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1. INTRODUCTION

We use the terminology from [12, 53, 33]. LetN = {0, 1,2, ...} and E be the discrete
sum of topological spaces {E,, : n € N}. We say that E, is the space of symbols
of n-ary operations on topological E-algebras. A topological universal algebra of
signature E or a topological E-algebra is a non-empty topological space G on which
there are given the continuous mappings {e,g : E,;, XG" — G : n € N}. The mappings
enc form the algebraical structure on G.

Let G be a topological E-algebra, n € N and u € E,. If n = 0, then u(G°) =
eoc({0} x G%) is a singleton and u : G’ > Gisa mapping. If n > 1, then we consider
the n-ary operation u : G* — G, where u(xy, ..., X,) = ey (U, X1, ..., Xp).

The polynomials are constructed in the following way:

- E are polynomials;

-ifne N,n>1,u € E,, p; is an m;-ary polynomial, then p = u(py, ..., py) is an
m-ary polynomial, where

m=m; +my+ ... +m, and
PX1,5 ey X)) = U(P1(X15 ooy X)) oo pn(xm,,,1+l’ wees X))

Letn > m > 1, p be an n-ary polynomial and ¢ : {1,2,...n} — {1,...,m} be a
mapping. Then v(xy, ..., X)) = p(xXy4(1), X42)» ---» Xq(n)) 1 an m-ary term. The polyno-
mials are terms too. If u is an n-ary term and v is an m-ary term, then u(xy, ..., x,,) =
v(¥1, ..., Ym) 1s an identity on E-algebras.

Denote by |X| the cardinality of the set X. Any space is considered to be a T_;-
space.
Leti€{-1,0,1,2,3,31}.
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A class K of topological E-algebra is called a T;-quasivariety if:

- any algebra G € K is a T;-space,

-if G € K and B is a subalgebra of G, then B € K,

- the topological product of algebras from K is a topological algebra from K,

-if (G,7) € K, T” is a T;-topology on G and (G, 7T”) is a topological E-algebra,
then (G,T”) € K.

If Q is a set of identities and V(E, €, 1) is the class of all topological E-algebras
with identities @, which are T;-spaces, then V(E, Q, i) is a T;-variety. Any T;-variety
is a Tj-quasivariety.

A class V of E-algebras is non-trivial if |G| > 2 for some G € V.

The investigations of topological algebras are effected in the following directions.

DP. Investigation of the relationship between the algebraic and topological prop-
erties of the topological E-algebras G from V(E, Q,1).

The afore named Problem DP is examined in light of the following problems.

DT. Let G be an E-algebra. Determine the kinds of topologies, which can be
considered on the E-algebra G that makes it a topological E-algebra.

DA. Let G be a topological space. Determine the types of algebraic structures that
can be considered on the space G, which makes it a topological E-algebra.

DC. Application of the Theory of Topological Algebras.

2. COMPATIBILITY AND INCOMPATIBILITY

Fix a signature £ = &{E, : n € N} and a set Q of identities. One of the general
problems, determined by the direction DA, is the next.

Problem 2.1. Let G be a topological non-empty space, E be a signature and € be
a set of identities. Is it true that G admits a structure of topological E-algebra for
which G € V(E,Q,-1)?

One of the first results in this direction is the Pontryagin variant of the Frobenius
theorem in the abstract algebra (see [89, 90]).

Theorem 2.1. (Frobenius - Pontryagin). Let D be a connected locally compact divi-
sion ring. Then:

1. If D is associative and commutative, then either D is the ring of reals R, or the
ring C of complex numbers.

2. If D is associative and non-commutative, then D is the ring of quaternions H.

3. If D is non-associative, then D is the ring of octonions D.

The algebra of quaternions was discovered by Hamilton in 1843 and the algebra of
the octonions - by J. T. Graves in 1843. The Cayley-Diskson construction produces
a sequence of topological algebras over the given topological field (in particular over
the reals). In the case of reals, we obtain the algebras R, C, H, D (see [14]).

Really, let R be a topological ring with involution x — x*. Denote by A(R, ) the
set R?> = R x R with the operations:
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B () +W,v)=(+u,y+v);
(x5, ) (u,v) = (xu— vy, vx + yu*);

u (x’)’)* = (-x*’ _y)

Then A(R, ) is a topological ring with the involution and a topological R-module.
The mapping x — (x,0) is the natural embedding of the ring R into A(R, *). As a
rule, the point x € R is identified by the point (x, 0) € A(R, *) and one may consider
that R C A(R, ).

If on the field R of reals the identical mapping x — x* = x is the given involution,
then C = A(R, %) is the algebra of complex numbers, H = A(C, %) is the algebra of
quaternions (hypercomplex) number and D = A(H, =) is the algebra of octonions.
The algebras H; = A(H, %) and H,,+; = A(H,, =) relatively to the multiplication are
not with division for all n.

Corollary 2.1. Let G be an infinite connected and locally compact space. If dim
G ¢1{1,2,4,8)}, then G does not admit the structure of the topological division ring.

Obviously, any topological space G admits structures of topological E-algebras.
For this it is sufficient to fix some continuous mapping e, : E, X G" — G for
any n € N. In particular, the operation xy = x determines on G the structure of a
topological semigroup with a right identity: the element e € G is a right (respectively,
left) identity if xe = x (respectively, ex = x) for any x € G.

Remark 2.1. There exists a metrizable connected compact space A such that if xy is
a structure of a topological groupoid with right identity, then xy = x for all x,y € A.
In this case any continuous mapping ¢ : A X A — A is one of the projections or a
constant mapping. The space A is called the Cook continuum (see [89, 90]).

Theorem 2.2. (L. M. James, [63, 64]) If n ¢ {0,1,3,7}, then on the sphere S™ from
the (n + 1)-dimensional Euclidean space E"' does not exist the structure of a topo-
logical groupoid xy with the identity e € S™.

Theorem of L.M.James and the fixed point principle have many applications.

Corollary 2.2. Letn > 1, B* ={x € E" : ||x|| < 1}, and e € S"~' C B" C E". The
following assertions are equivalent:

1. On the sphere S™~! there exists the structure xy of a topological groupoid with
the identity e € S" 1.

2. On Euclidean space E" there exists the structure xy of a topological groupoid
with the identity e € S"™' such that S"~" and B" are subgroupoids.

3. On Euclidean space E" there exists the structure xy of a topological groupoid
with the identity e € S"' such that B" \ {xy : x,y € S""1} £ 0.

4. nefl,2,4,8}

Proof. Implications 1 — 4 — 1 immediately follows from the James’ Theorem 2.2.
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Assume that x - y is a structure of a topological groupoid on S”~! with the identity
e e S Let0 = (0,...,0) be the neutral element of the Euclidean space E". If
x € E™ and x # 0, then there exists a unique point p(x) € § "= such that p(x) = ”—i”x.
The mapping 4 : E" \ {0} — S"! is continuous. Now we put x* 0 = 0 % x = 0
foreach x € E" and y * z = ||yl| - l|zl| - h(y) - h(z) for all y,z € E™ \ {0}. Then (E", %)
is a topological groupoid with the identity e and (S"~!,-), (B", *) are subroupoids.
Obviously x -y = x * y for x,y € §"°!. Implication 1 — 2 is proved. Implication
2 — 3 is obvious.

Assume that xy is a structure of a topological groupoid on E" with the identity e €
S"Vand B*\ {xy: x,y € S" '} # 0. We can suppose that 0 € B" \ {xy : x,y € s,
Then x o y = h(xy) is a structure of a topological groupoid on S”~! with the identity
e € S ! Implication 3 — 1 is proved. The proof is complete. §

We need some definitions. A topological quasigroup is a non-empty space G with
three binary operations {-, r, [} and identities x - [(x,y) = r(y,x) - x = l(x,x - y) =
I(r(x,y) - x) =r(y - x,x) = y.

A homogeneous algebra is a non-empty space G with two binary operations {+, -}
and the identities x + x - y=x-(x+y) =y, x-x=y - y.

A biternary Mal’cev [72] algebra is a non-empty space with two ternary operations
{p, ¢} and identities p(y,y, x) = q(p(x,y,2),y,2) = p(q(x,y,2),y,2) = X.

A Mal’cev algebra is a non-empty space with one ternary operation {p} and iden-
tities p(x, x,y) = p(y, X, x) = y.

A topological quasigroup with the identity is a loop. Every topological group is a
loop. A space admits a structure of a topological quasigroup if an only if it admits
a structure of a topological loop (A. 1. Mal’cev, 1956, [72]). Any biternary Mal’cev
algebra is a Mal’cev algebra (A. I. Mal’cev, 1956, [72]). Any topological quasigroup
admits a structure of a biternary Mal’cev algebra (A. I. Mal’cev, 1956, [72]). A
space admits a structure of a homogeneous algebra if and only if admits a structure
of a biternary Mal’cev algebra (M. M. Choban [28]). A space X admits a structure
of a homogeneous algebra if and only if X is a rectifiable space, i.e. there exist a
homeomorphism z : X X X — X X X and a point ¢ € X such that A(x X X) = x X X
and h(x,x) = (x,c) for any x € X (M. Choban [28]). The mapping # is called a
rectification on X.

A space X is homogeneous if for any two points a, b € X there exists a homeomor-
phism A, : X — X such that hg,(a) = b.

Let {+, -} be a structure of a homogeneous algebra on a space G, a,b € G and x -y
=cfor all x € G. Then P,(x) = a - x, Qy(u) = a + x are homeomorphisms, P;] =
Qa4 Py(a) = c and Q,(c) = a. On G there exists a structure {+, -} of homogeneous
algebra such that c is the a priori given point. The mapping ¥(x,y) = (x,x - y)is a
homeomorphism of G X G onto G X G such that ¥(x, x) = (x,¢) and ¥({x} X G) =
{x} X G for any x € G.
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Assume now that c € X and & : G X G — G X G is a homeomorphism such that
h(x,x) = (x,c) and h({x} X G) = {x} X G forany x € G. Let p : G X G — G be the
projection p(x, y) = y. We put p(h(x,y)) = x-y and p(h~'(x,y)) = x+y forall x,y € G.
Then {+, -} is a structure of a homogeneous algebra on a space G.

Let now f;(x) = x + b. Since " 1(G x ¢) = {(x,x) : x € G} and h~(G x {b}) is the
graphic of the mapping f,, then for b # ¢ we have f,(x) # x for any x € G. Thus
the mapping f;, does not contains fixed points for any b # c. In particular, G is not a
fixed point space. This simple fact was observed by A. S. Gul’ko ([58], Proposition
4.1). From this fact it follows.

Corollary 2.3. Any homogeneous algebra G is a homogeneous space. If |G| > 2,
then G is not a fixed point space.

Let X C Y. The mapping r : ¥ — X is a retraction if r(x) = x for all x € X.
If p: Y3 = Y is a Mal’cev ternary operation on Y, then ¢(x,y,z) = r(p(x,y,2)) is
a ternary Mal’cev operation on X. Thus a retract of a Mal’cev algebra is a Mal’cev
algebra. In particular, any AR-space admits a structure of a Mal’cev algebra.

Corollary 2.4. For any cardinal T > 1 the cube I" is a Mal’cev algebra and it
does not admit a structure of homogeneous algebra. For 7 infinite the space I” is
homogeneous.

Corollary 2.5. Any AR-space is a fixed point space, admits a structure of a Mal’cev
space and does not admit a structure of a homogeneous algebra.

If a compact space X admits a structure of a Mal’cev algebra, then X is a Dugundji
space (see [31, 32, 33,79, 95]). In [8] it was proved that for a Hausdorff compact-
ification X of a rectifiable space X the remainder bX\X is a pseudocompact or a
Lindelof space. The last assertion is not true for Mal’cev algebras [8].

The next questions are open.

Problem 2.2. Is it true that any Mal’cev algebra is a retract of some homogeneous
algebra, or of some topological quasigroup?

Problem 2.3. (A.V.Arhangel’skii). Is it true that any compact Mal’cev algebra is a
retract of some compact group?

Problem 2.4. Let X be a first-countable completely regular space, the Souslin num-
ber c¢(X7) is countable for any cardinal T and X™ admits a structure of a homoge-
neous algebra for some cardinal m. Is it true that the space X™ admits a structure of
a homogeneous algebra?

