:

Theorem 1.1. Let k ≥ 2 and (A j) j=0,1,2,...k−1 be entire functions of finite iterated

p-order such that i (A0) = p; 0 < p < ∞. Assume that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or

max
{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞.

If φ (z) , 0 is an entire function with i (φ) < p + 1 or ρp+1 (φ) < ρp (A0), then every

solution f (z) , 0 of (1.13) satisfies

iλ

(
f (i) − φ

)
= iλ

(
f (i) − φ

)
= i ( f ) = p + 1, i ∈ N (1.14)

and

λp+1

(
f (i) − φ

)
= λp+1

(
f (i) − φ

)
= ρp+1 ( f ) = ρp (A0) , i ∈ N. (1.15)

For φ (z) = z in Theorem 1.1, we obtain the following corollaries:

Corollary 1.1. Let k ≥ 2 and (A j) j=0,1,2,...k−1 be entire functions of finite iterated

p-order such that i (A0) = p(0 < p < ∞). Assume that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or

max
{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞.

Then every solution f (z) , 0 of (1.13), is such that all the derivatives f (i) (i ∈ N) have

infinitely many fixed points and we have

i
τ

(
f (i)

)
= iτ

(
f (i)

)
= i ( f ) = p + 1, i ∈ N (1.16)
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and

τp+1

(
f (i)

)
= τp+1

(
f (i)

)
= ρp+1 ( f ) = ρp (A0) = ρ, i ∈ N. (1.17)

Corollary 1.2. Suppose that k ≥ 2 and A (z) is a transcendental entire function such

that 0 < ρp (A) = ρ < +∞. If φ (z) , 0 is an entire function with i (φ) < p + 1 or

ρp+1 (φ) < ρ, then every solution f (z) , 0 of (1.5) satisfies (1.14) and (1.15).

2. AUXILIARY LEMMATA

To prove our main results, we need the following lemmata.

Lemma 2.1. [6] Suppose that A0, A1, ..., Ak−1, F (. 0) are meromorphic functions

and let f be a meromorphic solution of the equation

f (k) + Ak−1 f (k−1) + ... + A1 f
′
+ A0 f = F, (2.1)

such that i ( f ) = ρ + 1 (0 < p < ∞) . If either

max
{
i (F) , i

(
A j

)
j = 0, 1, ..., k − 1

}
< p + 1

or

max
{
ρp+1 (F) , ρp+1

(
A j

)
j = 0, 1, ..., k − 1

}
< ρp+1 ( f ) ,

then we have iλ ( f ) = iλ ( f ) = i ( f ) = p + 1 and λp+1 ( f ) = λp+1 ( f ) = ρp+1 ( f ) .

Lemma 2.2. (see Remark 1.3 of [10]). If f is a meromorphic function with i ( f ) = p,

then ρp

(
f
′)
= ρp ( f ).

Lemma 2.3. ([10]) Let k ≥ 2 and A j ( j = 0, 1, ..., k − 1) be entire functions of finite

iterated p-order such that i (A0) = p, (0 < p < ∞). Assume that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or

max
{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞.

Then every solution f (z) , 0 of (1.13) satisfies i ( f ) = p + 1 and ρp+1 ( f ) = ρp (A0) .

Let A j ( j = 0, 1, ..., k − 1) be entire functions. We define the following sequence of

functions:



A0
j
= A j, j = 0, 1, ..., k − 1

Ai
k−1
= Ai−1

k−1
−

(
Ai−1

0

)′

Ai−1
0

, i ∈ N

Ai
j
= Ai−1

j
+ Ai−1

j+1

(
Ψi−1

j+1

)′

Ψi−1
j+1

, j = 0, 1, ..., k − 2, i ∈ N,

(2.2)
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where Ψi−1
j+1
=

Ai−1
j+1

Ai−1
0

.

Remark 2.1. In the case where one of functions Ai
j

( j = 0, 1, ..., k − 1) is equal to

zero then Ai+1
j
= Ai

j−1
( j = 0, 1, ..., k − 1) .

Lemma 2.4. Assume that f is an entire solution of (1.13) . Then gi = f (i) is an entire

solution of the equation

g
(k)

i
+ Ai

k−1g
(k−1)

i
+ ... + Ai

0gi = 0, (2.3)

where Ai
j
( j = 0, 1, ..., k − 1) are given by (2.2).

Proof. Assume that f is a solution of equation (1.13) and let gi = f (i). We prove that

gi is an entire solution of the equation (2.11) . Our proof is by induction: For i = 1,
differentiating both sides of (1.13) , we obtain

f (k+1) + Ak−1 f (k) +
(
A
′
k−1 + Ak−2

)
f (k−1) + ... +

(
A
′
1 + A0

)
f
′
+ A

′
0 f = 0, (2.4)

and replacing f by

f = − ( f (k) + Ak−1 f (k−1) + ... + A1 f
′
)

A0

,

we get

f (k+1)+

Ak−1 −
A
′
0

A0

 f (k)+

A
′
k−1 + Ak−2 − Ak−1

A
′
0

A0

 f (k−1)...+

A
′
1 + A0 − A1

A
′
0

A0

 f
′
= 0.

That is

g
(k)

1
+ A1

k−1g
(k−1)

1
+ A1

k−2g
(k−2)

1
... + A1

0g1 = 0.

Suppose that the assertion is true for the values which are strictly smaller than a

certain i. We suppose gi−1 is a solution of the equation

g
(k)

i−1
+ Ai−1

k−1g
(k−1)

i−1
+ Ai−1

k−2g
(k−2)

i−1
... + Ai−1

0 gi−1 = 0. (2.5)

Differentiating (2.5) , we can write

g
(k+1)

i−1
+ Ai−1

k−1g
(k)

i−1
+

((
Ai−1

k−1

)′
+ Ak−2

)
g

(k−1)

i−1
+ ...

+

((
Ai−1

1

)′
+ Ai−1

0

)
g
′
i−1 + A

′
0gi−1 = 0. (2.6)

In (2.6) , replacing gi−1 by

gi−1 = −
(g

(k)

i−1
+ Ai−1

k−1
g

(k−1)

i−1
+ Ai−1

k−2
g

(k−2)

i−1
... + A (gi−1)

′
)

Ai−1
0

,
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yields

g
(k+1)

i−1
+

Ai−1
k−1 −

(
Ai−1

0

)′

Ai−1
0

 g
(k)

i−1
+


(
Ai−1

k−1

)′
+ Ak−2 − Ai−1

k−1

(
Ai−1

0

)′

Ai−1
0

 g
(k−1)

i−1
...+

+


(
Ai−1

1

)′
+ Ai−1

0 − Ai−1
1

(
Ai−1

0

)′

Ai−1
0

 g
′
i−1 = 0. (2.7)

That is

g
(k)

i−1
+ Ai−1

k−1g
(k−1)

i−1
+ Ai−1

k−2g
(k−2)

i−1
... + Ai−1

0 gi−1 = 0.

Lemma 2.4 is thus proved.

Lemma 2.5. Let A j ( j = 0, 1, ..., k − 1) be entire functions of finite order. Assume

that

max
{
i
(
A j

)
, ( j = 1, ..., k − 1)

}
< i (A0)

or

max
{
ρp

(
A j

)
, ( j = 1, ..., k − 1)

}
< ρp (A0) < +∞,

and let Ai
j
, ( j = 0, 1, ..., k−1) be defined as in (2.2). Then all nontrivial meromorphic

solution g of the equation

g(k) + Ai
k−1g(k−1) + ... + Ai

0g = 0, k ≥ 2 (2.8)

satisfy : i (g) = p + 1 and ρp+1 (g) = ρ.

Proof. Let { f1, f2, ..., fk} be a fundamental system of solutions of (1.13). We show

that
{
f

(i)

1
, f

(i)

2
, ..., f

(i)

k

}
is a fundamental system of solutions of (2.8). By Lemma 2.4,

it follows that f
(i)

1
, f

(i)

2
, ..., f

(i)

k
is a solutions (2.8) . Let α1, α2, ..., αk be constants such

that

α1 f
(i)

1
+ α2 f

(i)

2
+ ... + αk f

(i)

k
= 0.

Then, we have

α1 f1 + α2 f2 + ... + αk fk = P (z) ,

where P (z) is a polynomial of degree less than i. Since α1 f1 + α2 f2 + ... + αk fk is

a solution of (1.13), then P is a solution of (1.13), and by Lemma 2.3, we conclude

that P is an infinite solution of (1.13); this leads to a contradiction. Therefore, P

is a trivial solution. We deduce that α1 f1 + α2 f2 + ... + αk fk = 0. Using the fact

that { f1, f2, ..., fk} is a fundamental system of solutions of (1.13), we get α1 = α2 =

... = αk = 0. Now, let g be a non trivial solution of (2.8). Then, using the fact

that
{
f

(i)

1
, f

(i)

2
, ..., f

(i)

k

}
is a fundamental solution of (2.8) , we claim that there exist
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constants α1, α2, ..., αk not all equal to zero, such that g = α1 f
(i)

1
+α2 f

(i)

2
+ ...+αk f

(i)

k
.

Let h = α1 f1+α2 f2+...+αk fk, h be a solution of (1.13) and h(i) = g.Hence, by Lemma

2.2, we have ρp+1 (h) = ρp+1 (g) , and by Lemma 2.3, we have i (h) = i (g) = p + 1

and ρp+1 (h) = ρp+1 (g) = ρ.

3. PROOF OF THEOREM 1.1

Assume that f is a solution of equation (1.13) . By Lemma 2.3, we can write i ( f ) =

p + 1, ρp+1 ( f ) = ρp (A0) . Taking gi = f (i), then, using Lemma 2.2, we have i (gi) =

p+1, ρp+1 (gi) = ρp (A0) . Now, let w (z) = gi (z)−φ (z) , where φ is an entire function

with ρp+1 (φ) < ρp (A0) .
Then i (w) = i (gi) = p + 1, and ρp+1 (w) = ρp+1 (gi) = ρp+1 ( f ) = ρ (A0) .

In order to prove iλ (gi − φ) = iλ (gi − φ) = p + 1 and λp+1 (gi − φ) = λp+1 (gi − φ) =

ρ (A0), we need to prove only iλ (w) = iλ (w) = p + 1 and λp+1 (w) = ρ (A0) . Using

the fact that gi = w + φ, and by Lemma 2.4 we get

w(k) + Ai
k−1w(k−1) + ... + Ai

0w = −
(
φ(k) + Ai

k−1φ
(k−1) + ... + Ai

0φ
)
= F. (3.1)

By ρp

(
Ai

j

)
< ∞, ρp+1 (φ) < ρp (A0) and Lemma 2.3, we get F . 0 and ρp+1 (F) < ∞.

By Lemma 2.4 iλ (w) = iλ (w) = p + 1 and λp+1 (w) = λp+1 (w) = ρp+1 (w) = ρ (A0) .
The proof of theorem 1.1 is complete.
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Abstract A group, called the second Bryant Schneider group (2nd BSG), is naturally assigned to

any Osborn loop. An Osborn loop has the properties: it is universal if and only if its

2nd BSG contains a tri-mapping and it is left (right) universal if and only if its 2nd BSG

contains a bi-mapping. An Osborn loop in which the tri-mapping is of exponent 2 is

shown to be an abelian group. Consequently, a universal Osborn loop like a Moufang

loop, an extra loop, a CC-loop, a VD-loop, a universal WIPL that is non-associative

and non-abelian has the tri-mapping (not of exponent 2) in its 2nd BSG. The conjugate

of this tri-mapping for a universal Osborn loop that is a G-loop (e.g VD-loops, CC-

loops, extra loops and some classes of Moufang loops) or which belongs to a family

of commutative Moufang loops is shown to be in the 2nd BSG of its loop isotope. A

necessary and sufficient condition for a loop to be a universal Osborn loop in which

an arbitrary principal isotope is isomorphic to some principal isotope under the identity

map is established.
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1. INTRODUCTION

A loop is called an Osborn loop if it obeys the identity below.

OS 0 : x(yz · x) = x(yxλ · x) · zx (1)

where xλ denotes the left inverse element of x.

For a comprehensive introduction to Osborn loops and universal Osborn loops as

well as a detailed literature review on it, readers should check Jaiyéolá [7, 6], Jaiyéolá

and Adénı́ran [9, 8], and Jaiyéolá , Adénı́ran and Sòlárı̀n [10]. In this present paper,

we shall follow the style and notations used in Jaiyéolá and Adénı́ran [8], and Jaiyéolá

, Adénı́ran and Sòlárı̀n [10]. Some concepts and notions, and results which will be

introduced and stated here are those that were not defined or stated in Jaiyéolá and

Adénı́ran [8], and Jaiyéolá , Adénı́ran and Sòlárı̀n [10].
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Let x be an arbitrarily fixed element in a loop (G, ·). For any x ∈ G, the left and

right translation maps are denoted by Lx and Rx respectively. The inverses of Lx and

Rx will be denoted respectively by Lx and Rx.

Theorem 1.1. (Basarab, [2]) If an Osborn loop is of exponent 2, then it is an abelian

group.

We state an easy result that will later be of use.

Theorem 1.2. Let (G, ·) be a ”certain” loop where ”certain” is an isomorphic in-

variant property. (G, ·) is a universal ”certain” loop if and only if every f , g-principal

isotope (G, ∗) of (G, ·) has the ”certain” loop property.

Let S Y M(G, ·) represent the symmetric group of any loop (G, ·).
Definition 1.1. (Robinson [13])

Let (G, ·) be a loop.

1 . A mapping θ ∈ S Y M(G, ·) is said to be a right special map if there exists

f ∈ G so that (θ, θL f , θ) ∈ AUT (G, ·).

2 A mapping θ ∈ S Y M(G, ·) is said to be a left special map for G if that there

exists g ∈ G so that (θRg, θ, θ) ∈ AUT (G, ·).

3 A mapping θ ∈ S Y M(G, ·) is named a special map for G if there exist f , g ∈ G

so that (θRg, θL f , θ) ∈ AUT (G, ·).
From Definition 1.1, it can be observed that θ is a left or right special map for a

loop (G, ·) with identity element e if and only if θ is an isomorphism of (G, ·) onto

some e, g- or f , e- principal isotope (G, ◦) of (G, ·). Moreso, θ is a special map for a

loop (G, ·) if and only if θ is an isomorphism of (G, ·) onto some f , g-principal isotope

(G, ◦) of (G, ·).
Robinson [13] went further to show that if

BS (G, ·) = {θ ∈ S Y M(G, ·) : ∃ f , g ∈ G ∋ (θRg, θL f , θ) ∈ AUT (G, ·)}

i.e the set of all special maps in a loop, then BS (G, ·) ≤ S Y M(G, ·) is called the

Bryant-Schneider group of the loop (G, ·) (because its importance and motivation

stem from the work of Bryant and Schneider [3]). Since the definition of the Bryant-

Schneider group, some studies by Adeniran [1] and Chiboka [5] have been done on it

relative to CC-loops and extra loops. This group will now be called the first Bryant-

Schneider group (1st BSG) and represented by BS 1(G, ·) = BS 1(G) for a loop (G, ·).
Let

BS 2(G, ·) = {θ ∈ S Y M(G) : G(a, b)
θ
� G(c, d) for some a, b, c, d ∈ G}.

As shown in Bryant and Schneider [3], BS 2(G, ·) forms a group for a loop (G, ·) and

it shall be called the second Bryant-Schneider group(2nd BSG) of the loop. It is easy
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to see that BS 1(G, ·) ≤ BS 2(G, ·) ≤ S Y M(G). The 2nd BSG will be more useful than

the 1st BSG in this study. This is as a result of some mappings that are in the 2nd BSG

and not in the 1st BSG.

Results of Bryant and Schneider [3].

Theorem 1.3. Let (G, ·) and (H,⊙) be quasigroups. If (G, ·) is isomorphic to (H,⊙)

under θ, then BS 2(H,⊙) = θ−1BS 2(G, ·)θ.
Theorem 1.4. If (Q, ·) is a quasigroup, then Q(a, b, ◦) is trivially isomorphic to

Q(c, d, ∗) if and only if c · b, a · d ∈ Nµ
(
Q(a, b, ◦)) and a · b = c · d.

Corollary 1.1. If (Q, ·) is a loop with identity e, then (Q, ·) is trivially isomorphic to

Q(c, d) if and only if c, d ∈ Nµ(Q, ·) and c · d = e.

Results of Robinson [13]. Let (Q, ·) be a loop and ROB(Q, ·) = ROB(Q)

be the set of autotopisms R = (δRg, δL f , δ) for f , g, ∈ Q. The author observed that

ROB(Q) ≤ AUT (Q) and we shall call it the Robinson group (ROBG) of a loop.

Furthermore, he mentioned that the mapping Θ : ROB(Q, ·) −→ BS 1(Q, ·) defined

by Θ : (δRg, δL f , δ) −→ δ is an homomorphism and proved the following results

about its kernel.

Theorem 1.5. Let (Q, ·) be a loop with identity e, let f , g ∈ Q and let δ ∈ S Y M(Q).

Then, R = (δRg, δL f , δ) ∈ kerΘ if and only if δ = I, g · f = e and g ∈ Nµ(Q).

In this study, the group called the second Bryant Schneider group (2nd BSG) is

investigated in universal Osborn loops. An Osborn loop is shown to be universal if

and only if its 2nd BSG contains a tri-mapping and is left (right) universal if and only

if its 2nd BSG contains a bi-mapping. An Osborn loop in which the tri-mapping is of

exponent 2 is shown to be an abelian group. Consequently, a universal Osborn loop

like a Moufang loop, an extra loop, a CC-loop, a VD-loop or a universal WIPL that

is non-associative and non-abelian has the tri-mapping (not of exponent 2) in its 2nd

BSG. The conjugate of this tri-mapping for a universal Osborn loop that is a G-loop

(e.g VD-loops, CC-loops, extra loops and some classes of Moufang loops) or which

belongs to a family of commutative Moufang loops is shown to be in the 2nd BSG

of its loop isotope. A necessary and sufficient condition for a loop to be a universal

Osborn loop in which an arbitrary principal isotope is isomorphic to some principal

isotope under the identity map is established.

2. MAIN RESULTS

Theorem 2.1. Let (Q, ·, \, /) be an Osborn loop. Let ϕ(x, u, v) = (u\([(uv)/(u\(xv))]v))

and γ(x, u, v) = RvR[u\(xv)]LuLx for all x, u, v ∈ Q, then (Q, ·, \, /) is a universal Os-

born loop if and only if the composition

(Q, ·)
(Rϕ(x,u,v),Lu,I)
−−−−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦) (Rv,Lx,I)−−−−−−−−−−−−−−→
principal isotopism

(Q, ·) (2)
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holds, where (Q, ◦) is an arbitrary principal isotope of (Q, ·) and (Q, ∗) some princi-

pal isotope of (Q, ·).

Proof. Let Q = (Q, ·, \, /) be an Osborn loop with any arbitrary principal isotope

Q = (Q,N,↖,↗) such that

xNy = xR−1
v · yL−1

u = (x/v) · (u\y) ∀ u, v ∈ Q. (3)

If Q is a universal Osborn loop then, Q is an Osborn loop. Q obeys identity OS0

implies

xN[(yNz)Nx] = {xN[(yNxλ
′
)Nx]}N(zNx) (4)

where xλ
′
= xJλ′ is the left inverse of x in Q. The identity element of the loop Q is

uv. So,

xNy = xR−1
v · yL−1

u implies yλ
′
Ny = yλ

′
R−1

v · yL−1
u = uv implies

yλ
′
R−1

v RyL−1
u
= uv implies yJλ′ = (uv)R−1

yL−1
u

Rv = (uv)R−1
(u\y)Rv = [(uv)/(u\y)]v.

Thus, by using (3), Q is an Osborn loop if and only if

(x/v) · u\{[(y/v) · (u\z)]/v · (u\x)} =

= ((x/v) · u\{[(y/v)(u\([(uv)/(u\x)]v))]/v · (u\x)})/v · u\[(z/v)(u\x)].

Do the following replacements:

x′ = x/v⇒ x = x′v, z′ = u\z⇒ z = uz′, y′ = y/v⇒ y = y′v

we have

x′ · u\{(y′z′)/v · [u\(x′v)]} =
= (x′ · u\{[y′(u\([(uv)/(u\(x′v))]v))]/v · [u\(x′v)]})/v · u\[((uz′)/v)(u\(x′v))].

This is precisely identity OS′
0

below, obtained by replacing x′, y′ and z′ by x, y and z

respectively,

x · u\{(yz)/v · [u\(xv)]} =

= (x · u\{[y(u\([(uv)/(u\(xv))]v))]/v · [u\(xv)]})/v · u\[((uz)/v)(u\(xv))]. OS′
0

Writing identity OS′
0

in autotopic form, we will obtain the fact that the triple(
α(x, u, v), β(x, u, v), γ(x, u, v)

) ∈ AUT (Q) for all x, u, v ∈ Q where

α(x, u, v) = R
(u\([(uv)/(u\(xv))]v))

RvR[u\(xv)]LuLxRv, β(x, u, v) = LuRvR[u\(xv)]Lv and

γ(x, u, v) = RvR[u\(xv)]LuLx are elements of Mult(Q). The triple

(
α(x, u, v), β(x, u, v), γ(x, u, v)

)
=

(
R

(u\([(uv)/(u\(xv))]v))
γRv, LuγLx, γ

)
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can be written as the following compositions
(
R

(u\([(uv)/(u\(xv))]v))
, Lu, I

)
(γ, γ, γ)(Rv,Lx, I).

Let (Q, ◦) be an arbitrary principal isotope of (Q, ·) and (Q, ∗) a particular principal

isotope of (Q, ·). Let ϕ(x, u, v) = (u\([(uv)/(u\(xv))]v)), then the composition above

can be expressed as:

(Q, ·)
(Rϕ(x,u,v),Lu,I)
−−−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦) (Rv,Lx,I)−−−−−−−−−−−−−→
principal isotopism

(Q, ·).

The proof of the converse is as follows. Let Q = (Q, ·, \, /) be an Osborn loop.

Assuming that the composition in equation (2) holds, then doing the reverse of the

proof of necessity,
(
α(x, u, v), β(x, u, v), γ(x, u, v)

) ∈ AUT (Q) for all x, u, v ∈ Q which

means that Q obeys identity OS′
0

hence, it will be observed that equation (3) is true for

any arbitrary u, v-principal isotope Q = (Q,N,↖,↗) of Q. So, every f , g-principal

isotope Q of Q is an Osborn loop. Following Theorem 1.2, Q is a universal Osborn

loop if and only if Q is an Osborn loop. This completes the proof

Corollary 2.1. Let (Q, ·, \, /) be a loop. Q is a universal Osborn loop if and only if

the tri-mapping γ(x, u, v) = RvR[u\(xv)]LuLx ∈ BS 2(Q) for all x, u, v ∈ Q.

Proof. This is obtained from Theorem 2.1 as a consequence of the composition in

equation (2).

Lemma 2.1. A loop (Q, ·, \, /) in which
∣∣∣γ(x, u, v)

∣∣∣ = 2, γ(x, u, v) = RvR[u\(xv)]LuLx

for all x, u, v ∈ Q is a loop of exponent 2. Hence, if Q is an Osborn loop, then it is an

abelian group.

Proof. The fact that Q is a loop of exponent 2 can be deduced from the fact that

γ = γ−1 implies x = xρ which gives x2 = 2 by taken u = v = e. When Q is an Osborn

loop, then following Theorem 1.1, it is an abelian group.

Corollary 2.2. In any non-associative non-abelian Moufang loop or extra loop or

CC-loop or VD-loop or universal WIPL (Q, ·, \, /), the tri-mapping

γ(x, u, v) = RvR[u\(xv)]LuLx ∈ BS 2(Q) for all x, u, v ∈ Q and
∣∣∣γ(x, u, v)

∣∣∣ , 2.

Proof. The fact that γ(x, u, v) ∈ BS 2(Q) for all x, u, v ∈ Q follows from Corollary 2.1

since a Moufang loop or extra loop or CC-loop or VD-loop or universal WIPL is a

universal Osborn loop. If
∣∣∣γ(x, u, v)

∣∣∣ = 2, then by Lemma 2.1, it is associative and

commutative which are contradictions. So,
∣∣∣γ(x, u, v)

∣∣∣ , 2.

Lemma 2.2. Let (G, ·, \, /) be an Osborn loop that is a G-loop with arbitrary isotope

(Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω such that θ−1
i
γ(x, u, v)θi ∈

BS 2(Hi, ◦i) i ∈ Ω for all x, u, v ∈ G where γ(x, u, v) = RvR[u\(xv)]LuLx.

Proof. Assuming that G is isomorphic to Hi under θi, i ∈ Ω, then the proof of the

lemma follows by using Theorem 1.3 and Corollary 2.1.
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Lemma 2.3. Let (G, ·, \, /) be a universal Osborn loop with an arbitrary isotope

(H, ◦) such that (G, ·) θ
� (H, ◦). Then, θ−1γ(x, u, v)θ ∈ BS 2(H, ◦) for all x, u, v ∈ G

where γ(x, u, v) = RvR[u\(xv)]LuLx.

Proof. This is a direct consequence of Theorem 1.3.

Corollary 2.3. Let (G, ·, \, /) be a CC-loop or VD-loop or extra loop with arbi-

trary isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω
such that θ−1

i
γ(x, u, v)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, u, v ∈ G where γ(x, u, v) =

RvR[u\(xv)]LuLx.

Proof. This follows from Lemma 2.2 and the fact that a CC-loop or VD-loop or extra

loop is a G-loop.

Corollary 2.4. Let M = (M, ·, \, /) be

a Moufang loop such that M = N(M)M3 or

a simple Moufang loop with identity such that M3
, e or

Moufang loop which satisfies an Mk-law for k . 1 mod 3

with arbitrary isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω
such that θ−1

i
γ(x, u, v)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, u, v ∈ M where γ(x, u, v) =

RvR[u\(xv)]LuLx.

Proof. This follows from Lemma 2.2 and the fact that such a Moufang loop is a G-

loop in each case as shown in Corollary IV.4.7, Corollary IV.4.8 and Theorem IV.4.10

of [12]

Corollary 2.5. Let (G, ·, \, /) be any commutative Moufang loop which belongs to a

family of isotopic commutative Moufang loops F. For every arbitrary Hi ∈ F i ∈ Ω,

there exists a bijection θi : G → Hi , i ∈ Ω such that θ−1
i
γ(x, u, v)θi ∈ BS 2(Hi, ◦i) i ∈

Ω for all x, u, v ∈ G where γ(x, u, v) = RvR[u\(xv)]LuLx.

Proof. This follows from Lemma 2.2 and the fact that a family of isotopic commu-

tative Moufang loops forms an isomorphic family as shown in Theorem IV.5.6 of

[12].

Lemma 2.4. Let (Q, ·, \, /) be a Moufang loop with an arbitrary isotope (H, ◦) such

that (Q, ·) is isomorphic to (H, ◦) under θ. Then, θ−1γ(x, u, v)θ ∈ BS 2(H, ◦) for all

x, u, v ∈ G where γ(x, u, v) = RvR[u\(xv)]LuLx.

Proof. This follows from Lemma 2.3

Lemma 2.5. A loop Q = (Q, ·, \, /) is a universal Osborn loop in which an arbitrary

principal isotope is isomorphic to some principal isotope under the identity map if

and only if Q is an abelian group of exponent 2.
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Proof. By equation (2) of Theorem 2.1, it can be deduced that if (Q, ◦) and (Q, ∗) are

principal isotopes (Q, ·) and γ(x, u, v) = RvR[u\(xv)]LuLx, then
(
Q, x, v, ◦) is isomor-

phic to (Q, u, ϕ(x, u, v), ∗) under γ−1,

where ϕ(x, u, v) = (u\([(uv)/(u\(xv))]v)) for all x, u, v ∈ Q.

We now switch to Theorem 1.4. If γ−1 = I then γ = I if and only if γ(x, u, v) =

RvR[u\(xv)]LuLx = I if and only if R[u\(xv)] = RvLxLu which implies y[u\(xv)] =

u[x\(yv)] for all x, y, u, v ∈ Q. Taking u = v = y = e, we get x2 = e. By Theorem 1.1,

G is an abelian group. This fact can also be proved by using the sufficient part of

Theorem 1.4. The converse is easy.

Lemma 2.6. A loop Q = (Q, ·, \, /) is a universal Osborn loop which is isomorphic

to some principal isotope under the identity map if and only if Q is an abelian group

of exponent 2.

Proof. The procedure of the proof is similar to that of Lemma 2.5 i.e. using γ(e, u, e).

This fact can also be proved by using the sufficient part of Corollary 1.1. The converse

is easy.

Corollary 2.6. A loop Q = (Q, ·, \, /) is a Moufang loop or extra loop or VD-loop or

CC-loop or universal WIPL which is isomorphic to some principal isotope under the

identity map if and only if Q is an abelian group of exponent 2.

Proof. Consequence of Lemma 2.6.

Theorem 2.2. Let (Q, ·, \, /) be a universal Osborn loop, (Q, ∗) an arbitrary right

principal isotope of (Q, ·) and (Q, ◦) some principal isotope of (Q, ·). Let ψ(x, u, v) =

(u\[(u/v)(u\(xv))]) and γ(x, u, v) = RvR[u\(xv)]LuLx for all x, u, v ∈ Q, then the com-

position

(Q, ·) (I,Lu,I)−−−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦)
(
R
ψ(x,u,v)

,Lx,I
)

−−−−−−−−−−−−−−→
principal isotopism

(Q, ·) (5)

holds.

Proof. Theorem 2.1 will be employed. Let z = e in identity OS′
0
, then

x · u\{y/v · [u\(xv)]} =

= (x · u\{[y(u\([(uv)/( f \(xv))]v))]/v · [u\(xv)]})/v · u\[((u/v)(u\(xv))].

So, identity OS′
0

can now be written as

x · u\{(yz)/v · [u\(xv)]} =

=
{
{x · u\[y/v · (u\(xv))]}/{u\[((u/v)(u\(xv))]}

}
· u\[((uz)/v)(u\(xv))].



44 T. G. Jaiyéolá, J. O. Adéńıran, A. A. A. Agboolá

Putting this in autotopic form, we have

(
γ(x, u, v)R

(u\[(u/v)(u\(xv))])
, β(x, u, v), γ(x, u, v)

)
∈ AUT (Q).

(
γ(x, u, v)Rψ(x,u,v)

, β(x, u, v), γ(x, u, v)
)
=

(
γ(x, u, v)Rψ(x,u,v)

, LuγLx, γ(x, u, v)
)
∈ AUT (Q)

for all x, u, v ∈ Q. Writing

(
γ(x, u, v)Rψ(x,u,v)

, Luγ(x, u, v)Lx, γ(x, u, v)
)
=

(I, Lu, I)
(
γ(x, u, v), γ(x, u, v), γ(x, u, v)

)(
Rψ(x,u,v)

,Lx, I
)

such that

(Q, ·) (I,Lu,I)−−−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦)
(
R

(u\[(u/v)(u\(xv))])
,Lx,I

)
−−−−−−−−−−−−−−−−→

principal isotopism
(Q, ·)

where (Q, ∗) is an arbitrary right principal isotope of (Q, ·) and (Q, ◦) are some par-

ticular principal isotope of (Q, ·), the conclusion of the theorem follows.

Theorem 2.3. Let (Q, ·, \, /) be a loop, (Q, ◦) an arbitrary principal isotope of (Q, ·)
and (Q, ∗) some left principal isotope of (Q, ·). Let ϕ(x, v) = ([v/(xv)]v) and γ(x, v) =

RvR(xv)LuLx for all x, v ∈ Q, then (Q, ·, \, /) is a left universal Osborn loop if and

only if the composition

(Q, ·)
(Rϕ(x,v),I,I)

−−−−−−−−−−−−−−−−→
left principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦) (Rv,Lx,I)−−−−−−−−−−−−−−→
principal isotopism

(Q, ·) (6)

holds.

Proof. The method of the proof of this theorem is similar to the method used to prove

Theorem 2.1 by just using the arbitrary left principal isotope Q = (Q,N,↖,↗) such

that

xNy = xR−1
v · y = (x/v) · y ∀ v ∈ Q.

In the process of the proof, it will be observed that a loop Q = (Q, ·, \, /) is a left

universal Osborn loop if and only if it obeys the identity

x · [(y · zv)/v · (xv)] = (x · {[y([v/(xv)]v)]/v · (xv)})/v · [z · xv] OSλ
0
.

Writing identity OSλ
0

in autotopic form, we can conclude that Q is a left universal

Osborn loop if and only if the triple
(
α(x, v), β(x, v), γ(x, v)

) ∈ AUT (Q) for all x, v ∈
Q where α(x, v) = R([v/(xv)]v)RvR[xv]LxRv, β(x, v) = RvR[xv]Lv and γ(x, v) = RvR[xv]Lx

are elements of Mult(Q). Breaking this into compositions like we did in the proof of

Theorem 2.1, we shall get equation (6).
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Corollary 2.7. Let (Q, ·, \, /) be a loop. Q is a left universal Osborn loop if and only

if the bi-mapping γ(x, v) = RvR(xv)LuLx ∈ BS 2(Q) for all x, v ∈ Q.

Proof. This is gotten from Theorem 2.3 as a consequence of the composition in equa-

tion (6).

Lemma 2.7. Let (G, ·, \, /) be an Osborn loop that is a Gλ-loop with arbitrary left

isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω such that

θ−1
i
γ(x, v)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, v ∈ G where γ(x, v) = RvR[xv]Lx.

Proof. Assuming that G is isomorphic to Hi under θi, i ∈ Ω, then the proof of the

lemma follows by using Theorem 1.3 and Corollary 2.7.

Lemma 2.8. Let (G, ·, \, /) be a left universal Osborn loop with an arbitrary left

isotope (H, ◦) such that (G, ·) is isomorphic to (H, ◦) under θ. Then, θ−1γ(x, v)θ ∈
BS 2(H, ◦) for all x, v ∈ G where γ(x, v) = RvR[xv]Lx.

Proof. This is a direct consequence of Theorem 1.3.

Corollary 2.8. Let (G, ·, \, /) be a CC-loop or VD-loop or extra loop with arbitrary

left isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω such that

θ−1
i
γ(x, v)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, v ∈ G where γ(x, v) = RvR[xv]Lx.

Proof. This follows from Lemma 2.7 and the fact that a CC-loop or VD-loop or extra

loop is a Gλ-loop.

Corollary 2.9. Let M = (M, ·, \, /) be

a Moufang loop such that M = N(M)M3 or

a simple Moufang loop with identity such that M3
, e or

Moufang loop which satisfies an Mk-law for k . 1 mod 3

with arbitrary left isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω
such that θ−1

i
γ(x, v)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, v ∈ M where γ(x, v) = RvR[xv]Lx.

Proof. This follows from Lemma 2.7 and the fact that such a Moufang loop is a Gλ-

loop in each case as shown in Corollary IV.4.7, Corollary IV.4.8 and Theorem IV.4.10

of [12].

Corollary 2.10. Let (G, ·, \, /) be any commutative Moufang loop which belongs to a

family of left isotopic commutative Moufang loops F. For every arbitrary Hi ∈ F i ∈
Ω, there exists a bijection θi : G → Hi , i ∈ Ω such that θ−1

i
γ(x, v)θi ∈ BS 2(Hi, ◦i) i ∈

Ω for all x, v ∈ G where γ(x, v) = RvR[xv]Lx.

Proof. This follows from Lemma 2.7 and the fact that a family of left isotopic com-

mutative Moufang loops forms an isomorphic family as shown in Theorem IV.5.6 of

[12].
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Lemma 2.9. Let (Q, ·, \, /) be a Moufang loop with an arbitrary left isotope (H, ◦)
such that (Q, ·) is isomorphic to (H, ◦) under θ. Then, θ−1γ(x, v)θ ∈ BS 2(H, ◦) for all

x, v ∈ G where γ(x, v) = RvR[xv]Lx.

Proof. This follows from Lemma 2.8.

Lemma 2.10. A loop Q = (Q, ·, \, /) is a left universal Osborn loop in which an

arbitrary principal isotope is isomorphic to some left principal isotope under the

identity map if and only if Q is an abelian group of exponent 2.

Proof. By equation (6) of Theorem 2.3, it can be deduced that if (Q, ◦) is an arbi-

trary principal isotope of (Q, ·), (Q, ∗) a left principal isotope of (Q, ·) and γ(x, v) =

RvR[xv]Lx, then
(
Q, x, v, ◦) is isomorphic to (Q, e, ϕ(x, v), ∗) under γ−1,

where ϕ(x, v) = ([v/(xv)]v) for all x, v ∈ Q.

We now switch to Theorem 1.4. If γ−1 = I then γ = I if and only if γ(x, v) =

RvR[xv]Lx = I if and only if R(xv) = RvLx which implies y(xv) = [x\(yv)] for all

x, y, v ∈ Q. Taking v = y = e, we get x2 = e. By Theorem 1.1, G is an abelian

group. This fact can also be proved by using the sufficient part of Theorem 1.4. The

converse is easy.

Corollary 2.11. A loop Q = (Q, ·, \, /) is a Moufang loop or extra loop or VD-loop

or CC-loop or universal WIPL in which an arbitrary principal isotope is isomorphic

to some left principal isotope under the identity map if and only if Q is an abelian

group of exponent 2.

Proof. Consequence of Lemma 2.10

Theorem 2.4. Let (Q, ·, \, /) be a left universal Osborn loop and (Q, ◦) some princi-

pal isotope of (Q, ·). Let ψ(x, v) = (vλ · xv) and γ(x, v) = RvR[xv]Lx for all x, v ∈ Q,

then the composition

(Q, ·) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦)
(
Rψ(x,v),Lx,I

)
−−−−−−−−−−−−−−→
principal isotopism

(Q, ·) (7)

holds.

Proof. This follows by using identity OSλ
0

of Theorem 2.3 the way identity OS′
0

of

Theorem 2.1 was used in to prove Theorem 2.2.

Theorem 2.5. Let (Q, ·, \, /) be a non-associative left universal Osborn loop, let

γ(x, v) = RvR[xv]Lx for all x, v ∈ Q and let the mappingΘ : ROB(Q, ·) −→ BS 1(Q, ·)
be defined by Θ : (δR−1

g , δL−1
f
, δ) −→ δ.

Then, the autotopism
(
γ(x, v)R(vλ·xv), γ(x, v)Lx, γ(x, v)

)
< kerΘ for all x, v ∈ Q.
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Proof. Going by Theorem 2.4, R =
(
γ(x, v)R(vλ·xv), γ(x, v)Lx, γ(x, v)

) ∈ ROB(Q, ·).
Assuming that the autotopism

(
γ(x, v)R(vλ·xv), γ(x, v)Lx, γ(x, v)

) ∈ kerΘ for all x, v ∈
Q, then using Theorem 1.5, γ(x, v) = I which means Q is a group. Which will be a

contradiction.

Theorem 2.6. Let (Q, ·, \, /) be a loop, (Q, ◦) an arbitrary right principal isotope

of (Q, ·) and (Q, ∗) some principal isotope of (Q, ·). Let ϕ(x, u) = (u\[u/(u\x)]) and

γ(x, u) = R[u\x]LuLx for all x, u ∈ Q, then (Q, ·, \, /) is a right universal Osborn loop

if and only if the composition

(Q, ·)
(Rϕ(x,u),Lu,I)

−−−−−−−−−−−−−−→
principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦) (I,Lx,I)−−−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ·) (8)

holds.

Proof. The method of the proof of this theorem is similar to the method used to prove

Theorem 2.1 by just using the arbitrary right principal isotopeQ = (Q,N,↖,↗) such

that

xNy = x · yL−1
u = x · (u\y) ∀ u ∈ Q.

In the process of the proof, it will be observed that a loop Q = (Q, ·, \, /) is a right

universal Osborn loop if and only if it obeys the identity

(ux) · u\{yz · x} = ((ux) · u\{[y(u\[u/x])] · x}) · u\[(uz)x].︸                                                                     ︷︷                                                                     ︸
OS

ρ
0

Writing identity OS
ρ
0

in autotopic form, we can conclude that Q is a right universal

Osborn loop if and only if the triple(
α(x, u), β(x, u), γ(x, u)

) ∈ AUT (Q) for all x, u ∈ Q where

α(x, u) = R(u\[u/(u\x)])R[u\x]LuLx, β(x, u) = LuR[u\x] and γ(x, u) = R[u\x]LuLx are

elements of Mult(Q). Breaking this into compositions like we did in the proof of

Theorem 2.1, we shall get equation (8).

Corollary 2.12. Let (Q, ·, \, /) be a loop. Q is a right universal Osborn loop if and

only if the bi-mapping γ(x, u) = R[u\x]LuLx ∈ BS 2(Q) for all x, u ∈ Q.

Proof. This is gotten from Theorem 2.6 as a consequence of the composition in equa-

tion (8).

Lemma 2.11. Let (G, ·, \, /) be an Osborn loop that is a Gρ-loop with arbitrary right

isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω such that

θ−1
i
γ(x, v)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, u ∈ G where γ(x, u) = R[u\x]LuLx ∈ BS 2(Q).

Proof. Assuming that G is isomorphic to Hi under θi, i ∈ Ω, then the proof of the

lemma follows by using Theorem 1.3 and Corollary 2.12.
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Lemma 2.12. Let (G, ·, \, /) be a right universal Osborn loop with an arbitrary right

isotope (H, ◦) such that (G, ·) is isomorphic to (H, ◦) under θ. Then, θ−1γ(x, u)θ ∈
BS 2(H, ◦) for all x, u ∈ G where γ(x, u) = R[u\x]LuLx ∈ BS 2(Q).

Proof. This is a direct consequence of Theorem 1.3.

Corollary 2.13. Let (G, ·, \, /) be a CC-loop or VD-loop or extra loop with arbitrary

right isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G → Hi , i ∈ Ω such

that θ−1
i
γ(x, u)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, u ∈ G where γ(x, u) = R[u\x]LuLx ∈

BS 2(Q).

Proof. This follows from Lemma 2.11 and the fact that a CC-loop or VD-loop or

extra loop is a Gρ-loop.

Corollary 2.14. Let M = (M, ·, \, /) be

a Moufang loop such that M = N(M)M3 or

a simple Moufang loop with identity such that M3
, e or

Moufang loop which satisfies an Mk-law for k . 1 mod 3

with arbitrary right isotope (Hi, ◦i) i ∈ Ω. There exists a bijection θi : G →
Hi , i ∈ Ω such that θ−1

i
γ(x, u)θi ∈ BS 2(Hi, ◦i) i ∈ Ω for all x, u ∈ M where γ(x, u) =

R[u\x]LuLx ∈ BS 2(Q).

Proof. This follows from Lemma 2.11 and the fact that such a Moufang loop is a Gρ-

loop in each case as shown in Corollary IV.4.7, Corollary IV.4.8 and Theorem IV.4.10

of [12].

Corollary 2.15. Let (G, ·, \, /) be any commutative Moufang loop which belongs to

a family of right isotopic commutative Moufang loops F. For every arbitrary Hi ∈
F i ∈ Ω, there exists a bijection θi : G → Hi , i ∈ Ω such that θ−1

i
γ(x, u)θi ∈

BS 2(Hi, ◦i) i ∈ Ω for all x, u ∈ G where γ(x, u) = R[u\x]LuLx ∈ BS 2(Q).

Proof. This follows from Lemma 2.11 and the fact that a family of right isotopic

commutative Moufang loops forms an isomorphic family as shown in Theorem IV.5.6

of [12].

Lemma 2.13. Let (Q, ·, \, /) be a Moufang loop with an arbitrary right isotope (H, ◦)
such that (Q, ·) is isomorphic to (H, ◦) under θ. Then, θ−1γ(x, u)θ ∈ BS 2(H, ◦) for all

x, u ∈ G where γ(x, u) = R[u\x]LuLx ∈ BS 2(Q).

Proof. This follows from Lemma 2.12.

Lemma 2.14. A loop Q = (Q, ·, \, /) is a right universal Osborn loop in which an

arbitrary right isotope is isomorphic to some principal isotope under the identity map

if and only if Q is an abelian group of exponent 2.
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Proof. By equation (8) of Theorem 2.6, it can be deduced that if (Q, ◦) is an arbi-

trary right principal isotope of (Q, ·), (Q, ∗) a principal isotope of (Q, ·) and γ(x, u) =

R[u\x]LuLx ∈ BS 2(Q), then
(
Q, x, e, ◦) is isomorphic to (Q, u, ϕ(x, u), ∗) under γ−1,

where ϕ(x, u) = (u\[u/(u\x)]) for all x, u ∈ Q.

We now switch to Theorem 1.4. If γ−1 = I then γ = I if and only if γ(x, u) =

R[u\x]LuLx = I if and only if R(u\x) = LxLu which implies y(u\x) = u · x\y for all

x, y, u ∈ Q. Taking u = y = e, we get x2 = e. By Theorem 1.1, G is an abelian

group. This fact can also be proved by using the sufficient part of Theorem 1.4. The

converse is easy.

Lemma 2.15. A loop Q = (Q, ·, \, /) is a right universal Osborn loop which is iso-

morphic to some principal isotope under the identity map if and only if Q is an

abelian group of exponent 2.

Proof. The procedure of the proof is similar to that of Lemma 2.14 i.e. using γ(e, u).

This fact can also be proved by using the sufficient part of Corollary 1.1. The converse

is easy.

Corollary 2.16. A loop Q = (Q, ·, \, /) is a Moufang loop or extra loop or VD-loop

or CC-loop or universal WIPL which is isomorphic to some principal isotope under

the identity map if and only if Q is an abelian group of exponent 2.

Proof. Consequence of Lemma 2.15

Theorem 2.7. Let (Q, ·, \, /) be a right universal Osborn loop, (Q, ∗) an arbitrary

right principal isotope of (Q, ·) and (Q, ◦) some principal isotope of (Q, ·). Let

γ(x, u) = R[u\x]LuLx for all x, u ∈ Q, then the composition

(Q, ·) (I,Lu,I)−−−−−−−−−−−−−−−−−→
right principal isotopism

(Q, ∗) (γ,γ,γ)−−−−−−−−−→
isomorphism

(Q, ◦)
(
R(u\x),Lx,I

)
−−−−−−−−−−−−−−→
principal isotopism

(Q, ·) (9)

holds.

Proof. This follows by using identity OS
ρ
0

of Theorem 2.6 the way identity OS′
0

of

Theorem 2.1 was used in to prove Theorem 2.2 .
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1. INTRODUCTION, DEFINITIONS AND
PRELIMINARIES

Let A denote the class of functions of the form

f (z) = z +

∞∑

n=2

anzn an ≥ 0, (1)

which are analytic in the open disc U = {z ∈ C \ | z |< 1} and S be the class of

functions f ∈ A which are univalent in U.

We denote by S∗, C, K and C∗ the familiar subclasses of A consisting of functions

which are respectively starlike, convex, close-to-convex and quasi-convex in U. Our

favorite references of the field are [2, 3] which covers most of the topics in a lucid

and economical style.

Let f (z) and g(z) be analytic in U. Then we say that the function f (z) is subordi-

nate to g(z) in U, if there exists an analytic function w(z) in U such that |w(z)| < |z|
and f (z) = g(w(z)), denoted by f (z) ≺ g(z). If g(z) is univalent in U, then the subor-

dination is equivalent to f (0) = g(0) and f (U) ⊂ g(U).

Let k be a positive integer and j = 0, 1, 2, . . . (k − 1). A domain D is said to

be ( j, k)-fold symmetric if a rotation of D about the origin through an angle 2π j/k
carries D onto itself. A function f ∈ A is said to be ( j, k)-symmetrical if for each

z ∈ U
f (εz) = ε j f (z), (2)

where ε = exp(2πi/k). The family of ( j, k)-symmetrical functions will be denoted by

F
j

k
. We observe that F1

2
, F0

2
and F1

k
are well-known families of odd functions, even

functions and k-symmetrical functions respectively.
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Also let f j, k(z) be defined by the following equality

f j, k(z) =
1

k

k−1∑

ν=0

f (ενz)

εν j
, ( f ∈ A; k = 1, 2, . . . ; j = 0, 1, 2, . . . (k − 1)), (3)

where ν is an integer.

The notion of ( j, k)-symmetric functions was introduced and studied by P. Liczber-

ski and J. Połubiński in [4].

The following identities follow directly from (3):

f j, k(ενz) = εν j f j, k(z),

f ′j, k(ενz) = εν j−ν f ′j, k(z) =
1

k

k−1∑

ν=0

f ′(ενz)

εν j−ν ,

f ′′j, k(ενz) = εν j−2ν f ′′j, k(z) =
1

k

k−1∑

ν=0

f ′′(ενz)

εν j−2ν
.

(4)

Motivated by the concept introduced by K. Sakaguchi in [7], recently several sub-

classes of analytic functions with respect to k-symmetric points were introduced and

studied by various authors. In this paper, new subclasses of analytic functions with

respect to ( j, k)-symmetric points are introduced.

We now define the following:

A function f ∈ A is said to be in the class S
( j, k)
s if and only if it satisfies the condition

Re

(
z f
′
(z)

f j, k(z)

)
> 0 (z ∈ U). (5)

We call the functions f ∈ A that satisfy the condition (5) to be starlike with respect

to ( j, k)-symmetric points.

Similarly, we define the class C
( j, k)
s of convex functions with respect to ( j, k)-

symmetric points if and only if

Re


(
z f
′
(z)

)′

f
′
j, k

(z)

 > 0 (z ∈ U). (6)

The different subclasses of S
( j, k)
s can be obtained by replacing condition (5) by

z f
′
(z)

f j, k(z)
≺ ϕ(z), (7)

(z ∈ U; k = 1, 2, . . . ; j = 0, 1, 2, . . . (k − 1)),
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where ϕ ∈ P, the class of functions with positive real part. We denote by S
( j, k)
s (ϕ),

the class of functions f ∈ A that satisfies the condition (7).

Similarly let C
( j, k)
s (ϕ) denote the class of functions in S satisfying the condition

(
z f
′
(z)

)′

f
′
j, k

(z)
≺ ϕ(z),

(z ∈ U; k = 1, 2, . . . ; j = 0, 1, 2, . . . (k − 1)),

where ϕ ∈ P.

Remark 1.1. For different choices of the parameters j, k and the function ϕ(z), the

classes S
( j, k)
s (ϕ) and C

( j, k)
s (ϕ) reduce to various other well-known and new subclasses

of analytic functions. For details see [8].

2. INCLUSION RELATIONSHIPS AND
INTEGRAL REPRESENTATIONS OF THE
CLASSES S

(J, K)

S
(φ) AND C

(J, K)

S
(φ)

Let us begin with the following:

Theorem 2.1. If f ∈ C( j, k)
s (ϕ), then f is univalent in U.

Proof. From the definition of C
( j, k)
s (ϕ),

Re


(
z f
′
(z)

)′

f
′
j, k

(z)

 > 0, (8)

since Re{ϕ(z)} > 0. If we replace z by ενz in (8), then (8) will be of the form

Re


f
′
(ενz) + ενz f

′′
(ενz)

f
′
j, k

(ενz)

 > 0, (z ∈ U; ν = 0, 1, 2, . . . , k − 1). (9)

Using (4) in (9), we get

Re


f
′
(ενz) + ενz f

′′
(ενz)

εν j−ν f ′
j, k

(z)

 > 0, (z ∈ U). (10)

Let ν = 0, 1, 2, . . . , k − 1 in (10) respectively and summing them, we get

Re



∑k−1
ν=0 ε

ν−ν j f ′(ενz) + z
∑k−1
ν=0 ε

2ν−ν j f ′′(ενz)

f ′
j, k

(z)

 > 0, (z ∈ U).

Or equivalently,

Re


f
′
j, k(z) + z f

′′
j, k(z)

f
′
j, k

(z)

 > 0, (z ∈ U),
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that is f j, k(z) ∈ C. Using this together with the condition (6) shows the functions in

C
( j, k)
s are quasi-convex. It is well-known that the class of quasi-convex functions are

univalent, hence functions which are convex with respect to ( j, k)-symmetric points

are univalent.

By using the same method as that of Theorem 2.1, we may obtain the following

result.

Theorem 2.2. If f ∈ S( j, k)
s (ϕ), then f j, k(z) ∈ S∗.

Remark 2.1. Using the condition (5) together with Theorem 2.2 shows that the func-

tions in S
( j, k)
s are close-to-convex. It is well-known that the class of close-to-convex

functions are univalent, hence functions which are starlike with respect to ( j, k)-

symmetric points are univalent.

Theorem 2.3. Let f ∈ S( j, k)
s (ϕ), then we have

f j, k(z) = z exp


1

k

k−1∑

ν=0

∫ ενz

0

ϕ (w(t)) − 1

t
dt

 (11)

where f j, k(z) defined by equality (3), w(z) is analytic in U and w(0) = 0, | w(z) |< 1.

Proof. Let f ∈ S( j, k)
s (ϕ), from the definition of S

( j, k)
s (ϕ), we have

z f
′
(z)

f j, k(z)
= ϕ (w(z)) , (12)

where w(z) is analytic in U and w(0) = 0, | w(z) |< 1. Substituting z by ενz in the

equality (12) respectively (ν = 0, 1, 2, . . . , k − 1, εk = 1), we have

ενz f
′
(ενz)

f j, k(ενz)
= ϕ

(
w(ενz)

)
(13)

Using (4) in (13), we get

zεν−ν j f
′
(ενz)

f j, k(z)
= ϕ

(
w(ενz)

)
. (14)

Let ν = 0, 1, 2, . . . , k − 1 in (14) respectively and summing them we get,

z f
′
j, k(z)

f j, k(z)
=

1

k

k−1∑

ν=0

ϕ
(
w(ενz)

)
,

From this equality, we get

f
′
j, k(z)

f j, k(z)
− 1

z
=

1

k

k−1∑

ν=0

ϕ (w(ενz)) − 1

z
.
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Integrating this equality, we get

log

{
f j, k(z)

z

}
=

1

k

k−1∑

ν=0

∫ z

0

ϕ (w(ενζ)) − 1

ζ
dζ

=
1

k

k−1∑

ν=0

∫ ενz

0

ϕ (w(t)) − 1

t
dt,

or equivalently,

f j, k(z) = z exp


1

k

k−1∑

ν=0

∫ ενz

0

ϕ (w(t)) − 1

t
dt

 .

This completes the proof of Theorem 2.3.

Theorem 2.4. Let f ∈ C( j, k)
s (ϕ), then we have

f j, k(z) =

∫ z

0

exp


1

k

k−1∑

ν=0

∫ ενζ

0

ϕ (w(t)) − 1

t
dt

 dζ (15)

where f j, k(z) defined by equality (3), w(z) is analytic in U and w(0) = 0, | w(z) |< 1.

Remark 2.2. Several well-known and new results can be obtained as a special case

of the results stated in this section for different choice of the parameters. For example

see [8].

3. CONDITIONS FOR STARLIKENESS WITH
RESPECT TO SYMMETRIC POINTS

We now state the following result which will be used in the sequel.

Lemma 3.1. [5, 1] Let the function q be univalent in the open unit disc U and θ and

ϕ be analytic in a domain D containing q(U) with ϕ(w) , 0 when w ∈ q(U). Set

Q(z) = zq
′
(z)ϕ(q(z)), h(z) = θ(q(z)) + Q(z). Suppose that

1. Q is starlike univalent in U, and

2. Re

(
zh
′
(z)

Q(z)

)
> 0 for z ∈ U.

If

θ(p(z)) + zp
′
(z)ϕ(p(z)) ≺ θ(q(z)) + zq

′
(z)ϕ(q(z)),

then p(z) ≺ q(z) and q is the best dominant.
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Theorem 3.1. Let the function g(z) be convex univalent in U and also let

Re

{
α

(
g(z)

zg
′
(z)

(g(z) − 1) + 1

)
+ β

g(z)

zg
′
(z)

}
> 0 (16)

and

h(z) = αzg
′
(z) + αg2(z) + (β − α)g(z),

where α > 0, α + β > 0.

If f ∈ A with
f j, k(z)

z
, 0 satisfies the condition

α


z2 f

′′
(z)

f j, k(z)
−

z2 f
′
(z) f

′
j, k(z)

(
f j, k(z)

)2
+

z2( f
′
(z)

)2

(
f j, k(z)

)2


+ β

z f
′
(z)

f j, k(z)
≺ h(z), (17)

then f ∈ S( j, k)
s (g) and g is the best dominant.

Proof. Let the function p be defined by

p(z) =
z f
′
(z)

f j, k(z)
(z ∈ U; z , 0; f ∈ A),

then p(z) = 1 + p1z + p2z2 + · · · ∈ P. By a straight forward computation, we have

zp
′
(z) =

z f
′
(z)

f j, k(z)
+

z2 f
′′
(z)

f j, k(z)
−

z2 f
′
(z) f

′
j, k

(z)

(
f j, k(z)

)2
.

Thus by (17), we have

αzp
′
(z) + αp2(z) + (β − α)p(z) ≺ h(z). (18)

By setting

θ(w) := αw2 + (β − α)w and ϕ(w) := α,

it can be easily verified that θ is analytic in C, ϕ is analytic in C with ϕ(0) , 0 in the

w-plane.

If we let Q(z) = zg
′
(z)ϕ(g(z)) and h(z) = θ(g(z)) + Q(z), then

Q(z) = αzg
′
(z)

and

h(z) = α(g(z))2 + (β − α)g(z) + αzg
′
(z).

Since g(z) is convex univalent in U it implies that Q(z) is starlike univalent in U.

Further, we have

Re
zh
′
(z)

Q(z)
= Re

{
α

(
g(z)

zg
′
(z)

(g(z) − 1) + 1

)
+ β

g(z)

zg
′
(z)

}
> 0.
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The assertion of the Theorem 3.1 now follows by applying Lemma 3.1.

Corollary 3.1. If f ∈ A with
f j, k(z)

z
, 0 satisfies the condition

α


z2 f

′′
(z)

f j, k(z)
−

z2 f
′
(z) f

′
j, k(z)

(
f j, k(z)

)2
+

z2( f
′
(z)

)2

(
f j, k(z)

)2


+ β

z f
′
(z)

f j, k(z)
≺ h(z),

where

h(z) =
a[α(a − b) + βb]z2 + [2α(a − b) + β(a + b)]z + β

(1 + bz)2
,

−1 ≤ b < a ≤ 1 and β ≥ 2α2

( | b |
1+ | b | −

1 − a

1 − b

)

then f ∈ S( j, k)
s

(
1+az
1+bz

)
.

Proof. We let g(z) =
1 + az

1 + bz
, in Theorem 3.1. Clearly g(z) is convex univalent in U.

Hence the proof of the Corollary follows from Theorem 3.1.

If we let j = k = 1 in the Corollary 3.1, we get the following interesting result.

Corollary 3.2. [9] If f ∈ A with
f (z)

z
, 0 satisfies the condition

z2 f
′′
(z)

f (z)
+ β

z f
′
(z)

f (z)
≺ h(z),

where

h(z) =
a[a − b + βb]z2 + [2(a − b) + β(a + b)]z + β

(1 + bz)2
,

−1 ≤ b < a ≤ 1 and β ≥ 2

( | b |
1+ | b | −

1 − a

1 − b

)
,

then f ∈ S
(

1+az
1+bz

)
.

Corollary 3.3. If f ∈ A with
f j, k(z)

z
, 0, z ∈ U and

D = C \
{

z ∈ C : Re z ≤ −1

2
, Im z = 0

}
,

then

z2 f
′′
(z)

f j, k(z)
−

z2 f
′
(z) f

′
j, k

(z)

(
f j, k(z)

)2
+

z2( f
′
(z)

)2

(
f j, k(z)

)2
+

z f
′
(z)

f j, k(z)
∈ D =⇒ f ∈ S( j, k)

s .
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Proof. If we let α = 1, β = 1 and g(z) =
1 + z

1 − z
in Theorem 3.1. It follows that h(z) is

convex with respect to the point u = −1/2. Hence the proof of the Corollary.

If we let j = k = 1 in the Corollary 3.3, we get the following well-known result.

Corollary 3.4. [6] If f ∈ A with
f (z)

z
, 0, z ∈ U and

D = C \
{

z ∈ C : Re z ≤ −1

2
, Im z = 0

}
,

then
z2 f

′′
(z)

f (z)
+

z f
′
(z)

f (z)
∈ D =⇒ Re

(
z f
′
(z)

f (z)

)
> 0.

Corollary 3.5. If f ∈ A with
f j, k(z)

z
, 0, z ∈ U, satisfy the condition

Φ
j

k
(z) = α


z2 f

′′
(z)

f j, k(z)
−

z2 f
′
(z) f

′
j, k(z)

(
f j, k(z)

)2
+

z2( f
′
(z)

)2

(
f j, k(z)

)2


+

z f
′
(z)

f j, k(z)
≺ 1 + δz,

where δ = µ(2α + 1 − αµ) and 0 < µ ≤
(
1 +

1

2α

)
, then

z f
′
(z)

f j, k(z)
≺ 1 + µz.

Proof. If we let β = 1 and g(z) = 1+ µz in Theorem 3.1, then h(z) will be of the form

h(z) = 1 + (2α + 1)µz + αµ2z2. For | z |= 1,

|h(z) − 1| = µ |2α + 1 + αµz| ≥ µ (2α + 1 − αµ) .

If we put δ = (2α + 1 − αµ), then from the above inequality it follows that h(z) is

superordinate to 1 + δz. Hence the proof of the Corollary.

If we let α = 1 and µ = 1 in the Corollary 3.5, then we have the following result.

Corollary 3.6. If f ∈ A with
f j, k(z)

z
, 0, z ∈ U, then

∣∣∣∣∣∣∣
z f
′
(z)

f j, k(z)

1 +
f
′′
(z)

f
′
(z)
−

z f
′
j, k(z)

f j, k(z)
+

z f
′
(z)

f j, k(z)

 − 1

∣∣∣∣∣∣∣
< 2 (z ∈ U)

implies

∣∣∣∣∣∣
z f
′
(z)

f j, k(z)
− 1

∣∣∣∣∣∣ < 1, for all z ∈ U.
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If we let j = k = 1 in the Corollary 3.6, we get the following interesting result.

Corollary 3.7. If f ∈ A, then
∣∣∣∣∣∣
z f
′
(z)

f (z)

(
1 +

f
′′
(z)

f
′
(z)

)
− 1

∣∣∣∣∣∣ < 2 (z ∈ U), =⇒
∣∣∣∣∣∣
z f
′
(z)

f (z)
− 1

∣∣∣∣∣∣ < 1 (z ∈ U).

It is well-known that a function f ∈ A is called strongly-starlike of order λ, 0 <
λ ≤ 1, if ∣∣∣∣∣∣arg

z f
′
(z)

f (z)

∣∣∣∣∣∣ < λ
π

2
, (z ∈ U)

and we denote by SS∗(λ) the class of such functions. Similarly, we denote the class

of strongly-starlike functions of order λ with respect to ( j, k)-symmetric points by

SS
( j, k)
s (λ).

Now, we give the sufficient conditions for strongly-starlike of order λ with respect

to ( j, k)-symmetric points

Corollary 3.8. Let 0 < λ < 1, and let

h(z) =

(
1 + z

1 − z

)λ 
2λz

1 − z2
+

(
1 + z

1 − z

)λ .

If f ∈ A with
f j, k(z)

z
, 0, z ∈ U, satisfies the condition

z2 f
′′
(z)

f j, k(z)
−

z2 f
′
(z) f

′
j, k

(z)

(
f j, k(z)

)2
+

z2( f
′
(z)

)2

(
f j, k(z)

)2
+

z f
′
(z)

f j, k(z)
≺ h(z),

then f ∈ SS( j, k)
s (λ).

If we let j = k = 1 in the Corollary 3.8, we get the following interesting result.

Corollary 3.9. Let 0 < λ < 1, and let

h(z) =

(
1 + z

1 − z

)λ 
2λz

1 − z2
+

(
1 + z

1 − z

)λ .

If f ∈ A with
f j, k(z)

z
, 0, z ∈ U, satisfies the condition

z f
′
(z)

f (z)

[
z f
′′
(z)

f
′
(z)
+ 1

]
≺ h(z),

then f ∈ SS∗(λ).
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mlefebvre@polymtl.ca

Abstract Assume that X(t) and Y(t) are independent Wiener processes with drift −1 and 0, re-

spectively, and diffusion coefficient equal to 2 (in both cases). Let I(x, y) be the indi-

cator function of the event {τ(x, y) < ∞}, where τ(x, y) = inf{t > 0 : Y(t) = 0, X(t) ≥
0 | X(0) = x, Y(0) = y}, in which y , 0 or x < 0. We obtain an explicit expression

for ϕ(x, y) = E
[
e−aX[τ(x,y)]I(x, y)

]
. An application to an optimal control problem is also

presented.

Keywords: Brownian motion, first exit time, Kolmogorov backward equation, optimal stochastic con-

trol.

2010 MSC: 60J70.

1. INTRODUCTION

We consider the two-dimensional Wiener process (X(t), Y(t)) defined by the sys-

tem of stochastic differential equations

dX(t) = −dt +
√

2 dB1(t),

dY(t) =
√

2 dB2(t),

where B1(t) and B2(t) are independent standard Brownian motions. Let

τ(x, y) = inf{t > 0 : Y(t) = 0, X(t) ≥ 0 | X(0) = x, Y(0) = y},

where y , 0 or x < 0. We define

I(x, y) =

{
1 if τ(x, y) < ∞,

0 otherwise.

That is, I(x, y) is the indicator function of the event {τ(x, y) < ∞}.
The function

ϕ(x, y) := E
[
e−aX[τ(x,y)]I(x, y)

]
, (1)

where a > 0, satisfies the Kolmogorov equation

ϕyy + ϕxx − ϕx = 0,

and is subject to the conditions ϕ(x, 0) = e−ax if x ≥ 0, and ϕ(x, y)→ 0 if x2+y2 → ∞.

61
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Since the stochastic processes X(t) and Y(t) are independent, if we replace the

first-passage time τ(x, y) by

τ0(x, y) = inf{t > 0 : Y(t) = 0 | X(0) = x, Y(0) = y},

where y , 0 and x ∈ R, then the function ϕ0(x, y) that corresponds to ϕ(x, y) is easy to

obtain. Indeed, first we can state that τ0(x, y) actually does not depend on the variable

x. Moreover, it is well known that P[τ0(y) < ∞] = 1. Therefore, we can write that

ϕ0(x, y) = E

[
e−aX[τ0(y)]

∣∣∣∣∣ X(0) = x, Y(0) = y

]
.

Next, making use of the fact that X(t) has a Gaussian distribution with mean x − t

and variance 2t, and of the following formula for the probability density function of

the random variable τ0(y) (see Lefebvre [3], for instance):

fτ0(y)(t) =
|y|√
4πt3

exp

{
−y2

4t

}
for t > 0, (2)

we can derive an explicit (and exact) expression for ϕ0(x, y) by conditioning on the

random variable τ0(y). That is, we write that

ϕ0(x, y) = E

[
e−aX[τ0(y)]

∣∣∣∣∣ X(0) = x,Y(0) = y

]

= E

[
E

[
e−aX[τ0(y)]

∣∣∣∣∣ τ0(y), X(0) = x,Y(0) = y

]]

=

∫ ∞

0

E

[
e−aX[τ0(y)]

∣∣∣∣∣ τ0(y) = t, X(0) = x,Y(0) = y

]
fτ0(y)(t)dt

=

∫ ∞

0

∫ ∞

−∞

e−au

√
4πt

exp

{
− (u − x + t)2

4t

} |y|√
4πt3

exp

{
−y2

4t

}
dudt

=
|y|
4π

∫ ∞

0

∫ ∞

−∞

e−au

t2
exp

{
− (u − x + t)2 + y2

4t

}
dudt.

The main difficulty in computing the function ϕ(x, y) stems from the fact that it

is discontinuous on the boundary y = 0. A related problem for which the function

is discontinuous on the boundary has been considered by the author and Whittle

(see Lefebvre and Whittle [4]) in an optimization context. They defined the two-

dimensional diffusion process (X(t),Y(t)) by

dX(t) = Y(t) dt, (3)

dY(t) = bu(t)dt + σ dB(t), (4)

where b , 0 is a constant, u(t) is the control variable and B(t) is a standard Brownian

motion. Hence, X(t) is a controlled integrated Brownian motion. They looked for the
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control u∗ that minimizes the expected value of the cost function

J(x) =

∫ Td(x)

0

(
1

2
qu2(t) − λ

)
dt,

in which

Td(x) = inf{t > 0 : |X(t)| = d | X(0) = x},
with −d < x < d, and q and λ are positive constants. By appealing to a theorem

proved in Whittle [5], the authors were able to express the value of u∗ in terms of

the following mathematical expectation for the uncontrolled process (ξ(t), η(t)) that

corresponds to (X(t),Y(t)):

ϕ1(x) := E

[
eλτd(x)/α

∣∣∣∣∣ ξ(0) = x

]
,

where

α =
σ2q

b2

and τd(x) is the same as Td(x), but for the process (ξ(t), η(t)) obtained by setting u(t)

equal to 0 in (4).

The function ϕ1(x) is also discontinuous on the boundaries x = d and x = −d,

because the process X(t) cannot hit the boundary x = d for the first time with y < 0

or, equivalently, the boundary x = −d with y > 0.

The authors were not able to derive an exact expression for ϕ1(x). Instead, they

used a technique that enabled them to obtain an approximate solution for the optimal

control.

Actually, a few years later, Lachal [2] considered, in particular, the problem of

computing the probability density function of the random variable

τb(x, y) := inf{t > 0 : X(t) = b | X(0) = x,Y(0) = y}

for the two-dimensional diffusion process (X(t),Y(t)) defined by

dX(t) = Y(t) dt,

dY(t) = dB(t).

That is, X(t) is the integral of the standard Brownian motion Y(t). He derived the

following exact expression:

fτb(x,y)(t) = ϵ


√

3

2π

(
3

2

b − x

t5/2
− 1

2

y

t3/2

)
exp

{
−3(b − x − ty)2

2t3

}

+

∫ ∞

0

zdz

∫ t

0

fτ0(0,−z)(s)q(x, y; b, z; t − s)ds

]
,
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where

fτ0(0,−z)(s) =

∫ ∞

0

3µ√
2πs2

exp

{
−2

s
(z2 − µz + µ2)

}
dµ

∫ 4µz/s

0

e−3θ/2 dθ√
πθ
,

in which ϵ is the sign of (b − x), z > 0 and

q(x, y; u, v; t) = p(x, y; u, v; t) − p(x, y; u,−v; t),

the function p(x, y; u, v; t) being the joint density function of the random vector

(X(t), Y(t)), which is known to be

p(x, y; u, v; t) =

√
3

πt2
exp

{
− 6

t3
(u − x − ty)2 +

6

t2
(u − x − ty)(v − y)

−2

t
(v − y)2

}
.

We see that the exact solution to such a one-boundary problem is quite complicated,

and we can expect the solution in the case of a two-boundary problem to be even

more complicated. In the context of an optimization problem, such as in Lefebvre and

Whittle [4], this exact solution would not have been very useful, at any rate, because

one must be able to give an expression for the optimal control that the optimizer can

actually implement.

In Section 2, by making use of the Wiener-Hopf technique, we will calculate the

Fourier transform of ϕ(x, y). We will invert this transform in the case when y = 0.

Finally, with the help of probabilistic arguments, we will obtain an explicit expression

for ϕ(x, y).

In Section 3, an application to an optimal control problem will be presented, and

we will conclude this work with a few remarks in Section 4.

2. COMPUTATION OF THE FUNCTION φ(X, Y)

To obtain an exact expression for the function ϕ(x, y), we will first compute its

Fourier transform, with the help of the Wiener-Hopf technique. Let

Φ(ω, y) =
1√
2π

∫ ∞

−∞
ϕ(x, y)eiωxdx.

We find that Φ(ω, y) satisfies the ordinary differential equation

d2Φ(ω, y)

dy2
− (ω2 − iω)Φ(ω, y) = 0. (5)

The Wiener-Hopf technique consists in assuming that ϕ(x, 0) is known for all x ∈
R, and not only for x ≥ 0. We write that

ϕ(x, 0) =

{
e−ax if x ≥ 0,

u(x) if x < 0,
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where u(x) is a function that will need to be determined later.

Next, the solution of Eq. (5) that tends to 0 as |y| increases to∞ is

Φ(ω, y) =

[
U(ω) +

1√
2π

1

1 − iω

]
exp

(
−|y|

√
ω2 − iω

)
,

where

U(ω) :=
1√
2π

∫ 0

−∞
u(x)eiωxdx

is the Fourier transform of u(x).

It can be shown (see Zwillinger [6], pp. 383-386) that, when a = 1,

U(ω) = − 1√
ω − i


√
ω − i −

√
−2i√

2π(1 − iω)

 ,

from which we deduce that

Φ(ω, y) =
1√
2π

√
−2i√

ω − i(1 − iω)
exp

(
−|y|

√
ω2 − iω

)
. (6)

Remark 2.1. There are a few misprints in Zwillinger’s book. In particular, in Eq. (104.4),

p. 384, it should be ϕx instead of ϕy. Moreover, the formula for the function U(ω)

should be as above, rather than as in Eq. (104.17). That is, it is (1 − iω) in the

denominator, instead of
√

1 − iω.

Next, the formula for Φ(ω, y) in the case when a > 0 can be found in Davies [1],

p. 281:

Φ(ω, y) =
1√
2π

e−iπ/4
√

1 + a√
ω − i(a − iω)

exp

(
−|y|

√
ω2 − iω

)
. (7)

Remark 2.2. In Davies [1], the Fourier transform of f (x) is defined as follows:

F(ω) =

∫ ∞

−∞
f (x)eiωxdx.

Therefore, we must multiply the formula on p. 281 by 1/
√

2π. It is easy to check that

if we set a equal to 1 in (7), then we indeed retrieve Eq. (6).

In order to obtain the function ϕ(x, y) that we are looking for, we must invert the

Fourier transform Φ(ω, y). However, it turns out to be a very difficult task in the

general case when y ∈ R. We can, however, invert this transform when y = 0. Indeed,

making use of the mathematical software Maple, we find that

ϕ(x, 0) =

{
e−ax if x ≥ 0,

e−ax
[
1 − erf(

√
−x
√

1 + a)
]

if x < 0,
(8)
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in which erf is the error function.

Remark 2.3. In Maple, the Fourier transform of f (x) is defined as follows:

F(ω) =

∫ ∞

−∞
f (x)e−iωxdx.

Now, with the help of Eq. (8) and probabilistic arguments, we can obtain an ex-

plicit expression for ϕ(x, y) for any real y. First, we define (as in the Introduction)

τ0(y) = inf{t > 0 : Y(t) = 0 | Y(0) = y},

where y , 0. That is, τ0(y) is the first-passage time to 0 for the process Y(t), indepen-

dently of the value of X[τ0(y)].

Next, we condition on τ0(y) and X[τ0(y)]:

ϕ(x, y) =

∫ ∞

0

∫ ∞

−∞
E

[
e−aX[τ(x,y)]I(x, y) | X[τ0(y)] = x1, τ0(y) = t

]

× fX(τ0)|τ0
(x1 | t) fτ0

(t)dx1dt.

We can write that

ϕ(x, y) =

∫ ∞

0

∫ 0

−∞
ϕ(x1, 0) fX(τ0)|τ0

(x1 | t) fτ0
(t)dx1dt

+

∫ ∞

0

∫ ∞

0

e−ax1 fX(τ0)|τ0
(x1 | t) fτ0

(t)dx1dt.

Finally, we mentioned in the Introduction that X(τ0) | {τ0 = t} ∼N(x−t, 2t) and the

probability density function of the random variable τ0(y) is given in Eq. (2). Hence,

we can now state the following proposition.

Proposition 2.1. The function ϕ(x, y) defined in (1) is given by

ϕ(x, y) =

∫ ∞

0

∫ 0

−∞
e−ax1

[
1 − erf(

√−x1

√
1 + a)

]

× 1

2
√
πt

exp

{
− 1

4t
(x1 − x + t)2

} |y|
2
√
πt3

exp

{
−y2

4t

}
dx1dt

+

∫ ∞

0

∫ ∞

0

e−ax1
1

2
√
πt

exp

{
− 1

4t
(x1 − x + t)2

}

× |y|
2
√
πt3

exp

{
−y2

4t

}
dx1dt.

In the next section, we will briefly mention a possible application of the previous

proposition in stochastic optimal control.



First passage to a semi-infinite line for a two-dimensional Wiener Process 67

3. AN OPTIMAL CONTROL APPLICATION

In Lefebvre and Whittle [4], the authors used the process defined by (3), (4) as

a rudimentary model for an airplane. The process X(t) denoted the height of the

airplane, the value x = −d represented ground level and x = d was a height at which

the airplane was likely to be detected by a radar. The aim of the optimizer was to try

to make X(t) remain in the interval (−d, d) for as long as possible.

A possible application of the model considered in this paper is the following: as-

sume that an airplane is moving from right to left, from X(0) = x > 0, as it approach-

ing the runway. The initial height of the airplane is Y(0) = y > 0. The optimizer

wants the plane to reach the ground, represented by the value y = 0, at time τ(x, y),

with X[τ(x, y)] ≥ 0. That is, the value x = 0 denotes here the end of the runway.

Consider the controlled two-dimensional diffusion process defined by the system

of stochastic differential equations

dX1(t) = −dt + b1u1(t)dt +
√

2 dB1(t),

dX2(t) = b2u2(t)dt +
√

2 dB2(t),

where the constants b1 and b2 are different from zero.

Assume that the cost function, whose expected value we want to minimize, is given

by

J0(x, y) =

∫ τ(x,y)

0

1

2
[q1u2

1(t) + q2u2
2(t)]dt + X[τ(x, y)] − γ ln I(x, y),

where q1, q2 and γ are positive constants. Thus, the pilot should try to land his/her

airplane as close as possible to the end of the runway, taking the quadratic control

costs into account. Notice that we give an infinite penalty if the landing does not take

place in finite time. In practice, we could replace I(x, y) by

I0(x, y) =

{
1 if τ(x, y) < t0,

0 otherwise,

where t0 ∈ [0,∞).

If the constant γ is such that

2 = γ
b2

i

qi

for i = 1, 2,

then we can use the theorem in Whittle [5] to express the optimal control u∗
i
, for

i = 1, 2, in terms of the function ϕ(x, y) given in Proposition 2.1. More precisely, the

optimal control would be given by

u∗i = γ
bi

qi

ϕxi
(x, y)

ϕ(x, y)
=

2

bi

ϕxi
(x, y)

ϕ(x, y)
,

with a replaced by 1/γ in Proposition 2.1.
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4. CONCLUSION

Thanks to the Fourier transform of the mathematical expectation ϕ(x, y) defined in

(1) that was computed in Zwillinger [6] and Davies [1], we were able to obtain an

explicit and exact expression for the function ϕ(x, y). In Section 3, we presented a

possible application of the results to an optimization problem.

As we have already mentioned, the main difficulty in the computation of the func-

tion ϕ(x, y) is the fact that it is discontinuous on the boundary y = 0. We saw that

the solution to such a problem, like the one found by Lachal [2], is generally quite

complicated. The expression that we have given in Proposition 2.1 is rather involved,

but it is still usable in an optimization context.

As a sequel, we could consider other first-passage problems for two-dimensional

diffusion processes for which there is a discontinuity on the boundary. The Wiener-

Hopf technique is well adapted to compute the Fourier transform of the function

we want to determine in such a case. Then, the problem of inverting this Fourier

transform will generally be very difficult. Therefore, we could again appeal to prob-

abilistic arguments to solve this type of problems.
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1. INTRODUCTION

In the last decades, nonlocal boundary value problems (including multi-point bound-

ary value problems) for ordinary differential or difference equations/systems have be-

come a rapidly growing area of research. Several phenomena in engineering, physics

and life sciences can be modelled in this way. These problems have been studied by

many authors by using different methods, such as fixed point theorems in cones, the

Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder and

coincidence degree theory.

In this paper, we consider the system of nonlinear higher-order ordinary differen-

tial equations

(S )

{
u(n)(t) + λa(t) f (u(t), v(t)) = 0, t ∈ (0, T ),
v(m)(t) + µb(t)g(u(t), v(t)) = 0, t ∈ (0,T ),

with the multi-point boundary conditions

(BC)



u(0) =

p−2∑

i=1

aiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(T ) = 0,

v(0) =

q−2∑

i=1

biv(ηi), v′(0) = · · · = v(m−2)(0) = 0, v(T ) = 0,

where n, m, p, q ∈ N, n, m ≥ 2, p, q ≥ 3, 0 < ξ1 < · · · < ξp−2 < T and 0 < η1 <
· · · < ηq−2 < T . In the case n = 2 or m = 2 the above conditions are of the form

69
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u(0) =

p−2∑

i=1

aiu(ξi), u(T ) = 0, or v(0) =

q−2∑

i=1

biv(ηi), v(T ) = 0, respectively, that is

without conditions on the derivatives of u and v in the point 0.

We establish intervals for the eigenvalues λ and µ such that there exists no positive

solution for problem (S )− (BC). By a positive solution of (S )− (BC) we mean a pair

of functions (u, v) ∈ Cn([0, T ]) × Cm([0,T ]) satisfying (S ) and (BC) with u(t) ≥ 0,
v(t) ≥ 0 for all t ∈ [0,T ] and (u, v) , (0, 0). The existence of positive solutions

for the above problem was investigated in [4] by using the Guo-Krasnosel’skii fixed

point theorem. Some particular cases of the problem from [4] have been studied in

[1], [5], [11]. We also mention the paper [13], where we investigated the existence

and nonexistence of positive solutions (u(t) > 0, v(t) > 0 for all t ∈ [0, T )) of the

system (S ) with λ = µ = 1 and f (u, v) = f̃ (v), g(u, v) = g̃(u) and the boundary

conditions u(0) =
∑p−2

i=1
aiu(ξi) + a0, u′(0) = · · · = u(n−2)(0) = 0, u(T ) = 0, v(0) =

∑q−2

i=1
biv(ηi) + b0, v′(0) = · · · = v(m−2)(0) = 0, v(T ) = 0, (a0, b0 > 0), by using the

Schauder fixed point theorem. The system (S ) with n = m = 2 subject to various

boundary conditions was studied in [2], [3], [6]-[9], [12].

In Section 2, we present some auxiliary results which investigate a boundary value

problem for a n-th order differential equation (problem (1)−(2) below), and in Section

3, we give our main results.

2. AUXILIARY RESULTS

In this section, we present some auxiliary results from [10] related to the following

n-th order differential equation with p-point boundary conditions

u(n)(t) + y(t) = 0, t ∈ (0, T ), (1)

u(0) =

p−2∑

i=1

aiu(ξi), u′(0) = · · · = u(n−2)(0) = 0, u(T ) = 0. (2)

We present these results for the interval [0, T ] of the t-variable. Their proofs are

similar to those from [10] where T = 1.

Lemma 2.1. If d = T n−1 −
p−2∑

i=1

ai(T
n−1 − ξn−1

i ) , 0, 0 < ξ1 < · · · < ξp−2 < T and

y ∈ C([0, T ]), then the solution of (1)-(2) is given by

u(t) = −
∫ t

0

(t − s)n−1

(n − 1)!
y(s) ds +

tn−1

d


p−2∑

i=1

ai

∫ ξi

0

(ξi − s)n−1

(n − 1)!
y(s) ds +

+

1 −
p−2∑

i=1

ai


∫ T

0

(T − s)n−1

(n − 1)!
y(s) ds

 +
1

d

p−2∑

i=1

aiξ
n−1
i

∫ T

0

(T − s)n−1

(n − 1)!
y(s) ds−
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−T n−1

d

p−2∑

i=1

ai

∫ ξi

0

(ξi − s)n−1

(n − 1)!
y(s) ds.

Lemma 2.2. Under the assumptions of Lemma 2.1, the Green’s function for the

boundary value problem (1)-(2) is

G1(t, s) = g1(t, s) +
T n−1 − tn−1

d

p−2∑

i=1

aig1(ξi, s),

where

g1(t, s) =
1

(n − 1)!T n−1

{
tn−1(T − s)n−1 − T n−1(t − s)n−1, 0 ≤ s ≤ t ≤ T,
tn−1(T − s)n−1, 0 ≤ t ≤ s ≤ T.

Using the above Green’s function the solution of problem (1)-(2) is expressed as

u(t) =

∫ T

0

G1(t, s)y(s) ds.

Lemma 2.3. The function g1 has the properties

a) g1 is a continuous function on [0, T ] × [0, T ] and g1(t, s) ≥ 0 for all (t, s) ∈
[0, T ] × [0,T ];

b) g1(t, s) ≤ g1(θ1(s), s), for all (t, s) ∈ [0, T ] × [0,T ];

c) For any c ∈
(
0, T

2

)
,

min
t∈[c,T−c]

g1(t, s) ≥ cn−1

T n−1
g1(θ1(s), s), for all s ∈ [0,T ],

where θ1(s) = s if n = 2 and θ1(s) =



s

1 −
(
1 − s

T

) n−1
n−2

, s ∈ (0, T ],

T (n−2)
n−1

, s = 0,

if n ≥ 3.

In the case n ≥ 3, we choose the values of θ1 in s = 0 and s = T such that θ1 be a

continuous function on [0, T ].

Lemma 2.4. Assume that ai ≥ 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T

and d > 0. Then the Green’s function G1 of problem (1)-(2) has the properties

a) G1 is a continuous function on [0, T ] × [0,T ] and G1(t, s) ≥ 0 for all (t, s) ∈
[0, T ] × [0,T ];

b) G1(t, s) ≤ J1(s) for all (t, s) ∈ [0,T ] × [0, T ] and for any c ∈ (0, T/2) we have

min
t∈[c,T−c]

G1(t, s) ≥ cn−1

T n−1
J1(s) for all s ∈ [0,T ],

where J1(s) = g1(θ1(s), s) +
T n−1

d

p−2∑

i=1

aig1(ξi, s), ∀ s ∈ [0, T ].
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Lemma 2.5. If ai ≥ 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T, d > 0,

y ∈ C([0, T ]) and y(t) ≥ 0 for all t ∈ [0, T ], then the solution of problem (1)-(2)

satisfies u(t) ≥ 0 for all t ∈ [0, T ].

Lemma 2.6. Assume that ai ≥ 0 for all i = 1, . . . , p − 2, 0 < ξ1 < · · · < ξp−2 < T,

d > 0, y ∈ C([0, T ]), c ∈ (0, T/2) and y(t) ≥ 0 for all t ∈ [0, T ]. Then the solution of

problem (1)-(2) satisfies min
t∈[c,T−c]

u(t) ≥ cn−1

T n−1
max

t′∈[0,T ]
u(t′).

We can also formulate similar results as Lemma 2.1 - Lemma 2.6 above for the

boundary value problem

v(m)(t) + h(t) = 0, t ∈ (0, T ), (3)

v(0) =

q−2∑

i=1

biv(ηi), v′(0) = · · · = v(m−2)(0) = 0, v(T ) = 0, (4)

where 0 < η1 < · · · < ηq−2 < T , bi ≥ 0 for all i = 1, . . . , q − 2 and h ∈ C([0, T ]). If

e = T m−1−
q−2∑

i=1

bi

(
T m−1 − ηm−1

i

)
, 0, we denote by G2 the Green’s function associated

to problem (3)-(4) and defined in a similar manner as G1. We also denote by g2, θ2

and J2 the corresponding functions for (3)-(4) defined in a similar manner as g1, θ1

and J1, respectively.

3. MAIN RESULTS

We present the assumptions that we shall use in the sequel:

(H1) 0 < ξ1 < · · · < ξp−2 < T , 0 < η1 < · · · < ηq−2 < T , ai ≥ 0, i = 1, . . . , p − 2,

bi ≥ 0, i = 1, . . . , q−2, d = T n−1−
p−2∑

i=1

ai(T
n−1−ξn−1

i ) > 0, e = T m−1−
q−2∑

i=1

bi(T
m−1−

ηm−1
i ) > 0.

(H2) The functions a, b ∈ C([0, T ], [0,∞)) and there exist t1, t2 ∈ (0, T ) such that

a(t1) > 0, b(t2) > 0.

(H3) The functions f , g ∈ C([0,∞) × [0,∞), [0,∞)).

From assumption (H2), there exists c ∈ (0, T/2) such that t1, t2 ∈ (c, T − c). We

shall work in this section with this number c. This implies that

∫ T−c

c

J1(s)a(s) ds > 0,

∫ T−c

c

J2(s)b(s) ds > 0,

where J1 and J2 are defined in Section 2 (Lemma 2.4).
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We introduce the following extreme limits

f s
0
= lim sup

u+v→0+

f (u, v)

u + v
, gs

0 = lim sup
u+v→0+

g(u, v)

u + v
,

f i
0
= lim inf

u+v→0+

f (u, v)

u + v
, gi

0 = lim inf
u+v→0+

g(u, v)

u + v
,

f s
∞ = lim sup

u+v→∞

f (u, v)

u + v
, gs
∞ = lim sup

u+v→∞

g(u, v)

u + v
,

f i
∞ = lim inf

u+v→∞
f (u, v)

u + v
, gi
∞ = lim inf

u+v→∞
g(u, v)

u + v
.

By using the Green’s functions G1 and G2 from Section 2 (Lemma 2.2), our prob-

lem (S ) − (BC) can be written equivalently as the following nonlinear system of

integral equations



u(t) = λ

∫ T

0

G1(t, s)a(s) f (u(s), v(s)) ds, 0 ≤ t ≤ T,

v(t) = µ

∫ T

0

G2(t, s)b(s)g(u(s), v(s)) ds, 0 ≤ t ≤ T.

We consider the Banach space X = C([0,T ]) with supremum norm ∥ · ∥, and the

Banach space Y = X × X with the norm ∥(u, v)∥Y = ∥u∥ + ∥v∥. We define the cone

P ⊂ Y by

P = {(u, v) ∈ Y; u(t) ≥ 0, v(t) ≥ 0, ∀ t ∈ [0, T ] and

inf
t∈[c,T−c]

(u(t) + v(t)) ≥ γ∥(u, v)∥Y },

where γ = min{cn−1/T n−1, cm−1/T m−1}.
For λ, µ > 0, we introduce the operators Q1, Q2 : Y → X and Q : Y → Y defined

by

Q1(u, v)(t) = λ

∫ T

0

G1(t, s)a(s) f (u(s), v(s)) ds, 0 ≤ t ≤ T,

Q2(u, v)(t) = µ

∫ T

0

G2(t, s)b(s)g(u(s), v(s)) ds, 0 ≤ t ≤ T,

and Q(u, v) = (Q1(u, v),Q2(u, v)), (u, v) ∈ Y . The solutions of our problem (S )−(BC)

are the fixed points of the operator Q. By using standard arguments, we can easily

show that, under assumptions (H1) − (H3), the operator Q is completely continuous.

Theorem 3.1. Assume that (H1)− (H3) hold. If f s
0
, f s
∞, gs

0
, gs
∞ < ∞, then there exist

positive constants λ0, µ0 such that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the boundary

value problem (S ) − (BC) has no positive solution.

Proof. Since f s
0
, f s
∞ < ∞, we deduce that there exist M′

1
, M′′

1
, r1, r′

1
> 0, r1 < r′

1

such that
f (u, v) ≤ M′

1
(u + v), ∀ u, v ≥ 0, u + v ∈ [0, r1],

f (u, v) ≤ M′′
1

(u + v), ∀ u, v ≥ 0, u + v ∈ [r′
1
,∞).
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We consider M1 = max

{
M′

1
, M′′

1
, max

r1≤u+v≤r′
1

f (u, v)

u + v

}
> 0. Then, we obtain

f (u, v) ≤ M1(u + v), ∀ u, v ≥ 0.

Since gs
0
, gs
∞ < ∞, we deduce that there exist M′

2
, M′′

2
, r2, r′

2
> 0, r2 < r′

2
such

that
g(u, v) ≤ M′

2
(u + v), ∀ u, v ≥ 0, u + v ∈ [0, r2],

g(u, v) ≤ M′′
2

(u + v), ∀ u, v ≥ 0, u + v ∈ [r′
2
,∞).

We consider M2 = max

{
M′

2
, M′′

2
, max

r2≤u+v≤r′
2

g(u, v)

u + v

}
> 0. Then, we obtain

g(u, v) ≤ M2(u + v), ∀ u, v ≥ 0.

We define λ0 =
1

2M1B
and µ0 =

1

2M2D
, where B =

∫ T

0

J1(s)a(s) ds and D =

∫ T

0

J2(s)b(s) ds. We shall show that for every λ ∈ (0, λ0) and µ ∈ (0, µ0), the problem

(S ) − (BC) has no positive solution.

Let λ ∈ (0, λ0) and µ ∈ (0, µ0). We suppose that (S ) − (BC) has a positive solution

(u(t), v(t)), t ∈ [0, T ]. Then, we have

u(t) = Q1(u, v)(t) = λ

∫ T

0

G1(t, s)a(s) f (u(s), v(s)) ds

≤ λ
∫ T

0

J1(s)a(s) f (u(s), v(s)) ds ≤ λM1

∫ T

0

J1(s)a(s)(u(s) + v(s)) ds

≤ λM1(∥u∥ + ∥v∥)
∫ T

0

J1(s)a(s) ds = λM1B∥(u, v)∥Y , ∀ t ∈ [0,T ].

Therefore, we conclude

∥u∥ ≤ λM1B∥(u, v)∥Y < λ0M1B∥(u, v)∥Y =
1

2
∥(u, v)∥Y .

In a similar manner, we have

v(t) = Q2(u, v)(t) = µ

∫ T

0

G2(t, s)b(s)g(u(s), v(s)) ds

≤ µ
∫ T

0

J2(s)b(s)g(u(s), v(s)) ds ≤ µM2

∫ T

0

J2(s)b(s)(u(s) + v(s)) ds

≤ µM2(∥u∥ + ∥v∥)
∫ T

0

J2(s)b(s) ds = µM2D∥(u, v)∥Y , ∀ t ∈ [0, T ].

Therefore, we conclude

∥v∥ ≤ µM2D∥(u, v)∥Y < µ0M2D∥(u, v)∥Y =
1

2
∥(u, v)∥Y .
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Hence, ∥(u, v)∥Y = ∥u∥ + ∥v∥ < 1
2
∥(u, v)∥Y + 1

2
∥(u, v)∥Y = ∥(u, v)∥Y , which is a

contradiction. So, the boundary value problem (S )− (BC) has no positive solution.

Theorem 3.2. Assume that (H1) − (H3) hold.

a) If f i
0
, f i
∞ > 0, then there exists a positive constant λ̃0 such that for every λ > λ̃0

and µ > 0, the boundary value problem (S ) − (BC) has no positive solution.

b) If gi
0
, gi
∞ > 0, then there exists a positive constant µ̃0 such that for every µ > µ̃0

and λ > 0, the boundary value problem (S ) − (BC) has no positive solution.

c) If f i
0
, f i
∞, gi

0
, gi
∞ > 0, then there exist positive constants

˜̃
λ0 and ˜̃µ0 such that for

every λ >
˜̃
λ0 and µ > ˜̃µ0, the boundary value problem (S ) − (BC) has no positive

solution.

Proof. a) Since f i
0
, f i
∞ > 0, we deduce that there exist m′

1
, m′′

1
, r3, r′

3
> 0, r3 < r′

3

such that
f (u, v) ≥ m′

1
(u + v), ∀ u, v ≥ 0, u + v ∈ [0, r3],

f (u, v) ≥ m′′
1

(u + v), ∀ u, v ≥ 0, u + v ∈ [r′
3
,∞).