The minimal infinite cardinal number 7 for which |y| < 7 for any disjoint family
v of open subsets of a space X is called the Souslin number of the space X and it is
noted by c(X).
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Remark 2.2. Let X be a space and A be a non-empty set. Fix a point 0 € X and
an element a € A. For any x € X we put e(x) = (xg : B € A) € XA, where x, = x
and xg = O forall p # a. Then h : X — XA is an embedding. We identify X and
h(X) and consider that X = h(X) C XA. Then the mapping r : X4 — X, where
r(xg : B € A) = h(x,), is a retraction. Thus the following assertions are equivalent:

1. The space X admits a structure of a Mal’cev algebra.

2. The space XT admits a structure of a Mal’cev algebra for any cardinal number
T.

3. The space X admits a structure of a Mal’cev algebra for some cardinal number

T>1.

3. PRECOMPACT TOPOLOGIES ON ALGEBRAS

Fix a discrete signature £ = @{E,, : n € N}. A topological E-algebra G is precom-
pact if G is a topological E-algebra of some Hausdorff compact E-algebra. In this
section any space is considered to be completely regular.

Let G be a topological E-algebra. A pair (B, ) is an a-compactification or an
almost periodic compactification of G if B is a compact E-algebra, ¢ : G — Bisa
continuous homomorphism and the set ¢(G) is dense in B.

If (B, ¢) and (H, y) are a-compactifications of G, then (H, ) < (B, ¢) if there exists
a continuous homomorphism g : B — H such that ¢ = g o ¢. For any topological
E-algebra the class AC(G) of all a-compactifications of G is a complete lattice. The
maximal a-compactification (bhG, b) of G is called the Bohr-Holm compactification
of G. The mapping bg : G — bhG is an embedding if and only if G is precompact.
The Bohr-Holm compactifications were studied in [62, 60, 61, 37, 38, 42, 43, 76, 86].

Let G be a topological E-algebra and G, be the algebra G with the discrete topol-
ogy. A pair (H, @) is called an ap-extension of G if (H, ¢) is an a-compactification of
G, and (bhG, bg) < (H, ). Thus the class EP(G) of all ap-extensions of G is a com-
plete lattice with the maximal element (apG, ag) and minimal element (bhG, bg). If
the space G is discrete, then apG = bhG.

Let C be the field of complex numbers and C(X) be the Banach algebra of all
continuous bonded complex-valued functions on the space X. By B(X) denote the
Banach-algebra of bounded Baire-measurable complex-valued functions on X. The
algebra Ba(X) of Baire-measurable sets of the space X is the o-algebra generated by
the class of functionally closed sets { f‘l(O) : f € C(X)} of the space X. A function
g : X — C is Baire-measurable if g‘l(U) € Ba(X) for each open subset U of C.
The algebra of functional-measurable sets Fun(X) of the space X is the o-algebra
generated by the class of functionally sets {f~'(H) : f € C(X), H C C} of the space
X. A function g : X — C is functionally-measurable if g ' (U) € Fun(X) for each
open subset U € C. By ®(X) denote the Banach-algebra of bounded functional-
measurable complex-valued functions on X. By F(X) denote the Banach-algebra of



Selected problems and results of topological algebra 7

all bounded complex-valued functions on X. Obviously, C(X) € B(X) € ®(X) C
F(X).

If G is a topological E-algebra and (H,¢) is an a-compactification of G, then
APCy)(G)={fop: fe CH)} If (H,¢)is an ap-extension of G, then APy ,)(G)
={fop: f e CH)} Let AP(G) = AP(4pG.a5)(G) and APC(G) = APC piG b,)(G).
Then AP(G) is the Banach algebra of all almost periodic functions on G and APC(G)
is the Banach algebra of all almost periodic continuous functions on G.

If G is a topological group, then the function f € F(G) is almost periodic if the
closure of the set {f, : a € G}, where f,(x) = f(ax) for all a,x € G, in F(G) is a
compact set.

Remark 3.1. For a subalgebra L C AP(G) the following assertions are equivalent:
API. L = APy 4)(G) for some ap-extension (H, ¢) of G.
AP2. The algebra L has the next properties:
-APC(G) C L;
- L is closed in AP(G);
-if felL, then f € L.

Theorem 3.1. Let X be a pseudocompact space. Then there exists a one-to-one
mapping ¥ : ©(BX) — O(X) with the properties:

LY() = fIX and || fI| = (I

2.9(f +8) =Y(f) + V() and ¥(f - 8) = ¥(f) - ¥(g).

3. If the sequence {f,, € ®(BX) : n € N} converges pointwise to the function
f € F(X), then f € ©(BX) and the sequence {Y(f,) : n € N} converges pointwise to
Y.

4. Y(C(BX) = C(X), Y(B(BX) = B(X) and Y(D(BX) = O(X).

5. If X is a topological group, then the function f € B(BX) is almost periodic on
BX if and only if the function Y(f) is almost periodic on X.

Proof. Assertions 1 - 4 were proved in [27]. Really, for any bounded continuous
function f € C(X) there exists a unique continuous function Sf on 8X such that
f = BfIX. Thus for each functionally-measurable set L of the space X there exists
a functionally-measurable set Lg of the space X such that L = Lg N X. For the set
Lg and any point x € Lg there exists a Gs-subset E of SX such that x € E C Lg.
Hence, since the space X is pseudocompact, the set Lg is unique. Therefore, for each
function g € ®O(X) there exists a unique function Sg € ®(BX) such that g = Sg|X
and the operator W(f) = f|X is a one-to-one mapping of ®(8X) onto O(X). This fact
proves the assertions 1 - 4. Assertion 5 is obvious. The proof is complete.

Let G be a pseudocompact E-algebra. If (H,¢) is an ap-extension of G, then
denote by Gy = ¢(G) the algebra G as a topological subalgebra of the compact
algebra H. The ap-extension (H, ¢) is called B-measurable if APy, C B(G). The
ap-extension (H, ¢) is called ap-pseudocompact if the space Gy is pseudocompact. i



8 Mitrofan M. Choban, Liubomir L. Chiriac

Theorem 3.2. Let G be a pseudocompact group and (H, ¢) be an ap-pseudo-compact
ap-extension of G. Then AP y,)(G) N ®(G) = C(G).

Proof. Let BG be the Stone-Cech compactification of the pseudocompact group.
Then BG is a topological group and G be a dense subgroup of 8G (see [12]). There ex-
ists a continuous homomorphism ¢ : H — SG such that ¢(x) = xforany x € G C H.
Assume that f € (AP ) (G) N ®(G)). Then, by virtue of Theorem 3.1, there exist
g € ©(BG)) and g; € C(H) such that f = ¢g|G and g(¢(z)) = g1(z) foreach z € H. If
B is a closed subset of C, then, since the function g; is continuous, the set gIl(B) is
closed in H. Since the mapping ¢ is closed, the set ¢(g[1(B)) = g~ !(B) is closed in
BG. Hence the functions g and f are continuous. The proof is complete. I

Therefore the almost periodicity of the functional-measurable function is in op-
posite with pseudocompactness. In this context it is interesting to mention the next
three results.

Theorem 3.3. (P. Kirku [70]) Let G be a divisible torsion-free Abelian group of the
uncountable cardinality |G| = 2% = 1. Then G admits exactly 2" -many compact group
topologies.

Theorem 3.4. (W. W. Comfort and D. Remus [48, 46]). Let (G,T) be a compact
Abelian group. Then G has a pseudocompact group topology W 2 T such that the
weight w(G, W) > 2WGT).

Existence of compact and pseudocompact topologies on groups and rings were
studied in [44, 68, 69, 94].

Let (G, T) be a compact group and W be a pseudocompact group topology on G
such that T C W. Then the Stone-Cech compactification H of the group (G, W) is an
ap-pseudocompact ap-compactification of the group G.

Theorem 3.5. (W. Comfort, S. U. Ruczkowski and F. J. Trigos-Arrieta [47]). Every
infinite Abelian group G admits a family A of totally bounded group topologies with
|A| = 22 and the spaces (G, T), (G,w) are not homeomorphic for distinct (T, W) €
A.

A cardinal number 7 is a strong limit cardinal if 2 < 7 provided m < 7. By virtue
of Theorem 9.11.2 from ([12], p. 672) it follows:

Corollary 3.1. Let T be a sequential strong limit cardinal. Then no group of cardi-
nality T admits a pseudocompact group topology.

There exist many sequential strong limit cardinals. Let 7 > 2. We put 1(1) =
27, (n + 1)(7) = 2" and w(t) = sup{n(t) : n € N}. Then w(7) is a sequential strong
limit cardinal.

Under Martin’s Axiom MA the infinite Abelian group G admits a pseudocompact
group topology if and only if G admits a countable compact group topology without
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non-trivial convergent sequence. ([12], Theorem 9.12.9, D. Dikranjan and M. G.
Tkachenko).
The following questions are intriguing.

Problem 3.1. Let G admits some totally bounded topology and consider G as a sub-
space of the space apG.

a. Is it true that any bounded subset of G is finite?

b. Is G as a subspace of apG a Dieudonné complete space?

c. Is G closed in apG relatively to the Gs-topology on apG?

A space X is Dieudonné complete if it is complete relatively to the maximal uni-
formity. A subset L of a space X is bounded if any continuous function f : X — R
is bounded on L. For Abelian groups the answer to the question in Problem 3.1.a is
”Yes” ([12],Theorem 9.9.42 of F. J. Trigos-Arrieta). The finiteness of compact sub-
sets F' € G of apG for Abelian G was established by H. Leptin [71] and I. Glicksberg
[55].

If H is a measurable subgroup of the compact group G with the Haar measure A,
then or H is open in G or A(H) = 0. Let A be the Haar measure on apG, where G is a
group with some precompact topology. Then or A(G) = 0, or G is not measurable in
apG and A(U) = 1 for any measurable set U of apG which contains G. For example
AG) = 0,if |G| < 280, and A(U) = 1 for any measurable set U of apG which contains
G, if G admits pseudocompact group topologies. Under which conditions A(G) = 0?

4. PARATOPOLOGICAL AND
SEMITOPOLOGICAL ALGEBRAS

Fix a discrete signature E = &{E, : n € N} and the subspaces S C E and P C E.
An E-algebra G with the topology T is called:

- an S -semitopological E-algebra if the operation u : G" — G is separately con-
tinuous foralln e Nandu € S N E,;

- a P-paratopological E-algebra if the operation u : G" — G is continuous for all
neNandue PNE,;

- a (P, S)-quasitopological E-algebra if G is an §-semitopological and a
P-paratopological E-algebra.

Any P-paratopological E-algebra is a topological P-algebra. In natural way the
notion of a Tj-quasivariety of (P, §)-quasitopological E-algebra is defined.

Theorem 4.1. (M. Choban [28]) Let V be a T;-quasivariety of (P, S )-quasitopological
E-algebras. Then for any non-empty space X there exists an algebra F(X,V) € V and
a continuous mapping ¢y : X = F(X, V) such that:

1. The set ¢x(X) algebraically generates the E-algebra F — (X, V).

2. For any continuous mapping g : X — G € V there exists a continuous homo-
morphism g : F(X,V) — G such that g = g o ¢y.
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The pair (F(X,V),¢y) is called a free (P, S)-quasitopological E-algebra of the
space X in the class V.

The algebra F(X, V) is abstract free if for any mapping g : X — G € V there exists
a homomorphism g : F(X,V) — G such that g = g o ¢y.

Problem 4.1. Assume that there exists a space G € V with a proper open subset.
a. Under which conditions the mapping ¢y : X — F(X, V) is an embedding?
b. Under which conditions the algebra F(X, V) is abstract free?

For varieties of topological E-algebras the Problems 4.1 were formulated by A. 1.
Mal’cev [72]. The answers are positive for any completely regular Hausdorff space
[28].

Let {-,”!', e} be the signature of groups. If § = P = {-} then an S -semitopological
group is called a semitopological group and a P-paratopological group is called a
paratopological group.

Let Z be the discrete group of integers.