We introduce m1 = min

{
m′

1
,m′′

1
, min

u+v∈[r3,r
′
3
]

f (u, v)

u + v

}
> 0. Then we obtain

f (u, v) ≥ m1(u + v), ∀ u, v ≥ 0.

We define λ̃0 =
T n−1

γcn−1m1A
> 0, where A =

∫ T−c

c

J1(s)a(s) ds. We shall show that

for every λ > λ̃0 and µ > 0 the problem (S ) − (BC) has no positive solution.

Let λ > λ̃0 and µ > 0. We suppose that (S )−(BC) has a positive solution (u(t), v(t)),

t ∈ [0, T ]. Then, we obtain

u(c) = Q1(u, v)(c) = λ

∫ T

0

G1(c, s)a(s) f (u(s), v(s)) ds

≥ λ
∫ T−c

c

G1(c, s)a(s) f (u(s), v(s)) ds ≥ λm1

∫ T−c

c

G1(c, s)a(s)(u(s) + v(s)) ds

≥ λm1cn−1

T n−1

∫ T−c

c

J1(s)a(s)γ(∥u∥ + ∥v∥) ds =
λγm1cn−1A

T n−1
∥(u, v)∥Y .

Therefore, we deduce

∥u∥ ≥ u(c) ≥ λγm1cn−1A

T n−1
∥(u, v)∥Y >

λ̃0γm1cn−1A

T n−1
∥(u, v)∥Y = ∥(u, v)∥Y ,

and so, ∥(u, v)∥Y = ∥u∥ + ∥v∥ ≥ ∥u∥ > ∥(u, v)∥Y , which is a contradiction. Therefore,

the boundary value problem (S ) − (BC) has no positive solution.

b) Since gi
0
, gi
∞ > 0, we deduce that there exist m′

2
, m′′

2
, r4, r′

4
> 0, r4 < r′

4
such

that
g(u, v) ≥ m′

2
(u + v), ∀ u, v ≥ 0, u + v ∈ [0, r4],

g(u, v) ≥ m′′
2

(u + v), ∀ u, v ≥ 0, u + v ∈ [r′
4
,∞).
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We introduce m2 = min

{
m′

2
,m′′

2
, min

u+v∈[r4,r
′
4
]

g(u, v)

u + v

}
> 0. Then we obtain

g(u, v) ≥ m2(u + v), ∀ u, v ≥ 0.

We define µ̃0 =
T m−1

γcm−1m2C
> 0, where C =

∫ T−c

c

J2(s)b(s) ds. We shall show

that for every µ > µ̃0 and λ > 0 the problem (S ) − (BC) has no positive solution.

Let µ > µ̃0 and λ > 0. We suppose that (S )−(BC) has a positive solution (u(t), v(t)),

t ∈ [0, T ]. Then, we obtain

v(c) = Q2(u, v)(c) = µ

∫ T

0

G2(c, s)b(s)g(u(s), v(s)) ds

≥ µ
∫ T−c

c

G2(c, s)b(s)g(u(s), v(s)) ds ≥ µm2

∫ T−c

c

G2(c, s)b(s)(u(s) + v(s)) ds

≥ µm2cm−1

T m−1

∫ T−c

c

J2(s)b(s)γ(∥u∥ + ∥v∥) ds =
µγm2cm−1C

T m−1
∥(u, v)∥Y .

Therefore, we deduce

∥v∥ ≥ v(c) ≥ µγm2cm−1C

T m−1
∥(u, v)∥Y >

µ̃0γm2cm−1C

T m−1
∥(u, v)∥Y = ∥(u, v)∥Y ,

and so, ∥(u, v)∥Y = ∥u∥ + ∥v∥ ≥ ∥v∥ > ∥(u, v)∥Y , which is a contradiction. Therefore,

the boundary value problem (S ) − (BC) has no positive solution.

c) Because f i
0
, f i
∞, gi

0
, gi
∞ > 0, we deduce as above, that there exist m1, m2 > 0

such that

f (u, v) ≥ m1(u + v), g(u, v) ≥ m2(u + v), ∀ u, v ≥ 0.

We define
˜̃
λ0 =

T n−1

2γcn−1m1A

=
λ̃0

2

 and ˜̃µ0 =
T m−1

2γcm−1m2C

(
=
µ̃0

2

)
. Then for every

λ >
˜̃
λ0 and µ > ˜̃µ0, the problem (S )−(BC) has no positive solution. Indeed, let λ >

˜̃
λ0

and µ > ˜̃µ0. We suppose that (S )− (BC) has a positive solution (u(t), v(t)), t ∈ [0, T ].

Then in a similar manner as above, we deduce

∥u∥ ≥ λγm1cn−1A

T n−1
∥(u, v)∥Y , ∥v∥ ≥

µγm2cm−1C

T m−1
∥(u, v)∥Y ,

and so,

∥(u, v)∥Y = ∥u∥ + ∥v∥ ≥
λγm1cn−1A

T n−1
∥(u, v)∥Y +

µγm2cm−1C

T m−1
∥(u, v)∥Y

>
˜̃
λ0γm1cn−1A

T n−1
∥(u, v)∥Y +

˜̃µ0γm2cm−1C

T m−1
∥(u, v)∥Y

= 1
2
∥(u, v)∥Y + 1

2
∥(u, v)∥Y = ∥(u, v)∥Y ,
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which is a contradiction. Therefore, the boundary value problem (S ) − (BC) has no

positive solution.
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Abstract In this paper, we prove some fixed point theorems in compact metric and compact cone

metric spaces by using implicit relation. The presented theorems extend, generalize

and improve many existing results in the literature such as a theorem by D. Dorić et al.

[Dragan Dorić, Zoran Kadelburg and Stojan Radenović, Edelstein - Suzuki-type fixed

point results in metric and abstract metric spaces, Nonlinear Anal. TMA 75 (2012) 1927

- 1932.]

Keywords: cone metric spaces, common fixed point, Edelstein’s theorem, Suzuki’s theorem.
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1. INTRODUCTION

In 1962, M. Edelstein [6] proved another version of Banach contraction Principle.

He assumed a compact metric space (X, d) and a self-mapping T on X such that

d(T x, Ty) < d(x, y) for all x, y ∈ X with x , y, and he proved T has a unique fixed

point. In 2009, T. Suzuki [19] improved the results of Banach and Edelstein. Suzuki

replaced the condition“d(T x,Ty) < d(x, y)” by “ 1
2
d(x,T x) < d(x, y) ⇒ d(T x, Ty) <

d(x, y)” for all x, y ∈ X. By this assumption, he established that T has a unique fixed

point. Recently D. Dorić et al. in [5] proved the following theorem and extended the

results of Edelstein and Suzuki:

Theorem 1.1. Let (X, d) be a compact metric space and let T : X → X. Assume that

1

2
d(x, T x) < d(x, y)⇒

d(T x,Ty) < Ad(x, y) + Bd(x, T x) +Cd(y, Ty) + Dd(x,Ty) + Ed(y, T x)

holds for all x, y ∈ X, where the nonnegative constants A, B,C,D, E satisfy

A + B +C + 2D = 1 and C , 1.

Then T has a fixed point in X. If E ≤ B +C + D, then the fixed point of T is unique.

Also, they gave an example which does not satisfy Suzuki’s condition but it satis-

fies condition of Theorem 1.1.

79
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In 2007, Huang and Zhang [8] introduced cone metric spaces and defined some

properties of convergence of sequences and completeness in cone metric spaces.

They also proved a fixed point theorem of cone metric spaces. A number of authors

were attracted by these results of Huang and Zhang and were stimulated to investi-

gate the fixed point theorems in cone metric spaces. During the recent years, cone

metric spaces and properties of these spaces have been studied by a number of au-

thors. Also many mathematicians have extensively investigated fixed point theorems

in cone metric spaces (see [15], [18], [21]).

Furthermore, many authors considered implicit relation technique to investigation

of fixed point theorems in metric spaces (see [2], [11]-[13], [17], [20]).

In this paper, we introduce a new version of implicit relation technique by using

two functions. This helps us to extend our results on cone metric spaces.

This paper is organized as follows: In Section 2, we prove the generalization of

Theorem 1.1 in compact metric spaces by using implicit relation technique.

In Section 3, we generalize our results on compact cone metric spaces.

2. IMPLICIT RELATION

In this section, we introduce an implicit relation by using two functions. Also, we

prove a theorem in compact metric spaces. Our result extends Theorem 3 of [19] and

Theorem 3.1 of [6].

Let ψ : [0,∞) −→ [0,∞) and φ : [0,∞)5 −→ [0,∞) be two continuous functions

which satisfy the following conditions:

(M1) φ(t1, t2, t3, t4, t5) is increasing in variable t3;

(M2) ψ(u) ≤ φ(v, v, u + v, u, 0) implies u ≤ v;

(M3) ψ(u) < φ(v, v, u + v, u, 0) implies u < v where u ≥ 0 and v > 0;

(M4) ψ(u) < φ(v, 0, v, 0, v) implies u < v, where u ≥ 0 and v > 0.

Example 2.1. Let

(A) ψ(r) = r and φ(t1, t2, t3, t4, t5) = t1;

(B) ψ(r) = 2r and φ(t1, t2, t3, t4, t5) = t3;

(C) ψ(r) = 2r and φ(t1, t2, t3, t4, t5) = t1 + t4;

(D) ψ(r) = 5r and φ(t1, t2, t3, t4, t5) = t1 + t2 + t3 + t4 + t5;

(E) ψ(r) = 2r and φ(t1, t2, t3, t4, t5) = max{t1, t2, t3, t4, t5};

(F) ψ(r) = 2r2 and φ(t1, t2, t3, t4, t5) = t2
1
+ t2

4
.

It is easy to see that (M1)− (M4) are satisfied for ψ and φ in (A), (B), (C), (D),

(E) and (F).
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(G) ψ(r) = r and φ(t1, t2, t3, t4, t5) = at1 + bt2 + ct3 + dt4 + et5, where a, b, c, d and

e are nonnegative numbers, a + b + 2c + d = 1, d , 1 and e ≤ b + c + d.

Clearly, (M1) holds. Now, let ψ(u) − φ(v, v, u + v, u, 0) =

(1−c−d)u−(a+b+c)v ≤ 0. By the assumption, we conclude 1−c−d = (a+b+c).

So 1 − c − d ≤ 0 implies a = b = c = 0. Therefore, d = 1, which is a con-

tradiction. Hence, 1 − c − d > 0. Thus, u ≤ v. So (M2) is satisfied. A similar

argument shows that (M3) is satisfied. Moreover, if ψ(u) − φ(v, 0, v, 0, v) =

u − (a + c + e)v < 0, then u < (a + c + e)v. So, by the hypothesis we can write

u < (a + c + e)v ≤ (a + b + 2c + d)v = v. Therefore, (M4) is satisfied.

(H) ψ(r) = r and φ(t1, t2, t3, t4, t5) = a min{t1, t2} + b min{t2, t3} + c min{t3, t4} + t5
where a, b and c are nonnegative numbers, a + b + c = 1 and c , 1.

Clearly (M1) holds. If ψ(u) − φ(v, v, u + v, u, 0) = (1 − c)u − (a + b)v ≤ 0 then,

by using a + b + c = 1, we conclude that u ≤ v. This means (M2) is satisfied.

Similarly, we can show that (M3) is satisfied. Now, if ψ(u) − φ(v, 0, v, 0, v) < 0

then u < v, since φ(v, 0, v, 0, v) = v. Hence, (M4) is satisfied.

Theorem 2.1. Let (X, d) be a compact metric space and T be a self-mapping on X.

Suppose that ψ : [0,∞) −→ [0,∞) and φ : [0,∞)5 −→ [0,∞) are two continuous

mappings such that (M1) − (M3) are satisfied. Assume that

1

2
d(x,T x) < d(x, y) =⇒ (1)

ψ(d(T x, Ty)) < φ
(
d(x, y), d(x,T x), d(x,Ty), d(y, Ty), d(y,T x)

)
,

for all x, y ∈ X. Then T has at least one fixed point. Moreover, if ψ and φ satisfy

(M4), then T has a unique fixed point.

Proof. Let α = inf{d(x, T x) : x ∈ X}. There exists a sequence {xn} in X such that

limn→∞ d(xn,T xn) = α. By compactness of X, there exist w1,w2 ∈ X such that

limn→∞ xn = w1 and limn→∞ T xn = w2. Hence

lim
n→∞

d(xn,w2) = lim
n→∞

d(xn,T xn) = d(w1,w2) = α.

Now, we show that α must be equal to 0.
If α > 0, then there exists N ∈ N such that for all n ≥ N, 2

3
α < d(xn,w2) and

d(xn, T xn) < 4
3
α. Therefore, for all n ≥ N, 1

2
d(xn,T xn) < 2

3
α < d(xn,w2). Now, by

(1), we have

ψ(d(T xn,Tw2)) < φ
(
d(xn,w2), d(xn, T xn), d(xn, Tw2), d(w2, Tw2), d(w2,T xn)

)
. (2)

By taking the limit as n→ ∞ in (2), we get

ψ(d(w2,Tw2)) ≤ φ
(
α, α, d(w1,Tw2), d(w2, Tw2), 0

)

≤ φ
(
α, α, d(w1,w2) + d(w2, Tw2), d(w2,Tw2), 0

)

= φ
(
α, α, α + d(w2, Tw2), d(w2,Tw2), 0

)
,
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so by (M2), we have d(w2,Tw2) ≤ α. Therefore, d(w2,Tw2) = α > 0. Hence,
1
2
d(w2, Tw2) < d(w2, Tw2). Now by (1), we can obtain

ψ(d(Tw2, T
2w2)) < φ

(
d(w2,Tw2), d(w2,Tw2), d(w2, T

2w2), d(Tw2,T
2w2), 0

)

≤ φ
(
d(w2,Tw2), d(w2,Tw2), d(Tw2,T

2w2) + d(w2,Tw2), d(Tw2,T
2w2), 0

)
.

By (M3), we get d(Tw2, T
2w2) < d(w2, Tw2) = α, which is a contradiction of the

definition of α. So α = 0, that is, w1 = w2.

Now, we must show that T has at least one fixed point. Assume towards a contra-

diction that T does not have a fixed point. Hence 0 < 1
2
d(xn, T xn) < d(xn,T xn). Then

by (1), we have

ψ(d(T xn, T
2xn)) < φ

(
d(xn,T xn), d(xn,T xn), d(xn, T

2xn), d(T xn, T
2xn), d(T xn,T xn)

)
.

By taking the limit as n→ ∞ in above inequality, we get

ψ( lim
n→∞

d(w1,T
2xn)) ≤ φ

(
0, 0, lim

n→∞
d(w1, T

2xn), lim
n→∞

d(w1,T
2xn), 0

)
.

It follows from (M2) that limn→∞ d(w1,T
2xn) ≤ 0, so limn→∞ T 2xn = w1. Further-

more, by using (1) and (M1), we obtain

ψ(d(T xn,T
2xn)) < φ

(
d(xn,T xn), d(xn, T xn), d(xn, T

2xn), d(T xn, T
2xn), d(T xn, T xn)

)

≤ φ
(
d(xn,T xn), d(xn, T xn), d(T xn,T

2xn) + d(xn, T xn), d(T xn, T
2xn), 0

)
.

Then by (M3) we have, d(T xn,T
2xn) < d(xn,T xn).

Now, suppose that both of the following inequalities hold for some n ∈ N,

1

2
d(xn, T xn) ≥ d(xn,w1) and

1

2
d(T xn,T

2xn) ≥ d(T xn,w1),

so, we have

d(xn, T xn) ≤ d(xn,w1) + d(w1, T xn)

≤ 1

2
d(xn, T xn) +

1

2
d(T xn, T

2xn)

<
1

2
d(xn, T xn) +

1

2
d(xn, T xn) = d(xn,T xn),

which is a contradiction. Thus, for each n ∈ N, either

1

2
d(xn,T xn) < d(xn,w1),

or
1

2
d(T xn,T

2xn) < d(T xn,w1),
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holds. So by hypotheses, we conclude that one of the following inequalities holds for

all n in an infinite subset of N:

ψ(d(T xn,Tw1)) < φ
(
d(xn,w1), d(xn, T xn), d(xn, Tw1), d(w1, Tw1), d(w1,T xn)

)
,

or

ψ(d(T 2xn, Tw1)) < φ
(
d(T xn,w1), d(T xn,T

2xn), d(T xn,Tw1), d(w1,Tw1), d(w1, T
2xn)

)
.

If we take the limit as n→ ∞ in each of these inequalities, then we have

ψ(d(w1, Tw1)) ≤ φ
(
0, 0, d(w1,Tw1), d(w1,Tw1), 0

)
.

So (M2) implies that d(w1, Tw1) ≤ 0, i.e., w1 = Tw1. Hence, we conclude that w1 is

a fixed point of T .

To prove the uniqueness of w1, suppose that w0 is another fixed point of T such

that w1 , w0. Hence, 0 = 1
2
d(w1, Tw1) < d(w1,w0). By (1), we have

ψ(d(Tw1, Tw0)) < φ
(
d(w1,w0), d(w1, Tw1), d(w1,Tw0), d(w0, Tw0), d(w0, Tw1)

)
.

So

ψ(d(w1,w0)) < φ
(
d(w1,w0), 0, d(w1,w0), 0, d(w0,w1)

)
.

Considering (M4), we have d(w1,w0) < d(w1,w0), which is a contradiction. There-

fore w1 = w0. Then w1 is the unique fixed point of T .

Theorem 2.2. Let (X, d) be a metric space and let F and T be two self-mappings

on X such that T X ⊆ FX and FX is compact. Suppose that ψ : [0,∞) −→ [0,∞)

and φ : [0,∞)5 −→ [0,∞) are two continuous mappings such that (M1) − (M3) are

satisfied. Assume that

1

2
d(Fx, T x) < d(Fx, Fy) =⇒

ψ(d(T x, Ty)) < φ
(
d(Fx, Fy), d(Fx, T x), d(Fx, Ty), d(Fy, Ty), d(Fy,T x)

)
,

(3)

for all x, y ∈ X. Then F and T have at least one point of coincidence. Moreover, if ψ
and φ satisfy (M4) and F and T are weakly compatible, then F and T have a unique

common fixed point.

Proof. Define G : FX −→ FX by G(F(w)) = Tw. Replacing T x and Ty by G(Fx)

and G(Fy), respectively, in (3), we have

1

2
d(Fx,G(Fx)) < d(Fx, Fy) =⇒

ψ
(
d(G(Fx),G(Fy))

)
<

φ
(
d(Fx, Fy), d(Fx,G(Fx)), d(Fx,G(Fy)), d(Fy,G(Fy)), d(Fy,G(Fx))

)
,



84 Fridoun Moradlou, Peyman Salimi

for all Fx, Fy ∈ FX. Since FX is compact, by Theorem 2.1, G has a fixed point, i.e.,

there exists z ∈ X such that Fz = G(Fz) = Tz := u. Moreover, if ψ and φ satisfy

(M4) then G has a unique fixed point. So we conclude that z is a unique point of

coincidence of F and T . Furthermore, if F and T are weakly compatible mappings,

we get FTz = T Fz, so Fu = Tu. Therefore z = u and Fz = Tz = z. This yields z as

the unique common fixed point of F and T .

Corollary 2.1. Let (X, d) be a metric space and let F and T be two self-mappings on

X such that T X ⊆ FX and FX is compact. Assume that

1

2
d(Fx, T x) < d(Fx, Fy) =⇒

d(T x,Ty) < Ad(Fx, Fy) + Bd(Fx,T x) +Cd(Fx, Ty) + Dd(Fy,Ty) + Ed(Fy,T x)

for all x, y ∈ X, where A, B,C,D, E ≥ 0, A + B+ 2C +D = 1 and D , 1. Then F and

T have at least one point of coincidence. Moreover, if E ≤ B + C + D and F and T

are weakly compatible, then F and T have a unique common fixed point.

Proof. The proof follows from Theorem 2.2 and part (G) of example 2.1.

Corollary 2.2. Let (X, d) be a metric space and let F and T be two weakly compatible

self-mappings on X such that T X ⊆ FX and FX is compact. Assume that

1

2
d(Fx, T x) < d(Fx, Fy) =⇒ d(T x,Ty) < d(Fx, Fy),

for all x, y ∈ X with x , y. Then F and T have a unique common fixed point.

Proof. The proof follows from Theorem 2.2 and part (A) of example 2.1.

Corollary 2.3. Let (X, d) be a metric space and let F and T be two weakly compatible

self-mappings on X such that T X ⊆ FX and FX is compact. Assume that

1

2
d(Fx,T x) < d(Fx, Fy) =⇒ d(T x, Ty) < a min{d(Fx, Fy), d(Fx, T x)}

+ b min{d(Fx, T x), d(Fx,Ty)}
+ c min{d(Fx, Ty), d(Fy, Ty)} + d(Fy,T x),

for all x, y ∈ X where a + b + c = 1, c , 1. Then F and T have a unique common

fixed point.

Proof. The proof follows from Theorem 2.2 and part (H) of example 2.1.

Remark 2.1. We can obtain some new results by using Theorem 2.2 and other exam-

ples of ψ and φ.
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3. CONE METRIC SPACES

In this section, we generalize our results on compact cone metric spaces.

Definition 3.1. [8] Let E be a real Banach space with norm ∥.∥ and P be a subset of

E. P is called a cone if and only if the following conditions are satisfied:

(i) P is closed, nonempty and P , {θ};

(ii) a, b ≥ 0 and x ∈ P implies ax + by ∈ P;

(iii) x ∈ P and −x ∈ P implies x = θ.

Let P ⊂ E be a cone, we define a partial ordering ≼ on E with respect to P by x ≼ y

if and only if y − x ∈ P. We write x ≺ y whenever x ≼ y and x , y, while x ≪ y will

stand for y − x ∈ intP (interior of P). The cone P ⊂ E is called normal if there is a

positive real number K such that for all x, y ∈ E, θ ≼ x ≼ y ⇒ ∥x∥ ≤ K∥y∥. The

least positive number satisfying the last inequality is called the normal constant of P.

If K = 1, then the cone P is called monotone.

Definition 3.2. [8] A cone metric space is an ordered pair (X, d), where X is any set

and d : X × X −→ E is a mapping satisfying:

(D1) θ ≼ d(x, y) for all x, y ∈ X; and d(x, y) = θ if and only if x = y;

(D2) d(x, y) = d(y, x) for all x, y ∈ X;

(D3) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Let (X, d) be a cone metric space, P be a normal cone in X with normal constant

K, x ∈ X and {xn} a sequence in X. The sequence {xn} converges to x if and only if

d(xn, x) −→ θ. Limit point of every sequence is unique.

It is well known that there exists a norm ∥.∥1 on E, equivalent with the given ∥.∥,
such that the cone P is monotone w.r.t. ∥.∥1(see [1], [10], [16], [22]). By using this

fact, from now on, we assume that the cone P is solid and monotone. In this case, we

can define a metric on X by D(x, y) = ∥d(x, y)∥. Furthermore, it is proved that D and

d give the same topology on X (see [14]).

We will use the following lemma in the proof of the next results.

Lemma 3.1. [7] Let (X,d) be a cone metric space. Then

θ ≼ x ≪ y⇒ ∥x∥ < ∥y∥.

Proof. According to ([22], Proposition (2.2), page 20) [−(y − x), y − x] is the neigh-

borhood of θ. Hence, for a sufficiently large n, we have 1
n
y ∈ [−(y − x), y − x], i.e.,

y

n
≼ y − x. From this, it follows that x ≼

(
1 − 1

n

)
y, that is ∥x∥ ≤

(
1 − 1

n

)
∥y∥ < ∥y∥.
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Lemma 3.2. Let ψp : [0,∞) −→ P and φp : [0,∞)5 −→ P be two mappings

satisfying the following conditions:

(P1) u ≤ v implies φp(., ., v, ., .) − φp(., ., u, ., .) ∈ P;

(P2) ψp(u) − φp(v, v, u + v, u, 0) < intP implies u ≤ v;

(P3) ψp(u) − φp(v, v, u + v, u, 0) < P implies u < v, where u ≥ 0 and v > 0;

(P4) ψp(u) − φp(u, 0, v, 0, v) < P implies u < v, where u ≥ 0 and v > 0.

Define ψ : [0,∞) −→ [0,∞) and φ : [0,∞)5 −→ [0,∞) by

ψ(r) = ∥ψp(r)∥ and φ(t1, t2, t3, t4, t5) = ∥φp(t1, t2, t3, t4, t5)∥.

Then ψ and φ satisfy (M1) − (M4).

Proof. First, notice that ∥ψp(u)∥ ≤ ∥φp(v, v, u + v, u, 0)∥ implies

ψp(u) − φp(v, v, u + v, u, 0) < intP. Indeed, if ψp(u) − φp(v, v, u + v, u, 0) ∈ intP, then

φp(v, v, u+ v, u, 0) ≪ ψp(u). Therefore, by Lemma 3.1, we get ∥φp(v, v, u+ v, u, 0)∥ <
∥ψp(u)∥, which is a contradiction. So, we conclude from (P2) that u ≤ v. Now, sup-

pose that ∥ψp(u)∥ < ∥φp(v, v, u + v, u, 0)∥, then ψp(u) − φp(v, v, u + v, u, 0) < P. ( Ar-

guing by contradiction, if ψp(u)−φp(v, v, u+ v, u, 0) ∈ P, then ∥φp(v, v, u+ v, u, 0)∥ ≤
∥ψp(u)∥.) Hence, (P3) implies u < v. By a similar method, it can be shown that

∥ψ(u)∥ < ∥φ(u, 0, v, 0, v)∥ implies u < v.

Example 3.1. Suppose that p ∈ P. Let

(A) ψp(r) = rp and φp(t1, t2, t3, t4, t5) = t1 p;

(B) ψp(r) = 2rp and φp(t1, t2, t3, t4, t5) = t3 p;

(C) ψp(r) = 2rp and φp(t1, t2, t3, t4, t5) = (t1 + t4)p;

(D) ψp(r) = 5rp and φp(t1, t2, t3, t4, t5) = (t1 + t2 + t3 + t4 + t5)p;

(E) ψp(r) = 2rp and φp(t1, t2, t3, t4, t5) = p max{t1, t2, t3, t4, t5};

(F) ψp(r) = 2r2 p and φp(t1, t2, t3, t4, t5) = (t2
1
+ t2

4
)p.

It is easy to show that (P1) − (P4) are satisfied for ψp and φp in (A), (B), (C),

(D), (E) and (F).

(G) ψp(r) = rp and φp(t1, t2, t3, t4, t5) = (at1+bt2+ct3+dt4+et5)p, where a, b, c, d
and e are nonnegative numbers, a + b + 2c + d = 1 and d , 1. So, (P1) − (P3)

are satisfied. Moreover, if e ≤ b + c + d then (P4) is satisfied.

(H) ψp(r) = rp and φp(t1, t2, t3, t4, t5) = (a min{t1, t2}+ b min{t2, t3}+ c min{t3, t4}+
t5)p, where a, b and c are nonnegative numbers, a + b + c = 1 and c , 1. Then

(P1) − (P4) are satisfied.
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Theorem 3.1. Let (X, d) be a compact cone metric space and T be a self-mapping

on X. Suppose that ψp : [0,∞) −→ P and φp : [0,∞)5 −→ P are two continuous

mappings such that (P1) − (P3) are satisfied. Assume that

1

2
d(x,T x) − d(x, y) < intP =⇒

ψp(D(T x, Ty)) ≪ φp

(
D(x, y),D(x, T x),D(x, Ty),D(y,Ty),D(y, T x)

)
,

(4)

for all x, y ∈ X where D(x, y) = ∥d(x, y)∥. Then T has at least one fixed point.

Moreover, if ψp and φp satisfy (P4), then T has a unique fixed point.

Proof. Let 1
2
D(x.T x) < D(x, y). So 1

2
d(x,T x) − d(x, y) < intP. Therefore, by (4), we

have

ψp(D(T x,Ty)) ≪ φp

(
D(x, y),D(x, T x),D(x,Ty),D(y, Ty),D(y,T x)

)
.

Thus, by Lemma 3.2, we get

ψ := ∥ψp(D(T x, Ty))∥ < ∥φp

(
D(x, y),D(x, T x),D(x, Ty),D(y,Ty),D(y, T x)

)
∥ := φ.

It is easy to see that ψ and φ are continuous. Also, it follows from Lemma 3.2 that

ψ and φ satisfy (M1) − (M3). Hence, the conditions of Theorem 2.1 are satisfied.

Therefore, T has at least one fixed point. Furthermore, ψ and φ satisfy (M4). Then T

has a unique fixed point.

Theorem 3.2. Let (X, d) be a cone metric space and let F and T be two self-mappings

on X such that T X ⊆ FX and FX is compact. Suppose that ψp : [0,∞) −→ P and

φp : [0,∞)5 −→ P are two continuous mappings satisfying (P1) − (P3). Assume that

1

2
d(Fx,T x) − d(Fx, Fy) < intP =⇒

ψp(D(T x, Ty)) ≪ φp

(
D(Fx, Fy),D(Fx, T x),D(Fx,Ty),D(Fy,Ty),D(Fy, T x)

)
,

for all x, y ∈ X where D(x, y) = ∥d(x, y)∥. Then F and T have at least one point of

coincidence. Moreover, if ψ and φ satisfy (P4) and F and T are weakly compatible,

then F and T have a unique common fixed point.

Now, we obtain the following new results by using Theorem 3.2 and parts (A), (G)

and (H) of example 3.1.

Corollary 3.1. Let (X, d) be a cone metric space and let F and T be two weakly

compatible self-mappings on X such that T X ⊆ FX and FX is compact. Assume that

1

2
d(Fx, T x) − d(Fx, Fy) < intP =⇒ (D(Fx, Fy) − D(T x,Ty))intP ⊆ intP,
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for all x, y ∈ X with x , y, where D(x, y) = ∥d(x, y)∥. Then F and T have a unique

common fixed point.

Corollary 3.2. Let (X, d) be a cone metric space and let F and T be two self-

mappings on X such that T X ⊆ FX and FX is compact. Assume that

1

2
d(Fx, T x) − d(Fx, Fy) < intP =⇒ M(x, y)intP ⊆ intP,

for all x, y ∈ X, where

M(x, y) = aD(Fx, Fy) + bD(Fx,T x) + cD(Fx,Ty) + dD(Fy, Ty) + eD(Fy,T x)

− D(T x, Ty),

and a, b, c, d, e ≥ 0, a + b + 2c + d = 1 and d , 1. Then F and T have at least one

point of coincidence. Moreover, if e ≤ b + c + d and F and T are weakly compatible,

then F and T have a unique common fixed point.

Corollary 3.3. Let (X, d) be a cone metric space and let F and T be two weakly

compatible self-mappings on X such that T X ⊆ FX and FX is compact. Assume that

1

2
d(Fx,T x) − d(Fx, Fy) < intP =⇒ N(x, y)intP ⊆ intP,

for all x, y ∈ X, where

N(x, y) = a min{D(Fx, Fy),D(Fx,T x)} + b min{D(Fx,T x),D(Fx, Ty)}
+ c min{D(Fx,Ty),D(Fy,Ty)} + D(Fy, T x) − D(T x,Ty),

and a, b, c ≥ 0, a + b + c = 1 and c , 1. Then F and T have a unique common fixed

point.

Remark 3.1. We can obtain some new results by using Theorem 3.2 and other exam-

ples of ψp and φp.
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”A. I. Cuza” University; Iaşi, Romania
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Abstract A scheme of fractional steps type, associated to the nonlinear phase-field transition sys-

tem in one dimension, is considered in this paper. To approximate the solution of the

linear parabolic system introduced by such approximating scheme, we consider three

finite differences schemes: 1-IMBDF (first-order IMplicit Backward Differentiation

Formula), 2-IMBDF (second-order IMBDF) and 2-SBDF (second-order Semi-implicit

BDF). A study of stability and the numerical efficiency analysis of this new approach,

as well as physical experiments, are performed too.
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1. INTRODUCTION

Consider the nonlinear parabolic boundary value problem

{
ρc ∂

∂t
u + ℓ

2
∂
∂t
φ = k∆u

τ ∂∂t
φ = ξ2∆φ + 1

2a
(φ − φ3) + 2u

in Q := [0,T ] ×Ω, (1.1)

subject to the non-homogeneous Cauchy-Neumann boundary conditions:

{
∂
∂νu + hu = w(t, x)
∂
∂νφ = 0

on Σ := [0, T ] × ∂Ω, (1.2)

and initial conditions:

u(0, x) = u0(x), φ(0, x) = φ0(x) on Ω, (1.3)

where:

Ω is a bounded domain in IR with smooth boudary ∂Ω,

T > 0 is a given positive number,

91
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the unknown functions u and φ represent the reduced temperature distribution

and the phase function (used to distinguish between the phases of Ω), respec-

tively,

u0, φ0 : Ω→ IR are given functions,

w : [0,T ] × ∂Ω → IR also is a given function - the temperature surrounding at

∂Ω,

the positive parameters ρ, c, τ, ξ, ℓ, k, h, a, have the following physical mean-

ing: ρ - is the density, c - is the heat capacity, τ - is the relaxation time, ξ - is

the length scale of the interface, ℓ - denotes the latent heat, k - the heat conduc-

tivity, h - the heat transfer coeficient and a is an probabilistic measure on the

individual atoms (a depends on ξ).

The mathematical model (1.1), introduced by Caginalp [3], has been

established in literature as an alternative of the classic two-phase Stefan problem to

capture, among others, the effects of surface tension, supercooling, and superheating.

As regards the existence, it is known that under appropiate conditions on u0, φ0

and w, the system (1.1)-(1.3) has a unique solution u, φ ∈ W
2,1
p (Q) ∩ L∞(Q), p > 3

2

(see Morosanu [6]).

Numerical approximation of the phase-field system (1.1) subject to the homoge-

neous Neumann boundary conditions: ∂
∂νu + hu = 0 on Σ, has been analyzed in

Morosanu [5]. For other numerical investigation of the phase-field model (subject to

various other boundary conditions), see Arnautu & Morosanu [1], Morosanu [4, 6]

and references there in.

In order to approximate the above nonlinear problem, a scheme of fractional steps

type was introduced and analyzed in Benincasa & Morosanu [2], namely, for every

ε > 0, it was associated to system (1.1)-(1.3) the following approximating scheme:

{
ρc ∂

∂t
uε + ℓ

2
∂
∂t
φε = k∆uε

τ ∂∂t
φε = ξ2∆φε + 1

2a
φε + 2uε

in Qε
i , (1.4)

{
∂
∂νuε + huε = w(t, x)
∂
∂νφ

ε = 0
on Σεi , (1.5)

{
uε(0, x) = u0(x)

φε+(iε, x) = z(ε, φε−(iε, x))
on Ω (1.6)

where z(ε, φε−(iε, x)) is the solution of Cauchy problem:

{
z′(s) + 1

2a
z3(s) = 0 s ∈ (0, ε),

z(0) = φε−(iε, x) φε−(0, x) = φ0(x),
(1.7)



On the numerical approximation of the phase-field system ... 93

for i = 0, 1, · · · ,Mε−1,with Qε
i
= (iε, (i+1)ε)×Ω, Σε

i
= (iε, (i+1)ε)×∂Ω, Mε =

[
T
ε

]
,

Qε
Mε−1

= [(Mε − 1)ε,T ] × Ω and φε+(iε, x) = lim
t↓iε

φε(t, x), φε−(iε, x) = lim
t↑iε

φε(t, x).

In other words, the fractional steps method consists in decoupling the nonlinear

system (1.1)-(1.3) in a linear parabolic system and a nonlinear ordinary differential

equation containing the nonlinearity φ3 of (1.1)2, expressed on a partition of the time

interval [0, T ] which is composed from Mε subintervals, the first Mε−1 having the

same length ε.

The following result establishes the relationship between the solution (u, φ) in

(1.1)-(1.3) and the solution (uε, φε) in (1.4)-(1.7).

Theorem 1.1. Assume that u0, φ0 ∈ W1
∞(Ω) satisfying ∂

∂νu0+hu0 = w(0, x), ∂
∂νφ0 =

0 and w ∈ W1([0, T ], L2(∂Ω)). Furthermore, Ω ⊂ IRn (n = 1, 2, 3) is a bounded

domain with a smooth boundary. Let (uε, φε) be the solution of the approximating

scheme (1.4)-(1.7). Then, for ε→ 0, one has

(uε(t), φε(t))→ (u(t), φ(t)) strongly in L2(Ω) for any t ∈ (0,T ], (1.8)

where u, φ ∈ W
2,1
p ([0, T ]; L2(Ω)) ∩ L2([0,T ]; H2(Ω)) is the solution of the nonlinear

system (1.1)-(1.3).

Based on the result of convergence given by Theorem 1, we will concerned in this

work with the numerical approximatin of the solution (uε, φε) of the linear system

(1.4)-(1.7).

The rest of paper is organized as follows: in Section 2, for each type of scheme:1-

IMBDF, 2-IMBDF, 2-SBDF, we have introduced the discrete equations corresponding

to (1.4)-(1.7); consequently, conceptual algorithms have been formulated: Alg 1-

IMBDF, Alg 2-IMBDF, Alg 2-SBDF, respectively. A stability result for each new

approach is stated and proved too. Some physical experiments are reported in the last

Section.

2. NUMERICAL METHODS

In this Section we are concerned with the numerical approximation of the solution

(uε, φε) in (1.4)-(1.7). As already stated, we will work in one dimension, i.e. ∆uε =

uεxx and ∆φε = φεxx. To fix the ideas, let Ω = [0, b] ⊂ IR+ and we introduce over it the

grid with N equidistant nodes

x j = ( j − 1)dx j = 1, 2, . . . ,N, dx = b/(N − 1).

Given a positive value T and considering M ≡ Mε as the number of equidistant

nodes in which is divided the time interval [0, T ], we set

ti = (i − 1)ε i = 1, 2, . . . , M, ε = T/(M − 1).
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Now we denote by (ui
j
, φi

j
) the approximate values in the point (ti, x j) of the un-

known functions (uε, φε). More precisely

ui
j
= uε(ti, x j)

φi
j
= φε(ti, x j)

i = 1, 2, . . . , M, j = 1, 2, . . . ,N,

or, for later use

ui not
=

(
ui

1, u
i
2, . . . , u

i
N

)T
φi not
=

(
φi

1, φ
i
2, . . . , φ

i
N

)T
i = 1, 2, . . . , M. (2.1)

We continue by explaining how we treat each term in (1.4)-(1.7). The Laplace oper-

ator in (1.4) will be approximated by a second order centred finite differences, which

means:

uεxx(ti, x j) = ∆dxui
j
≈ ui

j−1
−2ui

j
+ui

j+1

dx2

φεxx(ti, x j) = ∆dxφ
i
j
≈ φi

j−1
−2φi

j
+φi

j+1

dx2

i = 1, 2, ..., M, j = 1, 2, ...,N, (2.2)

(∆dx is the discrete Laplacian depending on the step-size dx).

From the initial condition (1.6)1, we have

u1
j = uε(t1, x j) = u0(x j) j = 1, 2, . . . ,N. (2.3)

Involving the separation of variables method to solve the Cauchy problem (1.7) (see

Morosanu [4]), we get



z(ε, φε−(t1, x))=z(ε, φ0(x))=φ0(x)
√

a
a+εφ0(x)

,

z(ε, φε−(ti, x))=φε−(ti, x)
√

a
a+εφε−(ti,x)

i = 2, ..., M − 1.
(2.4)

Corresponding to Ω, already choosen in one dimension, the boundary ∂Ω is re-

duced to the set {0, b}. Thus the boundary conditions (1.5)1 become

{
−ux(0) + h u(0) = w(t, 0)

ux(b) + h u(b) = w(t, b),
(2.5)

where the sign in front of
∂

∂ν
u = ux is ∓ because the normal to [0, b] at 0 (b) point in

the negative (positive) direction.

Using in (2.5) a farward (backward) finite differences to approximate ux(0) (ux(b)),

we get 

−
ui

2
− ui

1

dx
+ h ui

1 = wi(0)

ui
N
− ui

N−1

dx
+ h ui

N = wi(b)

i = 1, 2, . . . , M,
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i.e. {
(1 + dx h)ui

1
− ui

2
= dx wi(0)

−ui
N−1
+ (1 + dx h)ui

N
= dx wi(b)

i = 1, 2, . . . , M, (2.6)

where wi(0) = w(ti, 0), wi(b) = w(ti, b), i = 1, 2, ..., M.

To approximate φx(0) (φx(b)) we will use a backward (forward) finite differences;

this leads to

φi
0 = φ

i
1, φi

N+1 = φ
i
N i = 1, 2, . . . , M, (2.7)

where φi
0

and φi
N+1

are dummy variables.

For approximating the partial derivative with respect to time, we employed a first-

order scheme and a second-order scheme, namely:

∂
∂t

uε(ti, x j) ≈
ui

j
−ui−1

j

ε , ∂
∂t
φε(ti, x j) ≈

φi
j
−φi−1

j

ε
(2.8)

i = 2, 3, . . . , M, j = 1, 2, . . . ,N, and

∂
∂t

uε(ti, x j) ≈
3ui

j
−4ui−1

j
+ui−2

j

2ε , ∂
∂t
φε(ti, x j) ≈

3φi
j
−4φi−1

j
+φi−2

j

2ε
(2.9)

i = 2, 3, . . . , M, j = 1, 2, . . . ,N.

Finally we refer to the right hand in (1.4): 1
2a
φε(ti, x j)+2uε(ti, x j). To approximate

this quantity (the reaction term), will involve two approaches: an implicit and a semi-

implicit formula, i.e.:

1

2a
φε(ti, x j) + 2uε(ti, x j) ≈

1

2a
φi

j + 2ui
j, (2.10)

i = 1, 2, . . . , M, j = 1, 2, . . . ,N, and

1

2a
φε(ti, x j) + 2uε(ti, x j) ≈ 2

[
1

2a
φi−1

j + 2ui−1
j

]
−

[
1

2a
φi−2

j + 2ui−2
j

]
, (2.11)

i = 2, 3, ..., M, j = 1, 2, ...,N (see Ruuth [7, pp. 156]).

We are now ready to build those three approximation schemes, mentioned at the

begining.

A. 1-IMBDF - First-order Implicit Backward Difference Formula. To develop

such a scheme, we begin by replacing in (1.4) approximations stated in (2.2), (2.8)

and (2.10). We deduce:


ρc

ui
j
−ui−1

j

ε + ℓ
2

φi
j
−φi−1

j

ε = k∆dxui
j

τ
φi

j
−φi−1

j

ε = ξ2∆dxφ
i
j
+ 1

2a
φi

j
+ 2ui

j
,

(2.12)

for i = 2, 3, . . . , M, j = 1, 2, . . . ,N.
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Using in (2.12) the equalities from (2.2) and arranging convenient, we conclude

that, via 1-IMBDF, the system (1.4) is discretized as follows


−k ε

dx2 ui
j−1
+

[
ρc + 2k ε

dx2

]
ui

j
− k ε

dx2 ui
j+1
+ ℓ

2
φi

j
= ρcui−1

j
+ ℓ

2
φi−1

j

−2ε ui
j
− ξ2 ε

dx2φ
i
j−1
+

[
τ + 2ξ2 ε

dx2 − ε
2a

]
φi

j
− ξ2 ε

dx2φ
i
j+1
= τφi−1

j
,

(2.13)

for i = 2, 3, . . . , M, j = 1, 2, . . . ,N.

In order to compute the matrix

(
ui

j

φi
j

)

i=2,M, j=1,N

, the linear system (2.13) will be

solved ascending with respect to time levels. For the first time level (i = 1), the

values of u1
j

and φ1
j

are computed by (2.3) and (2.4), respectively. Moreover, let us

point out from (2.13) and (2.6)-(2.7) that we have 2N unknowns for each time-level

i, i = 2, 3, ..., M (see also (2.1)).

If, corresponding to j = 1 and j = N, in (2.13)1 we take ui
0
= ui

1
and ui

N+1
= ui

N
,

respectively, and if we set

c1 = −k ε
dx2 c2 = ρc − 2c1 c3 =

ℓ
2

c5 = −ξ2 ε
dx2 c6 = τ − 2c5 − ε

2a
,

than the system (2.13), coupled with (2.6)-(2.7), can be rewritten in matrix form as

A

(
ui

φi

)
= B

(
ui−1

φi−1

)
+

(
di

1

di
2

)
i = 2, 3, ..., M, (2.14)

where

A =

(
A11 A12

−2A21 A22

)
B =

(
A13 A12

0 A23

)

with A11, A12, A13, A21, A22, A23 having the same size N × N, and

A11 =



a1 c1 − 1 0 · · · 0 0 0

c1 c2 c1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · c1 c2 c1

0 0 0 · · · 0 c1 − 1 a1



a1 = c1 + c2 + 1 + dx · h,

A22 =



c5+c6 c5 0 · · · 0 0 0

c5 c6 c5 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · c5 c6 c5

0 0 0 · · · 0 c5 c5+c6


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A12 =



c3 0 · · · 0 0

0 c3 · · · 0 0
...

...
. . .

...
...

0 0 · · · c3 0

0 0 · · · 0 c3



A21 =



dt 0 · · · 0 0

0 dt · · · 0 0
...

...
. . .

...
...

0 0 · · · dt 0

0 0 · · · 0 dt



A13 =



ρc 0 · · · 0 0

0 ρc · · · 0 0
...

...
. . .

...
...

0 0 · · · ρc 0

0 0 · · · 0 ρc



A23 =



τ 0 · · · 0 0

0 τ · · · 0 0
...

...
. . .

...
...

0 0 · · · τ 0

0 0 · · · 0 τ



di
1 =



dx · wi(0)

0
...
0

dx · wi(b)



di
2 =



0
...
0


.

Therefore, the general design of the algorithm to calculate the approximate solu-

tion of nonlinear system (1.1)-(1.3), via fractional steps method and 1-IMBDF, is the

following one

Begin Alg 1-IMBDF

Choose T > 0, b > 0;

Choose M > 0, N > 0 and compute ε, dx;

Choose u0, φ0,w;
i := 1→ u1 from the initial conditions (2.3);

For i = 2 to M do

Compute φi−1 = z(ε, φε−(ti−1, ·)) using (1.6)2 and (2.4);

Compute ui, φi solving the linear system (2.14);

End-for;

End.

B. 2-IMBDF - Second-order Implicit Backward Difference Formula. To solve

the system (1.4) we consider now a second-order implicit scheme, i.e.:


ρc

3ui
j
−4ui−1

j
+ui−2

j

2ε + ℓ
2

3φi
j
−4φi−1

j
+φi−2

j

2ε = k∆dxui
j

τ
3φi

j
−4φi−1

j
+φi−2

j

2ε = ξ2∆dxφ
i
j
+ 1

2a
φi

j
+ 2ui

j
,

(2.15)

for i = 2, 3 . . . , M, j = 1, 2, . . . ,N, and u0, φ0 considered as dummy variables.
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Following the same schedule as above, we conclude that, via 2-IMBDF, the system

(1.4) is discretized as follows:



2c1ui
j−1
+

(
3ρc + 4k ε

dx2

)
ui

j
+ 2c1ui

j+1
+ 3c3φ

i
j

= ρc
(
4ui−1

j
− ui−2

j

)
+ c3

(
4φi−1

j
− φi−2

j

)
,

−4ε ui
j
+ 2c5φ

i
j−1
+

(
3τ − 4c5 − ε

a

)
φi

j

+2c5φ
i
j+1
= τ

(
4φi−1

j
− φi−2

j

)
,

(2.16)

for i = 2, 3, . . . , M, j = 1, 2, . . . ,N.

Remembering the same considerations (developed at begining of Section) with

respect to: initial conditions - relations (2.3)-(2.4), boundary conditions - relations

(2.6)-(2.7), unknown vector for each time-level i - which was denoted by ui and φi,

and setting

c7 = 3ρc + 4k
ε

dx2
c8 = 3τ − 4c5 −

ε

a
,

the system (2.16) can be written as a matrix equation,

E

(
ui

φi

)
= 4B

(
ui−1

φi−1

)
− B

(
ui−2

φi−2

)
+

(
di

1

di
2

)
i = 2, 3, ..., M, (2.17)

where

E =

(
E11 3A12

−4A21 E22

)

with E11, E22 having the same size N × N, and

E11 =



e1 2c1 − 1 0 · · · 0 0 0

2c1 c7 2c1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2c1 c7 2c1

0 0 0 · · · 0 2c1 − 1 e1



e1 = 2c1 + c7 + 1 + dx · h,

E22 =



2c5 + c8 2c5 0 · · · 0 0 0

2c5 c8 2c5 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2c5 c8 2c5

0 0 0 · · · 0 2c5 2c5 + c8



.

Summing up, we can conclude that the general design of the algorithm to calculate

the approximate solution of nonlinear system (1.1)-(1.3), via fractional steps method

and 2-IMBDF, is the following one
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Begin Alg 2-IMBDF

Choose T > 0, b > 0;

Choose M > 0, N > 0 and compute ε, dx;

Choose u0, φ0,w;
i := 1→ u1 from the initial conditions (2.3);

φ1 = z(ε, φε−(t1, ·)) from (2.4)1;

i := 0→ u0 = u1, φ0 = φ1;

For i = 2 to M do

Compute φi−1 = z(ε, φε−(ti−1, ·)) using (1.6)2 and (2.4);

Compute ui, φi solving the linear system (2.17);

End-for;

End.

C. 2-SBDF - Second-order Semi-implicit Backward Difference Formula. The

purpose of this Subsection is to implement a 2-SBDF method to approximate the

solution (uε, φε) in (1.4)-(1.7). The work is based especially on relations (2.9) and

(2.11). Consequently, replacing in (1.4) the approximations mentioned above, we

deduce the following system of equations:


ρc

3ui
j
−4ui−1

j
+ui−2

j

2ε + ℓ
2

3φi
j
−4φi−1

j
+φi−2

j

2ε = k∆dxui
j

τ
3φi

j
−4φi−1

j
+φi−2

j

2ε =ξ2∆dxφ
i
j
+2

[
1
2a
φi−1

j
+2ui−1

j

]
−
[

1
2a
φi−2

j
+2ui−2

j

] (2.18)

i = 2, 3, ..., M, j = 1, 2, ...,N, where, following the same strategy as in previous

Subsection, we obtain the discrete system (see also (2.16)):



2c1ui
j−1
+ c7ui

j
+ 2c1ui

j+1
+ 3c3φ

i
j

= ρc
(
4ui−1

j
− ui−2

j

)
+ c3

(
4φi−1

j
− φi−2

j

)
,

2c5φ
i
j−1
+ (3τ − 4c5)φi

j
+ 2c5φ

i
j+1

= 8ε ui−1
j
+

(
4τ + 2ε

a

)
φi−1

j
− 4ε ui−2

j
−

(
τ + ε

a

)
φi−2

j
,

(2.19)

i = 2, 3, . . . , M, j = 1, 2, . . . ,N.

Setting

c9 = 3τ − 4c5 c10 = 4τ + 2
ε

a
c11 = τ +

ε

a
,

the system (2.19) can be rewritten in matrix form as

Xł

(
ui

φi

)
= Y

(
ui−1

φi−1

)
− Z

(
ui−2

φi−2

)
+

(
di

1

di
2

)
i = 2, 3, ..., M, (2.20)

where

X =

(
E11 3A12

0 X22

)
Y =

(
4A13 4A12

8A21 Y22

)
Z =

(
A13 A12

4A21 Z22

)
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with A12, X22, A13, A21, Y22, Z22 having the same size N × N, and

X22 =



2c5 + c9 2c5 0 · · · 0 0 0

2c5 c9 2c5 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2c5 c9 2c5

0 0 0 · · · 0 2c5 2c5 + c9



,

Y22 =



c10 0 · · · 0 0

0 c10 · · · 0 0
...

...
. . .

...
...

0 0 · · · c10 0

0 0 · · · 0 c10



, Z22 =



c11 0 · · · 0 0

0 c11 · · · 0 0
...

...
. . .

...
...

0 0 · · · c11 0

0 0 · · · 0 c11



.

Summing up, we can conclude that the general design of the algorithm to calculate

the approximate solution of nonlinear system (1.1)-(1.3) by fractional steps scheme

via 2-SBDF method is the following one

Begin Alg 2-SBDF

Choose T > 0, b > 0;

Choose M > 0, N > 0 and compute ε, dx;

Choose u0, φ0,w;
i := 1→ u1 from the initial conditions (2.3);

φ1 = z(ε, φε−(t1, ·)) from (2.4)1;

i := 0→ u0 = u1, φ0 = φ1;

For i = 2 to M do

Compute φi−1 = z(ε, φε−(ti−1, ·)) using (1.6)2 and (2.4);

Compute ui, φi solving the linear system (2.20);

End-for;

End.

As it is well known, most initial value problems reduce to solving large sparse

linear systems of the form (2.14), (2.17) or (2.20). For later use (e.g., numerical

implementation of conceptual algorithms), we will proof the following

Lemma 2.1. If

τ + ξ2 ε

dx2
,

ε

2a
, (2.21)

then the matrix coefficients in linear system (2.14) can be factored into the product of

a lower-triangular matrix and an upper-triangular matrix (LU - factorization).

Proof. Let denote by amn, m, n = 1, 2, · · · , 2N, the elements of matrix coefficients

in linear system (2.14). Analyzing the main diagonal elements of block matrices A11

and A22 in (2.14), first we finding that a1 = c1+c2+1+dx·h = ρc+k ε
dx2 +1+dx·h , 0
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and c2 = ρc − 2c1 = ρc + 2k ε
dx2 , 0. Observing now that c5 + c6 , 0 reflect the

assumptions expressed in (2.21), as well as that c6 , 0, we find easily that amm , 0

∀m = 1, 2, · · · , 2N. So Gaussian elimination can be performed on the system (2.14)

without interchanges; consequently A has an LU factorization.

Remark 2.1. i. if

τ + ξ2 ε

dx2
,

ε

2a
,

then the matrix coefficients E in linear system (2.17) has a LU factorization;

ii. always, the matrix coefficients X in linear system (2.20) has a LU factorization.

3. STABILITY CONDITIONS

To establish conditions of stability for the linear difference equations (2.14), (2.17)

and (2.20) introduced in the previous section, we will use in our analysis the Lax-

Richtmyer definition of stability, expressed in terms of norm ∥ · ∥∞ (see Smith [8], pp.

48). To fixed the ideas, we will focus our atention on equation (2.14). This may be

rewritten in a more convenient form as
(

ui

varphii

)
= A-1B

(
ui−1

φi−1

)
+ A-1

(
di

1

di
2

)
i = 2, 3, ..., M (3.1)

(the existence of A-1 will be proved in the proof of Proposition 3.1 below). In addi-

tion, the matrix A can be written in the form

A = D(I + D-1G) (3.2)

where D = diag(a1, c2, · · · , c2, a1, c5 + c6, c6, · · · , c6, c5 + c6) and G = A − D. Thus,

noting a2 = c5 + c6, we have

D-1G=



0 c1−1
a1

0 · · · 0 0
c3

a1
0 0 · · · 0 0 0

c1

c2
0 c1

c2
· · · 0 0 0

c3

c2
0 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...
0 0 0 · · · 0 c1

c2
0 0 0 · · · 0

c3

c2
0

0 0 0 · · · c1−1
a1

0 0 0 0 · · · 0 0
c3

a1

- 2ε
a2

0 0 · · · 0 0 0
c5

a2
0 · · · 0 0 0

0 - 2ε
c6

0 · · · 0 0
c5

c6
0

c5

c6
· · · 0 0 0

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...

0 0 0 · · · - 2ε
c6

0 0 0 0 · · · c5

c6
0

c5

c6

0 0 0 · · · 0 - 2ε
a2

0 0 0 · · · 0
c5

a2
0



and a simple analysis of all lines in matrix D-1G allows us to deduce that we only

have four distinct lines. The sum of each such line is written in vector v below (recall
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that a1 = c1 + c2 + 1 + dx · h and a2 = c5 + c6)

v =

[
c1 + c3 − 1

a1

,
2c1 + c3

c2

,
−2ε + c5

a2

,
−2ε + 2c5

c6

]
. (3.3)

Let’s denote by

vmax = max{|c1 + c3 − 1|, |2c1 + c3|, | − 2ε + c5|, | − 2ε + 2c5|},
and

vmin = min{|c1 + c2 + 1 + dx · h|, |c2|, |a2|, |c6|}.
Now we are able to prove the following result with respect to the stability in matrix

equation (3.1).

Proposition 3.1. Suppose that vmin − vmax > 0. If one of the following conditions is

true:

i) ρc + ℓ
2
> τ &

ρc + ℓ
2

vmin − vmax

< 1

or

ii) ρc + ℓ
2
≤ τ &

τ

vmin − vmax

< 1,

then the equation (3.1) is stable. Otherwise, it is unstable.

Proof. The proof is reduced to checking the condition of stability which, based on

the Lax-Richtmyer definition mentioned above and taking into account the relation

(3.1), it reduces to check the inequality

∥A−1B∥∞ < 1.

We begin our analyse by determining an estimate for ∥D−1G∥∞. As we have already

noted (see relation (3.3)), this is equivalent with the following equality: ∥D−1G∥∞ =
max |v|, wherefrom we easily derive the estimate

∥D−1G∥∞ <
vmax

vmin

. (3.4)

The estimate (3.4) allows us now to prove the existence of A-1. Indeed, since by

hypothesis we have assumed that vmax < vmin than ∥D−1G∥∞ < 1 which guarantees

that there exist (I + D-1G)−1. Moreover, there exist A-1 and

A-1 = (I + D-1G)-1D-1. Using the well known inequality: ∥(I + D-1G)-1∥∞ ≤
1

1−∥D−1G∥∞ and making use of (3.2), it follows that

∥A−1∥∞ ≤ ∥(I + D-1G)-1∥∞∥D−1∥∞ ≤
1

1 − ∥D−1G∥∞
∥D−1∥∞. (3.5)

How ∥D−1G∥∞ ≤ 1 imply that 1 − ∥D−1G∥∞ ≥ 1 − vmax

vmin
> 0, we easily deduce from

this that

0 <
1

1 − ∥D−1G∥∞
≤ vmin

vmin − vmax

.
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Since ∥D−1∥∞ ≤ 1
vmin

and involving the above estimate, from (3.5) we finaly obtain

∥A−1∥∞ <
1

vmin − vmax

. (3.6)

Now we turn our attention to matrix B. Analyzing the matrix B lines, it follows that

∥B∥∞ = max

{
ρc +

ℓ

2
, τ

}
. (3.7)

Summing up and making use of (3.6)-(3.7) we derive the following estimate

∥A−1B∥∞ ≤ ∥A−1∥∞∥B∥∞ <
1

vmin − vmax

∥B∥∞,

which, in either cases i) or ii) leads us to the estimate ∥A−1B∥∞ < 1 as we claimed at

begining of proof.

Remark 3.1. Concerning the stability of the linear system (2.17) we can finding

easily that the conditions i), ii) in Proposition 3.1 are kept and,

vmax = max{|2c1 + 3c3 − 1|, |2c1 + 3c3|, | − 4ε + 2c5|, | − 4ε + 4c5|},
vmin = min{|2c1 + c7 + 1 + dx · h|, |c7|, |2c5 + c8|, |c8|},

while, for the linear system (2.20) the parameter τ in conditions i), ii) - Proposition

3.1, must be replaced with 2ε + τ + ε
2a

and,

vmax = max{|2c1 + 3c3 − 1|, |2c1 + 3c3|, |2c5|, |4c5|},
vmin = min{|2c1 + c7 + 1 + dx · h|, |c7|, |2c5 + c9|, |c9|}.

4. NUMERICAL EXPERIMENTS

The aim of this Section is to present numerical experiments implementing the con-

ceptual algorithms Alg 1-IMBDF, Alg 2-IMBDF and Alg 2-SBDF. Corresponding

to input data T , b, M, N, we have used several different values while, for the model’s

parameters we have considered industrial values, which are:

the casting speed (c = 12.5 mm/s),

physical parameters:

• the density (ρ = 7.85 kg/m3),

• the latent heat (ℓ = 65.28 kcal/kg),

• the termal conductivity (k = 7.8e − 2),

• the length of separating zone (ξ = .5),

• the relaxation time (τ = 1.0e + 3 ∗ ξ2),
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• the coefficients of heat transfer (h = 32.012),

• a =
√
ξ ;

The initial values φ0(x j), j = 1, 2, ...,N, ploted in Figure 4.1 - left side, were

computed via Matlab function csapi(fi0) - cubic spline interpolant to the given

data:
fi0=[-1.4 -1.4 -1.44 -1.42 -1.42 -1.44 -1.43 -1.43 -1.42 -1.42 -1.4 -1.4 -1.25 -1.2 -1.17 -1.15 ...

-1.1 -1.08 -1.0 -.95 -.9 -.85 -.88 -.6 .0 .5 -.92 -.25 .8 -.7 .58 .75 .58 -.63 -.59 .69 -.72 .7 -.59 -.5 ...

.7 -.79 -.87 -.88 .0 .72 -.8 .81 .0 -.89 .0 .7 .55 .68 -.49 .79 .0 -.1 -.8 -.78 -.83 .69 -.8 .68 .5 .7 ...

.59 1. 1.08 1.1 1.15 1.17 1.2 1.25 1.3 1.3 1.25 1.24 1.3 1.31 1.3 1.32 1.3 1.3];

The initial values u0(x j), j = 1, 2, ...,N, ploted in Figure 1 - right side, were

computed as solution of the discrete form to the stationary equation (2a)−1[φ0(x) −
φ3

0
(x)] + 2u0(x) = 0 (see Caginalp [3]), i.e.:

(2a)−1[φ0(x j) − (φ0(x j)
3)] + 2u0(x j) = 0 j = 1, 2, ...,N.

Now (see (2.4)1) we are able to calculate the vector
(
z
(
ε, φ0(x j)

))
j=1,N

, ploted in

Figure 2, and the vectors: φ1 =
(
φ1

j

)
j=1,N

and u1 =
(
u1

j

)
j=1,N

(see relations (2.3),

(1.6)2 and (2.4)). As the schemes 2-IMBDF and 2-SBDF involves three time levels,

we consider at the first time level i := 0 the values u0 = u1 and φ0 = φ1. Con-

sequently, the right side of the linear systems (2.17) and (2.20), corresponding to

the first iteration of the cycle ”for” in algorithms Alg 2-IMBDF and Alg 2-SBDF

(i = 2), become:

3B

(
u1

φ1

)
+

(
d2

1

d2
2

)
and

(
3A13 3A12

4A21 Y22 − Z22

) (
u1

φ1

)
+

(
d2

1

d2
2

)
, respectively.

We will continue with the presentation of numerical experiments regarding the

stability of equation (3.1) (see Proposition 3.1). The shape of the graphs ploted in

Figures 3 and 4 shows the stability and accuracy of the numerical results obtained by

algorithm Alg 1-IMBDF. For this test we have used T = 2, b = 1, M = 100, N = 40

and the temperature surrounding at ∂Ω={0, b} given by: w(ti, 0) = −15, w(ti, b) = 7.5,

i = 1, 2, ..., M.

Taking now k=.785, we can verify that vmin − vmax=-15.2372 which means that

the first hypothesis in Proposition 3.1 in not verified. Consequently the numerical

scheme is unstable. Figure 5 shows that it really is. Furthemore, if we keep k=.785

and take τ=1.0e+2*ξ2 (in place of τ=1.0e+3*ξ2), we get also vmin − vmax < 0. So,

again we are in a unstable case. Moreover, analyzing the graph in Figure 6 we found a

more pronounced instability. Let’s remark that the instability of the solution occurred

following a slight change (modification) of only two physical parameters (k and τ in

this case). This highlights the strong dependence of approximation scheme regarding

physical parameters.
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Fig. 1. The initial conditions φ0 and u0

Fig. 2. The approximate solution z(ε, ·) of Cauchy problem (1.7)
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Fig. 3. Example of numerical stability: ui at different levels of time

Fig. 4. Example of numerical stability: φi at different levels of time
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Fig. 5. An example of slight numerical instability

Fig. 6. An example of strong numerical instability
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Fig. 7. ui corresponding to wi(0) = −60, via Alg 1-IMBDF

We turn to numerical stability conditions and we change the temperature surround-

ing at 0 ∈ ∂Ω by setting w(ti, 0) = −60, i = 1, 2, ...,M. The numerical results, ob-

tained by algorithms Alg 1-IMBDF and Alg 2-SBDF, were ploted in Figures 7 and

Figure 8 below, respectively. Analyzing the approximations near to zero, we ob-

serve a instability just for u, due to the nature of boundary conditions that we have

considered (1.2)1. In addition we also find a difference in the error of approximation.

On stability, we mention that similar results were also obtained by implementing

the algorithms Alg 2-IMBDF and Alg 2-SBDF. In this sense, we reproduce in Fig-

ure 9 the numerical result obtained by Alg 2-IMBDF, executed with the same values

as in Alg 1-IMBDF (see Figure3).

5. CONCLUSIONS

As the novelty of this work we notice the use of three finite difference schemes

in order to approximate the linear system given by a scheme of fractional steps type.

Even if each brings particularities in the implementation (memory space required, the

right side), executed in the same conditions, produced essentially the same numerical

results (see figures 3 and 9). Not least, let’s remark that conditions of stability are sus-

tained by both theory and numerical experiment and that are significantly dependent

on the physical parameters.
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Fig. 8. ui corresponding to wi(0) = −60, via Alg 2-SBDF

Fig. 9. ui obtained by Alg 2-IMBDF
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Analyzing the numerical results in terms of physical phenomena, we constat that

the temperature distribution tends to become parabolic and the phase function dis-

tribution say that the instability of the portion of material will disappear. Moreover,

analyzed together (see figures 3 and 4, for example), highlight theoretical meaning

assigned to functions u and φ as well as the zone of separation between material

phases.

The numerical solution obtained by this way can be considered as an admissible

one for the corresponding boundary optimal control problem (from this perspective,

compare figures 7 and 8). Generally, the numerical method considered here can be

used to approximate the solution of a nonlinear parabolic phase-field system contain-

ing a general nonlinear part.
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vasileneagu45@gmail.com

Abstract In this paper the symbol of singular integral operator with complex conjugation is con-

structed. Noetherien conditions and index of operators are expressed by the determinant

of its symbol.

Keywords: singular integral operator, Noetherian operators, Riemann boundary value problems, spaces

with weights.

2010 MSC: 45E05, 45E10.

1. INTRODUCTION

Let Γ be an orientated, closed and of piecewise Lyapunov type contour, which

divides the complex plane in domains F+ and F− (∞ ∈ F−), t1, . . . , tn angular points

of Γ with angles θk, formed by lateral tangents to Γ in these points. In the space

Lp(Γ, ρ) consider the operator

(Aφ)(t) = a1(t)φ(t) + a2(t)
1
πi

∫

Γ

φ(τ)

τ − t
dτ+

+ a3(t)φ̄(t) + a4(t)
1
πi

∫

Γ

φ̄(τ)

τ − t
dτ,

(1)

where ρ(t) =
∏n

k=1 |t − tk|βk (−1 < βk < p − 1) and a j(t) ( j = 1, 2, 3, 4) are

continuous functions in every point t ∈ Γ excepting points tk (k = 1, . . . , n) in which

there exist finite limits (a(tk±0). In what will follow it is comfortable to write operator

(1) in other form. With this purpose we do the following notations:

a1(t) + a2(t) = a(t), a1(t) − a2(t) = b(t),
a3(t) + a4(t) = c(t), a3(t) − a4(t) = d(t),
(Vφ)(t) = φ(t), P = (I + S )/2, Q = I − P,

where S is singular integral operator with Cauchy kernel. With these notations oper-

ator (1) is written in the form

A = aP + bQ + (cP + dQ)V. (2)

The operator A becomes linear in the space Lp(Γ, ρ) if this space is considered over

the field of real numbers. Denote it by L̃p(Γ, ρ).

111
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In the case of Lyapunov contour operator A was studied in monograph [1] see also

the bibliography of this work. In determining Noetherian conditions for operator (2)

an important role played the fact that in the case of contour of Lyanupov type the

operator VS V + S is compact in the space Lp(Γ, ρ). As it is shown in this work,

if contour Γ has angular points, then operator VS V + S is not more compact and

reasoning from above mentioned works cannot be applied. Moreover, it turns out

that the very Noetherian conditions for operator A depend also of measures of angles

on the contour Γ.

In this work the symbol of singular integral operator with complex conjugation of

form (2) is constructed. It is proved that the symbol is a matrix of variable order: in

points tk (k = 1, . . . , n) of forth order, but in the other pointes this order is equal to

two. The symbol depends also of coefficients of the operator, of the space Lp(Γ, ρ)

and of the measures of angles on the contour of integration. Noetherien conditions

and index of operator A are expressed by the determinant of its symbol. We establish

certain relations between operators of form (2) and boundary problems of Riemann

type [1], [2], [3] for analytic functions.

Similar results are obtained also for operators
∑m

j=1

∏r
k=1 A jk, where A jk are oper-

ators of form (2).

2. PROPERTIES OF OPERATOR VSV + S

Theorem 2.1. Let Γ be a closed contour of Lyapunov type. Then operator VS V + S

is compact in the space Lp(Γ, ρ)

Proof. Denote by Γ0 the unit disc (Γ0 = {t : |t| = 1}) and by S 0 operator S Γ0
. Then

(VS 0V + S 0)φ = − 1

πi

∫

Γ0

φ(τ)d̄τ̄

τ̄ − t̄
+

1

πi

∫

Γ0

φ(τ)

τ − t
dτ =

1

πi

∫

Γ0

φ(τ)

τ
dτ.

Thus, if Γ is the unit disc, then VS 0V+S 0 is compact in Lp(Γ, ρ). We shall consider

the case in which Γ is any closed Lyapunov contour. Let ν : Γ0 → Γ be a map which

verifies conditions: there exists the derivative ν′(t) not equal to zero and ν′(t) verifies

Hölder conditions. Denote B : (Lp(Γ, ρ)→ (Lp(Γ0, ρ0), where

ρ0(z) =

n∏

k=1

|ν(z) − ν(zk)|βk (ν(zk) = tk)

where operator defined by relation (Bφ)(z) = φ(ν(z)) (z ∈ Γ0). Then

(BS B−1 − S 0)φ =
1

πi

∫

Γ0

( ν′(ξ)

ν(ξ) − ν(z)
− 1

ξ − z

)
φ(ξ)dξ. (3)

Since ν′(ξ) is not equal to zero and satisfies Hölder conditions, operator BS B−1−S 0

has (see [4]) weak singularity on Γ0 × Γ0 and, hence is compact in the space Lp(Γ, ρ).
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As operators V and B commute, from (3) and from what was already proved we

obtain that operator

B(VS V + S )B−1 − VS 0V − S 0 (4)

is compact in Lp(Γ, ρ), from which it results that VS V+S is also compact in Lp(Γ, ρ).

The theorem is proved.

Let us show that assertions of Theorem 2.1 are false if contour Γ has angular

points. Suppose for example, that Γ ⊃ Γ1 ∪ Γ2, where Γ1 and Γ2 are segments of

straight line which joins point z = 0 with z = 1 and, respectively z = 0 with z = i.

In point z = 0 ∈ Γ contour forms an angle of measure π/2. We shall show that

in this case operator VS V + S is not compact in L2(Γ). Suppose, by absurd, that

VS V + S ∈ T(L2(Γ)). Let X be characteristic function of Γ2 and M = X(VS V + S ).

We will show that M < T(L2(Γ)) and as a result we shall obtain a contradiction.

Consider in the space L2(Γ) sequence {φn(t)} of functions defined by relations

φn(t) =



√
n, for t ∈ [0, 1

n
]

0, for t ∈ Γ \ [0, 1
n
].

We have ||φn||L2(Γ) = 1. We will show that from the sequence ψn = Mφn is not

possible to extract any convergent subsequence. By the definition of operator M we

have

(Mφn)(t) = X(t)(VS V + S )φn =
X(t)
√

n

πi

1/n∫

0

( 1

τ − t
− 1

τ − t̄

)
dτ =

=
X(t)

πi

√
n

1/n∫

0

t − t̄

(τ − t)(τ − t̄)
dτ.

Therefore,

||Mφn||
p

Lp(Γ)
=

np/2

πp

∫

Γ

∣∣∣∣
t − t̄

(τ − t)(τ − t̄)
dτ

∣∣∣∣
p
|dt| =

= cpnp/2

1∫

0

∣∣∣∣arctg
1

nt

∣∣∣∣
p
dt ≤ cpn(p−2)/2

n∫

0

(
arctg

1

t

)p
dt ≤

≤ cpn(p−2)/2

∞∫

0

(
arctg

1

t

)p
dt = c̃pn(p−2)/2,

where cp and c̃p are constants depending only of p. Hence it results that

lim
n→∞
||Mφn||Lp(Γ) = 0, for 1 < p < 2.
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Thus if the sequence ψn = Mφn(∈ L2(Γ)) would contain a convergent subsequence,

then this subsequence necessarily would converge to zero. But

||ψn||2L2(Γ) = ||Mφn||2L2(Γ) ≥ ˜̃cp

n∫

0

arctg2 1

t
dt ≥ ˜̃cp

1∫

0

arctg2 1

t
dt > 0,

from which it results that {ψn} in the space L2(Γ) does not contain any convergent

subsequence. Therefore operator M is not compact in the space L2(Γ).

3. NOETHERIEN CRITERIONS

Conditions in which operator of the form (2) (and more complicated operators) are

of Noether type are expressed with the help of symbol. That is why we shall firstly

define the symbol of operators aI, P, Q and V. Denote by a(t, ξ), P(t, ξ), Q(t, ξ) and

V(t, ξ) (t ∈ Γ, −∞ ≤ ξ ≤ ∞) the symbols of these operators respectively. Put

a(t, ξ) =



∥∥∥∥∥∥
a(t) 0

0 a(t)

∥∥∥∥∥∥ , for t ∈ Γ\{ t1, . . . , tn}
∥∥∥∥∥∥∥∥∥∥∥

a(tk + 0) 0 0 0

0 a(tk + 0) 0 0

0 0 a(tk − 0) 0

0 0 0 a(tk − 0)

∥∥∥∥∥∥∥∥∥∥∥
, (k = 1, . . . , n);

(5)

P(t, ξ) =



∥∥∥∥∥∥
1 0

0 1

∥∥∥∥∥∥ , for t ∈ Γ\{t1, . . . , tn} ,

1

z2π
k
−1

∥∥∥∥∥∥∥∥∥∥∥∥

z2π
k

0 −z
θk

k
0

0 −1 0 z
2π−θk

k

z
2π−θk

k
0 −1 0

0 −z
θk

k
0 z2π

k

∥∥∥∥∥∥∥∥∥∥∥∥
, (k = 1, . . . , n) ,

(6)

where zk = exp(ξ + i
1+βk

p
) (−∞ ≤ ξ ≤ +∞); Q(t, ξ) = E(t) − P(t, ξ), where

E(t) =



∥∥∥∥∥∥
1 0

0 1

∥∥∥∥∥∥ , for t ∈ Γ\{t1, . . . , tn} ,
∥∥∥∥∥∥∥∥∥∥∥

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∥∥∥∥∥∥∥∥∥∥∥
, for t = tk (k = 1, . . . , n).

(7)
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Finally

V(t, ξ) =



∥∥∥∥∥∥
0 1

1 0

∥∥∥∥∥∥ , for t ∈ Γ\{t1, . . . , tn} ,
∥∥∥∥∥∥∥∥∥∥∥

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

∥∥∥∥∥∥∥∥∥∥∥
, for t = tk (k = 1, . . . , n) .

(8)

If operator A has form (2), then we define its symbol, A(t, ξ), by relation

A(t, ξ) = a(t, ξ)P(t, ξ) + b(t, ξ)Q(t, ξ)+

+ (c(t, ξ)P(t, ξ) + d(t, ξ)Q(t, ξ))V(t, ξ).
(9)

If a, b, c, d ∈ CPm(Γ), then the symbol of operator A ∈ L(Lm
p (Γ, ρ)) is defined by

relation (9), in which a(t, ξ), b(t, ξ), c(t, ξ) and d(t, ξ) are, respectively, matrices of

order m, defined by equalities (5).

Theorem 3.1. The operator

A = aP + bQ + (cP + dQ)V

(a, b, c, d ∈ CP(Γ)) is Noetherian in the space L̃p(Γ, ρ), if and only if

det A(t, ξ) , 0 (t ∈ Γ, −∞ ≤ ξ ≤ ∞).

Beforehand we will prove two lemmas.

Lemma 3.1. The operator A is Noetherian in the space L̃p(Γ, ρ), if and only if in the

space L̃2
p(Γ, ρ) = L̃p(Γ, ρ) × L̃p(Γ, ρ) the operators

Ã =

∥∥∥∥∥∥
aP + bQ cP + dQ

c̄VPV + d̄VQV āVPV + b̄VQV

∥∥∥∥∥∥ (10)

is Noetherian. Moreover, IndA = 1
2

IndÃ.

Proof. The identity

∥∥∥∥∥∥
X + YW 0

0 X − YW

∥∥∥∥∥∥ =
1

2

∥∥∥∥∥∥
I W

I −W

∥∥∥∥∥∥

∥∥∥∥∥∥
X Y

WYW WXW

∥∥∥∥∥∥

∥∥∥∥∥∥
I I

W −W

∥∥∥∥∥∥, (11)

is true [5], where X,Y,W are any linear and bounded operators which act in Banach

space B and W2 = I.
Put in identity (11) X = aP + bQ, Y = cP + dQ, then

Ã = H

∥∥∥∥∥∥
A 0

0 A1

∥∥∥∥∥∥H−1, (12)
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where

A1 = aP + bQ − (cP + dQ)V, H =
1

2

∥∥∥∥∥∥
I I

V −V

∥∥∥∥∥∥ .

Let (Mφ)(t) = iφ(t), then one can immediately verify that MA1M−1 = A and

assertions of lemma follow from equality (12).

Remark 3.1. Let Γ be of Lyapunov type, then by Theorem 2.1 we have VS V = S +T1

and, hence, VPV = Q + T2, VQV = P + T3, where T j ∈ T (L̃p(Γ, ρ)) ( j = 1, 2, 3).

From this it results that operator Ã differs from operator

Ã0 =

∥∥∥∥∥∥
a c

d̄ b̄

∥∥∥∥∥∥P +

∥∥∥∥∥∥
a c

c̄ ā

∥∥∥∥∥∥Q

by a compact term.

Operator Ã0 is a singular integral operator with piecewise continuous matrix en-

tries. For this operators conditions under which they are of Noether type are known

(see [5]). These conditions consists in the fact that

det Ã0(t, ξ) , 0 for every (t, ξ) ∈ Γ × R̄. One can observe than in this case det Ã0(t, ξ)
coincides with det A(t, ξ), defined by equality (9).

From Lemma 3.1 it follows

Corollary 3.1. Let Γ be of Lyapunov type. For the operator A to be Noetherian it is

necessary and sufficient that

det A(t, ξ) , 0 (t ∈ Γ, −∞ ≤ ξ ≤ ∞).

Lemma 3.2. The operator A is locally Noetherian in point t0 ∈ Γ\{t1, ..., tn}, if and

only if det A0(t, ξ) , 0 (−∞ ≤ ξ ≤ ∞).

Proof. Denote by u(t0) ⊂ Γ\{t1, . . . , tn} a neighborhood of the point t0. Let Γ̃ be a

closed Lyaponov contour which contains the neighborhood u(t0). In the space L̃p(Γ)

consider the operator

B = ãP̃ + b̃Q̃ + (c̃P̃ + d̃Q̃)V,

where P̃ = (I + S Γ̃)/2, Q̃ = I − P̃ and ã, b̃, c̃, d̃ are continuous functions on Γ̃

restrictions of which on u(t0) coincide with functions a, b, c, d. Obvious operators

A and B are quasi equivalent in point t0. Hence, both are locally Noetherian in point

t0. By Corollary 3.1, condition det B(t0, ξ) , 0 (ξ ∈ R̄) is necessary and sufficient

for B to be locally Noetherian in point t0. Since det B(t, ξ) = det A(t0, ξ), lemma is

proved.

Now we can give the proof of the theorem.

Proof. By Lemma 3.2, it is sufficient to show that condition det A(tk, ξ) , 0 (−∞ ≤ ξ ≤ ∞)

is necessary and sufficient for the operator A to be Noetherian in point tk (k = 1, . . . , n).



On the symbol of singular integral operators with complex conjugation 117

To begin with suppose that n = 1. Together with contour Γ consider contour

Γ1(= Γθ1
) which also has an unique singular point z1 of the some measure θ = θ(t1)

with the property that if z ∈ Γ1, then also the point z̄ ∈ Γ1. Hence, z1 = 0 . Then there

exists a map µ : Γ1 → Γ, so that µ′(t) , 0 (t ∈ Γ1) and satisfies Hölder conditions.

Denote by B : Lp(Γ, ρ)→ Lp(Γ1, ρ1)(ρ(t) = |t − t1|β1 , ρ1(t) = |z|β1) the operator

(Bφ)(z) = φ(µ(z)).

We have BaB−1 = a1I (a1(z) = a(µ(z))), BVB−1 = V and BS B−1 = S 1 + T1,
where S 1 = S Γ1

and T1 ∈ T (Lp(Γ1, ρ1)). Taking this into account we get

B̃ÃB̃−1 =

∥∥∥∥∥∥
a1P1 + b1Q1 c1P1 + d1Q1

c̄VP1V + d̄1VQ1V āVP1V + b̄1VQ1V

∥∥∥∥∥∥ + T, (13)

where

B̃ =

∥∥∥∥∥∥
B 0

0 B

∥∥∥∥∥∥, P1 = (I + S 1)/2, Q1 = I − P1 and T ∈ T(L2
p(Γ1, ρ1)).

Denote by W the operator of shift, defined by relation (Wφ)(z) = φ(ω(z)), where

ω(z) = z̄ (z ∈ Γ1).We observe that the derivative ω′(z) is discontinuous in point z = 0,
and ω′(+0) = exp(iθ1), ω′(−0) = exp(−iθ1). It is easy to verity that

VS 1V = WS 1W (14)

Substituting (14) in (13) and using Lemma 3.1, we obtain that operator A is locally

Noetherian in point t1, if and only if the operator

M1 =

∥∥∥∥∥∥
a1P1 + b1Q1 c1P1 + d1P1

c̄1WP1W + d̄1WQ1W ā1WP1W + b̄1WQ1W

∥∥∥∥∥∥

has this property in point z = 0.

The operator M1 is a singular integral operator with shift W studied in the work

[7]. From this work we get that operator M1 is locally Noetherien in point z = 0, if

and only if det M1(0, ξ) = 0 (ξ ∈ R̄). Since det A(t1, ξ) = det M1(0, ξ) it follows that

for n = 1 the theorem is proved.

Pass to the general case. Let uk = u(tk) (⊂ Γ) be a neighborhood of point tk con-

taining no points t j , tk. As before consider contour Γk (= Γθk
) with a single angular

point z = 0 with condition that together with every point z it contains the point z̄ two.

Denote by µk a map from a neighborhood uk to a neighborhood vk = vk(0) (⊂ Γk) and,

moreover, µk(tk) = 0. Since Γ and Γk in point tk and respectively z = 0 form angles of

the same measure θk, then µk may be chosen in such a way that µ′
k
(t) , 0 (t ∈ u(tk))

and this derivative to satisfy Hölder conditions. If f ∈ CP(Γ), then we agree to de-

note by fk(z) (z ∈ vk(0)) the function f (µ−1
k

(z)),where µ−1
k

is the inverse of µk. Extend

functions ak(z), bk(z), ck(z), dk(z) by continuity on contour Γk and denote then by the

same letters.
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In the space L2
p(Γk, |z|βk ) consider the operator

Mk =

∥∥∥∥∥∥
akPk + bkQk ckPk + dkQk

c̄kWPkW + d̄kWQkW ākWPkW + b̄kWQkW

∥∥∥∥∥∥ ,

where (Wφ)(z) = φ(z̄) and S k = S Γk
. The operator Ã, defined by relation (12), is

quasiequivalent in point tk to operator Mk in point z = 0 :

Tµk
Puk

ÃPuk
Tµ−1

k

o∼ Pvk
MkPvk

,

where

(PFφ)(t) =

{
φ(t), t ∈ Γ,
0, t ∈ Γ\F, (Tφ f )(t) =

{
f (φ(t)), t ∈ u,
0, t ∈ Γ\u.

Therefore, Ã and Mk are locally Noetherian operators (Ã in point tk and Mk in z =

0). By Theorem 3.1, the operator Mk has this propriety if and only if det Mk(0, ξ) ,
0 (ξ ∈ R̄). It remains to convince ourselves that det Mk(0, ξ) = det A(t, ξ) and the

theorem is proved.

As a consequences one can formulate the following result.

Theorem 3.2. Let functions a, b, c and d belong to the set CPm(Γ). Operator

A = aP + bQ + (cP + dQ)V

is Noetherian in the space Lm
p (Γ, ρ), if and only if

det A(t, ξ) , 0 (t ∈ Γ, ξ ∈ R̄).

Let operator A have the form

A =

r∑

j=1

A j1A j2 · · · A js,

where

A jk = a jkP + b jkQ + (c jkP + d jkQ)V (a jk, b jk, c jk, d jk ∈ CPm(Γ)).

Define the symbol of operator A as follows

A(t, ξ) =

r∑

j=1

A j1(t, ξ)A j2(t, ξ) · · · A js(t, ξ),

where A jk(t, ξ) is the symbol of operator A jk. With the help of Theorem 3.2, repeating

reasoning from the proof of Theorem 3.1, it is easy to obtain the following result.

Theorem 3.3. Operator A is Noetherian in the space Lm
p (Γ, ρ), if and only if

det A(t, ξ) = det

r∑

j=1

s∏

k=1

A jk(t, ξ) , 0, (t ∈ Γ, ξ ∈ R̄) .
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4. CONCLUDING REMARKS

In this section it is shown that conditions under which operator

A = aP + bQ + (cP + dQ)V

is Noetherian depend of the presence of angular points an contour Γ and of measure

of these angles.

In Section 2 it was proved that operator VS V + S , in general, is not compact in

space L̃p(Γ, ρ). Using Theorem 3.1 it is possible to prove that VS V +S ∈ T(Lp(Γ, ρ)),

if and only if contour Γ is of Lyapunov type. Really, the sufficiency is established

by Theorem 2.1. Let Γ be a piecewise Lyapunov contour and t0 an angular point

with angle θ0 = θ(t0) (0 < θ0 < π). Admit that if operator VS V + S is supposed to

be compact in space Lp(Γ, |t − t0|β0), then operator Aλ = VS V + S − λI must be

Noetherian for every λ ∈ C\{0}.
The symbol of operator Aλ in point t0 has the form

Aλ(t0, ξ) =

∥∥∥∥∥∥∥∥∥∥∥

−λ 0 ω(ξ) 0

0 −λ 0 ω(ξ)
ω(ξ) 0 −λ 0

0 ω(ξ) 0 −λ

∥∥∥∥∥∥∥∥∥∥∥
,

where

ω(ξ) = 2 · exp
[
(2π − θ0)(ξ + i(1 + β0)/p)

] − exp
[
θ0(ξ + i(1 + β0)/p)

]

exp
[
2π(ξ + i(1 + β0)/p)

] − 1
.

By Theorem 3.1, operator Aλ is Noetherian if and only if det Aλ(t, ξ) , 0

(t ∈ Γ, −∞ ≤ ξ ≤ ∞). Particularity, for all values of λ which verify conditions

det Aλ(t0, ξ) = 0 (−∞ ≤ ξ ≤ ∞)

operator Aλ is not Noetherian in L̃p(Γ, |t − t0|β0). That is, for all values λ = ±ω(ξ)
(−∞ ≤ ξ ≤ ∞) operator Aλ is not Noetherian. Since θ0 , π, it result that ω(ξ) . 0, a

contradiction to hypothesis.

The symbol of operator

A = aP + bQ + (cP + dQ)V

depends on measures of angles formed by lateral tangents in points of contour Γ.
This is seen from the definition of symbol of operators P and Q. It we consider that

c(t) ≡ d(t) ≡ 0, then operator A has the form A = aP + bQ and, as it is known

[3], [4], [8], conditions under which it is do not depend angles θ(tk), though the

symbol, defined in this work, depends on θ(tk) explicitly. In connection with this it

appears naturally the question whether the dependence of the symbol of operator A

on measures of θ(tk) (k = 1, ..., n) is essential. In other words, do conditions under



120 Vasile Neagu

which operator A (|c(t)| + |d(t)| . 0) is Noetherian really depend on θk = θ(tk)? We

will know that the answer to this question is affirmative.

Let

A = (1 +
√

2)P + (1 −
√

2)Q + V.

If contour Γ is of Lyapunov type, then operator A is Noetherian in all spaces L̃p(Γ, ρ).
Let contour Γ have an angular point t0 with angle θ(t0) = π

2
and p = 2. Then the

symbol of this operator in point (t0, 0) has the form

A(t0, 0) =

∥∥∥∥∥∥∥∥∥∥∥

1 1 1 + i 0

1 1 0 1 − i

1 − i 0 1 1

0 1 + i 1 1

∥∥∥∥∥∥∥∥∥∥∥

and det A(t0, 0) = 0. So, operator

A = (1 +
√

2)P + (1 −
√

2)Q + V

is not Noetherian in the space L̃2(Γ). This example shows that the presence of angular

points influences essentially Noetherian conditions of operator (2).

Concluding this section we consider the generalized boundary problem of Rie-

mann which consists of the following. Determine two analytical functions Φ+(z) and

Φ−(z) in F+ and, respectively in F− with the following properties: can be represented

in F+ and respectively in F− using Cauchy integral; limit values Φ+(t) and Φ−(t) on

contour Γ belong to the space Lp(Γ, ρ); limits Φ+(t) and Φ−(t) at boundary verify

conditions

Φ+(t) = a(t)Φ−(t) + b(t)Φ−(t) + c(t), (15)

where a, b, c are known functions. In the case of Lyapunov contour Noether theo-

rems for problem (15) are proved in works [1], [2] and others. From these works,

particularly one can deduce that if a, b, c ∈ C(Γ), then the boundary problem (15)

is Noetherian if and only if |a(t)| , 0 (∀t ∈ Γ). In the case of piecewise Lyapunov

contour the following result is true.

Theorem 4.1. The Riemann boundary problem (15) is Noetherian in space L̃p(Γ, ρ)

it and only if the conditions are verified:

(i) |a(t)| > 0, ∀t ∈ Γ ;

(ii) |a(tk)|2 − |b(tk)|2
( z

2π−θk
k

−z
θk
k

z2π
k
−1

)
, 0 for every k = 1, . . . , n and every t ∈ Γ, where

zk = exp(ξ + i(1 + βk)/p), −∞ ≤ ξ ≤ ∞.

The proof is done ordinary. Using Plemelj and Sohotski formulae, the problem

(15) can be reduced to a singular integral equation with complex conjugation. We

write the symbol of this equation and apply Theorem 3.1.
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Remark that in the case of piecewise Lyapunov contour Noetherian condition for

problem (15) also depend on measures of angles θk and, moreover, they depend also

on the coefficient b(t), that is not observed in the case of Lyapunov contour.

The result of this work can be generalized also to the case when contour is formed

from a finite number at piecewise Lyapunov curves without points of self-intersection.
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ator Theory, 15, Birkhäuser, Basel-Boston, 1992, 991–1008.

[6] V. Nyaga, The symbol of singular integral operators with conjugation the case of piecewise

Lyapunov contour, American Math. Society, 27 (1983), no. 1, 173–176.

[7] N. Krupnik, V. Nyaga, On singular operators with shift in the case of piecewise Lyaponov con-

tour, Soobsch. Akad. Nauk Gruz. SSR, 76 (1974), 25–28.

[8] R. Duduchava, Integral equations with fixed singularities, Teubner, Leipzig 1979.





LIE THEOREM ON INTEGRATING FACTOR
FOR POLYNOMIAL DIFFERENTIAL SYSTEMS

ROMAI J., v.9, no.1(2013), 123–132

Victor Orlov

Institute of Mathematics and Computer Science of the Academy of Sciences of Moldova, Chişinău,
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1. INTRODUCTION

Let consider an autonomous system of first-order differential equations with poly-

nomial right-hand sides as follows:

ẋ = P(x, y), ẏ = Q(x, y), (1)

where the coefficients and variables in P and Q take the values from the field of real

numbers R.

Systems of the form (1) arise in solving of various problems in engineering [1],

medicine [2,3], biology [5], energy security [4], etc.

In [6,7,8,9,10,11] the classifications of orbit dimensions for different polynomial

differential systems with respect to the groups of centroaffine transformations GL(2,R)

as well as the group of affine transformations A f f (2,R) have been carried out. It has

been remarked that differential systems on singular invariant manifolds (containing

the orbits having dimensions less than the maximum dimension) can be quite suc-

cessful studied qualitatively by using invariants and comitants [10,13]. However, the

most complex systems belong to nonsingular invariant manifolds, i.e. to the systems

on orbits of maximal dimension. Therefore the approach to study of such systems is

not always clear and single-valued. From these considerations, it is the necessary to

develop an approach that enables to single out some of these systems and the strategy

for their studying as well.

One of the method to study of autonomous first-order differential systems is the

integrating factor method. However, the classical approach to this issue leads to the

123
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solving of a partial differential equation, which is not always successfully done. So,

to get around this issue the Lie theorem on integrating factor was applied [14]. How-

ever, the classical Lie theorem on integrating factor also has to deal with a partial

differential equation associated with problems in its solving. In this paper a gener-

alization of the Lie theorem on integrating factor for polynomial differential systems

was obtained, which allows getting away from the solving of partial differential equa-

tions to a system of algebraic equations. It turned out that this theorem is also related

to the systems on nonsingular invariant manifolds. On an example of the differential

system (1), with cubic nonlinearities, it is shown that the generalized Lie theorem on

integrating factor can be applied for study of certain classes of polynomial differential

systems, belonging to the orbits of dimension 4 and 3 relatively to the centroaffine

group GL(2,R).

2. THE CLASSIFICATION OF ORBITS FOR
DIFFERENTIAL SYSTEMS WITH CUBIC
NONLINEARITIES

Let denote the set of coefficients of the right-hand sides of (1) as a and their Eu-

clidean space as EN(a). We denote by a(q) the point from EN(a), corresponding to the

system obtained from (1) with coefficients a after the transformation q ∈ GL(2,R),

where

q : x̄ = αx + βy, ȳ = γx + δy, ∆q = αδ − βγ , 0.

Definition 2.1. The set O(a) = {a(q); q ∈ GL(2,R)} is called the GL(2,R)–orbit of

point a for the system (1).

Let consider the differential system (1) with cubic nonlinearities, written in tensor

form

ẋ j = a
j
αxα + a

j

αβγxαxβxγ ( j, α, β, γ = 1, 2), (2)

where the coefficient tensor a
j

αβγ is symmetric in the lower indices, for which the

complete convolution is performed here. Following [12], the differential Lie opera-

tors corresponding to centroaffine group GL(2, R), which is admitted by the system

(2) have the following form:

X1 = x
∂

∂x
+D1, X2 = y

∂

∂x
+D2, X3 = x

∂

∂y
+D3, X4 = y

∂

∂y
+D4,
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where

D1 = −d
∂

∂d
+ e

∂

∂e
+ 2p

∂

∂p
+ q

∂

∂q
− s

∂

∂s
+ 3t

∂

∂t
+ 2u

∂

∂u
+ v

∂

∂v
,

D2 = −e
∂

∂c
+ (c − f )

∂

∂d
+ e

∂

∂ f
− t

∂

∂p
+ (p − u)

∂

∂q
+ (2q − v)

∂

∂r
+

+(3r − w)
∂

∂s
+ t

∂

∂u
+ 2u

∂

∂v
+ 3v

∂

∂w
,

D3 = d
∂

∂c
+ ( f − c)

∂

∂e
− d

∂

∂ f
+ 3q

∂

∂p
+ 2r

∂

∂q
+ s

∂

∂r
+ (3u − p)

∂

∂t
+

+(2v − q)
∂

∂u
+ (w − r)

∂

∂v
− s

∂

∂w
,

D4 = d
∂

∂d
− e

∂

∂e
+ q

∂

∂q
+ 2r

∂

∂r
+ 3s

∂

∂s
− t

∂

∂t
+ v

∂

∂v
+ 2w

∂

∂w
,

(3)

and
c = a1

1, d = a1
2, p = a1

111, q = a1
112, r = a1

122, s = a1
222,

e = a2
1, f = a2

2, t = a2
111, u = a2

112, v = a2
122, w = a2

222.
(4)

Operators X1–X4 and thereafter (3) generate a reductive Lie algebra L4.