If V is a T;-quasivariety of semitopological groups and V,, = {G € V : G is a
paratopological group}, V, = {G € V : G is a topological group}, then:

L.LVeCV,CV,;

2. If G € V and Gy is the group G with the discrete topology, then G; € V,;

3. If (F(X, V), @x), (F(X, Vp), px) and (F(X, V,), @.x) are the free objects of a
space X, then there exist the continuous homomorphisms ¢y : F(X,V) — F(X,V))
and 0x : F(X,V,) — F(X, Vy) such that ®px = ¥x o px and Pox = Ox 0 ¢,x;

4. For any completely regular space X the mappings ¢y and €x are continuous
isomorphisms.

Theorem 4.2. Leti € {—1,0,1, 3%}, V be a Ti-quasivariety of semitopological groups
and Z € V. Then for any T;-space X:

1. oy : X = F(X,V)and $px : X = F(X,Vp) are embeddings.

2. The groups F(X,V) and F(X,V,) are abstract free in V and V, respectively.

Proof. Consider the following four cases.

Casel.i= 3%.
This case was proved in [28].
Case2.i=1.

On any set X consider the cofinite topology T,y = {X} U{X\F : F is a finite set}.
Then (X, Tr) is a compact T'-space. If G is a group, then (G, T.y) is a semitopo-
logical compact group. We can assume that X = ¢y (X) C F(Xy4, V) as a set. Fix a
T-space X. The group F(Xy, V) is the abstract free group of the set X in the class V.

Since (F(X4,V),Tcr) € V, there exists a unique continuous homomorphism g :
F(X,V) — (F(X4,V),Tcr) such that g(¢x(x)) = x for each x € X. Then g is an
isomorphism and the object F(X, V) is abstract free in V. Obviously, that ¢y is an
embedding for the space (X, T.r). Since any T-space X for some cardinal number 7
admits an embedding in (F(Xy4, V), T¢r)", the mapping ¢y is an embedding.
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Case 3. i =0.

Let D, be the group Z with the topology {0} U{U, ={meZ : m>n}:ne}.
Then D, € V,, C V. Let a, b be two distinct points of a To-space X. Assume that U
is open in X, a ¢ U and b € U. Then the mapping g : X — D,,, where g"!(1) = U
and g71(0) = X \ U is continuous. Thus epx + X = F(X,V)) is an embedding. The
assertion 1 is proved. The proof of the assertion 2 is proved in [36].

Case4.i=-1.

Let X be a space. Let G be the group Z X Z with the topology {0} U {V,, = {m €
Z:m=>n}XZ:n e Z}. The space X admits an embedding in GBV(X). Thus ¢y is
an embedding and we can assume that X = ¢y(X) € F(X, V). Let Gx be the group
F(X4, V) with the anti-discrete topology {0, F(Xz, V)} and X = ¢y (X) C F(X4, V) as
a set. Then the identical mapping f : X — Gy, where f(x) = x for each x € X is
a continuous mapping and there exists a continuous homomorphism g : F(X,V) —
Gy such that f = g|X. Since g is an isomorphism, the group F (X, V) is abstract free
in the class V.

The proof is complete. I

Theorem 4.3. Let i € {1, 3%}, V be a non-trivial T;-quasivariety of semitopological
groups and Z, ¢ V. Then for any T;-space X:

l.ox: X = F(X,V)and Ppx X o F(X,V,) are embeddings.

2. The groups F(X,V) and F(X, V)) are abstract free in V and V), respectively.

Proof. Consider the following two cases.

Casel.i= 3%.
This case is proved in [28].
Case2.i=1.

This case is similar to the case 2 in the proof of the previous theorem. |

A group G with a topology is called a left (respectively, right) topological group
if the left translation L,(x) = ax (respectively, the right translation R,(x) = xa) is
continuous for any a € G.

A class 'V of left topological groups is called a T;-quasivariety of left topological
groups if:

(LF1) the class 'V is multiplicative;

(LF2) if G € V and A is a subgroup of G, then A € V;

(LF3) every space G € 'V is a T;-space;

(LF4) if G € V, T is a compact T;-topology on G and (G, 7) is a left topological
group, then (G,7) € 'V;

From Theorems 4.2 and 4.3 it follows

Corollary 4.1. Leti € {-1,0,1, 3%}, V be a Ti-quasivariety of left topological groups
and Z € V. Then for any T;-space X:

L gy : X > F(X,V)and ¢,x : X — F(X,V)) are embeddings.

2. The groups F(X,V) and F(X, V,) are abstract free in V and V), respectively.
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Corollary 4.2. Leti € {1,3%}, V be a non-trivial T;-quasivariety of left topological
groups and Z € V. Then for any T;-space X:

1. oy : X > F(X, V) and epx 1 X = F(X,V)) are embeddings.

2. The groups F(X,V) and F(X, V) are abstract free in V and V, respectively.

The following assertion completes Theorem 4.3 and Corollary 4.2.

Lemma 4.1. Let G be a left topological group and for any x € G there exists n(x) € N
such that X" = e. Then G is a Ty-space.

Proof. Any finite T-space contains a closed one-point subset. Thus any finite left
topological group is a T'j-space. By hypothesis, any point a € G is contained in the
finite subgroup G(a) = {a@' : 0 <i<n(a)}. Thus {e} is a closed subset of the group G
and G is a Tq-space. I

Remark 4.1. The similar assertions are true for classes of right topological groups.

Remark 4.2. Let V be the class of all paratopological groups, or of all paratopo-
logical Abelian groups. In [88] it was proved that the answers to the questions from
Problems 4.1 are positive for any Ty-space X. For this the authors of [88] use the
method of left (right) invariant pseudo-quasi-metrics. Since topology generated by
the left (right) invariant pseudo-quasi-metrics may not be a paratopological topol-
ogy [74, 12, 17], this point of view may create dangerous moments. Nevertheless,
the extensions of the quasi-metrics from [88] are invariant quasi-metrics. For this in
[36] we use the method of invariant pseudo-quasi-metrics. The method of left (right)
invariant pseudo-metrics was proposed in [74] and [17]. The method of invariant
pseudo-metrics on free objects was developed in [57, 30].

LetS C E,Gbean E-algebra,n > 1, je{l,2,...,n},uc E,NS and aj, az, ...,a, €
G. We put R(G, j,u,ai,...,a,) ={x € G : u(ay, ...,a;-1, X, a1, ...,ap) = a;}.

The E-algebra G is called an S-simple E-algebra if for alln > 1, j € {1,2,...,n},
u e E,nS and aj,ay,....,a, € G we have R(G, j,u,ay,...,a,) = G or the set
R(G, j,u,ay,...,ay) is finite.

All quasigroups are simple algebras.

Theorem 4.4. Let S C E, i € {—1,0,1} and V be a non-trivial T;-quasivariety of
S -semitopological S -simple E-algebras. Then for any T-space X:

1. the mapping ¢y : X = F(X,V) is an embedding.

2. the algebra F(X, V) is abstract free.

Proof. Let G € V. Denote by T,y = {0} U{G \ F : F is a finite set} the co-finite
topology on G. Since G is an S-semitopological S-simple E-algebra the operation
u : G" — G is separately continuous foralln € Nandu € S NE,. Thus (G, T.r) € V.

Fix a non-empty T';-space X. Denote by X; the set X with the discrete topology.
Then the E-algebra (F (X4, V), ¢x,) is the abstract free algebra of the space X in the
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class V. Let Gy be the algebra F(X,, V) with the co-finite topology T.r. Then Gy €
V, the mapping g = ¢y, : X — Gy is continuous and an injection. There exists a
continuous homomorphism % : F(X,V) — Gy such that h(¢y(x)) = g(x) for each
x € X. Hence g is an isomorphism and the algebra F(X, V) is abstract free. Since
|X| < |Gxl, then for some cardinal 7 the space X admits an embedding in G§. Thus
the mapping ¢y : X — F(X, V) is an embedding. The proof is complete §

Now we mention the following open problems.

Problem 4.2. a. Let i € {2,3} and V be a non-trivial T;-quasivariety of semitopolog-
ical groups. Are Theorems 4.2 and 4.3 true?

b. Leti € {2,3} and V be a non-trivial T;-quasivariety of left topological groups.
Are Corollaries 4.1 and 4.6 true?

5. THEOREMS OF MONTGOMERY AND ELLIS

In 1936 D. Montgomery [75] set the following problems.

Problem 1G. Under which conditions a semitopological group is a paratopologi-
cal group?

Problem 2G. Under which conditions a paratopological group is a topological
group?

D. Montgomery [75] has proved that every complete matrizable semitopological
group is a paratopological group and every complete metrizable separable semitopo-
logical group is a topological group. In 1957 R. Ellis (see [52, 12]) showed that any
locally compact semitopological group is a topological group.

In 1960, W. Zelazko [100] established that any complete metrizable semitopolog-
ical group is a topological group. Then in 1982 N. Brand [22] proved that a Cech
complete paratopological groups is a topological group. A. Bouziad [19, 20, 21]
proved this assertion for semitopological groups. Many interesting results were ob-
tained in [7, 6, 10, 65, 23, 54, 59, 80, 83, 87, 97].

We mention the following two result.

Theorem 5.1. ( P. Kenderov, 1. S. Kortezov and W. B. Moors [65, 10]) If a regu-
lar semitopological group G contains a dense Ceeh complete subspace, then G is a
topological group.

Theorem 5.2. (A. Arhangelskii and M. M. Choban [6, 7, 10]) If a regular paratopo-
logical group G contains a dense subspace which is a dense Gs-subspace of some
pseudocompact space, then G is a topological group and a dense Ggs-subspace of
some pseudocompact space.

Let {-, r, [} be the signature of quasigroups.

A quasigroup G with a topology is called:

- a paratopological quasigroup if the multiplicative operation {-} and the transla-
tions I, = l(a, x), r, = r(x,a), a € G, are continuous;
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- a semitopological quasigroup if the translations L,(x) = a - x, R,(x) = x - a,
l, = la, x), r, = r(x,a), a € G, are continuous.

Any paratopological (respectively, semitopological) group is a paratopological (re-
spectively, semitopological) group. Any paratopological quasigroup is a semitopo-
logical quasigroup. In a semitopological quasigroup all translations L,(x) = a - x,
R,(x) =x-a, 1, = l(a,x), r, = r(x,a), a € G, are homeomorphisms. Moreover,
l,=L;" and r, = R, foreacha € G.

The next problems are similar to the Montgomery’s problems.

Problem 5.1. Under which conditions a semitopological quasigroup is a paratopo-
logical quasigroup?

Problem 5.2. Under which conditions a paratopological quasigroup is a topological
quasigroup?

Let (G, -) be a groupoid. Denote by P(G, -) the minimal semigroup of mappings
g:G — Gsuchthat L, R, € P(G,-) foreach a € G.

A T-groupoid (or a Toyoda groupoid) is a non-empty set G with one binary oper-
ation {-} and four unary operations {a;, a», b1, b} such that:

m if xoy=aj(x)- bi(y)), then (G, o) is a group;
m ai(ax(x)) = b1 (by(x)) = x for each x € G;
m {a;,ay} N P(G,-) # 0 and {by, by} N P(G,-) # 0.

In this case we say that (G,o) is the group associated to the T-groupoid
(G, a1, az,b1,by). By definitions, a; = a;' and b, = b7

Any T-groupoid is a quasigroup.

Let (G,o) be the topological group associated to a topological T-groupoid
(G,-,ay,ay, by, by). By virtue of Albert’s theorem [2, 3], all topological groups (G, o)
associated to the given T-groupoid are topologically isomorphic. In this sens that
group is unique. Hence, if the topological quasigroup (G, -, r, ) for some mappings
{a1,az, b1, by, 1, o} is a topological T-groupoid, then:

- we have x-y = ax(x) 0 ba(y), I(x,y) = bi(az(x)"! o y) and r(x,y) = ai(xo ba(y)™');

- there exists many structures of the kind {a;, as, b1, b2} on G;

- all topological groups associated to the T-groupoids (G, -, aj, az, b1, by) are topo-
logically isomorphic.

Therefore any topological T-groupoid is considered a topological quasigroup, too.
Moreover,we assume that the 7-groupoid (G, -) as a universal algebra is the quasi-
group (G, -, r,l). Distinct classes of T-quasigroups were introduced and studied in
[66, 67, 15, 16, 41]. For this general case we use the notion of a ”7'-groupoid”. Since
any Hausdotff topological group is a completely regular space, then the space of a
topological T-groupoid is completely regular provided it is a Ty-space.

A T-groupoid (G, -, ay, az, b1, by) with a topology is called:
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- a topological T-groupoid if the operation (G, -, ay, az, b1, by) are continuous and
G is a topological quasigroup;

- a paratopological T-groupoid if the operation {-, a, a», b1, by} are continuous;

- a semitopological T-groupoid if the multiplicative operation {-} is separate con-
tinuous and the operation {ay, ay, b1, bp} are continuous.

If a (G,-,a1,az,b1,by) is a semitopological T-groupoid, then the operations
{ai,a, b1, by} are homeomorphisms. Moreover, if a T-groupoid (G, -, a1, az, b1, b?)
is a semitopological quasigroup, then the operation {ai,a», b1, b2} are homeomor-
phisms.

We mention that a 7-groupoid (G, -, a1, a2, b1, by) with topology:

- is a topological T-groupoid if and only if (G, -, , [) (G, -r, I) is a topological quasi-
group;

- is a paratopological T-groupoid if and only if (G, -, r, ) (G, -r, 1) is a paratopolog-
ical quasigroup;

- is a semitopological T-groupoid if and only if (G, -,r,1) (G, r,[) is a semitopo-
logical quasigroup.

Any group with the identical mappings {ay, az, b1, b2} is considered a T-groupoid
too. Therefore:

- any semitopological group is a a semitopological T-groupoid;

- any paratopological group is a a paratopological T-groupoid;

- any topological group is a a topological T-groupoid.

By virtue of K. Toyoda theorem [93] it follows that:

- any medial quasigroup is a T-groupoid;

- any semitopological medial quasigroup is a a semitopological T-groupoid;

- any paratopological medial quasigroup is a a paratopological 7T-groupoid;

- any topological medial quasigroup is a a topological T-groupoid.

Theorem 5.3. Let X be a class of topological spaces. Then:

1. Any semitopological T-groupoid G € X is a topological quasigroup if and only
if any semitopological group H € X is a topological group.

2. Any paratopological T-groupoid G € X is a topological quasigroup if and only
if any paratopological group H € X is a topological group.

Proof. Let H = (G, o) be the associated group at the T-groupoid (G, -, ay, az, by, by)
with the topology and {ay, az, b1, by}.

Then:

- H is a semitopological group if and only if G is a semitopological T-groupoid ;

- H is a paratopological group if and only if G is a paratopological T-groupoid;

- H is a topological group if and only if G is a topological quasigroup, i.e a topo-
logical T-groupoid.

The proof is complete. I

Hence, Theorems 5.1 and 5.2 are true for medial quasigroups and for paramedial
quasigroups.
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Problem 5.3. Is Theorem 5.2 true for any quasigroups? In particular, is Theorem
5.2 true for IP-quasigroups?

Problem 5.4. Is Theorem 5.2 true for any quasigroup? In particular, is Theorem 5.2
true for 1P-quasigroups?

Distinct classes of spaces and algebras were studied in [5, 6, 8, 9, 10, 11, 13, 29,
18,24, 45,49, 73,717,778, 84, 85, 91, 96, 98, 99].

6. SOLVABILITY OF ALGEBRAS

Let X be a space and 7 be a cardinal. The space X is called T-solvable if there
exists a family {X,, : a@ € A} of pairewise disjoint dense subspaces such that |A| > 7.
A 2-solvable space is called solvable. A |X|-solvable space is called totally solvable.

Let T be a topology on a quasigroup G. The topology T is weakly bounded if for
any non-empty set U € T there exists a finite set L € G such that G = L - U. We do
not suppose that (G, 7) is a topological, or a semitopological quasigroup.

Example 6.1. Denote by T1(G) = {X}U{X\ F : F is a finite subset of G} the minimal
T -topology on the quasigroup G, i.e. the cofinite topology on G. If b € G, then
To(G,b) ={U € T\(G) : b € U} is a Ty-topology on G. Then:

-if T C T\(G), then T is a weakly bounded topology on G;

- (G, T(G)) is a semitopological quasigroup;

- if the set G is infinite, then (G, T1(G)) is not a paratopological quasigroup;

- let G contains two distinct points and b € G, then (G, To(G, b)) is not a semitopo-
logical quasigroup.

Theorem 6.1. (M. Choban and L. Chiriac [39]) Let G be an infinite group of car-
dinality T. Then there exists a disjoint family {B, : u € M} of subsets of G such
that:

1. M| =|G|.

2.G=U{B,:ue M)}

3. (G\ Bu) - K # G for all u € M and every finite subset K of G.

4. The sets {B,, : u € M} are dense in all totally bounded topologies on G.

This theorem generalized a result of I. Protasov [81]. In [39] Theorem 6.1 is
proved for /P-quasigroups. More general result was proved in [26].

Problem 6.1. Let G be a topological quasigroup (or IP-quasigroup). Is it true that
G X G is a solvable space?

The answer is positive for groups (L. P. Protasov).

7. ON ALGEBRAS WITH DIVISIONS

Let E be a signature. If n > 1,g € E, and 1 <i < n, then
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g(aI’ eeey ai—lv xs ai+17 erey an) = al

is an equation on E-algebras. Denote by e(g, n, i) this equation.

Let ¢ be a set of equations on E-algebras. By V(E,¢) we denote the class of
all topological E-algebras on which the equations e(g,n,i) € ¢ are solutions, i.e.
for any ay,ay,...,a, € G there exists b € G such that g(ay,...,a;-1,b,a;+1,a,) =
a;. By V(E,up) we denote the class of all algebras G € V(E,¢) on which the
equations e(g,n,i) € ¢ are unique solutions. Let e(g,n,i) be an equation from ¢.
We say that there exists a primitive solution on G of this equation if there exists
a term h(y{,y, ..., y,) such that g(ay, ..., a;—1, h(ay, ..., aj, ..., @), Ai+1, ..., ay) = a; for
any ap,dap,....a, € G. Let V(E, ¢,II) be the class of E-algebras G € V(E, ¢) with
the primitive solutions for all equations from ¢. Obviously V(E, ¢,I1) C V(E, ¢). In
some cases we may extend the signature E and consider that the solutions from ¢ are
operations from the signature.

There exists E-algebras in which some equations are solutions but does not exist
primitive continuous solutions. From this point of view it seems to be important the
next notions.

Definition 7.1. The equation g(ay, ..., a;-1, X, ai+1, ay) = a; is with continuous divi-
sion on G if for any b € G for which g(ay, ..., a;-1, b, a;j+1,a,) = a; and any open set
U > b there exist the open sets Uy 3 ay, Uy 3 ay,...,U, 3 a, such that for all ¢\ € Uj,
¢y € Uy,..., ¢, € Uy, there exits ¢ € V such that g(cy, ..., Ci—1,C, Ci+1,Cn) = Ci.

There exists equations with continuous division and without primitive continuous
division.
Example 7.1. Let G = {(x,y) : x> +y*> = 1} and (x,y) - (u,v) = (xy — yv, xv + yu).
Then (G, -) is a compact group. We put zow = z-w - w for any z,w € G. Then (G, o)
is a topological groupoid. Consider on G the equations ao x =bandyoa = b. The
equation y o a = b has a primitive continuous h(a,b) =b-a~' -a"' =boa™!, where
a is the inverse element of a in the group (G,-). If u = (cos(p), sin(¢)) € G and
0 < ¢ < 27, then r(u) = (cos(p/2), sin(p/2)). In this case A(a,b) = r(a™' - b) is a
primitive solution of the equation a o x = b. But for the equation a o x = b does not
exist some continuous primitive solution. The equation a o x = b is with continuous
solution. The equation a o x = b has two distinct solutions for any pair (a, b).

Definition 7.2. A pair (F(X, E, @), 0x) is a topological free E-algebra of a space X
in the class V(E, @) if the following conditions hold:

1. F(X,E,p) € V(E,p) and 0x : X — F(X, E, @) is a continuous mapping.

2.If0x(X) CGC F(X,E,p)and G € V(E, @), then F(X, E, ) = G.

3. For any continuous mapping g : X — G € V(E, @) there exists a continuous
homomorphism g : F(X, E, ) — G such that g = g o 0.

Theorem 7.1. For any non-empty space X the free object (F(X, E, ¢), 0x) exists and
is unique.
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Proof. For any G € V(E, ) and any equation e(g, n, i) from ¢ we consider the map-
pil’lgS h(gi) : G" — G for which g(al, e di—1, h(g,‘)(al, ey Ajy eeey an), Aig]yeees an) = da;.

Consider that hg; is a symbol of a new operation. Now we put H = {h,) :
e(g,n,i) € ¢} and oFE = E U H. Then any algebra G € V(E, ¢) states an ¢pE-algebra.
In this case, the operations from E are continuous. Thus the pE-algebras G € V(E, ¢)
are E-paratopological gE-algebras. Let V(¢E) be the class of all E-paratopological
pE-algebras with the primitive solution from H for all equations ¢. Obviously, any
G € V(¢FE) as a topological E-algebra is from V(E, ¢). Reversely, any G € V(E, ¢)
as a topological E-algebra with some fixed operations of the type hg;, e(g,n,1) € ¢, is
from V(¢FE). The object (F(X, E, ¢),0x) = (F(X, V(¢E)), 8x) is the free object of the
space X in the quasivariety V(¢E) of pE-algebras and the desired free object in the
class V(E, ). The proof is complete. I

For abstract algebra the following Theorem 7.2 was proved in [40] (see also [26],
Theorem 5.3.5).

Theorem 7.2. Let X be a non-empty space and the free object (F(X, E, ¢),0x) is
abstract free in the class V(E, ). Then any equation e(g,n,i) € ¢ has no more than
two solutions in the free algebra F(X, E, ¢).

Corollary 7.1. Let X be a non-empty completely regular space. Then any equation
g € @ has no more than two solutions in the free algebra F(X, ¢F).

Remark 7.1. Let Q be a set of identities and ¢ be a set of equations on E-algebras.
By V(E,®,¢,i) = V(E,®,i) N V(E,p) we denote the class of all topological E-
algebras with identities ®©, which are T;-spaces, and on which the equations e(g, n, i) €
@ are solutions. The definition of the free object (F(X, E, ®, ¢, 1), 0x) of a space X in
the class V(E, ®, ¢, i) is as in Definition 7.2. Then, as in Theorem 7.1, one can estab-
lish that for any non-empty space X the free object (F(X, E, ®, ¢, 1), 0x) exists and is
unique. The Theorem 7.2 remain true for the identities of commutativity and associa-
tivity types. For any set © of identities that assertion is an open question.

8. TOPOLOGICAL BIGROUPOIDS

A topological bigroupoid is a topological space G with two binary continuous
operations {o, *} for which there exists an element e € G such that x o e = x for each
x€G.

A bigroupoid G is a bigroupoid with a division or, briefly a d-bigroupoid if for
each two elements a, b € G there exist two elements ¢, p € G such that a o ¢ = b and
poa=hb.

A bigroupoid G is called an a-bigroupoid if x*(yoz) = (xoy)*zforall x,y,z € G.

There exists a general construction of bigroupoids.

Construction 8.1, [35]. Let (G1, +) be a topoloical groupoid with a right unity e,
and (G, +) be a topological groupoid with a right unity e;. We put G = G| X G2, e =
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(e1,e2) and  : G1 X Gy — G is the projection 7(x, y) = x. Fix a continuous mapping
g : G1 — G. Now we consider on G the next two binary operations:

B (x1,x2) 0 (¥1,y2) = (X1 +y1, X2 +¥2);
m (x1,x2) * (v1,¥2) = g(x1 +y1) = gw((x1, x2) © (¥1,¥2))).

By construction:

A8.1. The operations {o, *} are continuous.

A8.2. (G, o, %, e) is a topological bigroupoid.

A8.3. G is a d-bigroupoid if and only if G| and G, are d-bigroupoids.

A8.4. If G, is a group, then (G, o, *, ) is an a-bigroupoid.

These properties of the groupoid G constructed above are completed by the next
general fact.

Theorem 8.1. Let (G, o, *, ) be an a-groupoid, x x e =y * e if and only if x = y and
g(x) = x x e for each x € G. Then:

1. xxy=g(xoy)foral x,y €G.