From [12] it is known that

dimRO(a) = rankM1, (5)

where M1 is the matrix constructed on the coordinate vectors of Lie algebra L4 from

(3). From (5) we obtain that rankM1 can be equal to 4, 3, 2, 1, 0, and consequently we

have that dimRO(a) = 4, 3, 2, 1, 0, respectively. Following [14], it can be argued that

GL(2,R)–orbits of maximal dimension 4 generate nonsingular invariant manifolds,

and GL(2,R)–orbits of dimension < 4 generate singular invariant manifolds of the

system (2).

From [15,16] let’s give the following centroaffine invariants and comitants of the

system (2):

P1 = aααβγxβxγ, P2 = a
p

αβγxαxβxγxqεpq,

P3 = aαpαβa
β
qγδxγxδεpq, P4 = aααβγa

β
δµθxγxδxµxθ, P5 = aαβγδa

β
αµθxγxδxµxθ,

P6 = aααpra
β
γδqa

γ
βνs

xδxνεpqεrs, Q1 = a
p
αa

q

βγδxαxβxγxδεpq, Q2 = aαβa
β
αγδxγxδ,

Q3 = aαγa
β
αβδxγxδ, Q7 = aαβa

β
pαγa

γ
qηµxηxµεpq, K2 = aαβ xβxγεαγ, I1 = aαα,

I2 = aαβa
β
α, J1 = aααpra

β
βqs
εpqεrs, J2 = aαβpra

β
αqsε

pqεrs,

J4 = aαprua
β
γqsa

γ
αβυε

pqεrsεuυ, (6)
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where εpq (εpq) is the unit bivector with coordinates ε11 = ε22 = 0, ε12 = −ε21 = 1

(ε11 = ε22 = 0, ε12 = −ε21 = 1). Using the expressions (6), the following comitants

are constructed:

M1 = 3P1P3 − 2J1P2, N1 = P2
2(I2

1 − I2) + 2Q2
1 + 3K2

2 P5 + 2I1P2Q1,

N2 = J2P5 − J4P2 . 0, N3 = 2P1P2(4Q1 − 3K2P1) + 2P2
2(2Q3 + I1P1),

N4 = K2
2 (2P2

1 − 6P4 + 4P5) + 2P2K2(Q3 − Q2). (7)

Moreover, by using the equation (5), the expressions (6), (7), and Theorem 5.9

from [12] the following theorem is proved:

Theorem 2.1. [9] The dimension of the GL(2,R)-orbit of the system (2) is equal to

4⇔ K2P1P2(N3 +N4) . 0, or K2 ≡ 0, P1P2M1 . 0,

or K2 ≡ P1 ≡ 0, P2N2 . 0, or P1 ≡ 0, K2N1 . 0,

or P2 ≡ 0, K2P1Q7 . 0;

3⇔ N3 +N4 ≡ 0, K2P1P2 . 0, or K2 ≡M1 ≡ 0, P1P2 . 0,
or K2 ≡ P1 ≡ N2 ≡ 0, P2P5 . 0, or P1 ≡ N1 ≡ 0, K2P2 . 0,

or P2 ≡ Q7 ≡ 0, K2P1(P1Q1 + P6) . 0, or P2 ≡ K2 ≡ 0, J1 , 0;

2⇔ P2 ≡ Q7 ≡ P1Q1 + P6 ≡ 0, P2
1
+ K2

2
. 0, or P1 ≡ P2 ≡ 0, K2 . 0,

or P1≡P5≡K2≡N2≡0, P2.0, or J1=0, P2≡K2≡0, P1.0;

0⇔ P1 ≡ P2 ≡ K2 ≡ 0.

3. GENERALIZED LIE THEOREM ON
INTEGRATING FACTOR FOR POLYNOMIAL
DIFFERENTIAL SYSTEMS

Let consider the polynomial differential system (1), where PQ . 0, and the corre-

sponding equation

y′ =
Q(x, y)

P(x, y)
. (8)

From Marius Sophus Lie (1842-1899) it is known the following theorem:

Theorem 3.1. [14] The differential equation y′ = f (x, y) admits an one-parameter

continuous group G1 with the operator X = ξ1(x, y)
∂

∂x
+ ξ2(x, y)

∂

∂y
if and only if the

coordinates of the operator satisfy the defining equation ξ2
x + f (ξ2

y − ξ1
x) − f 2ξ1

y =

ξ1 fx + ξ
2 fy, where ξi

x, ξ
i
y, (i = 1, 2) and fx, fy there are partial derivatives of the

corresponding functions in x and y. Moreover µ =
(
ξ2 − f ξ1

)−1
is an Lie’s integrating

factor for the equation dy − f dx = 0.

Theorem 3.2. [17] If the polynomial system (1) with PQ . 0 admits Lie operator Y =

ξ1(x, y)
∂

∂x
+ ξ2(x, y)

∂

∂y
+D, where D , 0 is an operator of linear representation of a
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one-parameter continuous group G1 in the space of coefficients of the polynomials P

and Q of the system (1), then in order the corresponding equation (8) allows the same

operator Y, it is necessary and sufficient the fulfillment of the identity D

(
Q(x, y)

P(x, y)

)
≡

0, which is equivalent to the identity PD(Q) − QD(P) ≡ 0.

Corollary 3.1. If the conditions of Theorem 3.2 are satisfied, we have that the equa-

tion y′ =
Q(x, y)

P(x, y)
allows the operator Y = ξ1(x, y)

∂

∂x
+ ξ2(x, y)

∂

∂y
, obtained from the

operator Y by excluding the operator D.

From Corollary 3.1 and Theorems 3.1-3.2 we obtain

Theorem 3.3. (Generalized Lie theorem) If the system (1) with PQ . 0 admits the

operator Y = ξ1(x, y)
∂

∂x
+ ξ2(x, y)

∂

∂y
+D, with D , 0 and the identity

PD(Q) − QD(P) ≡ 0, (9)

holds then the function µ = (ξ1Q − ξ2P)−1 is the Lie’s integrating factor for this

system, and ξ1Q − ξ2P = 0 is its particular integral.

4. LIE’S INTEGRATING FACTORS FOR THE
SYSTEM WITH CUBIC NONLINEARITIES

Let write the linear combination of the operators (3) in the form

D = αD1 + βD2 + γD3 + δD4, (10)

where α, β, γ, δ are undefined real parameters.

Remark 4.1. Hereafter let consider the general case, i.e. when in (2), (4) and (10)

all coefficients and parameters are different from zero.

Remark 4.2. Let call degenerate the system of the form (2) with proportional right-

hand sides, where the proportionality factor is a number or an expression, depending

only on the coefficients of this system.

Theorem 4.1. The differential system (2), (4) with inverse polynomial Lie’s integrat-

ing factor µ−1 with degree ≤ 4 with respect to phase variables is subdivided into

the following classes: 17 (13 degenerate) systems on nonsingular invariant mani-

folds (which contain GL(2,R)-orbits of dimension 4) and 9 (2 degenerate) systems

on singular invariant manifolds (which include GL(2,R)-orbits of dimension 3), i.e.

4 systems for which µ−1 is represented as a product of two polynomials, one being

homogeneous of the second order and other – nonhomogeneous of the second order,

1 system, for which µ−1 is represented as a product of two polynomials, one being of
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the first order, and other heterogeneous of the third order, 5 systems for which µ−1

is represented as a product of three polynomials, two being of the first order and the

third – heterogeneous of the second order, 1 system, for which µ−1 is represented as

a product of two linear homogeneous polynomials.

Proof explanation of the theorem 4.1. Subject to the expressions of the operators

(3) for the differential system (2), (4) we obtain that the identity (9) is split into 15

polynomial equations linear relative to the parameters α, β, γ, δ and of the second

degree relative to the coefficients of the mentioned system:

u1 ≡ ceα + e2β − (c2 + de − c f )γ − ceδ = 0,

u2 ≡ deα + e fβ − cdγ − deδ = 0,

u3 ≡ d fα + (de − c f + f 2)β − d2γ − d f δ = 0,

u4 ≡ (ep − 3ct)α − 2etβ + (2cp − f p + 3eq + dt − 3cu)γ + (ep + ct)δ = 0,

u5 ≡ ( f p − 2dt − 3cu)α + (ep − ct − f t − 3eu)β+

+(dp + 3cq + 3er − 3cv)γ + (3eq + dt)δ = 0,

u6 ≡ ptα + t2β − (p2 + 3qt − 3pu)γ − ptδ = 0,

u7 ≡ qtα + tuβ − (pq + rt − pv)γ − qtδ = 0,

u8 ≡ ( f q − er − 3du − cv)α + ( f p + eq − dt − cu − 2 f u − 2ev)β+

+(2dq + 2cr + f r + es − dv − cw)γ + ( f q + 3er + du − cv)δ = 0,

u9 ≡ (3rt + 3qu − pv)α + (qt − pu + 3u2 + 2tv)β − (3q2 + 2pr+

+st + 3ru − 3qv − pw)γ − (3rt + 3qu − pv)δ = 0,

u10 ≡ svα + (su − qw + vw)β − rsγ − svδ = 0,

u11 ≡ (es + 3dv)α − (3 f q − 3du − 3 f v − ew)β−
−(3dr + cs + f s − dw)γ − (3 f r + 2es − cw)δ = 0,

u12 ≡ ( f s + dw)α − (3 f r − es − 3dv + cw − 2 f w)β−
−2dsγ − (3 f s − dw)δ = 0,

u13 ≡ (2st + 9ru − pw)α + (3rt − 3pv + 9uv + tw)β−
−(9qr + ps + 3su − 3qw)γ − (2st + 9ru − pw)δ = 0,

u14 ≡ (3su + 3rv − qw)α + (st + 3ru − 3qv + 3v2 − pw + 2uw)β−
−(3r2 + 2qs + sv − rw)γ − (3su + 3rv − qw)δ = 0,

u15 ≡ swα + (3sv − 3rw + w2)β − s2γ − swδ = 0.

(11)

By solving the algebraic system (11) relative to the coefficients of the system (2),

(4) and the parameters α, β, γ, δ, subject to Theorem 2.1 and the operators X1–X4

mentioned above, using Theorem 3.3, we obtain the following classes of systems

with polynomial inverse Lie’s integrating factor µ−1 (degenerate systems are not pre-

sented):
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I. Systems on nonsingular invariant manifolds of dimension 4 relative to the

group GL(2,R):

1) ẋ = cx + dy +
t

e
x3 + 3qx2y + 3rxy2 +

dΘ

c2e
y3,

ẏ = ex +
eΦ

ct
y + tx3 + 3ux2y − 3Ω

c2t
xy2 +

ΘΦ

c3t
y3.

where Ω = 3e2q2 − deqt − cert − 3cequ + cdtu, Θ = −3deq + 3cer + d2t, Φ =

−3eq + dt + 3cu.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 =
eα − cγ

c3e2t
F1F2, where F1 ≡ cetx2 + (−3e2q − c2t + det + 3ceu)xy − cdty2 = 0,

F2 ≡ c2e + c2tx2 + c(3eq − dt)xy + (−3deq + 3cer + d2t)y2 = 0 are the particular

integrals of the mentioned system.

2) ẋ =
pγx − (pα + 3uα + 3vγ)y

tγ3
Θ, ẏ =

tγx + (2tα + 3uγ)y

tγ3
Θ.

where Θ = eγ2 + tγ2x2 − 2tαγxy + (4tα2 + 6uαγ + 3vγ2)y2.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1=
tα−pγ

t2γ3 F1F2, where F1≡ tγx2 + (2tα − pγ + 3uγ)xy + (pα + 3uα + 3vγ)y2 = 0,

F2 ≡ Θ = 0 are the particular integrals of the mentioned system.

3) ẋ = 1
c2e4 (ex + cy)

[
c3e3 − 3e5rx2 + ce(3e3r + c3t)xy − c5ty2

]
,

ẏ = 1
c2e2 (ex + cy)

[
c2e2 + c2etx2 − (3e3r + c3t)xy + 3ce2ry2

]
.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 =
γ

c2e2F1F2F3, where F1 ≡ −ex + cy = 0, F2 ≡ ex + cy = 0, F3 ≡ c3 − 3e2rx2 +

3c2ry2 = 0 are the particular integrals of the mentioned system.

4) ẋ = 1
2ce4t

[
2c2etx + (3e3r + c3t)y

] (
e3 − e2tx2 + 2cetxy − c2ty2

)
,

ẏ = 1
2c2e3t

[
2c2etx + (3e3r + c3t)y

] (
e3 + e2tx2 − 2cetxy + c2ty2

)
.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 =
γ

2ce5t
F1F2F3, where F1 ≡ −ex + cy = 0, F2 ≡ 2c2etx + (3e3r + c3t)y = 0,

F3≡ e3 − e2tx2 + c2ty2 = 0 are the particular integrals of the mentioned system.

II. Systems on singular invariant manifolds of dimension 3 relative to the

group GL(2,R):

1) ẋ = cx+
Θ

et
y +

2t(c− f )+3eu

e
x3+3qx2y− 3(ct− f t+eu)Θ

e3t
xy2−Θ

2

e4t
y3,

ẏ = ex + f y + tx3 + 3ux2y − 3Ω

e2
xy2 − (ct − f t + 3eu)Θ

e3t
y3,
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where Ω = e2q+ c2t − 2c f t + f 2t + 2ceu− 2e f u, Ă Θ = 3e2q+ 2c2t − 4c f t + 2 f 2t +

3ceu − 3e f u.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1= − γ

2e5t2F1F2, where F1≡ −e2tx2 + e(c − f )txy + Θy2 = 0 Ă¨

F2≡ −e3(c + f )t − 3t(ct − f t + 2eu)
[
e2x2 − e(c − f )xy − Θy2

]
= 0 are the particular

integrals of the mentioned system.

2) ẋ = cx − eΘ

4t2
y + px3 − 3Φ

4t
x2y +

3(p − u)Θ

8t2
xy2 − Θ

2

16t3
y3,

ẏ = ex +
Ψ

2t
y + tx3 + 3ux2y + 3vxy2 +

(p + 3u)Θ

8t2
y3.

where Θ = p2 − 9u2 + 12tv, Φ = p2 − 2pu − 3u2 + 4tv, Ψ = −ep + 2ct + 3eu.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1= − γ

64t4
F1F2, where F1≡ 4t2x2 − 2t(p− 3u)xy+ (p2 − 9u2 + 12tv)y2 = 0 and F2≡

−4t(ep−4ct−3eu)+12t2(p+u)x2−6t(p−3u)(p+u)xy+3(p+u)(p2−9u2+12tv)y2 = 0

are the particular integrals of the mentioned system.

3) ẋ = cx − eu(2tα + 3uγ)

t2γ
y − ux3 − 3u2

t
x2y − 3u3

t2
xy2 − u4

t3
y3,

ẏ = ex +
2etα + ctγ + 4euγ

tγ
y + tx3 + 3ux2y +

3u2

t
xy2 +

u3

t2
y3.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1=
F1F2

t4γ
, where F1≡ tx+uy = 0 and F2≡ t3γ(eα−cγ)x+ t2(eα−cγ)(2tα+3uγ)y+

t3γ(tα + uγ)x3 + 3t2uγ(tα + uγ)x2y + 3tu2γ(tα + uγ)xy2 + u3γ(tα + uγ)y3 = 0 are the

particular integrals of the mentioned system.

4) ẋ = cx +
epu

t2
y + px3 +

3pu

t
x2y +

3pu2

t2
xy2 +

pu3

t3
y3,

ẏ = ex +
ct + eu − ep

t
y + tx3 + 3ux2y +

3u2

t
xy2 +

u3

t2
y3.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 = − γ

t4
F1F2F3, where F1 ≡ tx − py = 0, F2 ≡ tx + uy = 0, and F3 ≡ t(ct + eu) +

(p + u)(tx + uy)2 = 0 are the particular integrals of the mentioned system.

5) ẋ = cx +
eα(3tα − pγ + 3uγ)

tγ2
y + px3 +

3α(tα − pγ + uγ)

γ2
x2y−

−3α2(2tα − pγ + 2uγ)

γ3
xy2 +

α3(3tα − pγ + 3uγ)

γ4
y3,



Lie theorem on integrating factor for polynomial differential systems 131

ẏ = ex +
2etα − (ep − ct − 3eu)γ

tγ
y + tx3 + 3ux2y−

−3α(tα + 2uγ)

γ2
xy2 +

α2(2tα + 3uγ)

γ3
y3.

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 =
F1F2F3

tγ4 , where F1 ≡ −αy + γx = 0, F2 ≡ tγx + (3tα − pγ + 3uγ)y = 0,

F3≡ γ2(eα−cγ)+(tα−pγ)[αy−γx]2 = 0 are the particular integrals of the mentioned

system.

6) ẋ = cx +
ep(p + 3u)

2t2
y + px3 +

3pu

t
x2y − 3pΘ

4t2
xy2 − p2(p + 3u)2

4t3
y3,

ẏ = ex +
2ct + 3eu − ep

2t
y + tx3 + 3ux2y − 3Θ

4t
xy2 − p(p + 3u)2

4t2
y3,

where Θ = (p − u)(p + 3u).

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 = − γ

16t4
F1F2F3, where F1 ≡ tx − py = 0, F2 ≡ 2tx + (p + 3u)y = 0, F3 ≡

−2t(ep−4ct−3eu)+3(p+u)[2t2x2− t(p−3u)xy− p(p+3u)y2] = 0 are the particular

integrals of the mentioned system.

7) ẋ = cx+
ep(2p+3u)

t2
y+px3+

3pu

t
x2y− 3p2(p+2u)

t2
xy2+

p3(2p+3u)

t3
y3,

ẏ = ex+
ep+ct+3eu

t
y+tx3+3ux2y− 3p(p+2u)

t
xy2+

p2(2p+3u)

t2
y3,

Polynomial inverse Lie’s integrating factor of this system has the following form:

µ−1 =
(ep−ct)γ

t3
F1F2, where F1 ≡ tx − py = 0 and F2 ≡ tx + (2p + 3u)y = 0 are the

particular integrals of the mentioned system.

Taking into consideration Remark 4.1, the propositions of Theorem 4.1 are proved.�

Remark 4.3. It can be verified that the differential systems above obtained have an

interesting geometry, for example, for some of them the origin of coordinates may be

a center or a focus, a saddle or a node.
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Abstract In this paper the cubic systems with the infinite line filled up with singularities (i.e. with

the degenerated infinity) and having invariant straight lines of total multiplicity six are

classified. It is proved that there are 11 affine classes of such systems. For every class

was carried out the qualitative investigation in the Poincaré disc.

Keywords: cubic differential system, invariant straight line, phase portrait.
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1. INTRODUCTION

We consider the real cubic differential system



dx
dt
=

3∑
r=0

Pr (x, y) ≡ P (x, y) ,

dy

dt
=

3∑
r=0

Qr (x, y) ≡ Q (x, y) ,

(1)

where Pr,Qr are homogeneous polinomials of degree r, GCD (P,Q) = 1 and

|P3(x, y)| + |Q3(x, y)| . 0.

The curve f (x, y) = 0, f ∈ C[x, y] is said to be an invariant algebraic curve of (1)

if there exists a polynomial K f ∈ C[x, y], such that the identity
∂ f

∂x
P(x, y)+

∂ f

∂y
Q(x, y) ≡

f (x, y)K f (x, y) holds.We say that an invariant algebraic curve f (x, y) = 0 has the

parallel multiplicity equal to m, if m is the greatest positive integer such that f m−1

divides K f .

The system (1) is called Darboux integrable if there exists a non-constant function

of the form f = f
λ1

1
··· f λs

s ,where f j is an invariant algebraic curve and λ j ∈ C, j = 1, s,

such that either f = const is a first integral or f is an integrating factor for (1). We

will be interested in invariant algebraic curves of degree one, that is invariant straight

lines αx + βy + γ = 0, (α, β) , (0, 0).
At present, a great number of works are dedicated to the investigation of polyno-

mial differential systems with invariant straight lines.

The problem of estimation the number of invariant straight lines which can have a

polynomial differential system was considered in [1]; the problem of coexistence of

133
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the invariant straight lines and limit cycles in [4], [5]; the problem of coexistence of

the invariant straight lines and singular points of a center type for cubic system in [3],

[10]. The classification of all cubic systems with the maximum number of invariant

straight lines, taking into account their multiplicities, is given in [6].

In [1] it was proved that the cubic system (1) can have in the finite part of the phase

plane at most eight invariant straight lines. The cubic systems with exactly eight

invariant straight lines has been studied in [6], [7] and with invariant straight lines

with total parallel multiplicity equal to seven in [11], [13]. A qualitative investigation

of systems (1) with six real invariant straight lines along two (three) directions is

given in [8] ([9]). In [12] were examined some cubic systems with degenerate infinity

having invariant straight lines of total parallel multiplicity five or six, three of which

are parallel. In this paper we continued the investigation from [8], [9], [12] and a

complet qualitative study of cubic systems (1) with degenerated infinity and invariant

straight lines (real or complex) of total multiplicity six is given.

Theorem 1.1. Assume that a cubic system with degenerate infinity possesses invari-

ant straight lines of total parallel multiplicity six. Then via an affine transformation

and time rescaling this system can be brought to one of the 11 system 1)-11). More-

over, its phase portrait on the Poincaré disc corresponds up to topological equiva-

lence to one of the portraiths given in Fig. 1 - Fig. 11. In the table below for each

one of the systems 1) - 11) the first arrow shows the straight lines and either the first

integral or integrating factor that corresponds to each system.

1)



ẋ = x(x + 1)(x − a), a > 0,

ẏ = y(−a + 2x − y + x2);

Configuration (3r, 1r, 1r, 1r)

→ (2) → Fig. 1;

2)



ẋ = (x − a)(x2 + 1), a ∈ R,
ẏ = y(−1 − 2ax − y + x2);

Configuration (1r + 2c0, 1r, 1c1, 1c1)

→ (3) → Fig. 2;

3)



ẋ = x(x − 1)(2y − 1),

ẏ = y(y − 1)(2x − 1);

Configuration (2r, 2r, 1r, 1r)

→ (4) → Fig. 3;

4)



ẋ = 2xy(x − 1),

ẏ = (y2 + 1)(2x − 1);

Configuration (2r, 2c0, 1c1, 1c1)

→ (5) → Fig. 4;

5)



ẋ = y(x2 + 1),

ẏ = x(y2 + 1);

Configuration (2c0, 2c0, 1r, 1r)

→ (6) → Fig. 5;

6)



ẋ = x(1 − 2y + 2x2 + 2y2),

ẏ = (2y − 1)(−y + x2 + y2);

Configuration (2c1, 2c1, 1r, 1r)

→ (7) → Fig. 6;

l1 = x + 1, l2 = x, l3 = x − a, l4 = y, l5 = (a + 1)x − y,
l6 = x − y − a; l1l4/(l3l5) = const.

(2)
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7)



ẋ = x(x − 1)(1 + ax − 2y),

ẏ = y(−1 + 2x + y + ax2 − 2xy);

Configuration (2r, 1r, 1r, 1r, 1r)

→ (8) → Fig. 7;

8)



ẋ = y(1 + (x − a)2), a , 0,

ẏ = −(1 + a2)x + a(x2 − y2) + xy2;

Configuration (2c0, 1c1, 1c1, 1r, 1r)

→ (9) → Fig. 8;

9)



ẋ = y + x2 + 2axy − y2 + ax3+

+(a2 + b2 − 1)x2y − axy2,

ẏ = −x − ax2 + 2xy + ay2 + ax2y+

+(a2 + b2 − 1)xy2 − ay3, ab , 0;

Configuration (1r, 1r, 1c1, 1c1, 1c1, 1c1)

→ (10) → Fig. 9;

10)



ẋ = x(1 + 2ax − 2y + (a2 + b2 − b)x2−
−2axy + (1 − b)y2),

ẏ = y + bx2 + 2axy + (b − 2)y2 + (a2+

+b2 − b)x2y − 2axy2 + (1 − b)y3,

b(b − 1)(|a| + |b + 1|) , 0;

Configuration (1r, 1r, 1c1, 1c1, 1c1, 1c1)

→ (11) → Fig. 10;

11)



ẋ = x(1 + (a + b)x − 2y + abx2 − 2axy+

+(a − b + 1)y2),

ẏ = y(1 + 2ax + (b − a − 2)y + abx2−
−2axy + (a − b + 1)y2),

ab(a − 1)(b − 1)(b − a − 1) , 0, a > b;

Configuration (1r, 1r, 1r, 1r, 1r, 1r).

→ (12) → Fig. 11;

l1 = x − i, l2 = x − a, l3 = x + i, l4 = y,
l5,6 = (a ∓ i)x + y + 1 ± ai; µ(x, y) = 1/(l1l3l5l6).

(3)

l1 = x l2 = x − 1, l3 = y, l4 = y − 1, l5 = x − y, l6 = x + y − 1;

l1l2/(l3l4) = const.
(4)

l1 = x, l2 = x − 1, l3,4 = y ± i, l5,6 = y ± i(2x − 1);

l3l4/(l5l6) = const.
(5)

l1,2 = x ± i, l3,4 = y ± i, l5 = x − y, l6 = x + y;

(l1l2)/(l3l4) = const.
(6)

l1,2 = y ∓ ix, l3,4 = y ∓ ix − 1, l5 = x, l6 = 2y − 1;

l1l2l3l4/(l5l6)2 = const.
(7)

l1 = x, l2 = x − 1, l3 = y, l4 = x + y − 1, l5 = (a + 1)x − y,
l6 = ax − y + 1; l1l2/(l4l5) = const.

(8)

l1,2 = x − a ± i, l3,4 = y ± ix, l5 = ax + y − a2 − 1,
l6 = ax − y − a2 − 1; l3l4/(l1l2) = const.

(9)

l1,2 = y ∓ xi, l3,4 = y − (a ± bi)x − 1, l5,6 = 1 + ax − y ± by;

l1l2/(l3l4) = const.
(10)
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l1,2 = y ∓ xi, l3,4 = y − (a ± bi)x − 1, l5 = 1 + ax − y + by,
l6 = x; l1l2l3l4/(l5l6)2 = const.

(11)

l1 = x, l2 = y, l3 = y − x, l4 = y − ax − 1, l5 = y − bx − 1,
l6 = ax + (b − a − 1)y + 1; l1l6/(l2l5) = const.

(12)

Fig. 1 Fig. 2 Fig. 3 Fig. 4

Fig. 5 Fig. 6 Fig. 7 Fig. 8

Fig. 9 Fig. 10.a) Fig. 10.b)

Fig. 11.a) Fig. 11.b)
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2. SOME PROPERTIES OF THE CUBIC
SYSTEMS WITH STRAIGHT LINES

By configuration of straight lines we understand the R2 plane with a certain num-

ber of straight lines.

To each bidimensional differential system (with invariant straight lines) we can

associate a configuration consisting of invariant straight lines of this system. It’s easy

to show that reciprocal affirmation is not always true.

The problem arise to determine such properties for invariant straight lines that

allow to construct all realizable configurations of straight lines for (1). Below we

shall enumerate such properties. Theirs proofs are not complicated and are not given

in this paper.

Proposition 2.1. In the finite part of the phase plane the system (1) has at most nine

singular points.

Proposition 2.2. In the finite part of the phase plane on any straight line there are at

most 3 singular points of the system (1)

Proposition 2.3. If system (1) has complex invariant straight lines then they occur in

complex conjugated pairs (l and l̄).

Proposition 2.4. The intersection point (x0, y0) of two invariant straight lines l1 and

l2 of the system (1) is a singular point for this system. Moreover, if l1, l2 ∈ R[x, y] or

l2 ≡ l̄1, then x0, y0 ∈ R.

Proposition 2.5. A complex straight line l can pass through at most one point with

real coordinates.

Proposition 2.6. If a straight line passes through two distinct real points or through

two complex conjugated points, then this straight line is real.

A complex straight line passing through a real point will be called a relative com-

plex straight line and a complex straight line not passing through any real point - a

purely imaginary complex straight line.

Proposition 2.7. Through one and the same point of a purely imaginary straight line

can pass at most one real straight line.

Proposition 2.8. A complex invariant straight line of the system (1) is purely imagi-

nary iff this straight line is parallel with his conjugate (l ∥ l̄).

Proposition 2.9. If l1 and l2 are two parallel invariant straight lines of the system

(1), then only one of the following properties occurs:

1. l1, l2 ∈ R[x, y], 2. l1 is real and l2 is purely imaginary,

3. l1 and l2 are purely imaginary, 4. l1 and l2 are relative complex.

We say that the cubic system (1) has degenerate infinity if the following identity

holds

yP3(x, y) − xQ3(x, y) ≡ 0. (13)

If (13) holds, then infinity consists only of singular points.
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Proposition 2.10. The identity (13) is invariant under affine transformation of the

system (1).

Proposition 2.11. The invariant straight lines of the cubic system (1) with degenerate

infinity passing through the same point M0 (x0, y0), x0, y0 ∈ C have at most three

slopes.

Proposition 2.12. Through one and the same point of a complex invariant straight

line of the cubic system with degenerate infinity can not pass more than one real

straight line.

Proposition 2.13. The straight line passing through three distinct singular points of

system (1) with degenerate infinity is invariant for (1).

Proposition 2.14. The maximum number of the invariant straight lines for a differ-

ential cubic system with degenerate infinity is equal to six.

Proposition 2.15. Let the cubic system (1) has two concurrent invariant straight

lines l1, l2. If l1 has the parallel multiplicity equal to m, 1 ≤ m ≤ 3, then this system

cannot have more than 3 − m singular points on l2 \ l1.

We say that three straight lines are in generic position if all lines have different

slopes and no more that two lines pass through the same point.

Proposition 2.16. If the cubic system (1) has three invariant straight lines in generic

position, then their total parallel multiplicity is at most four.

Proposition 2.17. The cubic system (1) with degenerate infinity can have at most one

triplet of parallel invariant straight lines.

Proposition 2.18. The cubic system (1) with degenerate infinity can have at most two

pair of parallel invariant straight lines.

3. THE PROOF OF THEOREM 1.1

Using the Propositions 2.17 and 2.18, the family of cubic systems [(1),(13)] with

six invariant straight lines can be divided in four classes:

A) Systems with a triplet of parallel invariant straight lines;

B) Systems with two pairs of parallel invariant straight lines;

C) Systems with only a pair of parallel invariant straight lines;

D) Systems with invariant straight lines of different slopes.

The class A) was studied in [8], [12] and is characterized by the systems 1) and 2)

of Theorem 1.1.
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3.1. CLASS B): TWO PAIRS OF PARALLEL
INVARIANT STRAIGHT LINES

For cubic systems from the class B) are possible the next 13 configurations of the

straight lines:

B1) (2r, 2r, 1r, 1r) B2) (2(2)r, 2r, 1r, 1r)

B3) (2(2)r, 2(2)r, 1r, 1r) B4) (2r, 2c0, 1r, 1r)

B5) (2(2)r, 2c0, 1r, 1r) B6) (2r, 2c0, 1c1, 1c1)

B7) (2(2)r, 2c0, 1c1, 1c1) B8) (2c0, 2c0, 1r, 1r)

B9) (2c0, 2c0, 1c1, 1c1) B10) (2c1, 2c1, 1r, 1r)

B11) (2(2)c1, 2(2)c1, 1r, 1r) B12) (2c1, 2c1, 1c1, 1c1)

B13) (2(2)c1, 2(2)c1, 1c1, 1c1)

By (2r, 2r, 1r, 1r) we denoted the configurations which consists of six distinct real

straight lines l1, . . . , l6 ∈ R[x, y], of which l1, l2 and l3, l4 form two pairs of parallel

straight lines, i.e. l1 ∥ l2, l3 ∥ l4, l1 ∦ l3 and l j ∦ lk, j = 1, . . . , 4, k = 5, 6. In the case

of configuration (2c0, 2c0, 1c1, 1c1) we have six straight lines l1, . . . , l6, where l1, l2, l3
and l4 are purely imaginary, l5 and l6 are relative complex, l1, l2 and l3, l4 form two

pairs of parallel straight lines. The configuration (2(2)r, 2r, 1r, 1r) consists of six real

straight lines, where l1 ≡ l2, l3 ∥ l4, l1 ∦ l3, l j ∦ lk, j = 1, . . . , 4, k = 5, 6 and the

straight line l1 (or l2) has parallel multiplicity equal to two.

Remark 3.1. The propositions 2.2, 2.5, 2.12, 2.15 and 2.16 do not allow the realiza-

tion of the configurations B2) - B5), B7), B9) and B11)-B13) in the class of the cubic

systems with degenerate infinity.

Configuration B1) (2r, 2r, 1r, 1r). Via an affine transformation and time rescaling

the system [(1),(13)] with two pairs of real invariant straight lines can be written into

the following form:

ẋ = x(x − 1)(y + a), ẏ = y(y − 1)(x + b), a, b < {−1; 0}. (14)

The system (14) has the invariant straight lines l1 = x, l2 = x− 1, l3 = y, l4 = y − 1

and the singular points (0, 0), (1, 0), (0, 1), (1, 1), (−b,−a). Therefore, any other in-

variant straight line of (14) must pass through the singular points (0, 0) and (1, 1)

or through the singular points (1, 0) and (0, 1). The straight lines l5 = x − y and

l6 = x + y − 1 passing through these points are invariant for (14) iff a = b = −1/2.

Replacing in (14) the values a = −1/2, b = −1/2 and t = 2τ, we get the system 3)

from Theorem 1.1.

Configuration B6) (2r, 2c0, 1c1, 1c1). The cubic system with degenerate infinity

possessing two pairs of parallel invariant straight lines with the configuration (2r, 2c0)

can be written as:

ẋ = x(x − 1)(y + a), ẏ = (y2 + 1)(x + b), b < {−1; 0}. (15)
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The system has the invariant straight lines l1 = x, l2 = x − 1, l3 = y + i, l4 = y − i and

the singular points (0,−i), (0, i), (1, i), (1,−i), (−b,−a). Let l5 and l6 are two relative

complex straight lines. According to the Proposition 2.3, they must pass through the

intersection points of the straight lines l1, . . . , l4. Let l5 passes through the singular

points (0,−i), (1, i), and l6 through (0, i), (1,−i), therefore they are described by the

equations l5 ≡ i(2x − 1) + y = 0 and l6 ≡ i(1−2x)+ y = 0. The straight lines l5 and l6
are invariant for (15) if and only if a = 0 and b = −1/2. So, we obtained the system

4) from Theorem 1.1.

Configuration B8) (2c0, 2c0, 1r, 1r) In this case the pairs of parallel invariant

straight lines can be brought to form l1,2 = x ± i and l3,4 = y ± i. The system

[(1),(13)] with these invariant straight lines is:

ẋ = (x2 + 1)(y + a), ẏ = (y2 + 1)(x + b). (16)

The system (16) has the singular points: (−i,−i), (−i, i), (i, i), (i,−i), (−b,−a). The

real straight lines l5 and l6 can pass only through the pairs of reciprocaly conju-

gate singular points (−i,−i), (i, i) or (−i, i), (i,−i), therefore they are described by the

equations l5 = x − y and l6 = x + y. The invariance of these straight lines for the (16)

it is conditioned by a = b = 0, i.e. we have the system 5) from Theorem 1.1.

Configuration B10) (2c1, 2c1, 1r, 1r) Through an affine change of coordinates, the

straight lines l1, . . . , l4 can be brought to the form l1,2 = y ± ix, l3,4 = y ± ix − 1. The

cubic system [(1),(13)] possessing these invariant straight lines can be written into

the following form:
{

ẋ = ax + by + bx2 − 2axy − by2 + x3 + xy2,
ẏ = −bx + ay + (a − 1)x2 + 2bxy − (a + 1)y2 + x2y + y3.

(17)

This system has the singular points: (0, 0), (−i/2, 1/2), (0, 1), (i/2, 1/2), (−b, a). The

real invariant straight lines l5 and l6 can pass only through the singular points (0, 0),

(0, 1) and (−i/2, 1/2), (i/2, 1/2), therefore they are described by the equations l5 = x

and l6 = 2y − 1. These straight lines are invariant for the system (17) iff b = 0 and

a = 1/2. Thus, was obtained the system 6) from Theorem 1.1.

3.2. CLASS C): ONE PAIR OF PARALLEL
INVARIANT STRAIGHT LINES

For cubic systems from the class C) are possible the next 9 configurations of the

straight lines:

C1) (2r, 1r, 1r, 1r, 1r) C2) (2(2)r, 2r, 1r, 1r, 1r)

C3) (2r, 1r, 1r, 1c1, 1c1) C4) (2(2)r, 1r, 1r, 1c1, 1c1)

C5) (2r, 1c1, 1c1, 1c1, 1c1) C6) (2(2)r, 1c1, 1c1, 1c1, 1c1)

C7) (2c0, 1r, 1r, 1r, 1r) C8) (2c0, 1r, 1r, 1c1, 1c1)

C9) (2c0, 1c1, 1c1, 1c1, 1c1)
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Remark 3.2. The propositions 2.2, 2.5, 2.11, 2.15 and 2.16 do not allow the real-

ization of the configurations C2) - C7) and C9) in the class of the cubic systems with

degenerate infinity.

Configuration C1) (2r, 1r, 1r, 1r, 1r). Let the straight lines l1, l2, l3, l4 with the

configuration (2r, 1r, 1r) are invariant for the system [(1),(13)]. These straight lines

can be brought to the form l1 = x, l2 = x− 1, l3 = y and l4 = x+ y− 1. Therefore, the

system [(1),(13)] has the following form:
{

ẋ = x(x − 1)(b01 + b11 + a30x + a21y),
ẏ = y(b01 + b11x − b01y + a30x2 + a21xy),

(18)

The intersection points of the straight lines of the system (18) are (0, 0), (0, 1) and

(1, 0). Through the singular point (1, 0) pass the invariant straight lines l2, l3 and

l4. According to the Proposition 2.11 any other real invariant straight line must pass

through (0, 0) or (0, 1). Let l5 and l6 are real invariant straight lines of the system (18),

according to the Proposition 2.2 their intersection point belongs to the l2: l5 ∩ l6 =

(1, a+1) ∈ l2, where a , 0, a ∈ R. Let l5 passes through (0, 0), (1, a+1) and l6 through

(0, 1), (1, a+1), i.e. they are described by the equations l5 = (a+1)x−y, l6 = ax−y+1.

These straight lines are invariant for the (18) iff a30 = a, a21 = −b11 = −2. Using

these condition and rescaling the time t = −1/b01τ in (18), we obtain the system 7)

from the Theorem 1.1.

Configuration C8) (2c0, 1r, 1r, 1c1, 1c1). Let the system [(1),(13)] has four in-

variant straight lines of the configuration (2c0, 1c1, 1c1). The straight lines can be

written as l1,2 = x − a ± i and l3,4 = y ± ix. The system [(1),(13)] with these invariant

straight lines has the form:



ẋ = ((x − a)2 + 1)(a30x + a21y),
ẏ = (a2 + 1)(a30y − a21x) + b20x2 − 2aa30xy + (b20 − 2aa21)y2+

+a30x2y + a21xy2.
(19)

This system has the singular points O1(a − i, 1 + ai), O2(a + i, 1 − ai), O3(a + i,−1 +

ai), O4(a − i,−1 − ai), O5(0, 0), O6(a21(1 + a2)/b20,−a30(1 + a2)/b20), O1 = l1 ∩
l4, O2 = l2 ∩ l3, O3 = l2 ∩ l4, O4 = l1 ∩ l3. Any other real invariant straight line of

the system (19) must pass through one of the two pairs of conjugate complex singular

points O1, O2 and O3, O4. Therefore, l5 ≡ ax+y−a2−1 = 0 and l6 ≡ ax−y−a2−1 = 0.
This straight lines are invariant for the system (19) iff a30 = 0 and b20 = a. Moreover,

after rescaling the time t = 1/a21τ we get the system 8) from the Theorem 1.1

3.3. CLASS D): INVARIANT STRAIGHT LINES
WITH DIFFERENT SLOPES

For cubic systems from the class D) are possible the next 4 configurations of the

straight lines:
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D1) (1c1, 1c1, 1c1, 1c1, 1c1, 1c1) D2) (1c1, 1c1, 1c1, 1c1, 1r, 1r)

D3) (1c1, 1c1, 1r, 1r, 1r, 1r) D4) (1r, 1r, 1r, 1r, 1r, 1r)

Remark 3.3. The propositions 2.2, 2.5 and 2.11 do not allow the realization of the

configurations D1) and D3) in the class of the cubic systems with degenerate infinity.

Configuration D2) (1c1, 1c1, 1c1, 1c1, 1r, 1r). Let the system [(1),(13)] has the

invariant straight lines l j ∈ C[x, y]\R[x, y], j = 1, 4, l j = l j+1, j = 1, 3, l j ∦ lk, j , k.
Via an affine transformation and time rescaling we can write l1,2 ≡ y ± ix = 0, l3,4 =

y − (a ± bi)x − 1 = 0, a, b ∈ R, b(|a| + |b ± 1|) , 0. There are two affine different

systems [(1),(13)] with these invariant straight lines:


ẋ = y + x2 + 2axy − y2 + (2a − b02)x3 + (a2 + b2 − 1)x2y − b02xy2,
ẏ = −x + (b02 − 2a)x2 + 2xy + b02y2 + (2a − b02)x2y+

+(a2 + b2 − 1)xy2 − b02y3;

(20)



ẋ = x + cy + (2a + c)x2 + 2(−1 + ac)xy − cy2 + (−2 + a2 + b2 − b02+

+2ac)x3 + (−2a − c + a2c + b2c)x2y − (1 + b02)xy2,

ẏ = −cx + y + (2 + b02 − 2ac)x2 + 2(a + c)xy + b02y2 + (−2 + a2+

b2 − b02 + 2ac)x2y + (−2a − c + a2c + b2c)xy2 − (1 + b02)y3.

(21)

Let O j,k is the intersection point of the straight lines l j and lk, j , k. Then we have

O1,2 = (0, 0), O1,3 = (−1/(−i + a + bi), 1/(1 − b + ai)),
O1,4 = (−1/(−i + a − bi), 1/(1 + b + ai)), O3,4 = (0, 1), O2,3 ≡ O1,4 and

O2,4 ≡ O1,3.

The straight line passing through the singular points O1,3 and O2,4 (O1,4 and O2,3) it

is described by the equation 1 + ax − y + by = 0 (1 + ax − y − by = 0). Using only

the information provided by the singular points we can state that besides the invariant

straight lines l1,2,3,4, both systems can have invariant straight lines described by the

equations 1 + ax − y + by = 0, 1 + ax − y − by = 0 and x = 0.
The straight line x = 0 can’t be invariant for (20), because the coefficients of the

monomials y, −y2 from the right side of the first equation of the system (20) are

constant. The straight lines l5 = 1+ ax − y+ by and l6 = 1+ ax − y− by are invariant

for (20) iff b02 = a. Therefore, replacing b02 = a in (20) we obtain the system 9)

from the Theorem 1.1. The straight line 1 + ax − y + by = 0 is not invariant for the

system (21). Asking for x = 0 to be invariant we obtain c = 0 and b02 = b − 2 or

b02 = −b − 2, i.e. the system 10) from the Theorem 1.1 or the system

ẋ = φ(x, y, a,−b, 0), ẏ = ψ(x, y, a,−b, 0), b(b + 1)(|a| + |b − 1|) , 0 ,

where φ(x, y, a, b, c) and ψ(x, y, a, b, c) are the right sides of the system (21). The two

systems are topologically equivalent.
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Configuration D4) (1r, 1r, 1r, 1r, 1r, 1r). Let the system [(1),(13)] has at least

five real invariant straight lines with diffefrent slopes l j, j = 1, 5. Via an affine trans-

formation we can bring these straight lines to be described by the equations: x =

0, y = 0, y = x, y = ax + 1, y = bx + 1, ab(a − 1)(b − 1) , 0, a < b. The cubic

system with these invariant straight lines has the form:{
ẋ = x(1 + (a + b)x − 2y + abx2 − αxy + cy2),
ẏ = y(1 + αx − (c + 1)y + abx2 − αxy + cy2).

(22)

Let O j,k = l j ∩ lk, j , k. Any other invariant straight line l6 of the cubic system (22)

must pass through the singular points O24 = (−1/a, 0) and O3,5 = (1/(1−b), 1/(1−b))

or through the singular points O2,5 = (−1/b, 0) and O3,4 = (1/(1 − b), 1/(1 − b),

therefore it is described by the equation: ax + (b − a − 1)y + 1 = 0, b − a − 1 , 0 or

bx − (b − a + 1)y + 1 = 0, b − a + 1 , 0. The straight line ax + (b − a − 1)y + 1 = 0

is invariant for the system (22) iff c = 1 + a − b. Replacing c = 1 + a − b in (22) we

obtain the system 11) from the Theorem 1.1.

The straight line bx − (b − a + 1)y + 1 = 0 is invariant for the system (22), iff

c = 1 − a + b, but this system is affine equivalent with the system 11).

3.4. QUALITATIVE INVESTIGATION OF THE
SYSTEMS 3)-11)

In this section, the qualitative study of the systems 3)− 11) from Theorem 1.1 will

be done. For this purpose, in order to determine the topological behavior of trajecto-

ries, the finite and the infinite singular points will be examined. This information and

the information provided by the existence of invariant straight lines, we will be taken

into account constructing the phase portraits of systems 3) − 11) on Poincaré disk.

We denoted by S P singular points; λ1 and λ2 the characteristic roots of the S P;

TS P − type of S P; S − saddle (λ1λ2 < 0); N s − stable node (λ1, λ2 < 0); Ni −
instable node (λ1, λ2 > 0); DN s(i) − ”decritic” stable (instable) node (λ1 = λ2 , 0);

C - centre.

a

b

1

1

a - 
b
 =

 0

1

3 2
J

J

J

Fig. 12

In the next tables, the first column will

indicate the singular points of the systems;

the second column - the eigenvalues corre-

sponding to these singular points and the

third column - the types of the singulari-

ties. All these points are simple and together

with the invariant straight lines, entirely de-

termine the phase portrait of each of the sys-

tems 3)-11).

System 11) from Th. 1.1 was obtained for

ab(a − 1)(b − 1)(b − a − 1) , 0, a > b. In

the space of parameters we get three sectors

as shown in Fig. 12. The sectors J1 and J3 provide two topologically equivalent
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phase portraits.