2. (G, o) is a semigroup.

3. If G is a division a-groupoid, then (G, o) is a group.

Proof. By definition, x * y=x* (yoe)=(xoy)*xe = g(xoy). Fix x,y,z € G. Then
(xoy)oz)xe=(xoy)(zoe) = (xoy*z) = xx(yoz), (xo(yoz))xe=xx((yoz)oe)
=x*x(yoz)and (xoy)oz)xe=(xo(yoz)) *e,ie. (xoy)oz=xo0(yoz). The
assertions 1 and 2 are proved. The assertion 3 follows from the assertion 2. i

Corollary 8.1. Let (G, o0, *,e) be an a-groupoid and (G, *) be a quasigroup. Then
(G, 0) is a semigroup.

9. TOPOLOGICAL E-AUTOMATA

Fix a signature E of topological algebras and a set Q of identities on the class of
all topological E-algebras. Let V = V(E, Q) be the class of all E-algebras with the
identities Q.

Definition 9.1. A topological E-automaton is a seven-tuple M = (A, S, B, 0, 8, ay, F),
where:

- A and B are topological E-algebras, A is the space of states and B is the output
space;

- S is a topological semigroup and it is the space of inputs;

- F is a closed subset of A and is called the subspace of accepting states;

- ap € F is the initial state;

-0:AXS > Aand o : AXS — B are continuous mappings, ¢ is the translation
function and o is the output function;
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-0(x,a-B) = 8(6(x,),B) and o(x,a-B) = o(6(x,@),B) forallx e Aand a,B € S;
- for any s € S the mappings 6; : A — A and o3 : A — B, where 64(x) = 6(x, s)
and o4(x) = o(x, s), are homomorphisms.

For F = A and E = 0 the automata M is called a Mealy machine. A topological
E-automaton M = (A, S, B,0,6,a0, F) is called a Meally topological E-automaton
(or E-machine) if there exists a continuous homomorphism ¢ : A — B such that
o(x,s) = p(0(x,s)) forallxe Aand s € §.

Assume that the topological semigroup S is fixed and F = A for any automa-

ton M = (A,S,B,0,0,a9, F). Denote by M(E,Q) the class of all topological E-
automaton M = (A, S, B, 0, 8, ay, F) for which A, B € V(E, Q).
We say that ¢ = (¢;,¢,) : M; — M, is a homomorphism of an E-automaton
M, = (A1,S,B1,01,01,a1, Fp) into an E-automaton My = (A3, S, By, 05,62, a2, F)
if o : Ay = Az and ¢, : By — B, are continuous homomorphisms, ¢,(a;) =
ar,1(F1) € Fp and ¢(01(x, 5)) = 62(p(x), 5), ¢r(01(x, 5)) = o2(p(x), s) for all
x€Ajands€eS.

There exists a Mealy automaton which is not a Moore automaton. In this context
the next assertion is interesting .

Proposition 9.1. Any topological E-automaton is a continuous homomorphic image
of some topological Moore E-automaton.

Proof. Fix the topological E-automaton M = (A,S,B,d,0,ap,F). As in ([82],
Proposition 3.5) we put A” = A X B, B" = B, §((x,y),a) = (6(x,@)o(y, a)) and
o' ((x,y),a) = o(x,a) forall x € A,y € B,a € S. Fix b € B. We put a; = (ag, b)
and F’ = F x B. Then M’ = (A’,S,B’,§',0”,a;1, F’) is a Moore E-automaton for the
homomorphism y : AX B — B, where u(x,y) =y. We put ¢;(x,y) = x and ¢,(y) = y.
Then ¢(¢;, ¢,) is a continuous homomorphism of the automaton M’ onto M. The
class M(E, Q) is closed under the topological product and on a subautomata. i

Theorem 9.1. Let M = (X, S,Y,0,0,aq, F) be a topological automaton, S be a dis-
crete space, F(X) and F(Y) be the free topological E-algebras of the spaces X and Y
inthe class V(E,Q), 6 : F(X)XS — F(X)and o : F(X)XS — F(Y) be the homomor-
phisms generated by the mappings 6 and o. Then F(M) = (F(X),S,F(Y),0,0, a9, F)
is a topological E-automaton.

Proof. 1s obvious.

If a topological E-algebra A is a bigroupoid, then we say that A is an E-bigroupoid.
For E, = E; U {o,+} and E’ = E; U {o, %}, any topological E-bigroupoid is a topo-
logical E’-algebra. Let M = (A, S, B, 8, 0, ag, F) be a topological E-automaton, Q
be a topological E-bigroupoid, a and B be E-subalgebras of the E-algebra O, S be a
subgoupoid of the groupoid (Q, o) and 6(x, @) = x o a,0(x,@) = x *a forall x € A
and @ € S. Then we say that the topological E-automaton is an automaton in the
category of E-bigroupoids. [
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Theorem 9.2. For every topological E-automaton M = (A, S, B,0,0,ay, F) there
exists a topological E-bigroupoid such that M is an automaton in topological E-
bigroupoid Q.

Universal algebras and automata represent an important field of research in modern
mathematics and computer science. Interesting results in this field were obtained in
[1, 4,25, 35,50, 51, 56, 82].
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1. INTRODUCTION AND MAIN RESULT

In this paper, we shall assume that the reader is familiar with the fundamental re-
sults and the standard notations of the Nevanlinna value distribution theory of mero-
morphic functions (see [3], [8]). For the definition of the iterated order of a mero-
morphic function, we use the same definition as in [4], [2, p. 317], [5, p. 129]. For
all r € R, we define exp; r := ¢ and exp,,, | r := exp (exp,, r) , p € N. We also define

for all r sufficiently large log, r := logr and log ., r := log (logp r), p € N. More-
over, we denote by exp, r := r, log, r := r,log_, r := exp, r and exp_, r := log; .

Definition 1.1. ([4], [5]) Let f be a meromorphic function. The iterated p—order
pp (f) of [ is defined by

__log, T (r,f)

P, (f) = lim

S Py (p =1 is an integer), (1.1)

where T (r, f) is the Nevanlinna characteristic function of f (see [3], [8]).
For p = 1, this notation is called: order, and for p = 2 : hyper-order.

Definition 1.2. ([4], [5]) The finiteness degree of the order of a meromorphic func-
tion f is defined by
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0, for f rational,
min { JEN:p;(f) < +00} , for f transcendental for which

some j € N with p; (f) < +00 exists,
+00, Jor f withp; (f) = +oo forall j € N.

i(f)= (1.2)

Definition 1.3. ([4]) Let f be a meromorphic function. The iterated exponent of
convergence of the sequence of distinct zeros of f (z) is defined by

Nl
10 - T )

; p =1 isaninteger, (1.3)
r—+00 logr

where N(r, %) is the counting function of distinct zeros of f (z) in{|z| < r}. Forp =1,
this notation is called: exponent of convergence of the sequence of distinct zeros, and
for p = 2, we get the hyper-exponent of convergence of the sequence of distinct zeros.

Definition 1.4. ([6]) Let f be a meromorphic function. Then the iterated exponent of
convergence of the sequence of distinct fixed points of f (z) is defined by

_ log N(r, L_)

; p =1 isaninteger. (1.4)

For p = 1, this notation is called: exponent of convergence of the sequence of distinct
fixed points. However, for p = 2, we get the hyper-exponent of convergence of the
sequence of distinct fixed points (see [7]). Thus T, (f) = I,, (f — 2) is an indication
of oscillation of distinct fixed points of f (z).

Definition 1.5. The growth index of the iterated convergence exponent of the se-
quence of zero points of a meromorphic function f with iterated order is defined by

0 ifn(r, %) = O (logr)
ip(f) =4 min{n e N: 2, (f) < 0} ifd,(f) < oo for some n € N.
00 if 4, (f) < coforalln e N

Similarly, we can define the growth index i7(f) of /_1p (f) and i (f),iz(f)
of Tp (). Tp ().

For k > 2, we consider the linear differential equation
fP+A@f =0, (1.5)

where A (z) is a transcendental meromorphic function of finite iterated order p » A) =
o > 0. Many important results have been obtained on the fixed points of general tran-
scendental meromorphic functions for almost four decades (see [11, 13]). However,
there are a few studies on the fixed points of solutions of differential equations. In
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[15], Wang and Lii have investigated the fixed points and hyper-order of solutions
of second order linear differential equations with meromorphic coefficients and their
derivatives. They have obtained the following result:

Theorem A ([15]) Suppose that A (2) is a transcendental meromorphic function sat-

mir,

isfying 6 (c0,A) = lim T(rﬁg =0>0,p(A) = p < +oo. Then every meromorphic
r—+o0 " V7’

solution f (z)% 0 of the equation

f +ARf=0 (1.6)

is such that f, f and f" have infinitely many fixed points and
TN =7(f)=7(f) =p () = +e, (1.7)
L =0(f)=%(f)=p () =p. (1.8)

Theorem A has been generalized to higher order differential equations by Liu
and Zhang as follows (see [13]):

Theorem B ([13]) Suppose that k > 2 and A (2) is a transcendental meromorphic

function satisfying 6 (c0,A) = lim ?E:ﬁ; =6 >0,p(A) = p < +oo. Then every

F—>+00
meromorphic solution f (z) # 0 of (1.4), has the property: f and f', f", ..., f® all
have infinitely many fixed points and

TN =7(f)=7(f) =.. =7 (f®) =p (f) = +ov, (1.9)

LN =2()=%() = =2(/P) = (N =p. (1.10)

Theorem A and B have been generalized by B. Belaidi for iterated p-order
(see [2]):
Theorem C ([2]) Let k > 2 and A (2) be transcendental meromorphic function of

finite iterated order p,(A) = p > 0 such that §(c0,A) = r1—1>13100’;1£:2; =6 > 0.

Suppose, moreover, that either:

(i) all poles of f are of uniformly multiplicity or that

(ii) 6 (o0, f) > 0.

If ¢ # 0 is a meromorphic function with finite iterated p—order p,, () < +oo, then
every meromorphic solution f (z) # 0 of (1.5), satisfies

L= =4 (f =¢) = = 4, (fP = ¢) = p, () = +o, (1.11)

and
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Y (F=9) =y (f = ¢) = = Lo (1Y ~¢) =ppu (N =p. (112
For k > 2, we consider the linear differential equation
FO LA fF D e v Af=0, k>2, (1.13)

where A; (j = 0,1, ...,k — 1) are entire functions of finite iterated p—order.

The main purpose of this paper is to study the relation between solutions and
their derivatives of the differential equation (1.13) and entire functions of finite iter-
ated p—order where we generalize and extend the results of Wang and Lii, Liu and
Zhang and Belaidi. In fact, we prove the following result:

Theorem 1.1. Let k > 2 and (A))j-0,12,.k1 be entire functions of finite iterated
p-order such that i (Ag) = p;0 < p < co. Assume that

max {i (4,),(j = 1,..k = D} < i(A)

or
max {p, (4;).(j = 1,..k = D} < p, (Ag) < +v.

If ¢ (2) # 0 is an entire function with i(¢) < p + 1 or p,,| (¢) < p, (Ao), then every
solution f (z) # 0 of (1.13) satisfies

iZ(f7-¢) =i (fO-¢)=i(H=p+1,ieN (1.14)
and
Tt (F7 = 0) = Apar (F7 = @) = 1 (f) = p, (Ap), i €N, (1.15)
For ¢ (z) = zin Theorem 1.1, we obtain the following corollaries:
Corollary 1.1. Let k > 2 and (A))j=0,12,.k-1 be entire functions of finite iterated
p-order such that i (Ag) = p(0 < p < 00). Assume that

max {i(A;).(j = 1.k = D} < i(4)

or
max {p, (4,).(j = 1,...k = D} < p,, (A9) < +co.

Then every solution f (z) # 0 of (1.13), is such that all the derivatives f @ (i € N) have
infinitely many fixed points and we have

i=(fO) =i (fP)=i(H=p+1,ieN (1.16)
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and

Tput (£7) = 71 (F©) = ppu1 (f) =, (A0) =p, i €. (1.17)
Corollary 1.2. Suppose that k > 2 and A (2) is a transcendental entire function such
that 0 < p,(A) = p < +oo. If ¢ (2) # 0 is an entire function with i(¢) < p + 1 or
Pp+1 (@) < p, then every solution f (z) # 0 of (1.5) satisfies (1.14) and (1.15).
2. AUXILIARY LEMMATA

To prove our main results, we need the following lemmata.

Lemma 2.1. [6] Suppose that Ay, Ay, ..., Ax—1, F (# 0) are meromorphic functions
and let f be a meromorphic solution of the equation

fO LA Dy +Af +Af=F, (2.1)

suchthati(f) =p+1(0 < p < ). If either
max {i (F),i(4;) j=0,1,...k=1} < p+1

or
max {p,.1 (F).ppe1 (4)) j=0.1, ..k =1} < p,i (),

then we have i3 (f) = i1 (f) = i(f) = p + 1 and Dps1 (f) = Aps1 (f) = ppo ().
Lemma 2.2. (see Remark 1.3 of [10]). If f is a meromorphic function with i (f) = p,
then p,,(f') = p, ().
Lemma 2.3. ([10]) Letk > 2 and Aj (j = 0,1, ...,k — 1) be entire functions of finite
iterated p-order such that i (Ag) = p, (0 < p < o). Assume that
max {i (4,),(j = 1,..k = D} < i(A)

or

max {p, (4,).(j = L.k = D} < p,, (A9) < +cv.
Then every solution f (z) # 0 of (1.13) satisfies i (f) = p + 1 and p,,.; (f) = p, (Ao) .

LetA; (j=0,1,...,k—1) be entire functions. We define the following sequence of
functions:

AY= A, j=0,1,.,k-1
. . Ai-1Y
Ay = AZ_—]1 - @’ ieN
Ay (2.2)
‘I”'.—l)
i—1 '—1( Jj+l . .
Al Al] +Alj+1w’ ]—0,1,...,k—2, leN,
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i +1
where Wi-l = L
J+1 Ai-l
0

Remark 2.1. In the case where one of functions A; (j=0,1,....k—-1) is equal to
zero then A;“ = A;_l (j=0,1,...,k=1).

Lemma 2.4. Assume that f is an entire solution of (1.13) . Then g; = f© is an entire
solution of the equation
(k=1)

g+ Al g V4 +Algi =0, (2.3)

where A;. (j=0,1,....k — 1) are given by (2.2).

Proof. Assume that f is a solution of equation (1.13) and let g; = ). We prove that
gi 1s an entire solution of the equation (2.11) . Our proof is by induction: Fori = 1,
differentiating both sides of (1.13), we obtain

FED L A f O+ (A + M) f5V + L (A + Ag) f + A f =0, (24)

and replacing f by

_ AT+ A

Ao ’
we get
A , A , A,
f(k+1)+(Ak_1 - A—O)f(k)+(Ak_l + Az — Ak_lA—O]f<’<—‘)...+[A1 + Ao —AIA—O)f = 0.
0 0 0

That is

k 1 (k-1 1 (k-2 1
g(1 ) +Ak_1g(1 ) +Ak_2g(1 ).+ Apg1 =0.
Suppose that the assertion is true for the values which are strictly smaller than a

certain i. We suppose g;_; is a solution of the equation
k i—1 (k=1 i—1 (k=2 j—
gg_)l + AZ—llgE_l )+ A;c_lzgg_l )+ A lgi1=0. (2.5)

Differentiating (2.5), we can write

k+1 i1 (k i—1Y k-1
gE—JI ) +A;<—1g§_)1 + ((A;c—l) +Ak—2)g5—1 "+

+ ((A"l‘l) + Aé_l)g;._l +Aggi-1 = 0. (2.6)
In (2.6), replacing g;— by
(@) + Al gV + ALY+ AGgin))
Ai—l
0

8i-1=—

’
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yields
Ai-l)’ , (Ai—l)/
(k+1) i—1 ( 0 (k) i—1 -1 U0 (k=1)
g + A - = g+ (A;H) + A=A T i et
0 0
, (Ai—l)'
i i . O ’
+|(AT") + A5 - a7t |41 =0 2.7)

0

That is
k i1 (k=1 i1 (k=2 i1
gg—)l +A;{_1g§_1 )+A2_2g§_1 = + Ay gi-1 =0.

Lemma 2.4 is thus proved. i

Lemma 2.5. Let A; (j=0,1,....k— 1) be entire functions of finite order. Assume
that

max {i(A;),( = 1,...k = D} < i(Ao)

or

max {p, (4;).(j = 1.k = D} < p,, (A9) < +ev,

and let A‘J (j=0,1,....k—1) be defined as in (2.2). Then all nontrivial meromorphic
solution g of the equation

gV +A_ g%V L +Ajg=0,k22 (2.8)

satisfy 1 i(g) =p+1 andpp+1 (&) =p.

Proof. Let {f1, f>, ..., fr} be a fundamental system of solutions of (1.13). We show

that { l(i), 2(i), oy fk(i)} is a fundamental system of solutions of (2.8). By Lemma 2.4,

it follows that f(i), Z(i), - k(i) is a solutions (2.8) . Let a1, as, ..., @i be constants such
that _ ' '
(Ilfl(l) + a’zfz(l) +...+ a/kfk(') =0.

Then, we have
afitarfo+.. +tafk = P2,

where P (z) is a polynomial of degree less than i. Since a;f] + a2 fo + ... + aifi is
a solution of (1.13), then P is a solution of (1.13), and by Lemma 2.3, we conclude
that P is an infinite solution of (1.13); this leads to a contradiction. Therefore, P
is a trivial solution. We deduce that a;f] + a2 f> + ... + axfiy = 0. Using the fact
that {f1, />, ..., fx} is a fundamental system of solutions of (1.13), we get @] = a =

. = a¢ = 0. Now, let g be a non trivial solution of (2.8). Then, using the fact
that { l(i), 2(i), - flfi) } 1s a fundamental solution of (2.8), we claim that there exist
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constants ap, s, ..., & not all equal to zero, such that g = fl(i) +an fz(i) + ..+ f]fi).
Leth = a) fi+a fo+...+ fi, h be a solution of (1.13) and A?) = g. Hence, by Lemma
2.2, we have Pp+i (h) = Pp+i (g), and by Lemma 2.3, we have i (h) = i(g) = p + 1
and p,. (h) = p,e1(8) =p- 1

3. PROOF OF THEOREM 1.1

Assume that f is a solution of equation (1.13). By Lemma 2.3, we can write i (f) =
p+1.p,,1(f) =p,(Ag). Taking g; = f1, then, using Lemma 2.2, we have i(g;) =
p+1, Pp+i (g) = Pp (Ap) . Now, let w(z) = g; (z) — ¢ (z) , where ¢ is an entire function
with pp+1 (90) < pp (AO) .

Theni(w)=i(g)=p+1,andp, . W) =, (8) = pps1 (f) =p(A0).

In order to prove i;(gi —@)=i1(g—-@p)=p+land A, (gi—¢) = Aps1(gi —¢) =
p (Ap), we need to prove only iz (w) = iy (w) = p + 1 and /_lp+1 (w) = p(Ag). Using
the fact that g; = w + ¢, and by Lemma 2.4 we get

w® 4 Al D kA = — (o0 + AoV + L+ Afe)=F. (3D

Byp, (Aj.) < 00, 0,41 () < p, (Ag) and Lemma 2.3, we get F % 0 and p,,, | (F) < oo.

By Lemma 2.4 iz (w) = i3 (w) = p+ 1 and ipﬂ W) = Apy1 (W) = Pp+1 w) =p(Ap).
The proof of theorem 1.1 is complete.
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Abstract A group, called the second Bryant Schneider group (2" BSG), is naturally assigned to
any Osborn loop. An Osborn loop has the properties: it is universal if and only if its
2" BSG contains a tri-mapping and it is left (right) universal if and only if its 2" BSG
contains a bi-mapping. An Osborn loop in which the tri-mapping is of exponent 2 is
shown to be an abelian group. Consequently, a universal Osborn loop like a Moufang
loop, an extra loop, a CC-loop, a VD-loop, a universal WIPL that is non-associative
and non-abelian has the tri-mapping (not of exponent 2) in its 2"* BSG. The conjugate
of this tri-mapping for a universal Osborn loop that is a G-loop (e.g VD-loops, CC-
loops, extra loops and some classes of Moufang loops) or which belongs to a family
of commutative Moufang loops is shown to be in the 2" BSG of its loop isotope. A
necessary and sufficient condition for a loop to be a universal Osborn loop in which
an arbitrary principal isotope is isomorphic to some principal isotope under the identity
map is established.
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2010 MSC: Primary 20N02, 20NOS.

1. INTRODUCTION
A loop is called an Osborn loop if it obeys the identity below.

0So : x(yz-x) = x(yx* - x) - zx (1)

where x! denotes the left inverse element of x.

For a comprehensive introduction to Osborn loops and universal Osborn loops as
well as a detailed literature review on it, readers should check Jaiyéol4 [7, 6], Jaiyéola
and Adéniran [9, 8], and Jaiyéold , Adéniran and Solarin [10]. In this present paper,
we shall follow the style and notations used in Jaiyéol4 and Adéniran [8], and Jaiyéold
, Adéniran and Solérin [10]. Some concepts and notions, and results which will be
introduced and stated here are those that were not defined or stated in Jaiyéold and
Adéniran [8], and Jaiyéold , Adéniran and Solarin [10].
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Let x be an arbitrarily fixed element in a loop (G, -). For any x € G, the left and
right translation maps are denoted by L, and R, respectively. The inverses of L, and
R, will be denoted respectively by L, and R,.

Theorem 1.1. (Basarab, [2]) If an Osborn loop is of exponent 2, then it is an abelian
group.
We state an easy result that will later be of use.

Theorem 1.2. Let (G, ) be a "certain” loop where "certain” is an isomorphic in-
variant property. (G, -) is a universal “certain” loop if and only if every f, g-principal
isotope (G, *) of (G, -) has the “certain” loop property.

Let S YM(G, -) represent the symmetric group of any loop (G, -).

Definition 1.1. (Robinson [13])
Let (G, ) be a loop.

1 . A mapping 6 € SYM(G,") is said to be a right special map if there exists
f €G sothat (0,0Lr,0) € AUT(G,").

2 A mapping 6 € SYM(G, ) is said to be a left special map for G if that there
exists g € G so that (6Rg,0,0) € AUT(G,").

3 A mapping 0 € SYM(G,-) is named a special map for G if there exist f,g € G
so that (0R,, 0L s, 0) € AUT (G, ).

From Definition 1.1, it can be observed that 6 is a left or right special map for a
loop (G, -) with identity element e if and only if € is an isomorphism of (G, -) onto
some e, g- or f, e- principal isotope (G, o) of (G, -). Moreso, 8 is a special map for a
loop (G, +) if and only if 8 is an isomorphism of (G, -) onto some f, g-principal isotope
(G, 0) of (G, ).

Robinson [13] went further to show that if

BS(G,)={0e€SYM(G,-) : Af,g€G > (6R,,0Ls,0) € AUT(G, )}

i.e the set of all special maps in a loop, then BS(G,:) < SYM(G,") is called the
Bryant-Schneider group of the loop (G, ) (because its importance and motivation
stem from the work of Bryant and Schneider [3]). Since the definition of the Bryant-
Schneider group, some studies by Adeniran [1] and Chiboka [5] have been done on it
relative to CC-loops and extra loops. This group will now be called the first Bryant-
Schneider group (1% BSG) and represented by BS (G, -) = BS {(G) for a loop (G, -).
Let

BS»(G,)={0€SYM(G) : G(a,b) g G(c,d) for some a, b, c,d € G}.

As shown in Bryant and Schneider [3], BS (G, -) forms a group for a loop (G, ) and
it shall be called the second Bryant-Schneider group(2"® BSG) of the loop. It is easy
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to see that BS | (G, -) < BS»(G,-) < SYM(G). The 2" BSG will be more useful than
the 1% BSG in this study. This is as a result of some mappings that are in the 2" BSG
and not in the 1% BSG.

Results of Bryant and Schneider [3].

Theorem 1.3. Let (G, ) and (H,®) be quasigroups. If (G, ") is isomorphic to (H,®)
under 6, then BS»(H,®) = 6"'BS»(G, -)6.