Tab. 1-3

System 3)

S P λ1; λ2 TS P S P λ1; λ2 TS P

O1(0, 0) −a ;−a DN s O2(1, 0) a; −a S

O3(0, 1) −a ;−a DN s O4(1, 1) a; −a S

O5(−a,−a) −a ;−a DN s X∞(1, 0, 0) a; −a S

Y∞(0, 1, 0) −1; −1 DN s

System 4)

O( 1
2
, 0) ±i C X∞(1, 0, 0) ±2i C

Y∞(0, 1, 0) 1 ;−1 S

System 5)

O(0, 0) ±1 S X∞(1, 0, 0) ±i C

Y∞(0, 1, 0) ±i C

S P λ1; λ2 TS P S P λ1; λ2 TS P

System 6)

O1(0, 0) 1; 1 DN i O2(0, 1) 1; 1 DN i

O3(0, 1
2
) ± 1

2
S

System 7)

O1(0, 0) −1; −1 DN s O2(0, 1) 1; 1 DN i

O3(1, 0) a + 1; a + 1 DN i O4(− 1
a
, 0) ± a+1

a
S

O5(1, a + 1) −a − 1; −a − 1 N s O6( 1
a+2
, a+1

a+2
) ± a+1

a+2
S

I∞(0, 1, 0) 1; −1 S

System 8)

O1(0, 0) ±i(a2 + 1) C O2( a2+1
a
, 0) ± a2+1

a
S

I∞(0, 1, 0) ±i C

System 9)

O1(0, 0) ±i C O2(0, 1) ±bi C

O3(− 1
a
, 0) ± b

a
S
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S P λ1; λ2 TS P

System 10) b < 0 b > 0

O1(0, 0) 1; 1 DNi

O2(0, 1
1−b

) ± b
1−b

S

O3(0, 1) −b; −b DNi DN s

System 11) J1 (J3) J2

O1(0, 0) 1; 1 Ni

O2(0, 1) a − b; a − b Ni

O3(0, 1
1+a−b

) ± a−b
1+a−b

S

O4(−1
a
, 0) b−a

a
; b−a

a
N s(Ni) N s

O5(−1
b
, 0) ± a−b

b
S

O6( 1
1−a

, 1
1−a

) ± b−a
a−1

S

O7( 1
1−b

, 1
1−b

) a−b
b−1

; a−b
b−1

Ni(N s) N s
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Abstract The object of the present article is to study and develop the generalized fractional inte-

gral operators introduced by Saigo and Maeda for ℵ-function. The considered general-

ized fractional integration operators contain the Appell hypergeometric function F3 as

a kernel. We establish two results of the product of two ℵ-functions involving Saigo-

Maeda operators which are also believed to be new. On account of the general nature

of the Saigo-Maeda operators and also of the ℵ-functions, a large number of new and

known results involving Saigo, Riemann-Liouville and Erdélyi-Kober integral operators

are special cases of our main results.

The results obtained provide extension of the results given by Ram and Kumar [6] for

the generalized fractional integration of the product of two H-functions.

Keywords: Aleph function, generalized fractional integration, fractional calculus, Mellin-Barnes type

integrals, Appell function F3, H-function, I-function.
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1. INTRODUCTION AND PRELIMINARIES

The object of this paper is to study the generalized fractional integration operators

associated with the Appell function F3 [10] as a kernel, introduced by Saigo-Maeda

[9].

The Aleph-function is defined by means of a Mellin-Barnes type integral in the fol-

lowing manner [13, 14]:

ℵ [z] = ℵ m,n
pi,qi,τi; r

[
z

∣∣∣∣∣∣
(a j,A j)1,n,..., [τ j(a j,A j)]n+1,pi

(b j,B j)1,m,..., [τ j(b j,B j)]m+1,qi

]
:=

1

2πi

∫

L

Ωm,n
pi,qi,τi;r

(s) z−s ds, (1)

where z , 0, i =
√
−1 and

Ωm,n
pi,qi,τi; r (s) =

∏m
j=1

{
Γ
(
b j + B js

)} ∏n
j=1

{
Γ
(
1 − a j − A js

)}

∑r
i=1 τi

∏qi

j=m+1

{
Γ
(
1 − b ji − B jis

)} ∏pi

j=n+1

{
Γ
(
a ji + A jis

)} . (2)

The integration path L = L i γ∞,
(
γ ∈ ℜ)

extends from γ − i∞ to γ + i∞, and is such

that the poles of Γ
(
1 − a j − A js

)
, j =

(
1, n

)
(the symbol

(
1, n

)
is used for 1,2,. . . ,n)

147
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do not coincide with the poles of Γ
(
b j + B js

)
, j =

(
1,m

)
. The parameters pi, qi are

non-negative integers satisfying the condition 0 ≤ n ≤ pi, 1 ≤ m ≤ qi, τi > 0

for i = 1, r. The parameters A j, B j, A ji, B ji > 0 and a j, b j, a ji, b ji ∈ C. The empty

product in (2) is interpreted as unity. The existence conditions for the defining integral

(1) are given below:

φl > 0,
∣∣∣arg(z)

∣∣∣ < π

2
φl , l = 1, r ; (3)

φl ≥ 0,
∣∣∣arg(z)

∣∣∣ < π

2
φl and ℜ{ζ l} + 1 < 0 , (4)

where

φl =

n∑

j=1

A j +

m∑

j=1

B j − τl


pl∑

j=n+1

A jl +

ql∑

j=m+1

B jl

 (5)

ζ l =

m∑

j=1

b j −
n∑

j=1

a j + τl


ql∑

j=m+1

b jl −
pl∑

j=n+1

a jl

 +
1

2
(pl − ql) ,

(
l = 1, r

)
. (6)

Remark 1.1. For τi = 1, i = 1, r in (1), we get the I-function due to V.P. Saxena

[16], defined in the following manner:

Im,n
pi,qi;r

[z] = ℵm,n
pi,qi,1; r

[z] = ℵm,n
pi,qi,1; r

[
z

∣∣∣∣∣∣
(a j,A j)1,n,...,(a j,A j)n+1,pi

(b j,B j)1,m,...,(b j,B j)m+1,qi

]
:=

:=
1

2πi

∫

L

Ω
m,n
pi,qi,1;r

(s) z−s ds, (7)

where the kernelΩ
m,n
pi,qi,1; r

(s) is given in (2). The existence conditions for the integral

in (1.1) are the same as given in (3) - (6) with τi = 1, i = 1, r.

Remark 1.2. If we further set r = 1, then (1.1) reduces to the familiar H- function

[3, 4]:

Hm,n
p,q [z] = ℵm,n

pi,qi,1;1
[z] = ℵm,n

pi,qi,1;1

[
z

∣∣∣∣∣
(ap,Ap)
(bq,Bq)

]
:=

1

2πi

∫

L

Ω
m,n
pi,qi,1;1

(s) z−s ds, (8)

where the kernel Ω
m,n

pi,qi,1; 1
(s) can be obtained from (2).

Remark 1.3. Fractional integration of Aleph function is discussed by Saxena and

Pogány [14]. A detailed account of ℵ- function is given in the papers by Saxena et

al. [13, 14].

The ℵ- function of two variables occurring in the present paper will be defined and

represented in the following manner, which is also believed to be new and given first
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time by authors as following:

ℵ [
x, y

]

= ℵ0,n: m1,n1;m2,n2

p,q:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r


x

y

∣∣∣∣∣∣∣
(a j;α j,A j)1,p:(c j,C j)1,n1

,...,[τ j(c j,C j)]n1+1,pi
;(e j,E j)1,n2

,...,
[
τ′

j(e j,E j)
]
n2+1,p′

i(
b j; β j,B j

)
1,q

:(d j,D j)1,m1
,...,[τ j(d j,D j)]m1+1,qi

;( f j,F j)1,m2
,...,

[
τ′

j( f j,F j)
]
m2+1,q′

i



=
1

(2πi)2

∫

L1

∫

L2

ϕ (s, ξ) θ1 (s) θ2 (ξ) x−sy−ξ ds dξ, (9)

where

ϕ (s, ξ) =

∏n
j=1

{
Γ
(
1 − a j − α js − A jξ

)}

∏p

j=n+1

{
Γ
(
a j + α js + A jξ

)} ∏q

j=1

{
Γ
(
1 − b j − β js − B jξ

)} , (10)

θ1(s) = Ω
m1,n1
pi,qi,τi; r (s) =

∏m1

j=1

{
Γ
(
d j + D js

)} ∏n1

j=1

{
Γ
(
1 − c j −C js

)}

∑r
i=1 τi

∏qi

j=m1+1

{
Γ
(
1 − d ji − D jis

)} ∏pi

j=n1+1

{
Γ
(
c ji +C jis

)} ,

(11)

θ2(ξ) = Ωm2,n2

p′
i
,q′

i
,τ′

i
; r

(ξ) =

∏m2

j=1

{
Γ
(

f j + F jξ
)} ∏n2

j=1

{
Γ
(
1 − e j − E jξ

)}

∑r
i=1 τ

′
i

∏q′
i

j=m2+1

{
Γ
(
1 − f ji − F jiξ

)} ∏p′
i

j=n2+1

{
Γ
(
e ji + E jiξ

)} ,

(12)

2. GENERALIZED FRACTIONAL CALCULUS
OPERATORS

Let α, α′, β, β′, γ ∈ C, Re (γ) > 0 and x ∈ R+, then the generalized fractional

integration operators involving Appell function F3 as a kernel are defined by Saigo

and Maeda [9] as following:

(
I
α,α′,β,β′,γ
0,x

f
)

(x) =
x−α

Γ (γ)

∫ x

0

(x − t)γ−1 t−α
′
F3

(
α, α′, β, β′; γ; 1 − t/x, 1 − x/t

)
f (t) dt,

(13)

and

(
I
α,α′,β,β′,γ
x,∞ f

)
(x) =

x−α
′

Γ (γ)

∫ ∞

x

(t − x)γ−1 t−αF3

(
α, α′, β, β′; γ; 1 − x/t, 1 − t/x

)
f (t) dt,

(14)

here, Re (γ) denotes the real part of γ, and F3 (α, α′, β, β′; γ; z, ξ) is the familiar Appell

hypergeometric function of two variables is defined by:

F3

(
α, α′, β, β′; γ; z, ξ

)
=

∞∑

m=0

∞∑

n=0

(α)m (α′)n (β)m (β′)n

(γ)m+n

zm

m!

ξn

n!
(|z| < 1, |ξ| < 1) . (15)
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Lemma 2.1 ([9], p. 394, eqns. (4.18) and (4.19)). Let α, α′, β, β′, γ ∈ C, then there

holds the following power function formulae:

(i) If Re (γ) > 0, Re (ρ) > max
[
0,Re(α + α′ + β − γ),Re (α′ − β′)], then

I
α,α′,β,β′,γ
0+

xρ−1 = xρ−α−α
′+γ−1 Γ(ρ)Γ(ρ + γ − α − α′ − β)Γ(ρ + β′ − α′)

Γ(ρ + γ − α − α′)Γ(ρ + γ − α′ − β)Γ(ρ + β′)
, (16)

(ii) If Re (γ) > 0, Re (ρ) < 1+min
[
Re(−β), Re (α + α′ − γ) , Re (α + β′ − γ)

]
, then

I
α,α′,β,β′,γ
− xρ−1 = xρ−α−α

′+γ−1 Γ(1 + α + α
′ − γ − ρ)Γ(1 + α + β′ − γ − ρ)Γ(1 − β − ρ)

Γ(1 − ρ)Γ(1 + α + α′ + β′ − γ − ρ) Γ(1 + α − β − ρ)
.

(17)

Remark 2.1. Generalized fractional integration formulas for the product of special

functions are discussed by Ram and Kumar [6], Gupta et al. [2] and Saigo et al.

[10].

3. LEFT-SIDED GENERALIZED FRACTIONAL
INTEGRATION OF THE PRODUCT OF TWO
ℵ-FUNCTIONS

In this section, we study the left-sided generalized fractional integration I
α,α′,β,β′,γ
0+

defined in (13).

Theorem 3.1. Let α, α′, β, β′, γ, σ, λ, ω ∈ C, Re (γ) > 0, (µ, υ > 0) , and

Re (σ)+µ min
1≤ j≤m1

Re

(
b j

B j

)
+υ min

1≤ j≤m2

Re

(
d j

D j

)
> max

[
0, Re (α′ − β′) ,Re (α + α′ + β′ − γ)

]
.

Further, let the constants a j, b j, a ji, b ji ∈ C, A j, B j, A ji, B ji ∈ R+ (i = 1, ..., pi; j = 1, ..., qi) ;

c j, d j, c ji, d ji ∈ C, C j,D j,C ji,D ji ∈ R+
(
i = 1, ..., p′

i
; j = 1, ..., q′

i

)
, τi, τ

′
i
> 0 for

i = 1, r also satisfy the conditions are given (3) - (6). Then the left-sided general-

ized fractional integration I
α,α′,β,β′,γ
0+

of the product of two ℵ-functions exists and the

following relation holds:


I
α,α′,β,β′,γ
0+

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ tµ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω tυ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x) = xσ−α−α

′+γ−1

× ℵ0,3: m1,n1;m2,n2

3,3:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r

[
λxµ

ωxυ

∣∣∣∣∣∣
(1 − σ ; µ, υ) , (1 − σ − γ + α + α′ + β; µ, υ) ,
(1 − σ − γ + α + α′; µ, υ) , (1 − σ − β′; µ, υ) ,

(1−σ−β′+α′;µ,υ):(a j,A j)1,n1
,...,[τ j(a j,A j)]n1+1,pi

;(c j,C j)1,n2
,...,

[
τ′

j(c j,C j)
]
n2+1,p′

i

(1−σ−γ+α′+β;µ,υ):(b j,B j)1,m1
,..., [τ j(b j,B j)]m1+1,qi

; (d j,D j)1,m2
,...,

[
τ′

j(d j,D j)
]
m2+1,q′

i

 . (18)
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Proof. In order to prove (18), we first express the product of two Aleph functions

occurring on the left hand side of (18) in terms of Mellin-Barnes contour integral

with the help of equation (1) and interchanging the order of integration, we obtain

(say I):

I =
1

(2πi)2

∫

L1

Ω
m1,n1
pi,qi,τi;r (s) λ−sds

∫

L2

Ω
m2,n2

p′
i
,q′

i
,τ′

i
;r

(ξ) ω−ξ dξ
(
I
α,α′,β,β′,γ
0+

tσ−µs−υξ−1
)

(x)

=
1

(2πi)2

∫

L1

∫

L2

Ω
m1,n1
pi,qi,τ1;r (s) Ω

m2,n2

p′
i
,q′

i
,τ′

i
;r

(ξ) λ−sω−ξ
(
I
α,α′,β,β′,γ
0+

tσ−µs−υξ−1
)

(x) ds dξ,

from (16), we arrive at

I =
1

(2πi)2

∫

L1

∫

L2

Γ (σ − µs − υξ) Γ (σ − µs − υξ + γ − α − α′ − β)

Γ (σ − µs − υξ + γ − α − α′) Γ (σ − µs − υξ + γ − α′ − β)

× Γ (σ − µs − υξ + β′ − α)

Γ (σ − µs − υξ + β′)

∏m1

j=1

{
Γ
(
b j + B js

)} ∏n1

j=1

{
Γ
(
1 − a j − A js

)}

∑r
i=1 τi

∏qi

j=m1+1

{
Γ
(
1 − b ji − B jis

)} ∏pi

j=n1+1

{
Γ
(
a ji + A jis

)}

×
∏m2

j=1

{
Γ
(
d j + D jξ

)} ∏n2

j=1

{
Γ
(
1 − c j −C jξ

)}

∑r
i=1 τ

′
i

∏q′
i

j=m2+1

{
Γ
(
1 − d ji − D jiξ

)} ∏p′
i

j=n2+1

{
Γ
(
c ji +C jiξ

)}

× xσ−µs−υξ−α−α′+γ−1 λ−sω−ξ ds dξ . (19)

By interpreting the Mellin-Barnes counter integral thus obtained in terms of the ℵ-

function of two variables as given in (9), we obtain the result (18). This completes

the proof of Theorem 1.

Special Cases of Theorem 1:

If we put τi = 1, τ′
i
= 1 (i = 1, 2, ..., r) in (18) and take (1.1) into account, then we

arrive at the following result in the term of I-function [16].

Corollary 3.1.


I
α,α′,β,β′,γ
0+

t
σ−1 I

m1,n1
pi,qi;r

λ tµ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
(
a j, A j

)
n1+1,pi(

b j, B j

)
1,m1

, ...,
(
b j, B j

)
m1+1,qi



. Im2,n2

p′
i
,q′

i
;r

ω tυ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
(
c j,C j

)
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
(
d j,D j

)
m2+1,q′

i






(x) = xσ−α−α

′+γ−1

× I
0,3: m1,n1;m2,n2

3,3:pi,qi;p
′
i
,q′

i
;r

[
λxµ

ωxυ

∣∣∣∣∣∣
(1 − σ ; µ, υ) , (1 − σ − γ + α + α′ + β; µ, υ) ,
(1 − σ − γ + α + α′; µ, υ) , (1 − σ − β′; µ, υ) ,

(1 − σ − β′ + α′; µ, υ) :
(
a j, A j

)
1,n1

, ...,
(
a j, A j

)
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
(
c j,C j

)
n2+1,p′

i

(1 − σ − γ + α′ + β; µ, υ) :
(
b j, B j

)
1,m1

, ...,
(
b j, B j

)
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
(
d j,D j

)
m2+1,q′

i



(20)
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The existence conditions for (20) are the same as given in Theorem 1.

If we put τi = 1, τ′
i
= 1

(
i = 1, r

)
and set r = 1 in (18) and take (8) into account,

then we arrive at the following result in the term of product of two H-functions given

by Ram and Kumar [[6], Eqn. (17), p. 36].

Corollary 3.2.


I
α,α′,β,β′,γ
0+

t
σ−1 Hm1,n1

p,q

λ tµ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,p(

b j, B j

)
1,q

 H
m2,n2

p′,q′

ω tυ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,p′(

d j,D j

)
1,q′






(x)

= xσ−α−α
′+γ−1H

0,3: m1,n1;m2,n2

3,3:p,q;p′,q′

[
λxµ

ωxυ

∣∣∣∣∣∣
(1 − σ ; µ, υ) , (1 − σ − γ + α + α′ + β; µ, υ) ,
(1 − σ − γ + α + α′; µ, υ) , (1 − σ − β′; µ, υ) ,

(1 − σ − β′ + α′; µ, υ) :
(
a j, A j

)
1,p

;
(
c j,C j

)
1,p′

(1 − σ − γ + α′ + β; µ, υ) :
(
b j, B j

)
1,q

;
(
d j,D j

)
1,q′

 . (21)

The existence conditions for (21) are the same as given in Theorem 1.

Now, if we follow Theorem 1 in respective case α′ = β′ = 0, β = −η, α =
α + β, γ = α. Then we arrive at the following corollary concerning left-sided Saigo

fractional integration operator [7].

Corollary 3.3. Let α, β, η, σ, λ, ω ∈ C, Re (α) > 0, µ, υ > 0 and let the constants

a j, b j, a ji, b ji ∈ C, A j, B j, A ji, B ji ∈ R+ (i = 1, ..., pi; j = 1, ..., qi) ; c j, d j, c ji, d ji ∈ C,

C j,D j,C ji,D ji ∈ R+
(
i = 1, ..., p′

i
; j = 1, ..., q′

i

)
, τi, τ

′
i
> 0 for i = 1, r. Further, sat-

isfy the condition Re (σ)+µ min
1≤ j≤m1

Re

(
b j

B j

)
+υ min

1≤ j≤m2

Re

(
d j

D j

)
> max

[
0, Re (β − η)

]
.

Then the left-sided Saigo fractional integral I
α,β,η
0+

of the product of two ℵ-functions

exists and the following relation holds:


I
α,β,η
0+

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ tµ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω tυ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x)

= xσ−β−1 ℵ0,2: m1,n1;m2,n2

2,2:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r

[
λxµ

ωxυ

∣∣∣∣∣∣
(1 − σ ; µ, υ) , (1 − σ − η + β; µ, υ) :

(1 − σ + β; µ, υ) , (1 − σ − α − η; µ, υ) :
(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (22)
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For β = −α in Corollary 1.3, the Saigo operator reduces to Riemann-Liouville

operator [17] and we obtain the following result:

Corollary 3.4.


Iα0+

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ tµ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω tυ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x)

= xσ+α−1 ℵ0,1:m1,n1;m2,n2

1,1:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r


λxµ

ωxυ

∣∣∣∣∣∣∣∣

(1 − σ ; µ, υ) :
(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;

(1 − σ − α; µ, υ) :
(
b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (23)

Now, if we set β = 0 in Corollary 1.4, the Riemann-Liouville operator reduces to

Erdélyi-Kober operator [17] and we obtain the following result:

Corollary 3.5.


I+η,α

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ tµ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω tυ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x)

= xσ−1 ℵ0,1:m1,n1;m2,n2

1,1:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r


λxµ

ωxυ

∣∣∣∣∣∣∣
(1 − σ − η; µ, υ) :

(
a j, A j

)
1,n1

, ...,

(1 − σ − α − η; µ, υ) :
(
b j, B j

)
1,m1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i[
τ j

(
b j, B j

)]
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (24)

We can also obtain results of I-function and H-function for the corollaries 1.3, 1.4

and 1.5 by following the same method as done in corollaries 1.1 and 1.2.

4. RIGHT-SIDED GENERALIZED FRACTIONAL
INTEGRATION OF THE PRODUCT OF TWO
ℵ-FUNCTIONS

In this section, we study the right-sided generalized fractional integration I
α,α′,β,β′,γ
−

defined in (14).
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Theorem 4.1. Let α, α′, β, β′, γ, σ, λ, ω ∈ C, Re (γ) > 0, (µ, υ > 0); Re (σ)−µ min
1≤ j≤m1

Re

(
b j

B j

)

−υ min
1≤ j≤m2

Re

(
d j

D j

)
< 1 +min

[
Re (−β) ,Re (α + α′ − γ) ,Re (α + β′ − γ)

]
.

Further, let the constants a j, b j, a ji, b ji ∈ C, A j, B j, A ji, B ji ∈ R+ (i = 1, ..., pi; j = 1, ..., qi) ;

c j, d j, c ji, d ji ∈ C, C j,D j,C ji,D ji ∈ R+
(
i = 1, ..., p′

i
; j = 1, ..., q′

i

)
, τi, τ

′
i
> 0 for

i = 1, r also satisfy the conditions as given (3) - (6). Then the right-sided general-

ized fractional integration I
α,α′,β,β′,γ
− of the product of two ℵ-functions exists and the

following relation holds:


I
α,α′,β,β′,γ
−

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ t−µ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω t−υ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x) = xσ−α−α

′+γ−1

× ℵ0,3:m1,n1;m2,n2

3,3:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r

[
λx−µ

ωx−υ

∣∣∣∣∣∣
(σ + γ − α − α′; µ, υ) , (σ + γ − α − β′; µ, υ) , (σ + β; µ, υ) :

(σ; µ, υ) , (σ + γ − α − α′ − β′; µ, υ) , (σ − α + β; µ, υ) :
(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (25)

Proof. In order to prove (25), we first express the product of two Aleph functions

occurring on the left hand side of (25) in terms of Mellin-Barnes contour integral

with the help of equation (1) and interchanging the order of integration, we obtain

(say I):

I =
1

(2πi)2

∫

L1

Ω
m1,n1
pi,qi,τi;r (s) λ−sds

∫

L2

Ω
m2,n2

p′
i
,q′

i
,τ′

i
;r

(ξ) ω−ξ dξ
(
I
α,α′,β,β′,γ
− tσ+µs+υξ−1

)
(x)

=
1

(2πi)2

∫

L1

∫

L2

Ω
m1,n1
pi,qi,τ1;r (s) Ω

m2,n2

p′
i
,q′

i
,τ′

i
;r

(ξ) λ−sω−ξ
(
I
α,α′,β,β′,γ
− tσ+µs+υξ−1

)
(x) ds dξ,

from (17), we arrive at

I =
1

(2πi)2

∫

L1

∫

L2

Γ (1 + α + α′ − γ − σ − µs − υξ) Γ (1 + α + β′ − γ − σ − µs − υξ)
Γ (1 − σ − µs − υξ) Γ (1 + α + α′ + β′ − γ − σ − µs − υξ)

× Γ (1 − β − σ − µs − υξ)
Γ (1 + α − β − σ − µs − υξ)

∏m1

j=1

{
Γ
(
b j + B js

)} ∏n1

j=1

{
Γ
(
1 − a j − A js

)}

∑r
i=1 τi

∏qi

j=m1+1

{
Γ
(
1 − b ji − B jis

)} ∏pi

j=n1+1

{
Γ
(
a ji + A jis

)}

×
∏m2

j=1

{
Γ
(
d j + D jξ

)} ∏n2

j=1

{
Γ
(
1 − c j −C jξ

)}

∑r
i=1 τ

′
i

∏q′
i

j=m2+1

{
Γ
(
1 − d ji − D jiξ

)} ∏p′
i

j=n2+1

{
Γ
(
c ji +C jiξ

)}

× xσ+µs+υξ−α−α′+γ−1 λ−sω−ξ ds dξ . (26)
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By interpreting the Mellin-Barnes counter integral thus obtained in terms of the ℵ-

function of two variables as given in (9), we obtain the result (25). This completes

the proof of Theorem 2.

Special Cases of Theorem 2:

If we put τi = 1, τ′
i
= 1 (i = 1, 2, ..., r) in (25) and take (1.1) into account, then we

arrive at the following result in the term of I-function [16].

Corollary 4.1.


I
α,α′,β,β′,γ
−

t
σ−1 I

m1,n1
pi,qi;r

λ t−µ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
(
a j, A j

)
n1+1,pi(

b j, B j

)
1,m1

, ...,
(
b j, B j

)
m1+1,qi



. Im2,n2

p′
i
,q′

i
;r

ω t−υ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
(
c j,C j

)
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
(
d j,D j

)
m2+1,q′

i






(x) = xσ−α−α

′+γ−1

× I
0,3: m1,n1;m2,n2

3,3:pi,qi;p
′
i
,q′

i
;r

[
λx−µ

ωx−υ

∣∣∣∣∣∣
(σ + γ − α − α′; µ, υ) , (σ + γ − α − β′; µ, υ) ,

(σ; µ, υ) , (σ + γ − α − α′ − β′; µ, υ) ,

(σ + β; µ, υ) :
(
a j, A j

)
1,n1

, ...,
(
a j, A j

)
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
(
c j,C j

)
n2+1,p′

i

(σ − α + β; µ, υ) :
(
b j, B j

)
1,m1

, ...,
(
b j, B j

)
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
(
d j,D j

)
m2+1,q′

i

 .

(27)

The existence conditions for (27) are the same as given in Theorem 2.

If we put τi = 1, τ′
i
= 1

(
i = 1, r

)
and set r = 1 in (25) and take (8) into account,

then we arrive at the following result in the term of product of two H-functions given

by Ram and Kumar [[6], Eqn. (20), p. 39].

Corollary 4.2.


I
α,α′,β,β′,γ
−

t
σ−1 Hm1,n1

p,q

λ t−µ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,p(

b j, B j

)
1,q

 H
m2,n2

p′,q′

ω t−υ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,p′(

d j,D j

)
1,q′






(x)

= xσ−α−α
′+γ−1H

0,3:m1,n1;m2,n2

3,3:p,q;p′,q′

[
λx−µ

ωx−υ

∣∣∣∣∣∣
(σ + γ − α − α′; µ, υ) , (σ + β; µ, υ) ,
(σ; µ, υ) , (σ + γ − α − α′ − β′; µ, υ) ,

(σ + γ − α − β′; µ, υ) :
(
a j, A j

)
1,p

;
(
c j,C j

)
1,p′

(σ + β − α; µ, υ) :
(
b j, B j

)
1,q

;
(
d j,D j

)
1,q′

 . (28)

The existence conditions for (28) are the same as given in Theorem 2.

Now, if we follow Theorem 2 in respective case α′ = β′ = 0, β = −η, α =
α + β, γ = α. Then we arrive at the following corollary concerning right-sided Saigo

fractional integration operator [7].
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Corollary 4.3. Let α, β, η, σ, λ, ω ∈ C, Re (α) > 0, µ, υ > 0 and let the constants

a j, b j, a ji, b ji ∈ C, A j, B j, A ji, B ji ∈ R+ (i = 1, ..., pi; j = 1, ..., qi) ; c j, d j, c ji, d ji ∈ C,

C j,D j,C ji,D ji ∈ R+
(
i = 1, ..., p′

i
; j = 1, ..., q′

i

)
, τi, τ

′
i
> 0 for i = 1, r. Further, sat-

isfy the condition Re (σ)−µ min
1≤ j≤m1

Re

(
b j

B j

)
−υ min

1≤ j≤m2

Re

(
d j

D j

)
< 1+min

[
Re (β) ,Re (η)

]
.

Then the right-sided Saigo fractional integral I
α,β,η
− of the product of two ℵ-functions

exists and the following relation holds:


I
α,β,η
−

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ t−µ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω t−υ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x)

= xσ−β−1 ℵ0,2: m1,n1;m2,n2

2,2:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r


λx−µ

ωx−υ

∣∣∣∣∣∣∣
(σ − β; µ, υ) , (σ − η; µ, υ) :

(
a j, A j

)
1,n1

, ...,

(σ; µ, υ) , (σ − α − β − η; µ, υ) :
(
b j, B j

)
1,m1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i[
τ j

(
b j, B j

)]
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (29)

For β = −α in Corollary 2.3, the Saigo operator reduces to Riemann-Liouville oper-

ator [17] and we obtain the following result:

Corollary 4.4.


Iα−

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ t−µ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω t−υ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x)

= xσ+α−1 ℵ0,1:m1,n1;m2,n2

1,1:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r


λx−µ

ωx−υ

∣∣∣∣∣∣∣∣

(σ + α; µ, υ) :
(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;

(σ; µ, υ) :
(
b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (30)

Now, if we set β = 0 in Corollary 2.4, the Riemann-Liouville operator reduces to

Erdélyi-Kober operator [17] and we obtain the following result:
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Corollary 4.5.


I−η,α

t
σ−1 ℵm1,n1

pi,qi,τi;r

λ t−µ

∣∣∣∣∣∣∣∣

(
a j, A j

)
1,n1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi(

b j, B j

)
1,m1

, ...,
[
τ j

(
b j, B j

)]
m1+1,qi



.ℵm2,n2

p′
i
,q′

i
,τ′

i
;r

ω t−υ

∣∣∣∣∣∣∣∣

(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i






(x)

= xσ−1 ℵ0,1:m1,n1;m2,n2

1,1:pi,qi,τi;p
′
i
,q′

i
,τ′

i
;r


λx−µ

ωx−υ

∣∣∣∣∣∣∣
(σ − η; µ, υ) :

(
a j, A j

)
1,n1

, ...,

(σ − α − η; µ, υ) :
(
b j, B j

)
1,m1

, ...,
[
τ j

(
a j, A j

)]
n1+1,pi

;
(
c j,C j

)
1,n2

, ...,
[
τ′

j

(
c j,C j

)]
n2+1,p′

i[
τ j

(
b j, B j

)]
m1+1,qi

;
(
d j,D j

)
1,m2

, ...,
[
τ′

j

(
d j,D j

)]
m2+1,q′

i

 . (31)

We can also obtain results of I-function and H-function for the corollaries 2.3, 2.4

and 2.5 by following the same method as done in corollaries 2.1 and 2.2.

Remark 4.1. (i). If we specialize the first H-function in Corollary 1.2 and 2.2 to

the exponential function by taking µ = 1, then we obtain the result given by Ram and

Kumar [[6], Eqn. (21), p.41].

(ii). If we further set ω = 0, then we obtain the result given by Ram and Kumar [

[6], Eqn. (22), p.41].

(iii). If we reduce the H-function to the generalized wright hypergeometric func-

tion [18], we have the results given by Ram and Kumar [[6], Eqn. (23), p.41].

(iv). A number of several special cases as Mittag-Leffler function, Whittaker func-

tion and Bessel function of the first kind can be developed for Corollary 1.2 and 2.2,

but we do not mention them here on account of lack space.
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Abstract We consider the problem of reconstructing, from the interior data u(x, 1) and uy(x, 1), a

function u satisfying a linear elliptic equation

∆u = 0, x ∈ R, 0 < y < 1.

The problem is ill-posed. Using the method of Green functions, the method of

Fourier transforms, and the quasi-boundary value method, we shall regularize the prob-

lem. Error estimate is given.

Keywords: Fourier transform; linearly ill-posed problem; quasi-boundary value methods.
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1. INTRODUCTION

In this paper, we consider the problem of reconstructing the temperature of a body

from interior measurements. In fact, in many engineering contexts (see, e.g., [1]),

we cannot attach a temperature sensor at the surface of a body (e.g., the skin of a

missile). Hence, to get the distribution of temperature on the surface, we have to use

the measured temperature inside the body.

Precisely, we consider the problem of finding the temperature u(x, y), x ∈ R, 0 <
y < 1 satisfying

∆u = 0, x ∈ R, 0 < y < 1 (1)

subject to the conditions

u(x, 1) = φ(x), (2)

uy(x, 1) = ψ(x), (3)

where φ(x), ψ(x) are given. The problem is called the Cauchy problem for linear

homogeneous elliptic equation. Using the method of Green functions and the method

159
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of Fourier transforms, we can rewrite the above system in the following form (see [8])

û(p, y) =
1

2
φ̂(p)

[
e(1−y)|p| + e(y−1)|p|] + 1

2|p| ψ̂(p)
[
e(y−1)|p| − e(1−y)|p|] . (4)

The homogeneous problem was studied, by various methods in many papers. Us-

ing the mollification method, the homogeneous sideways parabolic problems were

considered in [2, 3, 4, 5-7] and the references therein. Similarly, many methods have

been investigated to solve the Cauchy problem for linear homogeneous elliptic equa-

tion such as the quasi-reversibility method [9], fourth order modified method [10],

Meyer wavelets [11], etc. Moreover, in [11,12,13], the error estimate was not given.

Especially, in [10], the authors considered the same form of the system (1)-(3) as

follows

∆u = 0, 0 < x ≤ 1, y ∈ R
u(0, y) = φ(y),

ux(0, y) = 0,

and in the case x = 1, they showed that the error between the aprroximate problem

and the exact solution is

∥u(1, ·) − v(1, ·)∥ ≤ E
(
ln

E

δ

)2p
+ ε

where ∥·∥ is the norm on L2(R) and

ε = max

{
µp,

1

2
µp−1,

1

2
µ2

}
E,

µ =
1

ln

(
E

δ

(
ln

E

δ

)−2p
) ,

∥u(1, ·)∥p ≤ E, p ≥ 0,

∥·∥p denotes the norm in Hp(R) defined by

∥u(1, ·)∥p =



+∞∫

−∞

(
1 + ξ2

)p |̂u(1, ·)|dξ



1/2

,

It is easy to see that the error above is not near to zero if p = 0. In the current

paper, we shall prove that

∥wϵ(·, 0) − uex(·, 0)∥2 ≤ C

(
ln

(
1

ϵ

))−1/4
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where ∥·∥2 is the norm on L2(R), C is a positive constant. It is easy to see that the

convergence of the approximate solution is also proved.

In the present paper, we shall regularize (1)-(3) using the method of integral equa-

tion. We approximate problem (4) by the following problem

ûϵ(p, y) = 1
2
φ̂(p)

[
e−y|p|

ϵ+e−|p|
+ e(y−1)|p|

]

+1
2

[
1−e2(1−y)|p|

|p|e2(1−y)|p|

] [
e−2y|p|

ϵ+e−2|p|

]
e(y−1)|p|ψ̂(p)

or

uϵ(x, y) =
1√
2π

+∞∫

−∞

1

2
φ̂(p)

[
e−y|p|

ϵ + e−|p|
+ e(y−1)|p|

]
eipxdp

+
1√
2π

+∞∫

−∞

1

2

[
1 − e2(1−y)|p|

|p|e2(1−y)|p|

] [
e−2y|p|

ϵ + e−2|p|

]
e(y−1)|p|ψ̂(p)eipxdp.

(5)

The rest of the article is divided into two sections. In Section 2, we shall study the

ill-posedness and the regularization of problem (1)-(3). In Section 3, we shall give a

numerical experiment.

2. MAIN RESULTS

2.1. THE ILL-POSEDNESS OF PROBLEM (1)-(3)

The Cauchy problem for linear homogeneous elliptic equation is severely ill-posed.

We shall prove solutions do not depend continuously on the given data. Indeed, we

choose

φ̂n(p) =



[
1

e|p| + e−|p|

]
n

|p|3/2 if |p| ≥ n

0 if |p| < n

(6)

and

ψ̂n(p) = 0 (7)

where p ∈ R, n ∈ N.
Then, we have

∥∥∥̂φn

∥∥∥2

L2(R)
=

∫

|p|≥n

∣∣∣∣∣
1

e|p| + e−|p|

∣∣∣∣∣
2

n2

|p|3 dp ≤
∫

|p|≥n

e−2|p| n2

|p|3 dp

≤ 1
n

∫

|p|≥n

e−2|p|dp ≤ 1
n

∫

R

e−2|p|dp = 1
n
.
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From (4) and by choosing φ̂n, ψ̂n in (7)-(8), we have

∥∥∥̂un(·, 0)
∥∥∥2

L2(R)
=

n2

4

∫

|p|≥n

|p|−3 dp =
1

4
. (8)

Letting n → ∞ in (9) and (10), we have
∥∥∥̂φn

∥∥∥2

L2(R)
→ 0 while

∥∥∥̂un(·, 0)
∥∥∥2

L2(R)
→ 1

4
.

So, the problem is ill-posed.

2.2. REGULARIZATION OF PROBLEM (1)-(3)

Assume that uex is the exact solution of (1)-(3), vex is the solution of problem

(6) corresponding to the exact data φex, ψex and vϵ is the solution of problem (6)

corresponding to the measured data φϵ , ψϵ , where φex, ψex, φϵ , ψϵ are in the right-

hand side of (6) such that
∥∥∥φϵ − φex

∥∥∥
2
≤ ϵ,

∥∥∥ψϵ − ψex

∥∥∥
2
≤ ϵ where ∥·∥2 is the norm on

L2(R). Then, we have

ûex(p, y) =
1

2
φ̂ex(p)

[
e(1−y)|p| + e(y−1)|p|] + 1

2|p| ψ̂ex(p)
[
e(y−1)|p| − e(1−y)|p|] , (9)

v̂ex(p, y) = 1
2
φ̂ex(p)

[
e−y|p|

ϵ+e−|p|
+ e(y−1)|p|

]

+1
2

[
1−e2(1−y)|p|

|p|e2(1−y)|p|

] [
e−2y|p|

ϵ+e−2|p|

]
e(y−1)|p|ψ̂ex(p),

v̂ϵ(p, y) = 1
2
φ̂ϵ(p)

[
e−y|p|

ϵ+e−|p|
+ e(y−1)|p|

]

+1
2

[
1−e2(1−y)|p|

|p|e2(1−y)|p|

] [
e−2y|p|

ϵ+e−2|p|

]
e(y−1)|p|ψ̂ϵ(p).

We have the estimate

∥vϵ − uex∥2 =
∥∥∥̂vϵ − ûex

∥∥∥
2
≤

∥∥∥̂vϵ − v̂ex

∥∥∥
2
+

∥∥∥̂vex − ûex

∥∥∥
2
. (10)

We first have the following lemma

Lemma 2.1 (The stability of a solution of problem (5)). Suppose that φex, ψex, φϵ ,
ψϵ ∈ L2(R) and

∥∥∥φϵ − φex

∥∥∥
2
≤ ϵ,

∥∥∥ψϵ − ψex

∥∥∥
2
≤ ϵ. Then we have

∥∥∥̂vϵ(·, y) − v̂ex(·, y)
∥∥∥

2
≤ 3√

2
(ϵy + ϵ)

for all y ∈ (0, 1).

Proof. First, from (12) and (13), we have

v̂ϵ(p, y) − v̂ex(p, y) =
1

2

[
e−y|p|

ϵ + e−|p|
+ e(y−1)|p|

] [̂
φϵ(p) − φ̂ex(p)

]
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+
1

2

[
1 − e2(1−y)|p|

|p|e2(1−y)|p|

] [
e−2y|p|

ϵ + e−2|p|

]
e(y−1)|p|

[
ψ̂ϵ(p) − ψ̂ex(p)

]
.

(11)

Using the inequality
e|x| − 1

|x| ≤ e|x| for every x , 0, we have

∣∣∣∣∣∣
1 − e2(1−y)|p|

|p|e2(1−y)|p|

∣∣∣∣∣∣ ≤ 2, for 0 < y < 1. (12)

Moreover, one has, for s > y > 0 and α > 0,

e−y|p|

α + e−s|p| =
1

(αes|p| + 1)
y

s (α + e−s|p|)1− y

s

≤ α
y

s
−1.

Letting α = ϵ, s = 1, we get

e−y|p|

ϵ + e−|p|
≤ ϵy−1. (13)

From (15), (16), (17) and take note that e(y−1)|p| ≤ 1 for 0 < y < 1, we obtain

∣∣∣̂vϵ(p, y) − v̂ex(p, y)
∣∣∣ ≤ 1

2

[
e−y|p|

ϵ + e−|p|
+ e(y−1)|p|

] ∣∣∣̂φϵ(p) − φ̂ex(p)
∣∣∣

+
1

2
e(y−1)|p|

∣∣∣∣∣∣
1 − e2(1−y)|p|

|p|e2(1−y)|p|

∣∣∣∣∣∣

[
e−2y|p|

ϵ + e−2|p|

] ∣∣∣̂ψϵ(p) − ψ̂ex(p)
∣∣∣

≤ 1

2

(
ϵy−1 + 1

) ∣∣∣̂φϵ(p) − φ̂ex(p)
∣∣∣ + ϵy−1

∣∣∣̂ψϵ(p) − ψ̂ex(p)
∣∣∣ .

(14)

Applying the inequality (a + b)2 ≤ 2(a2 + b2), we get

∣∣∣̂vϵ(p, y) − v̂ex(p, y)
∣∣∣2 ≤ 1

2

(
ϵy−1 + 1

)2 ∣∣∣̂φϵ(p) − φ̂ex(p)
∣∣∣2

+2
(
ϵy−1

)2 ∣∣∣̂ψϵ(p) − ψ̂ex(p)
∣∣∣2 .

In addition, since
(̂
φϵ − φ̂ex

) ∈ L2(R) and
(
ψ̂ϵ − ψ̂ex

)
∈ L2(R), we have

(̂
vϵ − v̂ex

) ∈ L2(R). (15)

From (19), (20) and take note of the inequality
√

a2 + b2 ≤ a + b for a, b ≥ 0, we

have
∥∥∥̂vϵ(·, y) − v̂ex(·, y)

∥∥∥
2
≤ 1√

2

(
ϵy−1 + 1

) ∥∥∥̂φϵ − φ̂ex

∥∥∥
2
+
√

2ϵy−1
∥∥∥ψ̂ϵ − ψ̂ex

∥∥∥
2

≤ 1√
2

(
ϵy−1 + 1

)
ϵ +
√

2ϵy−1ϵ =
(

1√
2
+
√

2

)
ϵy + 1√

2
ϵ

≤ 3√
2
(ϵy + ϵ).
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This completes the proof of Lemma 2.1.

Theorem 2.1. Let φ, ψ be as in Lemma 2.1. Assume that φ̂ex(p)e|p| ∈ L2(R), ψ̂ex(p)e2|p| ∈
L2(R), then for every 0 < y < 1 we have

∥vϵ(·, y) − uex(·, y)∥2 ≤ M(ϵy + ϵ)

where

M =
3√
2
+

1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)
. (16)

Proof. First, from (11) and (12), we have v̂ex(p, y)−ûex(p, y) =
1

2
φ̂ex(p)

[
e−y|p|

ϵ + e−|p|
− e(1−y)|p|

]

+
1

2

[
1 − e2(1−y)|p|

|p|e2(1−y)|p|

] [
e−2y|p|

ϵ + e−2|p| − e2(1−y)|p|
]

e(y−1)|p|ψ̂ex(p).

(17)

Moreover, one has, for 1 > y > 0,

e(1−y)|p| − e−y|p|

ϵ + e−|p|
=

ϵe−y|p|

e−|p|(ϵ + e−|p|)
, (18)

and take note that (17), we get

ϵe−y|p|

e−|p|(ϵ + e−|p|)
≤ ϵye|p|. (19)

From (24) and (25), we obtain

∣∣∣∣∣∣
e−y|p|

ϵ + e−|p|
− e(1−y)|p|

∣∣∣∣∣∣ ≤ ϵ
ye|p|. (20)

Similarly, we also have

∣∣∣∣∣∣
e−2y|p|

ϵ + e−2|p| − e2(1−y)|p|
∣∣∣∣∣∣ ≤ ϵ

ye2|p|. (21)

From (23), (26), (27), (16) and take note that e(y−1)|p| ≤ 1 for 0 < y < 1, we obtain
∣∣∣̂vex(p, y) − ûex(p, y)

∣∣∣ ≤ 1

2

∣∣∣̂φex(p)
∣∣∣
∣∣∣∣∣∣

e−y|p|

ϵ + e−|p|
− e(1−y)|p|

∣∣∣∣∣∣

+
1

2

∣∣∣∣∣∣
1 − e2(1−y)|p|

|p|e2(1−y)|p|

∣∣∣∣∣∣

∣∣∣∣∣∣
e−2y|p|

ϵ + e−2|p| − e2(1−y)|p|
∣∣∣∣∣∣
∣∣∣e(y−1)|p|∣∣∣

∣∣∣̂ψex(p)
∣∣∣

≤ 1

2
ϵy

∣∣∣̂φex(p)e|p|
∣∣∣ + ϵy

∣∣∣̂ψex(p)e2|p|∣∣∣ .
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Applying the inequality (a + b)2 ≤ 2(a2 + b2), we get

∣∣∣̂vex(p, y) − ûex(p, y)
∣∣∣2 ≤ 1

2
(ϵy)2

∣∣∣̂φex(p)e|p|
∣∣∣2

+2 (ϵy)2
∣∣∣̂ψex(p)e2|p|∣∣∣2 .

Therefore

∥∥∥̂vex(·, y) − ûex(·, y)
∥∥∥2

2
≤ 1

2

(
ϵy)2

∥∥∥̂φex(p)e|p|
∥∥∥2

2

+2
(
ϵy)2

∥∥∥ψ̂ex(p)e2|p|∥∥∥2

2
.

Since φ̂ex(p)e|p|, ψ̂ex(p)e2|p| ∈ L2(R) and the inequality
√

a2 + b2 ≤ a + b for

a, b ≥ 0, we have∥∥∥̂vex(·, y) − ûex(·, y)
∥∥∥

2
≤ 1√

2
ϵy

∥∥∥̂φex(p)e|p|
∥∥∥

2
+
√

2ϵy
∥∥∥ψ̂ex(p)e2|p|∥∥∥

2

=
1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)
ϵy.

(22)

From (14), using Lemma 2.1 and (29) we get

∥vϵ(·, y) − uex(·, y)∥2 ≤
3√
2

(ϵy + ϵ) +
1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)
ϵy

≤ M(ϵy + ϵ)
where

M =
3√
2
+

1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)
.

This completes the proof of Theorem 2.1.

Theorem 2.1 gives a good approximation for the case 0 < y < 1.

To get an approximation result for the case y = 0, we shall use the result of the

following Lemma.

Lemma 2.2. Let φ, ψ be as in Lemma 2.1. Assume that φ̂ex(p)e|p| ∈ L2(R), ψ̂ex(p)e2|p| ∈
L2(R) and that problem (4) has a solution satisfying uy ∈ L2((0, 1); L2(R)). Then for

all ϵ ∈ (0, 1) there exists a yϵ > 0 such that

∥vex(·, yϵ) − uex(·, 0)∥2 ≤
4√
8C1

(
ln

(
1

ϵ

))−1/4

where

N =

√√√√√√ 1∫

0

∥∥∥uy(·, s)
∥∥∥2

2
ds (23)
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and

C1 = max

{
N,

1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)}
. (24)

Proof. We have

uex(x, y) − uex(x, 0) =

y∫

0

uy(x, s)ds.

It follows that

∥uex(·, y) − uex(·, 0)∥22 ≤ y

1∫

0

||uy(·, s)||22ds = N2y.

Using (29) and (30) and (31), we have

∥vex(·, y) − uex(·, 0)∥2 ≤ ∥vex(·, y) − uex(·, y)∥2 + ∥uex(·, y) − uex(·, 0)∥2
≤ C1(

√
y + ϵy).