Theorem 1.4. If (Q,) is a quasigroup, then Q(a,b, o) is trivially isomorphic to
QO(c,d,*) ifand only if c - b,a - d € N,(Q(a,b,0)) anda-b =c-d.

Corollary 1.1. If (Q,-) is a loop with identity e, then (Q, -) is trivially isomorphic to
O(c,d) if and only if c,d € N,(Q,-)and ¢ - d = e.

Results of Robinson [13]. Let (Q,-) be a loop and ROB(Q,-) = ROB(Q)
be the set of autotopisms R = (0R,, 0Ly, 0) for f,g,€ Q. The author observed that
ROB(Q) < AUT(Q) and we shall call it the Robinson group (ROBG) of a loop.
Furthermore, he mentioned that the mapping ® : ROB(Q,-) — BS (0, -) defined
by ® : (6R,,0Ly,0) — ¢ is an homomorphism and proved the following results
about its kernel.

Theorem 1.5. Let (Q, ) be a loop with identity e, let f,g € Q and let 6 € SYM(Q).
Then, R = (6Rg,0Ls,0) € ker® ifand only if 6 = I, g - f = e and g € N,(Q).

In this study, the group called the second Bryant Schneider group (2"¢ BSG) is
investigated in universal Osborn loops. An Osborn loop is shown to be universal if
and only if its 2"¢ BSG contains a tri-mapping and is left (right) universal if and only
if its 2" BSG contains a bi-mapping. An Osborn loop in which the tri-mapping is of
exponent 2 is shown to be an abelian group. Consequently, a universal Osborn loop
like a Moufang loop, an extra loop, a CC-loop, a VD-loop or a universal WIPL that
is non-associative and non-abelian has the tri-mapping (not of exponent 2) in its 2"
BSG. The conjugate of this tri-mapping for a universal Osborn loop that is a G-loop
(e.g VD-loops, CC-loops, extra loops and some classes of Moufang loops) or which
belongs to a family of commutative Moufang loops is shown to be in the 2"¢ BSG
of its loop isotope. A necessary and sufficient condition for a loop to be a universal
Osborn loop in which an arbitrary principal isotope is isomorphic to some principal
isotope under the identity map is established.

2. MAIN RESULTS

Theorem 2.1. Let (Q, -, \, /) be an Osborn loop. Let ¢(x, u,v) = (u\([(uv)/(u\(xv))]v))
and y(x,u,v) = R,Rp\ o LuLy for all x,u,v € Q, then (Q,-,\,/) is a universal Os-
born loop if and only if the composition

(R vy LuasT) Y voLoxs
(Q,) ——2) (0w — 21 g0y — D 0y (@)

principal isotopism isomorphism principal isotopism
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holds, where (Q, o) is an arbitrary principal isotope of (Q, -) and (Q, *) some princi-
pal isotope of (Q, ).

Proof. Let Q = (Q,-,\,/) be an Osborn loop with any arbitrary principal isotope
Q=(0,A,N, ) such that

xay = xR Lyt = (x/v) - (u\y) Y u,v € Q. (3)

If Q is a universal Osborn loop then, Q is an Osborn loop. Q obeys identity OSg
implies

xA[(yAZ)Ax] = {xa[(yax?)ax]}A(zAx) 4)

1 = xJy is the left inverse of x in Q. The identity element of the loop Q is

where x
uv. So,

XAy = xR;1 -yL,;1 implies yl Ay = y’l,R;l -yL,:l = uv implies

y/l/R;lRngu = uv implies yJy = (uv)Ry_ngle = (uv)R(_ul\y)Rv = [(uwv)/(u\y)]v.
Thus, by using (3), Q is an Osborn loop if and only if
(x/v) - u\{[/v) - @\)]/v - (u\x)} =
= ((x/v) - uMIG/ V)N [@v)/ @\ v - \)D/v - u\[(z/v)(u\x)].

Do the following replacements:

X=xlv=ax=xv, 7 =u\z=>z=u,y =y/lv=>y=yv

we have

x a2 [\ =
= (" - uM[Y @\([@v)/@\E DI/ - [\ I/ - u\[((@2) /v) e\ (X V)]

This is precisely identity OS{) below, obtained by replacing x’, y" and z’ by x, y and z
respectively,

x - u\(y2)/v - [u\(v)]} =
= (x - u\{y@\([@v)/@\Ccv)]v)1/v - [u\ev)ID /v - u\[((uz)/v)@\(xv)].  OSj

Writing identity OS;, in autotopic form, we will obtain the fact that the triple
(a(x, u,v), B(x,u,v),y(x,u,v)) € AUT(Q) for all x,u,v € Q where
ax,u,v) = R(M\([(m,)/(u\(x\,))]\,))RVR[M\(XV)]LuLwa Bx,u,v) = LRy R vy v and

y(x, u,v) = RyRp\ (o) LuLy are elements of Mult(Q). The triple

(a(x9 u’ v)7 ﬁ(x’ u’ v)a V(X, uv V)) = (R(u\([(uv)/(u\(xv))]v)) va’ Lu'ny, 7)
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can be written as the following compositions (R(u\([(m,) sy L I)(y, v, V)R, Ly, D).
Let (Q, o) be an arbitrary principal isotope of (Q,-) and (Q, *) a particular principal
isotope of (Q, ). Let ¢(x, u,v) = (u\([(uv)/(u\(xv))]v)), then the composition above
can be expressed as:

R L D) (r:7:7) Ry.Ly.D)
Q) ————— (Q,x) ———— > (Q,0) ———— > (0, ).
principal isotopism isomorphism principal isotopism

The proof of the converse is as follows. Let Q = (Q,-,\,/) be an Osborn loop.
Assuming that the composition in equation (2) holds, then doing the reverse of the
proof of necessity, (a(x, u, v), B(x, u,v), y(x,u,v)) € AUT(Q) for all x, u,v € Q which
means that Q obeys identity OS{ hence, it will be observed that equation (3) is true for
any arbitrary u, v-principal isotope Q = (Q, &, N, /") of Q. So, every f, g-principal
isotope Q of Q is an Osborn loop. Following Theorem 1.2, Q is a universal Osborn
loop if and only if Q is an Osborn loop. This completes the proof R

Corollary 2.1. Let (Q,-,\,/) be a loop. Q is a universal Osborn loop if and only if
the tri-mapping y(x,u,v) = R,Rpp\ vy LuLx € BS2(Q) for all x,u,v € Q.

Proof. This is obtained from Theorem 2.1 as a consequence of the composition in
equation (2). I

Lemma 2.1. A loop (Q,-,\,/) in which |y(x,u,v)| = 2, y(x,u,v) = RyRp v LuLs
forall x,u,v € Q is a loop of exponent 2. Hence, if Q is an Osborn loop, then it is an
abelian group.

Proof. The fact that Q is a loop of exponent 2 can be deduced from the fact that
y =y~ ! implies x = x” which gives x> = 2 by taken u = v = e. When Q is an Osborn
loop, then following Theorem 1.1, it is an abelian group. i

Corollary 2.2. In any non-associative non-abelian Moufang loop or extra loop or
CC-loop or VD-loop or universal WIPL (Q,-,\,/), the tri-mapping
v(x,u,v) = RyRpn oy LuLy € BS2(Q) for all x,u,v € Q and |7(x, u, v)l 2.

Proof. The fact that y(x, u,v) € BS,(Q) for all x, u,v € Q follows from Corollary 2.1
since a Moufang loop or extra loop or CC-loop or VD-loop or universal WIPL is a
universal Osborn loop. If |y(x, u, v)| = 2, then by Lemma 2.1, it is associative and

commutative which are contradictions. So, |y(x, u, v)’ 2.1

Lemma 2.2. Let (G, -,\, /) be an Osborn loop that is a G-loop with arbitrary isotope
(H;, 0;) i € Q. There exists a bijection 0; : G — H; ,i € Q such that Hi_ly(x, u,v)o; €
BSo(H;,0)) i € Q forall x,u,v € G where y(x,u,v) = R Ry oy LuLx.

Proof. Assuming that G is isomorphic to H; under 6;, i € Q, then the proof of the
lemma follows by using Theorem 1.3 and Corollary 2.1. §
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Lemma 2.3. Let (G,-,\,/) be a universal Osborn loop with an arbitrary isotope

0
(H, o) such that (G,-) = (H,o). Then, Q_Iy(x, u,v)8 € BS,(H,o) for all x,u,v € G
where y(x,u,v) = Ry R\ (o) LuLx-

Proof. This is a direct consequence of Theorem 1.3.

Corollary 2.3. Let (G,-,\,/) be a CC-loop or VD-loop or extra loop with arbi-
trary isotope (H;,0;) i € Q. There exists a bijection §; : G — H; ,i € Q
such that Gi_ly(x, u,v)o; € BS,(H;,0;)) i € Q for all x,u,v € G where y(x,u,v) =
RvR[u\(xv)]IL’uL)c-

Proof. This follows from Lemma 2.2 and the fact that a CC-loop or VD-loop or extra
loop is a G-loop. 1

Corollary 2.4. Let M = (M, -, \, /) be
= a Moufang loop such that M = N(M)M? or
= a simple Moufang loop with identity such that M> # e or
m  Moufang loop which satisfies an My-law for k # 1 mod 3

with arbitrary isotope (H;,0;) i € Q. There exists a bijection 6; : G — H; ,i € Q
such that Gfly(x, u,v)9; € BSo(Hj,0;)) i € Q for all x,u,v € M where y(x,u,v) =
RvR[u\(xv)]IquLx-

Proof. This follows from Lemma 2.2 and the fact that such a Moufang loop is a G-
loop in each case as shown in Corollary IV.4.7, Corollary IV.4.8 and Theorem IV.4.10
of [12] n

Corollary 2.5. Let (G,-,\, /) be any commutative Moufang loop which belongs to a
Sfamily of isotopic commutative Moufang loops . For every arbitrary H; € i € Q,
there exists a bijection 6; : G — H; ,i € Q such that Hl._ly(x, u,v)9; € BS»(H;,0;)i €
Q for all x,u,v € G where y(x,u,v) = R, R\ oy LuLx-

Proof. This follows from Lemma 2.2 and the fact that a family of isotopic commu-
tative Moufang loops forms an isomorphic family as shown in Theorem IV.5.6 of

[12]. n

Lemma 2.4. Let (Q,-,\, /) be a Moufang loop with an arbitrary isotope (H, o) such
that (Q, ) is isomorphic to (H, o) under 6. Then, 9‘]y(x, u,v)8 € BS,(H,o) for all
x,u,v € G where y(x,u,v) = R,Rp\ (o) LuLx-

Proof. This follows from Lemma 2.3 1

Lemma 2.5. A loop Q = (Q,-,\, /) is a universal Osborn loop in which an arbitrary
principal isotope is isomorphic to some principal isotope under the identity map if
and only if Q is an abelian group of exponent 2.
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Proof. By equation (2) of Theorem 2.1, it can be deduced that if (Q, o) and (Q, *) are
principal isotopes (Q, ) and y(x,u,v) = R,Rp(xv)LuLy, then (Q, x, v, 0) is isomor-
phic to (Q, u, ¢(x, u, v), *) under y‘l,

where ¢(x, u,v) = (u\([(uv)/(u\(xv))]v)) for all x,u,v € Q.

We now switch to Theorem 1.4. If y~! = [ then y = I if and only if y(x,u,v) =
RyRpnoLuly = I if and only if Ryn) = RyLiL, which implies y[u\(xv)] =
ulx\(y)] for all x,y,u,v € Q. Taking u = v = y = e, we get x> = e. By Theorem 1.1,
G is an abelian group. This fact can also be proved by using the sufficient part of
Theorem 1.4. The converse is easy. I

Lemma 2.6. A loop Q = (Q,-,\, /) is a universal Osborn loop which is isomorphic
to some principal isotope under the identity map if and only if Q is an abelian group
of exponent 2.

Proof. The procedure of the proof is similar to that of Lemma 2.5 i.e. using y(e, u, e).
This fact can also be proved by using the sufficient part of Corollary 1.1. The converse
is easy. I

Corollary 2.6. A loop Q = (Q,-,\, /) is a Moufang loop or extra loop or VD-loop or
CC-loop or universal WIPL which is isomorphic to some principal isotope under the
identity map if and only if Q is an abelian group of exponent 2.