For every ϵ ∈ (0, 1), there exists uniquely a positive number yϵ such that
√

yϵ = ϵ
yϵ ,

i.e.,
ln yϵ

yϵ
= 2 ln ϵ.

Using inequality ln y > −(1/y) for every y > 0, we get

∥vex(·, yϵ) − uex(·, 0)∥2 ≤
4√
8C1

(
ln

(
1

ϵ

))−1/4

.

This completes the proof of Lemma 2.2.

In the case of non-exact data, one has

Theorem 2.2. Let φ, ψ be as in Lemma 2.1. Assume that φ̂ex(p)e|p| ∈ L2(R), ψ̂ex(p)e2|p| ∈
L2(R) and that problem (4) has a solution satisfying uy ∈ L2((0, 1); L2(R)). Let

ϵ ∈ (0, 1) such that
∥∥∥φϵ − φex

∥∥∥
2
≤ ϵ,

∥∥∥ψϵ − ψex

∥∥∥
2
≤ ϵ. Then from φϵ , ψϵ we can

construct a function wϵ satisfying

∥wϵ(·, y) − uex(·, y)∥2 ≤ M(ϵy + ϵ)

for every y ∈ (0, 1) and

∥wϵ(·, 0) − uex(·, 0)∥2 ≤ C

(
ln

(
1

ϵ

))−1/4
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where

M =
3√
2
+

1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)
,

C1 = max



√√√√√√ 1∫

0

∥∥∥uy(·, s)
∥∥∥2

2
ds,

1√
2

(∥∥∥̂φex(p)e|p|
∥∥∥

2
+ 2

∥∥∥ψ̂ex(p)e2|p|∥∥∥
2

)


and

C =
3
4
√

8
+

3√
2
+

4√
8C1.

Proof. Let yϵ be the unique solution of

√
yϵ = ϵ

yϵ . (25)

We define a function wϵ as follow

wϵ(·, y) =


vϵ(·, y), 0 < y < 1

vϵ(·, yϵ), y = 0.

From Theorem 2.1, we have

∥wϵ(·, y) − uex(·, y)∥2 = ∥vϵ(·, y) − uex(·, y)∥2 ≤ M(ϵy + ϵ) (26)

for every y ∈ (0, 1).
From Lemma 2.2, we have

∥vex(·, yϵ) − uex(·, 0)∥2 ≤
4
√

8C1

(
ln

(
1

ϵ

))−1/4

. (27)

Using Lemma 2.1 and (32), (34), we get

∥wϵ(·, 0) − uex(·, 0)∥2 = ∥vϵ(·, yϵ) − uex(·, 0)∥2
≤ ∥vϵ(·, yϵ) − vex(·, yϵ)∥2 + ∥vex(·, yϵ) − uex(·, 0)∥2

≤ 3√
2
ϵyϵ +

3√
2
ϵ +

4
√

8C1

(
ln

(
1

ϵ

))−1/4

≤ C

(
ln

(
1

ϵ

))−1/4

where

C =
3
4
√

8
+

3√
2
+

4√
8C1.

This completes the proof of Theorem 2.2.
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Remark 2.1. The condition uy ∈ L2((0, 1); L2(R)) is difficult to check. We can present

some conditions of φ, ψ . Since (4), we have

û(p, y) =
1

2
φ̂(p)

[
e(1−y)|p| + e(y−1)|p|] + 1

2|p| ψ̂(p)
[
e(y−1)|p| − e(1−y)|p|] . (28)

Therefore

∂

∂y
û(p, y) =

1

2
|p|̂φ(p)

[
−e(1−y)|p| + e(y−1)|p|] + 1

2|p| |p|̂ψ(p)
[
e(y−1)|p| + e(1−y)|p|]

=
1

2
|p|e|p|φ̂(p)

[
−e−y|p| + e(y−2)|p|] + 1

2|p| |p|e
|p|ψ̂(p)

[
e(y−2)|p| + e−y|p|] .

If |p|e|p|φ̂(p) ∈ L2(R), e|p|ψ̂(p) ∈ L2(R) then uy ∈ L2((0, 1); L2(R)).

3. A NUMERICAL EXPERIMENT

Consider the linear homogeneous elliptic equation

∆u = 0, x ∈ R, 0 < y < 1

where u satisfies

u(x, 1) = φ(x),

uy(x, 1) = ψ(x).

Consider the exact data φex(x) =
4

x2 + 4
, ψex(x) = 0 then

φ̂ex(p) =
1√
2π

+∞∫

−∞

4

x2 + 4
e−ipxdx =

√
2πe−2|p| (29)

and

ψ̂ex(p) = 0. (30)

From (35), (36) and (11), we have

ûex(p, y) =

√
π

2

[
e(1−y)|p| + e(y−1)|p|] e−2|p|.

Consider the measured data φϵ(x) =

(
ϵ√
π
+ 1

)
φex(x), we have

∥∥∥φϵ − φex

∥∥∥
2
=

∥∥∥φ̂ϵ − φ̂ex

∥∥∥
2
=



+∞∫

−∞

2ϵ2e−4|p|dp



1/2

= ϵ.
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From (35), (36) and (13), we have the regularized solution

v̂ϵ(p, y) =

√
π

2

(
ϵ√
π
+ 1

) [
e−y|p|

ϵ + e−|p|
+ e(y−1)|p|

]
e−2|p|.

Let ϵ be ϵ1 = 10−1, ϵ2 = 10−5, ϵ3 = 10−10 respectively. If we put

y = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

we get the following tables for the case 0 < y < 1

ϵ1 = 10−1

y
∥∥∥̂vϵ − ûex

∥∥∥
2

0.2 0.1119

0.3 0.0957

0.4 0.0822

0.5 0.0707

0.6 0.0607

0.7 0.0519

0.8 0.0441

0.9 0.0370

1 0.0305

ϵ2 = 10−5

y
∥∥∥̂vϵ − ûex

∥∥∥
2

0.2 2.0428 × 10−5

0.3 1.6272 × 10−5

0.4 1.3241 × 10−5

0.5 1.0952 × 10−5

0.6 9.1612 × 10−6

0.7 7.7117 × 10−6

0.8 6.5021 × 10−6

0.9 5.4650 × 10−6

1 4.5545 × 10−6

ϵ3 = 10−10

y
∥∥∥̂vϵ − ûex

∥∥∥
2

0.2 2.0433 × 10−10

0.3 1.6275 × 10−10

0.4 1.3243 × 10−10

0.5 1.0953 × 10−10

0.6 9.1619 × 10−11

0.7 7.7122 × 10−11

0.8 6.5025 × 10−11

0.9 5.4653 × 10−11

1 4.5547 × 10−11

and we have the graphic is displayed in Figure 2, Figure 3, Figure 4 on the interval

[−5, 5] × [0.2, 1]
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FIGURE 1. The Fourier transform of the exact solution in the case 0 < y < 1.

FIGURE 2. The Fourier transform of the regularized solution with ϵ1 = 10−1.
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FIGURE 3. The Fourier transform of the regularized solution with ϵ2 = 10−5.

FIGURE 4. The Fourier transform of the regularized solution with ϵ3 = 10−10.

In the case y = 0, from (32) and using inequality ln y > −(1/y) for every y > 0, we

get

yϵ <
1√

2 ln

(
1

ϵ

) .
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Therefore, we will choose yϵ1
= 0.4, yϵ2

= 0.2, yϵ3
= 0.01, with ϵ1 = 10−1,

ϵ2 = 10−5, ϵ3 = 10−10 respectively, numerical results are given as follows

∥∥∥̂vϵ(·, yϵ ) − ûex(·, 0)
∥∥∥

2

ϵ1 = 10−1 yϵ1
= 0.4 0.3020

ϵ2 = 10−5 yϵ2
= 0.2 0.1311

ϵ3 = 10−10 yϵ3
= 0.01 0.0077

FIGURE 5. The Fourier transform of the exact solution and the Fourier transform of

the regularized solution in the case y = 0.

Notice that, in Figure 5, the 3rd curve expresses the Fourier transform of the reg-

ularized solution corresponding ϵ3 = 10−10, yϵ3
= 0.01 coincides with the 4th curve

expresses the Fourier transform of the exact solution.
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1. INTRODUCTION

Let (X, d) be a complete metric space; and T ∈ F(X) be a selfmap of X. [Here,

for each couple A, B of nonempty sets, F(A,B) stands for the class of all functions

from A to B; when A = B, we simply denote F(A,A) as F(A)]. Put Fix(T ) = {z ∈
X; z = Tz}; each element of this set is called fixed under T . In the metrical fixed point

theory, such points are to be determined by a limit process as follows. Let us say

that x ∈ X is a Picard point (modulo (d,T )) when i) (T nx; n ≥ 0) is d-convergent, ii)

limn(T nx) belongs to Fix(T ). If this happens for each x ∈ X, then T is called a Picard

operator (modulo d); and, if in addition, iii) Fix(T ) is a singleton (z1, z2 ∈ Fix(T )

implies z1 = z2), then T is referred to as a strong Picard operator (modulo d); cf.

Rus [13, Ch 2, Sect 2.2]. In this perspective, a basic result to the question we deal

with is the 1922 one due to Banach [2]: it states that, whenever T is α-contractive

(modulo d), i.e.,

(a01) d(T x,Ty) ≤ αd(x, y), ∀x, y ∈ X,

for some α ∈ [0, 1[, then T is a strong Picard operator (modulo d). This result found a

multitude of applications in operator equations theory; so, it was the subject of many

extensions. For example, a natural way of doing this is by considering ”functional”

contractive conditions of the form

(a02) d(T x,Ty) ≤ F(d(x, y), d(x,T x), d(y, Ty), d(x, Ty), d(y, T x)), ∀x, y ∈ X;

where F : R5
+ → R+ is an appropriate function. For more details about the possible

choices of F we refer to the 1977 paper by Rhoades [12]; see also Turinici [15]. Here,

175
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we shall be concerned with a 2004 contribution in the area due to Berinde [4]. Given

α, λ ≥ 0, let us say that T is a weak (α, λ)-contraction (modulo d) provided

(a03) d(T x,Ty) ≤ αd(x, y) + λd(T x, y), for all x, y ∈ X.

Theorem 1.1. Suppose that T is a weak (α, λ)-contraction (modulo d), where α ∈
[0, 1[. Then, T is a Picard operator (modulo d).

In a subsequent paper devoted to the same question, Berinde [3] claims that this

class of contractions introduced by him is for the first time considered in the literature.

Unfortunately, his assertion is not true: conclusions of Theorem 1.1 are ”almost”

covered by a related 1984 statement due to Khan et al [9], in the context of altering

distances. This, among others, motivated us to propose an appropriate extension of

the quoted statement; details are given in Section 3. The preliminary material for

our device is listed in Section 2. Finally, in Section 4, a ”functional” extension of

Berinde’s result is established. Further aspects will be delineated elsewhere.

2. PRELIMINARIES

Let (X, d) be a metric space. Let us say that the sequence (xn) in X, d-converges to

x ∈ X (and write: xn

d−→x) iff d(xn, x)→ 0; that is

(b01) ∀ε > 0, ∃p = p(ε): n ≥ p =⇒ d(xn, x) ≤ ε.

Denote limn(xn) = {x ∈ X; xn

d−→x}; when this set is nonempty, (xn) is called d-

convergent. Note that, in this case, limn(xn) is a singleton, {z}; as usually, we write

limn(xn) = z. Further, let us say that (xn) is d-Cauchy provided d(xm, xn) → 0 as

m, n→ ∞, m < n; that is

(b02) ∀ε > 0, ∃q = q(ε): q ≤ m < n =⇒ d(xm, xn) ≤ ε.

Clearly, any d-convergent sequence is d-Cauchy too; when the reciprocal holds too,

(X, d) is called complete. Concerning this aspect, note that any d-Cauchy sequence

(xn; n ≥ 0) is d-semi-Cauchy; i.e.,

(b03) ρn := d(xn, xn+1)→ 0 (hence, d(xn, xn+i)→ 0, ∀i ≥ 1), as n→ ∞.

The following result about such sequences is useful in the sequel. For each sequence

(zn; n ≥ 0) in R and each z ∈ R, put zn ↓ z iff [zn > z, ∀n] and zn → z.

Proposition 2.1. Suppose that (xn; n ≥ 0) is d-semi-Cauchy, but not d-Cauchy. There

exists then η > 0, j(η) ∈ N and a couple of rank sequences (m( j); j ≥ 0), (n( j); j ≥ 0),

in such a way that

j ≤ m( j) < n( j), α( j) := d(xm( j), xn( j)) > η, ∀ j ≥ 0 (1)

n( j) − m( j) ≥ 2, β( j) := d(xm( j), xn( j)−1) ≤ η, ∀ j ≥ j(η) (2)
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α( j) ↓ η (hence, α( j)→ η) as j→ ∞ (3)

αp,q( j) := d(xm( j)+p, xn( j)+q)→ η, as j→ ∞, ∀p, q ∈ {0, 1}. (4)

A proof of this may be found in Khan et al [9]. For completeness reasons, we

supply an argument which differs, in part, from the original one.

Proof. (Proposition 2.1) As (b02) does not hold, there exists η > 0 with

A( j) := {(m, n) ∈ N × N; j ≤ m < n, d(xm, xn) > η} , ∅, ∀ j ≥ 0.

Having this precise, denote, for each j ≥ 0,

m( j) = min Dom(A( j)), n( j) = min A(m( j)).

As a consequence, the couple of rank-sequences (m( j); j ≥ 0), (n( j); j ≥ 0) fulfills

(1). On the other hand, letting the index j(η) ≥ 0 be such that

d(xk, xk+1) < η, ∀k ≥ j(η), (5)

it is clear that (2) holds too. Finally, by the triangular property,

η < α( j) ≤ β( j) + ρn( j)−1 ≤ η + ρn( j)−1, ∀ j ≥ j(η);

and this yields (3); hence, the case (p = 0, q = 0) of (4). Combining with

α( j) − ρn( j) ≤ d(xm( j), xn( j)+1) ≤ α( j) + ρn( j), ∀ j ≥ j(η)

establishes the case (p = 0, q = 1) of the same. The remaining situations are de-

ductible in a similar way.

3. MAIN RESULT

Let X be a nonempty set; and d(., .) be a metric over it [in the usual sense]. Further,

let φ ∈ F(R+) be an altering function; i.e.

(c01) φ is continuous, increasing, and reflexive-sufficient [φ(t) = 0 iff t = 0].

The associated map (from X × X to R+)

(c02) e(x, y) = φ(d(x, y)), x, y ∈ X

has the immediate properties

e(x, y) = e(y, x), ∀x, y ∈ X (e is symmetric) (6)

e(x, y) = 0⇐⇒ x = y (e is reflexive-sufficient). (7)

So, it is a (reflexive sufficient) symmetric, under Hicks’ terminology [8]. In general,

e(., .) is not endowed with the triangular property; but, in compensation to this, one

has (as φ is increasing and continuous)

e(x, y) > e(u, v) =⇒ d(x, y) > d(u, v) (8)
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xn

d−→x, yn

d−→y implies e(xn, yn)→ e(x, y). (9)

Suppose in the following that

(c03) (X, d) is complete (each d-Cauchy sequence is d-convergent).

Let T ∈ F(X) be a selfmap of X. The formulation of the problem involving Fix(T ) =

{x ∈ X; x = T x} is the already sketched one. In the following, we are trying to solve

it in the precise context. Denote, for x, y ∈ X,

(c04) M1(x, y) = e(x, y), M2(x, y) = (1/2)[e(x, T x) + e(y, Ty)],

M3(x, y) = min{e(x, Ty), e(T x, y)},
M(x, y) = max{M1(x, y),M2(x, y),M3(x, y)}.

Further, given ψ ∈ F(R+), we say that T is (d, e; M, ψ)-contractive, provided

(c05) e(T x, Ty) ≤ ψ(d(x, y))M(x, y), ∀x, y ∈ X, x , y.

The properties of ψ to be used here write

(c06) ψ is strictly subunitary on R0
+ :=]0,∞[: ψ(s) < 1, ∀s ∈ R0

+

(c07) ψ is right Boyd-Wong on R0
+: lim supt→s+ ψ(t) < 1, ∀s ∈ R0

+.

This is related to the developments in Boyd and Wong [6]; we do not give details.

The main result of this exposition is

Theorem 3.1. Suppose that T is (d, e; M, ψ)-contractive, where ψ ∈ F(R+) is strictly

subunitary and right Boyd-Wong on R0
+. Then, T is a strong Picard operator (modulo

d).

Proof. First, let us check the singleton property for Fix(T ). Let z1, z2 ∈ Fix(T ) be

such that z1 , z2; hence δ := d(z1, z2) > 0, ε := e(z1, z2) > 0. By definition,

M1(z1, z2) = ε, M2(z2, z2) = 0, M3(x, y) = ε; hence M(x, y) = ε.

By the contractive condition (written at (z1, z2))

ε = e(z1, z2) = e(Tz1,Tz2) ≤ ψ(δ)M(z1, z2) = ψ(δ)ε;

hence, 1 ≤ ψ(δ) < 1; contradiction. This established the singleton property. It

remains now to verify the Picard property. Fix some x0 ∈ X; and put xn = T nx0,

n ≥ 0. If xn = xn+1 for some n ≥ 0, we are done; so, without loss, one may assume

(c08) ρn := d(xn, xn+1) > 0 (hence, σn := e(xn, xn+1) > 0), for all n.

There are several steps to be passed.
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I) For the arbitrary fixed n ≥ 0, we have

M1(xn, xn+1) = σn,
M2(xn, xn+1) = (1/2)[σn + σn+1] ≤ max{σn, σn+1},
M3(xn, xn+1) = 0; hence M(xn, xn+1) ≤ max{σn, σn+1}.

By the contractive condition (written at (xn, xn+1)),

σn+1 ≤ ψ(ρn) max{σn, σn+1}, ∀n.

This, along with (c08), yields (as ψ is strictly subunitary on R0
+)

σn+1/σn ≤ ψ(ρn) < 1, ∀n. (10)

As a direct consequence,

σn > σn+1 (hence, ρn > ρn+1), for all n.

The sequence (ρn; n ≥ 0) is therefore strictly descending in R+; hence, ρ := limn(ρn)

exist in R+ and ρn > ρ, ∀n. Likewise, the sequence (σn = φ(ρn); n ≥ 0) is strictly

descending in R+; hence, σ := limn(σn) exists; with, in addition, σ = φ(ρ). We claim

that ρ = 0. Assume by contradiction that ρ > 0; hence σ > 0. Passing to lim sup as

n→ ∞ in (10) yields

1 ≤ lim sup
n

ψ(ρn) ≤ lim sup
t→ρ+

ψ(t) < 1;

contradiction. Hence, ρ = 0; i.e.,

ρn := d(xn, xn+1)→ 0, as n→ ∞. (11)

II) We now show that (xn; n ≥ 0) is d-Cauchy. Suppose that this is not true.

By Proposition 2.1, there exist η > 0, j(η) ∈ N and a couple of rank sequences

(m( j); j ≥ 0), (n( j); j ≥ 0), in such a way that (1)-(4) hold. Denote for simplicity

ζ = φ(η); hence, ζ > 0. By the notations used there, we may write as j→ ∞

λ j := e(xm( j)+1, xn( j)+1) = φ(α1,1( j))→ ζ.

In addition, we have (again under j→ ∞)

M1(xm( j), xn( j)) = φ(α( j))→ ζ
M2(xm( j), xn( j)) = (1/2)[φ(ρm( j)) + φ(ρn( j))]→ 0

M3(xm( j), xn( j)) = min{φ(α0,1( j)), φ(α1,0( j))} → ζ;

and this, by definition, yields

µ j := M(xm( j), xn( j))→ ζ as j→ ∞.
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From the contractive condition (written at (xm( j), xn( j)))

λ j/µ j ≤ ψ(α( j)), ∀ j ≥ j(η);

so that, passing to lim sup as j→ ∞

1 ≤ lim sup
j

ψ(α( j)) ≤ lim sup
t→η+

ψ(t) < 1;

contradiction. Hence, (xn; n ≥ 0) is d-Cauchy, as claimed.

III) As (X, d) is complete, there exists a (uniquely determined) z ∈ X with xn

d−→z;

hence γn := d(xn, z)→ 0 as n→ ∞.

Two assumptions are open before us:

i) For each h ∈ N, there exists k > h with xk = z. In this case, there exists a

sequence of ranks (m(i); i ≥ 0) with m(i)→ ∞ as i→ ∞ such that xm(i) = z, ∀i; hence,

xm(i)+1 = Tz, ∀i. Letting i tends to infinity and using the fact that (yi := xm(i)+1; i ≥ 0)

is a subsequence of (xi; i ≥ 0), we get z = Tz.

ii) There exists h ∈ N such that n ≥ h =⇒ xn , z. Suppose that z , Tz; i.e., θ :=

d(z, Tz) > 0; hence, ω := e(z,Tz) > 0. Note that, in such a case, δn := d(xn, Tz)→ θ.
From our previous notations, we have (as n→ ∞)

λn := e(xn+1, Tz) = φ(δn+1)→ φ(θ) = ω.

In addition (again under n→ ∞),

M1(xn, z) = φ(γn)→ 0, M2(xn, z) = (1/2)[σn + ω]→ ω/2
M3(xn, z) = min{φ(δn), φ(γn+1)} → 0;

wherefrom,

µn := M(xn, z)→ ω/2, as n→ ∞.

By the contractive condition (written at (xn, z))

λn ≤ ψ(γn)µn < µn, ∀n ≥ h

we then have (passing to limit as n→ ∞), ω ≤ ω/2; hence ω = 0. This yields θ = 0;

contradiction. Hence, z is fixed under T and the proof is complete.

In particular, the right Boyd-Wong on R0
+ property of ψ is assured when this func-

tion fulfills (c06) and is decreasing on R0
+. As a consequence, the following particular

version of our main result may be stated.

Theorem 3.2. Suppose that T is (d, e; M, ψ)-contractive, where ψ ∈ F(R+) is strictly

subunitary and decreasing on R0
+. Then, T is a strong Picard operator (modulo d).

Let a, b, c ∈ F(R+) be a triple of functions. We say that the selfmap T of X is

(d, e; a, b, c)-contractive if
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(c09) e(T x, Ty) ≤ a(d(x, y))e(x, y) + b(d(x, y))[e(x, T x) + e(y, Ty)]+

c(d(x, y)) min{e(x, Ty), e(T x, y)}, ∀x, y ∈ X, x , y.

Denote for simplicity ψ = a + 2b + c; it is clear that, under such a condition, T is

(d, e; M;ψ)-contractive. Consequently, the following statement is a particular case of

Theorem 1.1 above:

Theorem 3.3. Suppose that T is (d, e; a, b, c)-contractive, where the triple of func-

tions a, b, c ∈ F(R+) is such that their associated function ψ = a + 2b + c is strictly

subunitary and right Boyd-Wong on R0
+. Then, conclusions of Theorem 1.1 hold.

In particular, when a, b, c are all decreasing on R0
+, the right Boyd-Wong property

on R0
+ holds; note that, in this case, Theorem 3.3 is also reducible to Theorem 3.2.

This is just the 1984 fixed point result in Khan et al [9].

Finally, it is worth mentioning that the nice contributions of these authors was the

starting point for a series of results involving altering contractions, like the one in

Dutta and Choudhury [7] or Nashine et al [10]. Some other aspects may be found in

Akkouchi [1]; see also Pathak and Shahzad [11].

4. FURTHER ASPECTS

Let again (X, d) be a complete metric space and T ∈ F(X) be a selfmap of X.

A basic particular case of Theorem 3.3 corresponds to the choices φ=identity and

[a, b, c=constants]. The corresponding form of Theorem 3.3 is comparable with The-

orem 1.1. However, the inclusion between these is not complete. This raises the

question of determining proper extensions of Theorem 1.1, close enough to Theorem

3.3. A direct answer to this is provided by

Theorem 4.1. Let the numbers a, b ∈ R+ and the function K ∈ F(R+) be such that

(d01) d(T x,Ty) ≤ ad(x, y) + b[d(x,T x) + d(y, Ty)] + K(d(T x, y)), ∀x, y ∈ X

(d02) a + 2b < 1 and K(t)→ 0 as t → 0.

Then, T is a Picard map (modulo d).

Proof. Take an arbitrary fixed u ∈ X. By the very contractive condition (written at

(T nu,T n+1u)), we have the evaluation

d(T n+1u, T n+2u) ≤ λd(T nu,T n+1u), ∀n ≥ 0. (12)

where λ := (a + b)/(1 − b) < 1. This yields

d(T nu, T n+1u) ≤ λnd(u, Tu), ∀n ≥ 0. (13)

Consequently, (T nu; n ≥ 0) is d-Cauchy; whence (by completeness)

T nu
d−→z := T∞u, for some z ∈ X.
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From the contractive condition (written at (T nu, z)),

d(T n+1u, Tz) ≤ ad(T nu, z) + b[d(T nu, T n+1u) + d(z,Tz)] + K(d(T n+1u, z)), ∀n.

Passing to limit as n → ∞ gives (via (d02)) d(z, Tz) ≤ bd(z, Tz); so that, if z , Tz,

one gets 1 ≤ b ≤ 1/2, contradiction. Hence z = Tz; and the proof is complete.

In particular, when b = 0 and K(.) is linear (K(t) = λt, t ∈ R+, for some λ ≥ 0),

this result is just Theorem 1.1. Note that, from (13), one has for these ”limit” fixed

points, the error approximation formula (which – under the accepted conditions for

our data – is available as well in case of Theorem 3.3)

d(T nu, T∞u) ≤ [λn/(1 − λ)]d(u,Tu), ∀n ∈ N. (14)

However, the non-singleton property of Fix(T ) makes this ”local” evaluation to be

without practical effect in Theorem 4.1, by the highly unstable character of the map

u 7→ T∞u: even if the distance d(u, v) between two initial approximations would

decrease, the distance d(T∞u,T∞v) between the associated fixed points may not de-

crease.

Finally, another interesting particular case to consider is that of φ being an arbitrary

altering function and [a, b, c=constants]; we do not give details. Further aspects may

be found in Bhaumik et al [5] see also Sastry and Babu [14];
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Abstract Mathematical models of linear discrete-time set-valued Pareto-Nash-Stackelberg control

processes are examined as extension of mono-valued Pareto-Nash-Stackelberg control

models proposed by V. Ungureanu in [10]. A straightforward principle is applied to

solve Pareto-Nash-Stackelberg control problems. Models and results are presented in

natural order by beginning with the simplest case and, by sequential considering of

more general cases, the results for the highlighted Pareto-Nash-Stackelberg set-valued

control are presented. The maximum principle of Pontryagin is extended for considered

control processes, too.

Keywords: linear discrete-time set-valued control problem, non-cooperative game, multi-criteria strate-

gic game, Pareto-Nash-Stackelberg set-valued control.
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1. INTRODUCTION

Pareto-Nash-Stackelberg control processes, examined in [10] as extension and in-

tegration of optimal control processes [6, 1] with simultaneous and sequential games

[9, 8, 4, 5, 2], are generalized by considering the set-valued multi-criteria control pro-

cesses of a system with discrete-time dynamics described by a system of set-valued

linear equations. The Pareto-Nash-Stackelberg set-valued control problems of linear

discrete-time system are solved by applying a straightforward principle [10]. The

characteristics and properties of Set-Valued Algebra [7] together with Interval Anal-

ysis [3] serve as foundation for obtained results.

Exposure starts with the simplest case of linear discrete-time set-valued optimal

control problem and, by sequential considering of more general cases, finalizes with

the Pareto-Nash-Stackelberg set-valued control problem. Maximum principle of Pon-

tryagin [6, 10] is extended, formulated and proved for all the considered problems,

too. Its equivalence with the straightforward direct principle is established.

185
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2. LINEAR DISCRETE-TIME SET-VALUED
OPTIMAL CONTROL PROBLEM

The system may be imagined as an n-dimension dynamic body the state of which is

described by the set of points in every time moment. So, the initial state is described

by the initial set X0 ⊂ Rn. The optimal control problem naturally arises:

F(X,U) =

T∑

t=1

(ctXt + btU t)→ max,

Xt = At−1Xt−1 + BtXt, t = 1, ..., T,
DtU t ≤ dt, t = 1, ..., T,

(1)

where X0, Xt ⊂ Rn, ct ∈ Rn, U t ⊂ Rm, bt ∈ Rm, At−1 ∈ Rn×n, Bt ∈ Rn×m, dt ∈ Rk,

Dt ∈ Rk×n, ctXt = ⟨ct, Xt⟩, btU t = ⟨bt,U t⟩, t = 1, ..., T , U = (U1,U2, ...,UT ), X =

(X0, X1, ..., XT ). Set operations in (1) are defined obviously [7]: AX = {Ax : x ∈ X},
∀X ⊂ Rn, ∀A ⊂ Rn×n.

Remark, the objective set-valued map F : X × U ⊸ R, F(X,U) ⊂ R, represents a

summation of intervals. So, the applying of interval arithmetic [3] is intrinsic.

By performing direct substitutions in (1):

X1 = A0X0 + B1U1,
X2 = A1X1 + B2U2 = A1(A0X0 + B1U1) + B2U2 =

= A1A0X0 + A1B1U1 + B2U2,
X3 = A2X2 + B3U3 = A2(A1A0X0 + A1B1U1 + B2U2) + B3U3 =

= A2A1A0X0 + A2A1B1U1 + A2B2U2 + B3U3,
. . .

XT = AT−1XT−1 + BT UT =

=

T−1∏

t=0

AtXt +

T−1∏

t=1

AtB1U1 +

T−1∏

t=2

AtB2U2 + ...+

+ AT−1BT−1UT−1 + BT UT ,

and by subsequent substitution of the resulting relations in the objective map:

F(X,U) =

= c1(A0X0 + B1U1) + c2(A1A0X0 + A1B1U1 + B2U2)+

+ c3(A2A1A0X0 + A2A1B1U1 + A2B2U2 + B3U3)+

+ ... + cT (

T−1∏

t=0

AtXt +

T−1∏

t=1

AtB1U1 +

T−1∏

t=2

AtB2U2+

+ ... + AT−1BT−1UT−1 + BT UT )+

+ b1U1 + b2U2 + ... + bT UT =
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= (c1 + c2A1 + c3A2A1 + ... + cT AT−1AT−2...A1)A0X0+

+ (c1B1 + c2A1B1 + c3A2A1B1 + ...+
+ cT AT−1AT−2...A1B1 + b1)U1+

+ (c2B2 + c3A2B2 + c4A3A2B2 + ...+
+ cT AT−1AT−2...A2B2 + b2)U2 + ...+
+ (cT BT + bT )UT ,

the problem (1) is transformed into:

F(U) = (c1 + c2A1 + c3A2A1 + ... + cT AT−1AT−2...A1)A0X0+

+ (c1B1 + c2A1B1 + c3A2A1B1 + ...+
+ cT AT−1AT−2...A1B1 + b1)U1+

+ (c2B2 + c3A2B2 + c4A3A2B2 + ...+
+ cT AT−1AT−2...A2B2 + b2)U2 + ...+
+ (cT BT + bT )UT → max,

DtU t ≤ dt, t = 1, ..., T.

(2)

Obviously, (1) and (2) are equivalent.

The form of the objective map (2) establishes that the optimal control doesn’t

depends on initial state X0.

By applying the specific interval arithmetic properties of linear set-valued pro-

gramming problems, we can conclude that the solution set of problem (2) is equiva-

lent with the solution set of traditional point-valued linear programming problem, that

is we can consider that, in general, the cardinality of every control set U1,U2, ...,UT

is equal to 1. So, the solution of the problem (2) may be obtained as a sequence of

solutions of T linear programming problems. Apparently, we constructed polyno-

mial method of solving (1). In fact, the method has a pseudo-polynomial complexity

because of possible exponential value of T on n.

Theorem 2.1. Let (1) be solvable. The control ū1, ū2, ..., ūT , is optimal if and only if

ūt is the solution of linear programming problem

(ctBt + ct+1AtBt + · · · + cT AT−1AT−2 . . . AtBt + bt)ut → max,
Dtut ≤ dt,

for t = 1, ..., T.

The following theorem is an important particular corollary of the precedent theo-

rem.

Theorem 2.2. If A0 = A1 = ... = AT−1 = A, B1 = B2 = ... = BT = B and (1) is

solvable, then the sequence ū1, ū2, ..., ūT , forms an optimal control if and only if ūt is

the solution of linear programming problem

(ctB + ct+1AB + ct+2(A)2B + · · · + cT (A)T−tB + bt)ut → max,
Dtut ≤ dt,
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for t = 1, ..., T.

Theorem 1.1 establishes a principle for solving (1). The maximum principle of

Pontryagin may be applied for solving (1), too. Because the cardinality of every con-

trol set U1,U2, ...,UT is equal to 1, let us consider the following recurrent relations:

pT = cT

pt = pt+1At + ct, t = T − 1, ..., 1.
(3)

Hamiltonian functions are defined on (3) as

Ht(u
t) = ⟨ptBt + bt, ut⟩, t = T, ..., 1.

Theorem 2.3. Let (1) be solvable. The control ū1, ū2, ..., ūT , is optimal if and only if

Ht(ū
t) = max

ut:Dtut≤dt
Ht(u

t), t = T, ..., 1.

It’s obvious that theorems 2.1 and 2.3 are equivalent.

3. LINEAR DISCRETE-TIME SET-VALUED
STACKELBERG CONTROL PROBLEM

Let us modify the problem (1) by considering the control of Stackelberg type,

that is Stackelberg game with T players [8, 2, 9, 10]. In such game, at each stage t

(t = 1, ..., T ) the player t selects his strategy and communicates his and all precedent

selected strategies to the following t + 1 player. After all stage strategy selections,

all the players compute their gains on the resulting profile. Let us name such type

of system control as Stackelberg control, and the corresponding problem - linear

discrete-time set-valued Stackelberg control problem. Described decision process

may be formalized in a following manner:

F1(X,U) =

T∑

t=1

(c1tXt + b1tU t) −−→
U1

max,

F2(X,U) =

T∑

t=1

(c2tXt + b2tU t) −−→
U2

max,

. . .

FT (X,U) =

T∑

t=1

(cTtXt + bTtU t) −−→
UT

max,

Xt = Xt−1At−1 + BtXt, t = 1, ..., T,
DtU t ≤ dt, t = 1, ..., T,

(4)

where X0, Xt ⊂ Rn, cπt ∈ Rn, U t ⊂ Rm, bπt ∈ Rm, At−1 ∈ Rn×n, Bt ∈ Rn×m, dt ∈ Rk,

Dt ∈ Rk×n, ctXt = ⟨ct, Xt⟩, btU t = ⟨bt,U t⟩, t, π = 1, ..., T .
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The set of strategies of player π, (π = 1, 2, ..., T ), is determined only by admissible

solutions of the problem:

Fπ(X,Uπ||U−π) =

T∑

t=1

(cπtXt + bπtU t) −−→
Uπ

max,

Xπ = Xπ−1Aπ−1 + BπXπ,
DπUπ ≤ dπ.

Player’s π, (π = 1, 2, ..., T ), decision problem is defined by the precedent linear

set-valued programming problem. Since, the controlled system is one for all players,

by performing the direct substitutions as above, (4) is transformed into

Fπ(Uπ||U−π) = (cπ1 + cπ2A1 + cπ3A2A1 + ...+
+ cπT AT−1AT−2...A1)A0X0+

+ (cπ1B1 + cπ2A1B1 + cπ3A2A1B1 + ...+
+ cπT AT−1AT−2...A1B1 + bπ1)U1+

+ (cπ2B2 + cπ3A2B2 + cπ4A3A2B2 + ...+
+ cπT AT−1AT−2...A2B2 + bπ2)U2 + ...+
+ (cπT BT + bπT )UT −−→

Uπ
max, π = 1, ..., T,

DtU t ≤ dt, t = 1, ..., T.

(5)

As in precedent case of optimal control, the cardinality of every Stackelberg con-

trol set U1,U2, ...,UT may be reduced to the solution set of the traditional linear

programming problem. From equivalence of (4) and (5) the proof of theorem 3.1

follows.

Theorem 3.1. Let (4) be solvable. The sequence ū1, ū2, ..., ūT , forms a Stackelberg

equilibrium control if and only if ūπ is optimal optimal solution of

(cππBπ + cππ+1AπBπ + · · · + cπT AT−1AT−2 . . . AπBπ + bππ)uπ −−→
uπ

max,

Dπuπ ≤ dπ,

for every π = 1, ..., T.

The following theorem is an important particular case of theorem 3.1.

Theorem 3.2. If A0 = A1 = ... = AT−1 = A, B1 = B2 = ... = BT = B and (4) is

solvable, then the sequence ū1, ū2, ..., ūT , forms a Stackelberg equilibrium control if

and only if ūπ is the solution of linear programming problem

(cππB + cππ+1AB + cππ+2(A)2B + ... + cπT (A)T−πB + bππ)uπ −−→
uπ

max,

Dπuπ ≤ dπ,

for π = 1, ..., T.
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Theorem 3.1 establishes a principle for solving (4). The maximum principle of

Pontryagin may be applied for solving (4), too. Let us consider the following recur-

rent relations

pπT = cπT ,
pπt = pπt+1At + cπt, t = T − 1, ..., 1,

(6)

where π = 1, ..., T . Hamiltonian functions are defined on (6) as

Hπt(u
t) = ⟨pπtBt + bπt, ut⟩, t = T, ..., 1, π = 1, ..., T.

Theorem 3.3. Let (4) be solvable. The sequence of controls ū1, ū2, ..., ūT , forms a

Stackelberg equilibrium control if and only if

Hππ(ūπ) = max
uπ:Dπuπ≤dπ

Hππ(uπ),

for π = 1, ..., T.

The proof of theorem 3.3 may be provided by direct substitution of relations (6) in

Hamiltonian functions and by comparing the final results with linear programming

problems from theorem 3.1. Obviously, theorems 3.1 and 3.3 are equivalent.

From computational point of view, method for solving problem (4) established by

theorem 3.1 looks more preferable than the method established by theorem 3.3.

4. LINEAR DISCRETE-TIME SET-VALUED
PARETO-STACKELBERG CONTROL
PROBLEM

Let us modify the problem (4) by considering control of Pareto-Stackelberg type.

At each stage a single player makes decision. Every player selects his strategy (con-

trol) on his stage by considering his criteria and communicates his choice and prece-

dent players choices to the following player. At last stage, after all stage strategy

selections, the players compute their gains. Such type of control is named Pareto-

Stackelberg control, and the corresponding problem is named linear discrete-time

set-valued Pareto-Stackelberg control problem.
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The decision process is formalized as follows:

F1(X,U) =

T∑

t=1

(c1tXt + b1tU t) −−→
U1

ef max,

F2(X,U) =

T∑

t=1

(c2tXt + b2tU t) −−→
U2

ef max,

. . .

FT (X,U) =

T∑

t=1

(cTtXt + bTtU t) −−→
UT

ef max,

Xt = At−1Xt−1 + BtXt, t = 1, ..., T,
DtU t ≤ dt, t = 1, ..., T,

(7)

where X0, Xt ⊂ Rn, cπt ∈ Rkπ×n, U t ⊂ Rm, bπt ∈ Rkπ×m, At−1 ∈ Rn×n, Bt ∈ Rn×m, dt ∈
Rk, Dt ∈ Rk×n, t, π = 1, ..., T . Notation ef max means multi-criteria maximization.

The set of strategies of player π, (π = 1, 2, ..., T ), is determined formally by the

problem:

Fπ(X,Uπ||U−π) =

T∑

t=1

(cπtXt + bπtU t) −−→
Uπ

ef max,

Xπ = Xπ−1Aπ−1 + BπXπ,

DπUπ ≤ dπ.

By performing the direct transformations as above, (7) is transformed into

Fπ(Uπ||U−π) = (cπ1 + cπ2A1 + cπ3A2A1 + ...+
+ cπT AT−1AT−2...A1)A0X0+

+ (cπ1B1 + cπ2A1B1 + cπ3A2A1B1 + ...+
+ cπT AT−1AT−2...A1B1 + bπ1)U1+

+ (cπ2B2 + cπ3A2B2 + cπ4A3A2B2 + ...+
+ cπT AT−1AT−2...A2B2 + bπ2)U2 + ...+
+ (cπT BT + bπT )UT −−→

Uπ
ef max, π = 1, ..., T,

DtU t ≤ dt, t = 1, ..., T.

(8)

By the properties of interval arithmetic relations, we can conclude that (8) is equiv-

alent with simple multi-criteria linear programming problem. Additionally, from

equivalence of (7) and (8) the theorem 4.1 follows.

Theorem 4.1. Let (7) be solvable. The sequence ū1, ū2, ..., ūT , forms a Pareto-Stackelberg

equilibrium control if and only if ūπ is efficient solution of multi-criteria linear pro-

gramming problem

(cππBπ + cππ+1AπBπ + · · · + cπT AT−1AT−2 . . . AπBπ + bππ)uπ −−→
uπ

ef max,

Dπuπ ≤ dπ,
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for π = 1, ..., T.

As above, a particular cases of (7) is examined.

Theorem 4.2. If A0 = A1 = ... = AT−1 = A, B1 = B2 = ... = BT = B and (7)

is solvable, then the sequence ū1, ū2, ..., ūT , forms a Pareto-Stackelberg equilibrium

control if and only if ūπ is efficient solution of multi-criteria linear programming

problem

(cππB + cππ+1AB + cππ+2(A)2B + ... + cπT (A)T−πB + bππ)uπ −−→
uπ

ef max,

Dπuπ ≤ dπ,

for π = 1, ..., T.

Let us extend the Pontryagin maximum principle for (7). By considering the re-

current relations

pπT = cπT ,
pπt = pπt+1At + cπt, t = T − 1, ..., 1,

(9)

where π = 1, ..., T , the Hamiltonian vector-functions may be defined on (7) and (9)

as

Hπt(u
t) = ⟨pπtBt + bπt, ut⟩, t = T, ..., 1, π = 1, ..., T.

Theorem 4.3. Let (7) be solvable. The sequence of controls ū1, ū2, ..., ūT , forms a

Pareto-Stackelberg equilibrium control if and only if

ūπ ∈ Arg ef max
uπ:Dπuπ≤dπ

Hππ(uπ),

for π = 1, ..., T.

By direct substitution of (9) in Hamiltonian functions and by comparing the final

results with multi-criteria linear programming problems from theorem 4.1 the truth

of theorem 4.3 arises. Theorems 4.1 and 4.3 are equivalent.

It can be remarked especially that the method of Pareto-Stackelberg control deter-

mining, established by theorem 4.1 — 4.3, needs the solutions of multi-criteria linear

programming problems.

5. LINEAR DISCRETE-TIME SET-VALUED
NASH-STACKELBERG CONTROL PROBLEM

Let us modify the problem (4) by considering the control of Nash-Stackelberg

type with T stages and ν1 + ν2 + ... + νT players, where ν1, ν2, ..., νT are the num-

bers of players at stages 1, 2, ..., T . Every player is identified by two numbers (in-

dices) (τ, π), where τ is the number of stage on which player selects his strategy and

π ∈ {1, 2, ..., ντ} is his number at stage τ. In such game, at each stage τ the players
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1, 2, ..., ντ play a Nash game by selecting simultaneously their strategies and by com-

municating his and all precedent players selected strategies to the following τ + 1

stage players. After all stage strategy selections, on the resulting profile all the play-

ers compute their gains. Such type of control is named Nash-Stackelberg control,

and the corresponding problem — linear discrete-time set-valued Nash-Stackelberg

control problem.

The decision process may be modelled as

Fτπ(X,Uτπ||U−τπ) =

T∑

t=1

(cτπtXt +

νt∑

µ=1

bτπtµU tµ) −−−→
Uτπ

max,

τ = 1, ..., T, π = 1, ..., ντ,

Xt = Xt−1At−1 +

νt∑

π=1

BtπU tπ, t = 1, ..., T,

DtπU tπ ≤ dtπ, t = 1, ..., T, π = 1, ..., νt,

(10)

where X0, Xt ⊂ Rn, cτπt ∈ Rn, Uτπ ⊂ Rm, bτπtµ ∈ Rm, At−1 ∈ Rn×n, Bτπ ∈ Rn×m,

dτπ ∈ Rk, Dτπ ∈ Rk×n, t, τ = 1, ..., T , π = 1, ..., ντ, µ = 1, ..., νt.

By performing direct transformations

X1 = A0X0 +

ν1∑

π=1

B1πU1π,

X2 = A1X1 +

ν2∑

π=1

B2πU2π =

= A1

A0X0 +

ν1∑

π=1

B1πU1π

 +
ν2∑

π=1

B2πU2π =

= A1A0X0 + A1

ν1∑

π=1

B1πU1π +

ν2∑

π=1

B2πU2π,

X3 = A2X2 +

ν3∑

π=1

B3πU3π =

= A2

A1A0X0 + A1

ν1∑

π=1

B1πU1π +

ν2∑

π=1

B2πU2π

+

+

ν3∑

π=1

B3πU3π =

= A2A1A0X0 + A2A1

ν1∑

π=1

B1πU1π + A2

ν2∑

π=1

B2πU2π+

+

ν3∑

π=1

B3πU3π,

. . .
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rllXT = AT−1XT−1 +

νT∑

π=1

BTπUTπ =

=

T−1∏

t=0

AtXt +

T−1∏

t=1

At

ν1∑

π=1

B1πU1π +

T−1∏

t=2

At

ν2∑

π=1

B2πU2π + ...+

+AT−1

νT−1∑

π=1

BT−1πUT−1π +

νT∑

π=1

BTπUTπ,

and by subsequent substitution in the objective/cost functions, the problem (10) is

reduced to

Fτπ(Uτπ||U−τπ) = (cτπ1 + cτπ2A1 + cτπ3A2A1 + ...+
+cτπT AT−1AT−2...A1)A0X0+

+(cτπ1B11 + cτπ2A1B11 + cτπ3A2A1B11 + ...+
+cτπT AT−1AT−2...A1B11 + bτπ11)U11+

+(cτπ1B12 + cτπ2A1B12 + cτπ3A2A1B12 + ...+
+cτπT AT−1AT−2...A1B12 + bτπ12)U12+

+...+
+(cτπ1B1ν1 + cτπ2A1B1ν1 + cτπ3A2A1B1ν1 + ...+
+cτπT AT−1AT−2...A1B1ν1 + bτπ1ν1)U1ν1+

+(cτπ2B21 + cτπ3A2B21 + cτπ4A3A2B21 + ...+
+cτπT AT−1AT−2...A2B21 + bτπ21)U21 + ...+
+(cτπ2B22 + cτπ3A2B22 + cτπ4A3A2B22 + ...+
+cτπT AT−1AT−2...A2B22 + bτπ22)U22 + ...+
+...+
+(cτπ2B2ν2 + cτπ3A2B2ν2 + cτπ4A3A2B2ν2 + ...+
+cτπT AT−1AT−2...A2B2ν2 + bτπ2ν2)U2ν2 + ...+
+...+
+(cτπT BTνT + bτπTνT )UTνT −−−→

Uτπ
max,

τ = 1, ..., T, π = 1, ..., ντ,
DτπUτπ ≤ dτπ, τ = 1, ..., T, π = 1, ..., ντ.

(11)

The problem (11) is equivalent to the point-valued problem. The control sets

U1,U2, ...,UT may be identified with sets of cardinality 1. Evidently, (11) defines

a strategic games for which Nash-Stackelberg equilibrium is also Nash equilibrium

and it is simply computed as a sequence of solutions of

fτπ(uτπ||u−τπ) = (cτπτBτπ + cτπτ+1AτBτπ+

+cτπτ+2Aτ+1AτBτπ + · · ·+
+cτπT AT−1AT−2 . . . AτBτπ+

+bτπτπ)uτπ −−→
uτπ

max,

Dτπuτπ ≤ dτπ, τ = 1, ..., T, π = 1, ..., ντ.

(12)
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Equivalence of (10) and (12) proves the following theorem 5.1.

Theorem 5.1. Let (10) be solvable. The sequence ū11, ū12, ..., ūTνT , forms a Nash-

Stackelberg equilibrium control if and only if ūτπ is the optimal solution of linear

programming problem (12) for τ = 1, ..., T, π = 1, ..., ντ.

An important particular cases of (10) is evident.

Theorem 5.2. If A0 = A1 = ... = AT−1 = A, B11 = B12 = ... = BTνT = B and (10) is

solvable, then the sequence ū11, ū12, ..., ūTνT , forms a Nash-Stackelberg equilibrium

control if and only if ūτπ is optimal in linear programming problem

fτπ(uτπ||u−τπ) = (cτπτB + cτπτ+1AB + cτπτ+2(A)2B + ...+
+cτπT (A)T−τB + bτπτπ)uτπ −−→

uτπ
max,

Dτπuτπ ≤ dτπ,

for τ = 1, ..., T, π = 1, ..., ντ.

Pontryagin maximum principle is extended for (10). Let us consider the following

recurrent relations

pτπT = cτπT ,
pτπt = pτπt+1At + cτπt, t = T − 1, ..., 1,

(13)

where τ = 1, ..., T , π = 1, ..., ντ. Hamiltonian functions are defined as

Hτπt(u
τπ) = ⟨pτπtBτπ + bτπτπ, uτπ⟩, t = T, ..., 1,

where τ = 1, ..., T , π = 1, ..., ντ, and pτπt, t = T, ..., 1, τ = 1, ..., T , π = 1, ..., ντ, are

defined by (13).

Theorem 5.3. Let (10) be solvable. The sequence of controls ū11, ū12, ..., ūTνT , forms

a Nash-Stackelberg equilibrium control if and only if

Hτπt(ū
τπ) = max

uτπ:Dτπuτπ≤dτπ
Hτπt(u

τπ),

for t = T, ..., 1, τ = 1, ..., T, π = 1, ..., ντ.

Theorems 5.1 and 5.3 are equivalent.

6. LINEAR DISCRETE-TIME SET-VALUED
PARETO-NASH-STACKELBERG CONTROL
PROBLEM

Let us unify (7) and (10) by considering the control of Pareto-Nash-Stackelberg

type with T stages and ν1 + ν2 + ... + νT players, where ν1, ν2, ..., νT are the corre-

spondent numbers of players on stages 1, 2, ..., T . Every player is identified by two
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numbers as above in Nash-Stackelberg control: τ is stage on which player selects his

strategy and π player number at stage τ. In such game, at each stage τ the players

1, 2, ..., ντ play a Pareto-Nash game by selecting simultaneously their strategies ac-

cordingly their criteria (kτ1, kτ2, ..., kτντ are the numbers of criteria of respective play-

ers) and by communicating his and all precedent selected strategies to the following

τ + 1 stage players. After all stage strategy selections, all the players compute their

gains on the resulting profile. Such type of control is named Pareto-Nash-Stackelberg

control, and the corresponding problem linear discrete-time set-valued Pareto-Nash-

Stackelberg control problem.

The mathematical model of decision control process may be established as

Fτπ(X,Uτπ||U−τπ) =

T∑

t=1

(cτπtXt +

νt∑

µ=1

bτπtµU tµ) −−−→
Uτπ

ef max,

τ = 1, ..., T, π = 1, ..., ντ,

Xt = At−1Xt−1 +

νt∑

π=1

BtπU tπ, t = 1, ..., T,

DtπU tπ ≤ dtπ, t = 1, ..., T, π = 1, ..., νt,

(14)

where X0, Xt ⊂ Rn, cτπt ∈ Rktp×n, Uτπ ⊂ Rm, bτπtµ ∈ Rktp×m, At−1 ∈ Rn×n, Bτπ ∈ Rn×m,

dτπ ∈ Rk, Dτπ ∈ Rk×n, t, τ = 1, ..., T , π = 1, ..., ντ, µ = 1, ..., νt.

By performing similar transformation as above, (14) is reduced to a sequence of

multi-criteria linear programming problems

fτπ(uτπ||u−τπ) = (cτπτBτπ + cτπτ+1AτBτπ+

+cτπτ+2Aτ+1AτBτπ + · · ·+
+cτπT AT−1AT−2 . . . AτBτπ+

+bτπτπ)uτπ −−→
uτπ

ef max,

Dτπuτπ ≤ dτπ, τ = 1, . . . , T, π = 1, . . . , ντ.

(15)

Equivalence of (14) and (15) proves the following theorem 6.1.

Theorem 6.1. Let (14) be solvable. The sequence ū11, ū12, ..., ūTνT , forms a Pareto-

Nash-Stackelberg equilibrium control in (14) if and only if ūτπ is an efficient solution

of multi-criteria linear programming problem (15), for τ = 1, ..., T, π = 1, ..., ντ.

As a corollary follows theorem 6.2.

Theorem 6.2. If A0 = A1 = ... = AT−1 = A, B11 = B12 = ... = BTνT = B and

(10) is solvable, then the sequence ū11, ū12, ..., ūTνT , forms a Pareto-Nash-Stackelberg

equilibrium control if and only if ūτπ is an efficient solution of multi-criteria linear

programming problem

fτπ(uτπ||u−τπ) = (cτπτB + cτπτ+1AB + cτπτ+2(A)2B + ...+
+cτπT (A)T−τB + bτπτπ)uτπ −−→

uτπ
ef max,

Dτπuτπ ≤ dτπ,
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for τ = 1, ..., T, π = 1, ..., ντ.

Pontryagin maximum principle may be generalized for (14), too. By considering

recurrent relations

pτπT = cτπT ,
pτπt = pτπt+1At + cτπt, t = T − 1, ..., 1,

(16)

where τ = 1, ..., T , π = 1, ..., ντ. Hamiltonian vector-functions are defined on (16) as

Hτπt(u
τπ) = ⟨pτπtBτπ + bτπτπ, uτπ⟩, t = T, ..., 1.

Remark, the vector nature of (16) via (13).

Theorem 6.3. Let (14) be solvable. The sequence of controls ū11, ū12, ..., ūTνT , forms

a Pareto-Nash-Stackelberg equilibrium control if and only if

ūτπ ∈ Arg ef max
uτπ:Dτπuτπ≤dτπ

Hτπt(u
τπ),

for t = T, ..., 1, τ = 1, ..., T, π = 1, ..., ντ.

Theorems 6.1 and 6.3 are equivalent.

7. CONCLUDING REMARKS

Different types of control processes may be observed in real life: optimal control,

Stackelberg control, Pareto-Stackelberg control, Nash-Stackelberg control, Pareto-

Nash-Stackelberg control, etc. Traditionally the single valued control is studied. But,

really the control may have a set valued nature, too. For such type of control processes

the mathematical models and solving principles are established.

The direct-straightforward and classical Pontryagin principle is applied for deter-

mining the desired control of set-valued dynamic processes. These principles are the

bases for pseudo-polynomial methods, which are exposed as a consequence of theo-

rems for set-valued linear discrete-time Pareto-Nash-Stackelberg control problems.

The results obtained for different types of set-valued non-linear control processes

with discrete and continuous time will be exposed in a future paper.
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Abstract In this paper we recall the notion of Stokes-Dirac structure and we construct several

examples of such structures. Then we discuss the integrability of some Stokes-Dirac

structures by introducing the convenient Courant brackets. Our theory has potential

applications in the control theory and the electromagnetism.
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1. INTRODUCTION

When studying a complex physical system one can rely on various methods. Two

of these are the network modelling and port-based network modelling, which basi-

cally mean that the complex physical system is first decomposed into simpler physi-

cal subsystems which can be studied separately, and secondly, study the interactions

between the subsystems previously determined. In so doing one studies the complex

physical system in a hierarchical and controlled manner.

On of the tools used to study the interactions, i.e. the power transfer, between the

subsystems, is the Dirac structure, as defined by Courant and Weinstein, in [3]. In

the same paper they also define the integrable Dirac structure by means of a bilinear

skew-symmetric map, which later came to be known as the Courant bracket. The

Dirac (integrable) structure mainly bridges the Poisson manifolds and the presym-

plectic structures, and has many extensions, see [10]. It also provides conditions for

the existence of solutions for important classes of mixed algebraic and differential

equations. For more on this subject see [4], [5], [9], [8] or [6].

In 2002, Schaft and Maschke define in [1], a new type of Dirac structure, called

the Stokes-Dirac structure. In this case the main ingredients are the Poincaré du-

ality theorem and the Stokes formula. There, they show that the equations of elec-

tromangetism, as given in [11], and other important PDE’s can be derived from such

structures. The Hodge-Dirac and Laplace-Beltrami-Dirac structures are later defined

in [12]. Some properties of the Stokes-Dirac like structures can be found in [13].

The main goal of this paper is to define the integrable Stokes-Dirac structures.

It is structured as follows.
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In the first section we define the Dirac structure and the integrable Dirac struc-

ture, using the Courant bracket, as defined by Courant and Weinstein, in [3]. Then

we construct several examples of such structures and then give several equivalent

conditions for the integrability of a Dirac structure.

In the second section, following [1], we define the Stokes-Dirac structures.

In the third section we define the integrable Stokes-Dirac structures, using two

Courant like brackets, previously defined.

2. DIRAC STRUCTURES

In this section we define the Dirac and integrable Dirac structures. The latter

depends on the Courant bracket. Then we give some equivalent conditions to the

integrability of a Dirac structure.

Let E and F be linear spaces of dimensions m and n respectively, endowed with

a bilinear non-degenerate pairing (, ) : E × F→ R, and consider the total space

(F × E, ⟨, ⟩+).

As an example of such linear spaces and pairing (, ), let E be a linear space (of

dimension m), F = E⋆ and let (, ) be the duality pairing of E and E⋆. Another

non-trivial example is obtained as follows. Let M be a smooth oriented (compact)

m-manifold, F = Λk (M), i. e. the space of all k-forms, on M, and E = Λm−k (M).

Now consider the nondegenerate bilinear pairing (, ) : Λk (M)×Λm−k (M)→ R, given

by:

(α, β) =

∫

M

(β ∧ α) , (2.1)

for any α ∈ Λk (M) and β ∈ Λm−k (M). It is obvious that by defining (, ) in this way,

by the Poincaré duality theorem we effectively identify the dual of F with E.

The next step is to associate to (, ), the non-degenerate symmetric, bilinear pairing

⟨, ⟩+, given by: ⟨(
f 1, e1

)
,
(

f 2, e2
)⟩
+
=

1

2

[(
f 1, e2

)
+

(
f 2, e1

)]
(2.2)

for any
(

f 1, e1
)
,
(

f 2, e2
)
∈ F × E.

Definition 2.1. Let F and E be linear spaces, and let (, ) : F × E→ R be a non-

degenerate bilinear pairing and consider a subspace D ⊂ (F × E, ⟨, ⟩+). The orthog-

onal complement of D, denoted by D⊥, with respect to ⟨, ⟩+, is given by:

D⊥ =
{(

f̄ , ē
)
∈ F × E |

⟨
( f , e) ,

(
f̄ , ē

)⟩
+
= 0, ∀ (s, α) ∈ D

}
. (2.3)

Definition 2.2. Let F and E be linear spaces (of finite dimensions), endowed with

a bilinear nondegenerate pairing (, ) and consider the total space (F × E, ⟨, ⟩+). The

linear subspace D ⊂ (F × E, ⟨, ⟩+) is a Dirac structure if

D = D⊥. (2.4)
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Example 2.1. Let E be a linear space of dimension m, and let E⋆ be the algebraic

dual of E, and consider the linear maps A : E→E⋆ and B : E⋆→E respectively.

The maps A and B are skew-symmetric maps if and only if their graphs, are Dirac

structures.

In order to define a Dirac structure with respect to a smooth (m-)manifold M, we

consider the big tangent bundle of M, i.e. TbigM = T M⊕T⋆M, where T M is tangent

bundle of M and T⋆M is the cotangent bundle of M. The map (, ) is defined as

the duality pairing between T M and T⋆M, respectively. In this case the symmetric

bilinear pairing ⟨, ⟩+ is given by:

⟨(X, α) , (Y, β)⟩+ = 1
2

(iYα + iXβ) , (2.5)

for any (X, α) , (Y, β) ∈ TbigM. Let ⟨, ⟩− be the skew-symmetric and bilinear pairing

given by:

⟨(X, α) , (Y, β)⟩+ = 1
2

(iYα − iXβ) , (2.6)

for any (X, α) , (Y, β) ∈ TbigM.

The orthogonal complement of a subbundle D ⊂
(
TbigM, ⟨, ⟩+

)
, denoted by D⊥,

and it is given by:

D⊥ =
{
(Y, β) ∈ TbigM | ⟨(X, α) , (Y, β)⟩+ = 0, for all (X, α) ∈ D

}
. (2.7)

Definition 2.3. Let M be a smooth m-manifold and let
(
TbigM, ⟨,⟩+

)
be the big tangent

bundle of M. The subbundle D ⊂
(
TbigM, ⟨, ⟩+

)
is a Dirac structure if

D = D⊥. (2.8)

Example 2.2. Let ω be a 2-form on the smooth manifold M. Then the subbundle

Dω =
{
(X, α) ∈ TbigM | α = iXω

}
, (2.8′)

is a Dirac structure. One can easily check that converse is also true.

Example 2.3. Let B : Λ1 (M)→ χ (M) be a skew-symmetric map. Then the subbun-

dle

DB =
{
(X, α) ∈ TbigM | X = B (α)

}
(2.8′′)

is a Dirac structure. This map extends the one previously defined in Example 3.

Similarly, the map A from Example 3 is extended to a linear skew-symmetric map,

also denoted by A, that give rise to a Dirac structure.

For the definition of the integrable Dirac structure we use the Courant bracket [, ]C ,

which is given by:

[
(X, α) , (Y, β)

]
C =

(
[X,Y]E , LXβ − LYα +

1
2
d (iYα − iXβ)

)
, (2.9)
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for any (X, α), (Y, β) ∈ Γ
(
TbigM

)
. It is easy to check that [, ]C is bilinear and skew-

symmetric.

When restricted to the sections of a Dirac structure D ⊂ TbigM, the Courant

bracket [, ]C is given by:

[
(X, α) , (Y, β)

]
C = ([X,Y] , LXβ − LYα + d(α(Y))) , (2.10)

for any (X, α), (Y, β) ∈ Γ
(
TbigM

)
.

One can easily check that the first component of the Jacobiator of the Courant

bracket [, ]C always vanishes, while the second component of the Jacobiator of [, ]C

does not, since

J2 ((X, α) , (Y, β) , (Z, γ)) =

= 1
2
dE (Ls (β (z)) + Lv (γ (s)) + Lz (α (v)))+

+ 1
2
dE (γ ([s, v]E) + α ([v, z]E) + β ([z, s]E)) ,

(2.11)

for any(X, α), (Y, β), (Z, γ) ∈ Γ (D), where J = (J1, J2) is the Jacobiator of [, ]C . For a

detailed computation of J2 we refer the reader to [2] or [3].

Example 2.4. Letω be a 2-form on M. Then the subbundle Dω ⊂ TbigM is integrable

if and only if ω|Γ(D∩T M) is closed, i.e. dω|Γ(D∩T M) = 0.

Let T be a map given by

T (X, α) , (Y, β) , (Z, γ) = (2.12)

= (LXβ) (Z) + (LYγ) (X) + (LZα) (Y) ,

for any (X, α) , (Y, β) , (Z, γ) ∈ Γ (T M ⊕ T⋆M
)
.

The following statements holds good.

Theorem 2.1. Let D ⊂ TbigM be a Dirac structure and consider the map T, given

by (2.12). Then D is an integrable Dirac structure iff T |Γ(D) vanishes on the sections

of D.

Theorem 2.2. Let D ⊂ TbigM be a Dirac structure and let ρ : D→T M, given by

ρ (X, α) = X. Then D is an integrable Dirac structure iff the triple (D, [, ]C , ρ) is a

Lie algebroid.

These theorems provide equivalent conditions to the integrability of a Dirac struc-

ture, of which the second one is the most used when solving mixed algebraic and

differential equations. We will not go down this path but instead present some inter-

esting extensions of the Dirac structure, called Stokes-Dirac and Hodge-Dirac struc-

tures.
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3. STOKES-DIRAC STRUCTURES

In this section we define the Stokes-Dirac and Hodge-Dirac structures. Let M be a

smooth oriented m-manifold, with smooth boundary ∂M. Let T⋆,q (M) be the vector

bundle of alternating multilinear forms, of degree q, on M. The fiber at each point

is the space T
⋆,q
p (M) consisting of all q-multilinear alternating continuous functions

on the fiber T
⋆,q
p (M), for each p ∈ M. The sections of Λq(M) := Γ(T⋆,q (M)) are

called q-forms. The set Λq(M) is an F(M)-module, where Λ0 (M) = F(M) denotes

the space of differentiable functions defined on M.

We denote by Λ
q
c (M) the space of q-forms with compact support on M and by

Λl
c (M) the space of l-forms with compact support on ∂M. We recall that there is a

non-degenarate bilinear pairing (, )M : Λ
q
c (M) × Λm−q

c (M)→ R, given by (α, β)M =∫
M
β ∧ α, so the dual of Λ

q
c (M) is identified with Λ

m−q
c (M), for each q ≤ m. Also,

there is a non-degenarate bilinear pairing (, )∂M : Λl
c (∂M)×Λm−1−l

c (∂M)→ R, given

by (α, β)∂M =
∫
∂M

β ∧ α, so that the dual of Λl
c (∂M) is identified with Λm−1−l

c (∂M),

for each l ≤ m − 1.

Now, we consider the F(M)−modules Λp (M) and Λq (M), respectively, such that

p + q = m + 1, and define the linear spaces Fp,q and Ep,q, by:

Fp,q = Λ
p
c (M) × Λq

c (M) × Λm−p
c (∂M) , (3.1)

and

Ep,q = Λ
m−p
c (M) × Λm−q

c (M) × Λm−q
c (∂M) . (3.2)

Now, consider the total space Fp,q × Ep,q. It is obvious that the maps (, )M and (, )∂M,

previously defined, yield a non-degenerate pairing (, ), on Fp,q × Ep,q, given by:

((
fp, fq, fb

)
,
(
ep, eq, eb

))
=

∫

M

[
ep ∧ fp + eq ∧ fq

]
+

∫

∂M

eb ∧ fb, (3.3)

for any
(

fp, fq, fb
)
∈ Fp,q and

(
ep, eq, eb

)
∈ Ep,q, which by symmetrization yields a

non-degenerate bilinear pairing

⟨, ⟩+ :
(
Fp,q × Ep,q

)
×

(
Fp,q × Ep,q

)
→ R,

given by:

⟨(
f 1
p , f 1

q , f 1
b
, e1

p, e
1
q, e

1
b

)
,
(

f 2
p , f 2

q , f 2
b
, e2

p, e
2
q, e

2
b

)⟩
+
=

=
((

f 1
p , f 1

q , f 1
b

)
,
(
e2

p, e
2
q, e

2
b

))
+

((
f 2
p , f 2

q , f 2
b

)
,
(
e1

p, e
1
q, e

1
b

))
,

(3.4)

for any
(

f i
p, f i

q, f i
b
, ei

p, e
i
q, e

i
b

)
∈ Fp,q × Ep,q, and i = 1, 2.

Definition 3.1. Let M be a smooth oriented m-manifold with smooth boundary ∂M,

and consider the total space
(
Fp,q × Ep,q, ⟨, ⟩+

)
given by (3.1), (3.2) and (3.4). Let
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D ⊂ Fp,q × Ep,q be a subbundle and denote by D⊥ its orthogonal complement with

respect to ⟨, ⟩+. We say D is a Dirac structure, on M, if

D = D⊥. (3.5)

Example 3.1. ([1]) Let M be a smooth oriented m-manifold with smooth boundary

∂M, and consider the total space
(
Fp,q × Ep,q, ⟨, ⟩+

)
. The subbundle D ⊂ Fp,q × Ep,q,

given by:

D = {
(

fp, fq, fb, ep, eq, eb

)
∈ Fp,q × Ep,q | fp = (−1)r deq,

fq = dep, fb = ep|∂M , eb = (−1)m−q+1 eq|∂M},
(3.6)

where r = pq + 1, is a Dirac structure, i.e. D = D⊥. This type of Dirac structures

are called Stokes-Dirac structures.

Example 3.2. ([1]) Furthermore, let N is a smooth oriented n-manifold (with smooth

boundary ∂N), and let Λd
c (N) denote the space of d-forms, on N, d ≤ n. Assume that

there is a map G : Λd
c (N)→Λp

c (M) × Λq
c (M), such that its dual, G⋆ : Λ

m−p
c (M) ×

Λ
m−q
c (M)→Λn−d

c (N), satisfies:

∫

M

[
ep ∧Gp

(
fp

)
+ eq ∧Gq ( fd)

]
=

∫

N

[
G⋆

p

(
ep

)
+G⋆

q

(
eq

)]
∧ fd, (3.7)

for any ep ∈ Λm−p
c (M), eq ∈ Λm−q

c (M) and fd ∈ Λd
c (N). In order to define the

Stokes-Dirac structure with respect to both M and N, we extend Fp,q × Ep,q to the

total augmented space Fa
p,q × Ea

p,q, defined by:

Fa
p,q = Fp,q × Λd

c (N) and Ea
p,q = Ep,q × Λn−d

c (N) , (3.8)

The space Fa
p,q × Ea

p,q is endowed with the bilinear pairing ⟨, ⟩a+, given by

⟨(
f 1
p , f 1

q , f 1
b f 1

d , e
1
p, e

1
q, e

1
b, e

1
d

)
,
(

f 2
p , f 2

q , f 2
b , f 2

d , e
2
p, e

2
q, e

2
b, e

2
d

)⟩a

+
= (3.9)

=
⟨(

f 1
p , f 1

q , f 1
b , e

1
p, e

1
q, e

1
b

)
,
(

f 2
p , f 2

q , f 2
b , e

2
p, e

2
q, e

2
b

)⟩
+
+

+
(

f 2
d , e

1
d

)
N
+

(
f 1
d , e

2
d

)
N
,

for any
(

f i
p, f i

q, f i
b
, f i

d
, ei

p, e
i
q, e

i
b
, ei

d

)
∈ Fa

p,q × Ea
p,q, and i = 1, 2, and thus the definition

follows.

The subbundle Da ⊂ Fa
p,q × Ea

p,q, given by:

Da = {
(

fp, fq, fb, fd, ep, eq, eb, ed

)
∈ Fa

p,q × Ea
p,q |

fp = (−1)r deq +Gp ( fd) , fq = dep +Gq

(
eq

)
,

fb = ep|∂M , eb = (−1)m−q+1 eq|∂M, ed = −G⋆
p

(
ep

)
−G⋆

q

(
eq

)
},

(3.10)
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is a Stokes-Dirac structure, that is Da = (Da)⊥.

Example 3.3. ([12]) Suppose that m = 2l + 1 and let M be a smooth oriented m-

manifold. Let p = q = l + 1 and consider the total space
(
Fl,l × El,l, ⟨, ⟩+

)
. The

subbundle D ⊂ Fl,l × El,l, given by

D = {
(

fp, fq, ep, eq

)
∈ Fp,q × Ep,q | fp = − ⋆ eq, fq = ⋆ep}, (3.11)

is a Dirac structure, called the Hodge-Dirac structure.

Now, we define the distributed port-Hamiltonian system as follows.

Let M be a smooth oriented m-manifold and let D be the Stokes-Dirac strucure,

given by (3.6), and consider a smooth Hamiltonian H : Λ
p
c (M) ×Λq

c (M)→ R, given

by:

H
(
αp, αq

)
=

∫

M

H
(
αp, αq, z

)
, (3.12)

where H : Λ
p
c (M) × Λq

c (M) × M→Λm
c (M) is a smooth density. By computing the

time derivative of H, along a trajectory t ∈ R→
(
αp (t) , αq (t)

)
∈ Λp

c (M) × Λq
c (M)

one gets:
dH

dt

(
αp (t) , αq (t)

)
=

∫

M

[δpH ∧
∂αp

∂t
+ δqH ∧

∂αq

∂t
]. (3.13)

Definition 3.2. Let M is a smooth oriented m-manifold with smooth boundary ∂M

and let D be the Stokes-Dirac structure given by (3.6), and let H be a smooth Hamil-

tonian, as in (3.12). The triple (M,D,H) is a distributed port-Hamiltonian system if

there exist trajectories t ∈ I ⊂ R→
(
αp (t) , αq (t)

)
∈ Λp

c (M) × Λq
c (M) such that:

(
−
∂αp

∂t
,−
∂αq

∂t
, δpH, δqH

)
∈ D. (3.14)

In practice, the spaces Λ
p
c (M) and Λ

q
c (M) denote the spaces of energy variables

of two different physical energy domains which interact with each other, while the

spaces Λ
m−p
c (∂M) and respectively Λ

m−q
c (∂M) denote the boundary variables, whose

”∧”- product represents the boundary energy flow.

Let m = 3, p = 2, and q = 2. In this case the Stokes-Dirac structure D is given by:

D = {
(

fp, fq, fb, ep, eq, eb

)
∈ F2,2 × E2,2

f1 = −de2, f2 = de1, fb = e1|∂M, eb = e2|∂M}.
(3.15)

Let M be a 3-dimensional space domain with smooth boundary ∂M, and denote

by B = Bi j(t, x)dxi ∧ dx j ∈ Λ2
c (M), and D = Di j (t, x) dxi ∧ dx j ∈ Λ2

c (M) the

magnetic field induction 2-form and the electric field induction 2-form respectively.

Let E = Ei (t, x) dxi ∈ Λ1
c (M) and H = Hi (t, x) dxi ∈ Λ1

c (M) denote the electric field

intensity and magnetic field intensity.
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The constitutive equations of M are ⋆D = εE and ⋆B = µH, where ⋆ denotes the

Hodge map, ε is the electric permittivity of M, and µ is the magnetic permittivity of

M.

Now, consider the triple (M,D,H), where H is a smooth Hamiltonian, given by:

H =
1

2

∫

M

[E ∧D +H ∧B] . (3.16)

The triple (M,D,H) is a distributed port-Hamiltonian system since the implicit Hamil-

tonian equations for the electromagnetism are given by:

∂D
∂t
= d (δDH) = dH, − ∂B

∂t
= d (δBH) = dE,

fb = δDH|∂M, eb = δBH|∂M,
(3.17)

in the case of a zero density electric current, otherwise ∂D
∂t
= dH+ fd, where fd ∈

Λ2
c (N) and M = N.

4. INTEGRABILITY

In this section we define the integrable Stokes-Dirac structure, by means of a

Courant like bracket [, ]p,q,C , and then consider the case of a smooth oriented 3-

manifold M, where we explicitely define the Courant like bracket [, ]2,2,C .

Let M a smooth, oriented m-manifold and let p, q ∈ N be such that p + q =

m + 1 and consider a subbundle D ⊂ Fp,q × Ep,q. Also, consider the subbundles

Λ
p
c (M)×Λm−p

c (M)×Λm−d
c (∂M) and Λ

q
c (M)×Λm−q

c (M)×Λm−q
c (∂M), respectively,

and define the canonical projections

πp : Fp,q × Ep,q→
(
Λ

p
c (M) × Λm−p

c (M) × Λm−p
c (∂M)

)
, (4.1)

and

πq : Fp,q × Ep,q→
(
Λ

q
c (M) × Λm−q

c (M) × Λm−q
c (∂M)

)
, (4.2)

which are given by:

πp

(
fp, fq, fb, ep, eq, eb

)
=

(
fp, fb, ep

)
, (4.3)

πq

(
fp, fq, fb, ep, eq, eb

)
=

(
fq, eq, ed

)
, (4.4)

for any
(

fp, fq, fb, ep, eq, ed

)
∈ Fp,q × Ep,q.

The subbundlesΛ
p
c (M)×Λm−p

c (M)×Λm−p
c (∂M) andΛ

q
c (M)×Λm−q

c (M)×Λm−q
c (∂M)

are endowed with the (non-degenerate) bilinear pairings ⟨, ⟩p,+ and ⟨, ⟩q,+, which are

given by:

⟨(
f 1
p , f 1

b , e
1
p

)
,
(

f 2
p , f 2

b , e
2
p

)⟩
p,+
=

⟨(
f 1
p , 0, f 1

b , e
1
p, 0, 0

)
,
(

f 2
p , 0, f 2

b , e
2
p, 0, 0

)⟩
, (4.5)
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and

⟨(
f 1
q , e

1
q, e

1
b

)
,
(

f 2
q , e

2
q, e

2
b

)⟩
q,+
=

⟨(
0, f 1

q , 0, 0, e
1
q, e

1
b

)
,
(
0, f 2

q , 0, 0, e
2
q, e

2
b

)⟩
, (4.6)

for any
(

f i
p, f i

q, f i
b
, ei

p, e
i
q, e

i
d

)
∈ Fp,q × Ep,q, i = 1, 2.

Definition 4.1. Let M be a smooth oriented m-manifold with smooth boudary ∂M,

and let D ⊂ Fp,q × Ep,q be a subbundle. We say D is a pseudo-Dirac structure if

the subbundles πp (D) ⊂
(
Λ

p
c (M) × Λm−p

c (M) × Λm−p
c (∂M) , ⟨, ⟩p,+

)
and πq (D) ⊂(

Λ
q
c (M) × Λm−q

c (M) × Λm−q
c (∂M) , ⟨, ⟩q,+

)
are Dirac structures.

Definition 4.2. Let D ⊂ Fp,q×Ep,q be a pseudo-Dirac structure. We say D is an inte-

grable pseudo-Dirac structure if there exist two maps [, ]p,0,C :
(
Γ
(
πp (D)

))2→Γ
(
πp (D)

)

and [, ]0,q,C :
(
Γ
(
πq (D)

))2→Γ
(
πq (D)

)
, bilinear and skew-symmetric, such that

1 [
Γ
(
πp (D)

)
, Γ

(
πp (D)

)]
p,0,C
⊆ Γ

(
πp (D)

)
, (4.7)

and respectively,

2 [
Γ
(
πq (D)

)
,Γ

(
πq (D)

)]
0,q,C
⊆ Γ

(
πq (D)

)
. (4.8)

Let m = 3, p = q = 2 and let g be a Riemannian metric on M.

Definition 4.3. Let M be a smooth oriented 3-manifold with smooth boundary ∂M,

and let D ⊂ F2,2 × E2,2 be a pseudo-Dirac structure on M.

Let [, ]2,0,C : Γ
(
πp

(
F2,2 × E2,2

))2→Γ
(
πp

(
F2,2 × E2,2

))
and

[, ]0,2,C : Γ
(
πq

(
F2,2 × E2,2

))2→Γ
(
πq

(
F2,2 × E2,2

))
be given by:

[(
f 1
1
, f 1

b
, e1

1

)
,
(

f 2
1
, f 2

b
, e2

1

)]
2,0,C
=

= (L♭e1
1

f 2
1
− L♭e2

1
f 1
1
+ 1

2
d(i♭e2

1
f 1
1
− i♭e1

1
f 2
1

), 0, ♯
[
♭e1

1
, ♭e2

1

]
)[(

f 1
2
, e1

2
, e1

b

)
,
(

f 2
2
, e2

2
, e2

b

)]
0,2,C
=

= (L♭e1
2

f 2
2
− L♭e2

2
f 1
2
+ 1

2
d(i♭e2

2
f 1
2
− i♭e1

2
f 2
2

), ♯
[
♭e1

2
, ♭e2

2

]
, 0),

(4.9)

for any f 1
1

, f 2
1

, f 1
2

, f 2
2

, ∈ Λ2
c (M), f 1

b
, f 2

b
∈ Λ1

c (∂M), e1
1
, e2

1
, e1

2
, e2

2
∈ Λ1

c (M),and

e1
b
, e2

b
∈ Λ1

c (M), where the maps ♭ : T⋆M→T M and ♯ : T M→T⋆M are the canonical

isomorphisms of the metric g.

The following hold good.

Lemma 4.1. The maps [, ]2,0,C and [, ]0,2,C are bilinear and skew-symmetric.
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This proof follows from the properties of the Courant bracket [, ]C , the Lie bracket

[, ]T M and that of the isomorphisms ♭ and ♯.

Lemma 4.2. Let M be a smooth oriented 3-manifold with smooth boundary ∂M,

and let p = q = 2 and consider the pseudo-Dirac structure D ⊂ F2,2 × E2,2, i.e.

πp (D) and πq (D) are Dirac structures. The integrability conditions (4.7) and (4.8)

are equivalent to:

∫

M

de3
2 ∧

(
♯
[
♭e1

1, e
2
1

])
= −

∫

M

(L♭e1
1

f 2
1 − L♭e2

1
f 1
1 +

1

2
d(i♭e2

1
f 1
1 − i♭e1

1
f 2
1 )) ∧ e3

1, (4.10)

and,
∫

M

de3
1 ∧

(
♯
[
♭e1

2, ♭e
2
2

])
= −

∫

M

(L♭e1
2

f 2
2 − L♭e2

2
f 1
2 +

1

2
d(i♭e2

2
f 1
2 − i♭e1

2
f 2
2 )) ∧ e3

2, (4.11)

for any f 1
1

, f 2
1

, f 1
2

, f 2
2

, ∈ Λ2
c (M) and e1

1
, e2

1
, e1

2
, e2

2
∈ Λ1

0
(M).

Now we define the anchor maps ρp :
(
F2,2 × E2,2

)→T M and

ρq :
(
F2,2 × E2,2

)→T M, respectively, by:

ρp

(
f 1
1 , f 2

1 , f 1
b , e

1
1, e

2
1, e

1
b

)
= ♭

(
e1

1

)
, (4.12)

and,

ρq

(
f 1
1 , f 2

1 , f 1
b , e

1
1, e

2
1, e

1
b

)
= ♭

(
e2

1

)
, (4.13)

for any f 1
1

, f 2
1

, f 1
2

, f 2
2

, ∈ Λ2
c (M), f 1

b
∈ Λ1

c (∂M), e1
b
∈ Λ1

c (∂M) and e1
1
, e2

1
, e1

2
,

e2
2
∈ Λ1

c (M).

Lemma 4.3. The following hold:

1

ρp

([(
f 1
1 , f 2

1 , f 1
b , e

1
1, e

2
1, e

1
b

)
,
(

f 1
2 , f 2

2 , f 2
b , e

1
2, e

2
2, e

2
b

)]
2,0,C

)
= (4.14)

=
[
ρp

(
f 1
1 , f 2

1 , f 1
b , e

1
1, e

2
1, e

1
b

)
, ρp

(
f 1
2 , f 2

2 , f 2
b , e

1
2, e

2
2, e

2
b

)]
T M

,

and, respectively,

2

ρq

([(
f 1
1 , f 2

1 , f 1
b , e

1
1, e

2
1, e

1
b

)
,
(

f 1
2 , f 2

2 , f 2
b , e

1
2, e

2
2, e

2
b

)]
0,2,C

)
= (4.15)

=
[
ρq

(
f 1
1 , f 2

1 , f 1
b , e

1
1, e

2
1, e

1
b

)
, ρq

(
f 1
2 , f 2

2 , f 2
b , e

1
2, e

2
2, e

2
b

)]
T M

,

for any f 1
1

, f 2
1

, f 1
2

, f 2
2
∈ Λ2

c (M), f 1
b
, f 2

b
∈ Λ1

c (∂M), e1
b
, e1

b
∈ Λ1

c (∂M) and e1
1
,

e2
1
, e1

2
, e2

2
∈ Λ1

c (M).
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The proof of this lemma follows from the definition ρp and ρq, and the properties

of ♭.
Now we compute the Jacobiators of [, ]2,0,C and [, ]0,2,C . By a straightforward

computation we obtain:

[
[(

f 1
1 , f 1

b , e
1
1

)
,
(

f 2
1 , f 2

b , e
2
1

)]
2,0,C

,
(

f 3
1 , f 3

b , e
3
1

)
]2,0,C (4.16)

= [(L♭e1
1

f 2
1 − L♭e2

1
f 1
1 +

1

2
(di♭e2

1
f 1
1 − i♭e1

1
f 2
1 ), 0, ♯

[
♭e1

1, ♭e
2
1

]
),
(

f 3
1 , f 3

b , e
3
1

)
]p,C

= (L[
♭e1

1
,♭e2

1

] f 3
1 − L♭e3

1
L♭e1

1
f 2
1 + L♭e3

1
L♭e2

1
f 1
1 +

1

2
dL♭e3

1
(i♭e2

1
f 1
1 − i♭e1

1
f 2
1 )

+
1

2
d(i♭e3

1
L♭e1

1
f 2
1 − i♭e3

1
L♭e2

1
f 1
1 +

1

2
i♭e3

1
(d(i♭e2

1
f 1
1 − i♭e1

1
f 2
1 ) − i[

♭e1
1
,♭e2

1

] f 3
1 ),

0, ♯
[[
♭e1

1, ♭e
2
1

]
, ♭e3

1

]
)

and,

[
[(

f 1
2 , e

1
2, e

1
b

)
,
(

f 2
2 , e

2
2, e

2
b

)]
0,2,C

,
(

f 3
2 , e

3
2, e

3
b

)
]0,2,C = (4.17)

= [(L♭e1
2

f 2
2 − L♭e2

2
f 1
2 +

1

2
d(i♭e2

2
f 1
2 − i♭e1

2
f 2
2 ), ♯

[
♭e1

2, ♭e
2
2

]
, 0),

(
f 3
2 , e

3
2, e

3
b

)
]q,C

= (L[
♭e1

2
,♭e2

2

] f 3
2 − L♭e3

2
L♭e1

2
f 2
2 + L♭e3

2
L♭e2

2
f 1
2 +

1

2
dL♭e3

2
(i♭e2

2
f 1
2 − i♭e1

2
f 2
2 )

+
1

2
(d(i♭e3

2
L♭e1

2
f 2
2 − i♭e3

2
L♭e2

2
f 1
2 +

1

2
i♭e3

2
d(i♭e2

2
f 1
2 − i♭e1

2
f 2
2 ) − i[

♭e1
2
,♭e2

2

] f 3
2 )),

♯
[[
♭e1

2, ♭e
2
2

]
, ♭e3

2

]
, 0),

for any f 1
1

, f 2
1

, f 3
1

, f 1
2

, f 2
2
,3
2
∈ Λ2

c (M), f 1
b

, f 2
b

, f 3
b
∈ Λ1

c (∂M), e1
b
, e2

b
, e3

b
∈ Λ1

c (∂M) and

e1
1
, e2

1
, e3

1
, e1

2
, e2

2
, e3

2
∈ Λ1

c (M). From the previous formulae, follows

Lemma 4.4. Let
(

f 1
i
, f 2

i
, f i

b
, e1

i
, e2

i
, ei

b

)
∈ Γ (D2,2

)
, i = 1, 3. The Jacobiators of [, ]2,0,C

and [, ]0,2,C are given by

J2,0,C

((
f 1
1 , f 1

b , e
1
1

)
,
(

f 2
1 , f 2

b , e
2
1

)
,
(

f 3
1 , f 3

b , e
3
1

))
= (4.18)

= ({i♭e2
1
L♭e3

1
f 1
1 − i♭e1

1
L♭e3

1
f 2
1 + i♭e3

1
L♭e1

1
e f 2

1 −
−i♭e2

1
L♭e1

1
f 3
1 + i♭e1

1
L♭e2

1
f 3
1 − i♭e3

1
L♭e2

1
f 1
1 }

+
1

4
d{i♭e2

1
di♭e1

1
f 3
1 − i♭e2

1
di♭e3

1
f 1
1 + i♭e1

1
di♭e3

1
f 2
1 −

−i♭e1
1
di♭e2

1
f 3
1 + i♭e2

1
di♭e1

1
f 3
1 − i♭e2

1
di♭e3

1
f 1
1 }−

−1

2
{i[
♭e2

1
,♭e3

1

] f 1
1 + i[

♭e3
1
,♭e1

1

] f 2
1 + i[

♭e1
1
,♭e2

1

] f 3
1 }, 0, 0),
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and

J0,2,C

((
f 1
2 , e

1
2, e

1
b

)
,
(

f 2
2 , e

2
2, e

2
b

)
,
(

f 3
2 , e

3
2, e

3
b

))
= (4.19)

= ({i♭e2
2
L♭e3

2
f 1
2 − i♭e1

2
L♭e3

2
f 2
2 + i♭e3

2
L♭e1

2
f 2
2 −

−i♭e2
2
L♭e1

2
f 3
2 + i♭e1

2
L♭e2

2
f 3
2 − i♭e3

2
L♭e2

2
f 1
2 }

+
1

4
d{i♭e2

2
di♭e1

2
f 3
2 − i♭e2

2
di♭e3

2
f 1
2 + i♭e1

2
di♭e3

2
f 2
2 −

−i♭e1
2
di♭e2

2
f 3
2 + i♭e2

2
di♭e1

2
f 3
2 − i♭e2

2
di♭e3

2
f 1
2 }+

+
1

2
{i[
♭e2

2
,♭e3

2

] f 1
2 + i[

♭e3
2
,♭e1

2

] f 2
2 + i[

♭e1
2
,♭e2

2

] f 3
2 }, 0, 0).

Theorem 4.1. Let D be a pseudo-Dirac structure. Then the Jacobiators J2,0,C and

J0,2,C vanish if and only if both
(
πp (D) , [, ]2,0,C |Γ(πp(D))

)
and

(
πq (D) , [, ]0,2,C |Γ(πq(D))

)

are Lie algebras.

The if part follows from the vahishing of the Jacobiator of both [, ]2,0,C and [, ]0,2,C ,

and the anchor properties of ρp and ρq. The only if part is a consequence of the Lie

algebra structure that both
(
π1 (D) , [, ]2,0,C , ρp

)
and

(
π2 (D) , [, ]0,2,C , ρq

)
respectively

are endowed with.

Theorem 4.2. Let D be an integrable pseudo-Dirac structure.

Then
(
πp (D) , [, ]2,0,C |Γ(πp(D)), ρp

)
and

(
πq (D) , [, ]0,2,C |Γ(πq(D)), ρq

)
are Lie algebroids.

Definition 4.4. Let M be a smooth oriented 3-manifold and consider the total space(
F2,2 × E2,2, ⟨, ⟩+

)
. On the sections of F2,2 × E2,2 we define the Courant bracket:
[(

f 1
1 , f 1

2 , f 1
b , e

1
1, e

1
2, e

1
b

)
,
(

f 2
1 , f 2

2 , f 2
b , e

2
1, e

2
2, e

1
b

)]
2,2,C
= ((4.20))

(
[(

f 1
1 , e

1
b, e

1
1

)
,
(

f 2
1 , f 2

b , e
2
1

)]
2,0,C

,
[(

f 1
2 , e

1
2, e

1
b

)
,
(

f 2
2 , e

2
2, e

2
b

)]
0,2,C

),

for any
(

f 1
i
, f 2

i
, f i

b
, e1

i
, e2

i
, ei

b

)
∈ Γ (F2,2 × E2,2

)
.

Lemma 4.5. The Courant bracket [, ]2,2,C is skew-symmetric and linear. The maps

ρp and ρq are anchor maps.

It is obvious that [, ]2,2,C is not always a Lie bracket

Definition 4.5. Let M be a smooth oriented 3-manifold with smooth boundary ∂M,

and consider the Dirac structure D ⊂ F2,2 × E2,2. We say D is an integrable Dirac

structure if is closed under the Courant bracket [, ]2,2,C .

Corollary 4.1. The Dirac structure D ⊂ F2,2 × E2,2 is integrable if:
∫

M

[
e1

3 ∧C1

(
f 1
1 , f 1

2

)
+ e2

3 ∧C2

(
f 2
1 , f 2

2

)]
= ((4.21))

=

∫

M

[
♯
[
♭e1

2, ♭e
1
1

]
∧ f 3

1 + ♯
[
♭e2

2, ♭e
2
1

]
∧ f 3

2

]
,
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for any
(

f 1
i
, f 2

i
, f i

b
, e1

i
, e2

i
, ei

b

)
∈ Γ (D2,2

)
, i = 1, 3, where

C1

(
f 1
1 , f 1

2

)
= L♭e1

1
f 1
2 − L♭e1

2
f 1
1 +

1
2
d(i♭e1

2
f 1
1 − i♭e1

1
f 1
2 ), (4.22)

and

C2

(
f 1
2 , f 2

2

)
= L♭e2

1
f 2
2 − L♭e2

2
f 2
1 +

1
2
d(i♭e2

2
f 2
1 − i♭e2

1
f 2
2 ). (4.23)

Lemma 4.6. Let M be a smooth oriented 3-manifold, and let D2,2⊂ F2,2×E2,2 be the

Stokes-Dirac structure given by (3.6). The integrability condition (4.21) is equivalent

to

−
∫

M

e1
3 ∧ d[L♭e1

1
e2

1 − L♭e1
2
e2

2 +
1
2
(i♭e1

2
de2

2 − i♭e1
1
de2

1)] (4.24)

+

∫

M

e2
3 ∧ d[L♭e2

1
e1

2 − L♭e2
2
e1

1 +
1
2
(i♭e2

1
de1

2 − i♭e2
2
de1

1)] =

=

∫

M

[−
[
♯
[
♭e1

2, ♭e
1
1

]
∧ de3

2 + ♯
[
♭e2

2, ♭e
2
1

]
∧ de3

1

]
,

for any
(

f 1
i
, f 2

i
, f i

b
, e1

i
, e2

i
, ei

b

)
∈ Γ (D2,2

)
, i = 1, 3.

Corollary 4.2. Let D ⊂ F2,2 × E2,2 be the Hodge-Dirac structure given by (3.11).

Then the Dirac structure D is integrable if:

−
∫

M

e1
3 ∧ [L♭e1

1

(
⋆e2

1

)
− L♭e1

2

(
⋆e2

2

)
+ 1

2
d(i♭e1

2

(
⋆e2

2

)
− i♭e1

1

(
⋆e2

1

)
)] (4.25)

+

∫

M

e2
3 ∧ [L♭e2

1

(
⋆e1

2

)
− L♭e2

2

(
⋆e1

1

)
+ 1

2
d(i♭e2

2

(
⋆e1

1

)
− i♭e2

1

(
⋆e1

2

)
)] =

=

∫

M

[
−♯

[
♭e1

2, ♭e
1
1

]
∧ ⋆e2

3 + ♯
[
♭e2

2, ♭e
2
1

]
∧ ⋆e1

3

]
.

for any
(

f 1
i
, f 2

i
, f i

b
, e1

i
, e2

i
, ei

b

)
∈ Γ (D2,2

)
, i = 1, 3.

Corollary 4.3. The map [, ]p,q,C is a Lie bracket iff
(
D2,2, [, ]2,2,C

)
is a Lie algebra.

Theorem 4.3. The triple
(
D2,2, [, ]2,2,C , ρp

)
is a Lie algebroid if [, ]2,2,C is a Lie

bracket.
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by the grant offered by POSDRU, no. 107/1.5/S/78342.



212 Vlad A. Vulcu

References

[1] Schaft A. J., Maschke B. M., Hamiltonian formulation of distrubuted-parameter systems with

boudary energy flow, J. of Geom. Phys., 42(2002), 166-194.

[2] Anastasiei M., Sandovici A., Banach Dirac bundles, IJGMMP, 10, 7(2013).

[3] Courant T.J., Dirac Manifolds, Trans. American Math. Soc, 319 (1990), 631-661.

[4] Blankenstein G., Ratiu, T. S., Singular reductuion of implicit Hamiltonian systems, Rep. Math.

Phys. 53-2(2004), 211-260.

[5] Dorfman I., Dirac structures and integrability of nonlinear evolution equations, John Wiley Sons,

1993.

[6] van der Schaft, A. J., Implicit hamiltonian systems with symmetry, Rep. Math. Phys., 41-2, 1998.

[7] Vaisman, I., Conformal changes of generalized complex structures, An. Ştiinţ. Univ. ”Al. I.
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