Proof. Consequence of Lemma 2.6.
Theorem 2.2. Let (Q,-,\,/) be a universal Osborn loop, (Q, *) an arbitrary right
principal isotope of (Q, -) and (Q, o) some principal isotope of (Q, -). Let Yy(x,u,v) =

@\[(u/v)\(xv))]) and y(x,u,v) = R,RpuncoylluLyx for all x,u,v € Q, then the com-
position

(LLy.D) oy (Rw(x,u,m Ll
Q) ———————— > (0, %) - — (Q,0) —— > (0,")  (5)
right principal isotopism isomorphism principal isotopism

holds.
Proof. Theorem 2.1 will be employed. Let z = e in identity OS|,, then

x-u\y/v- [u\(w)]} =

= (- uMy@\([@v)/ (A\CoNIvDT/v - [\Ce) D /v - u\[(@/v) @\ (xv)].
So, identity OS|, can now be written as

x-u\(z)/v - [u\(w)]} =

= {{x ~u\[y/v - @\ev) I} {u\[((u/ V)(u\(XV))]}} - u\[((uz)/v)(\(xv))].
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Putting this in autotopic form, we have

(Y(X, u, V)R(u\[(u/v)(u\(xv))]) ’ﬂ(x’ u, V), '}’(x, u, V)) € AUT(Q)

(Y, 4, VIR 0 B V), Y V) = (Y0 1, VIR o LY, V(X1 v)) € AUT(Q)

for all x, u,v € Q. Writing

(y(xa u, V)R,/,(XYMN) ’ Lu7(x7 u, V)LX7 y(xv u, V)) =
(I, Lu Dy (e, u, v), 70, u,v), y(x, 1, )R,y Lo 1)
such that

(I,Ly,I) sy (R(u\uu/vxu\(xv»]) Lot )

(Q7 ) (Q’ *) (Q’ O) (Q’ )

right principal isotopism isomorphism principal isotopism

where (Q, *) is an arbitrary right principal isotope of (Q, ) and (Q, o) are some par-
ticular principal isotope of (Q, -), the conclusion of the theorem follows. I

Theorem 2.3. Let (Q,-,\, /) be a loop, (Q, o) an arbitrary principal isotope of (Q, -)
and (Q, *) some left principal isotope of (Q, -). Let ¢(x,v) = ([v/(xv)]v) and y(x,v) =
RyRow)LuLx for all x,v € Q, then (Q,-,\,/) is a left universal Osborn loop if and
only if the composition

Ry LD ¥syy) (Ry.Ly.D)

(@.) (Q. %) (Q.0) Q) (©

left principal isotopism isomorphism principal isotopism

holds.

Proof. The method of the proof of this theorem is similar to the method used to prove
Theorem 2.1 by just using the arbitrary left principal isotope Q = (Q, A, ", /) such
that

xAy:xR;1 y=(x/v)-yVveqQ.

In the process of the proof, it will be observed that a loop Q = (Q,-,\,/) is a left
universal Osborn loop if and only if it obeys the identity

x-[G-2)/v- ()] = (- A/ ev)I1/v - (am)D /v - [z - xv] 0S;.

Writing identity OSS in autotopic form, we can conclude that Q is a left universal
Osborn loop if and only if the triple (a(x, v), B(x, v), y(x,v)) € AUT(Q) for all x,v €
O where a(x,v) = R([v/(xv)]v)RvR[xv]LxRVa Bx,v) = R\/R[JCV]LV and y(x,v) = RvR[xv]L)c
are elements of Mult(Q). Breaking this into compositions like we did in the proof of
Theorem 2.1, we shall get equation (6). I
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Corollary 2.7. Let (Q,-,\,/) be a loop. Q is a left universal Osborn loop if and only
if the bi-mapping y(x,v) = R,Rx,)LyLy € BS2(Q) for all x,v € Q.

Proof. This is gotten from Theorem 2.3 as a consequence of the composition in equa-
tion (6). 1

Lemma 2.7. Let (G,-,\, /) be an Osborn loop that is a G-loop with arbitrary left
isotope (H;,0;) i € Q. There exists a bijection ; : G — H; ,i € Q such that
Qi_ly(x, v)8; € BS2(H;, 0;) i € Q for all x,v € G where y(x,v) = R,R[xLx.

Proof. Assuming that G is isomorphic to H; under 6;, i € Q, then the proof of the
lemma follows by using Theorem 1.3 and Corollary 2.7. 1

Lemma 2.8. Ler (G,-,\,/) be a left universal Osborn loop with an arbitrary left
isotope (H, o) such that (G, -) is isomorphic to (H, o) under 6. Then, H_Iy(x, v)g €
BS»(H, o) for all x,v € G where y(x,v) = RyR[xLy.

Proof. This is a direct consequence of Theorem 1.3.

Corollary 2.8. Let (G,-,\,/) be a CC-loop or VD-loop or extra loop with arbitrary
left isotope (H;,0;) i € Q. There exists a bijection ; : G — H; ,i € Q such that
Qi_ly(x, v)8; € BS2(H;, 0;) i € Q forall x,v € G where y(x,v) = R,R[xLx.

Proof. This follows from Lemma 2.7 and the fact that a CC-loop or VD-loop or extra
loop is a G,-loop. 1

Corollary 2.9. Let M = (M, -,\, /) be
» a Moufang loop such that M = N(M)M? or
» a simple Moufang loop with identity such that M> # e or
m  Moufang loop which satisfies an My-law for k # 1 mod 3

with arbitrary left isotope (H;, 0;) i € Q. There exists a bijection 9; : G — H; ,i € Q
such that Gi‘ly(x, v)8; € BSo2(H;,0;)i € Q forall x,v € M where y(x,v) = R,RLx.

Proof. This follows from Lemma 2.7 and the fact that such a Moufang loop is a G,-
loop in each case as shown in Corollary IV.4.7, Corollary IV.4.8 and Theorem IV.4.10
of [12]. 1

Corollary 2.10. Let (G, -, \, /) be any commutative Moufang loop which belongs to a
Sfamily of left isotopic commutative Moufang loops §. For every arbitrary H; € § i €
Q, there exists a bijection 68; : G — H; ,i € Q such that Qi_ly(x, v)0; € BSy(H;,0;)i €
Q for all x,v € G where y(x,v) = R,R[x]Ly.

Proof. This follows from Lemma 2.7 and the fact that a family of left isotopic com-
mutative Moufang loops forms an isomorphic family as shown in Theorem IV.5.6 of

(12]. n
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Lemma 2.9. Let (Q,-,\,/) be a Moufang loop with an arbitrary left isotope (H, o)
such that (Q, ) is isomorphic to (H, o) under 6. Then, H_Iy(x, v)8 € BS,(H, o) for all
x,v € G where y(x,v) = R,R[x]Lx.

Proof. This follows from Lemma 2.8. 1

Lemma 2.10. A loop QO = (Q,-,\,/) is a left universal Osborn loop in which an
arbitrary principal isotope is isomorphic to some left principal isotope under the
identity map if and only if Q is an abelian group of exponent 2.

Proof. By equation (6) of Theorem 2.3, it can be deduced that if (Q, o) is an arbi-
trary principal isotope of (Q, -), (Q, *) a left principal isotope of (Q,-) and y(x,v) =
RyR[xv) Ly, then (Q, x, v, o) is isomorphic to (Q, e, ¢(x, v), *) under y‘l,

where ¢(x,v) = ([v/(xv)]v) for all x,v € Q.

We now switch to Theorem 1.4. If y~! = I then y = I if and only if y(x,v) =
RyRiwiLx = I if and only if R(,) = R,L, which implies y(xv) = [x\(yv)] for all
x,y,v € Q. Taking v = y = e, we get 2 =e. By Theorem 1.1, G is an abelian
group. This fact can also be proved by using the sufficient part of Theorem 1.4. The
converse is easy. i

Corollary 2.11. A loop O = (Q,-,\, /) is a Moufang loop or extra loop or VD-loop
or CC-loop or universal WIPL in which an arbitrary principal isotope is isomorphic
to some left principal isotope under the identity map if and only if Q is an abelian
group of exponent 2.

Proof. Consequence of Lemma 2.10 1

Theorem 2.4. Let (Q,-,\, /) be a left universal Osborn loop and (Q, o) some princi-
pal isotope of (Q,-). Let y(x,v) = (W' xv) and y(x,v) = RyRpw Ly for all x,v € Q,
then the composition

(y:7:7) (Ryce Ll
(Q,) —— (Q,0) ————— > (0,") (N
isomorphism principal isotopism

holds.

Proof. This follows by using identity OSé of Theorem 2.3 the way identity OS;, of
Theorem 2.1 was used in to prove Theorem 2.2.

Theorem 2.5. Let (Q,-,\,/) be a non-associative left universal Osborn loop, let
v(x,v) = RyRpn Ly for all x,v € Q and let the mapping ® : ROB(Q,-) — BS (0, ")
be defined by © : (6R;', 5L;1, 5) — 6.

Then, the autotopism (y(x, V)R 1.y, Y(x, V)Ly, ¥(x,V)) € ker © for all x,v € Q.
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Proof. Going by Theorem 2.4, R = (y(x, )Ry, Y(X, V)L, ¥(x,v)) € ROB(Q,").
Assuming that the autotopism (y(x, V)R .y, ¥(x, V)L, ¥(x,v)) € ker © for all x,v €
0, then using Theorem 1.5, y(x,v) = I which means Q is a group. Which will be a
contradiction. |

Theorem 2.6. Let (Q,-,\,/) be a loop, (Q, o) an arbitrary right principal isotope
of (Q, ) and (Q, *) some principal isotope of (Q,-). Let ¢(x,u) = (u\[u/(u\x)]) and
v(x,u) = Rppn Ly Ly for all x,u € Q, then (Q,-,\, /) is a right universal Osborn loop
if and only if the composition

Rty LusT) 0y (L)
Q) ———— 0.9 ——— (@, o) ———— > (0,) (8
principal isotopism isomorphism right principal isotopism

holds.

Proof. The method of the proof of this theorem is similar to the method used to prove
Theorem 2.1 by just using the arbitrary right principal isotope Q = (Q, A, N, /") such
that

xAy:x-yL,;1 =x-(w\y)VueQ.

In the process of the proof, it will be observed that a loop Q = (Q, -, \,/) is a right
universal Osborn loop if and only if it obeys the identity

(ux) - u\yz - x} = ((ux) - u\{[y(u\[u/x])] - x}) - w\[(uz)x].

0
os)

Writing identity OS‘S in autotopic form, we can conclude that Q is a right universal
Osborn loop if and only if the triple

(a(x, u), B(x, u), y(x,u)) € AUT(Q) for all xu € QO where
a(x,u) = Ronw/eonRunxaluly, B(x,u) = LyRpny and y(x,u) = RpxLiLy are
elements of Mult(Q). Breaking this into compositions like we did in the proof of
Theorem 2.1, we shall get equation (8). 1

Corollary 2.12. Let (Q,-,\,/) be a loop. Q is a right universal Osborn loop if and
only if the bi-mapping y(x,u) = RynxqLy,Lyx € BS2(Q) for all x,u € Q.

Proof. This is gotten from Theorem 2.6 as a consequence of the composition in equa-
tion (8). 1

Lemma 2.11. Let (G, -, \, /) be an Osborn loop that is a G,-loop with arbitrary right
isotope (H;,0;) i € Q. There exists a bijection ; : G — H; ,i € Q such that
Q;Iy(x, v)0; € BSo2(H;,0))i € Qforall x,u € Gwherey(x,u) = Ry qLuLy € BS2(Q).

Proof. Assuming that G is isomorphic to H; under 6;, i € Q, then the proof of the
lemma follows by using Theorem 1.3 and Corollary 2.12. 1
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Lemma 2.12. Let (G, -, \, /) be a right universal Osborn loop with an arbitrary right
isotope (H, o) such that (G,-) is isomorphic to (H, o) under 6. Then, Q_Iy(x, u)d €
BS>(H, o) for all x,u € G where y(x,u) = Ry xqL,Lyx € BS2(0).

Proof. This is a direct consequence of Theorem 1.3. i

Corollary 2.13. Let (G, -, \, /) be a CC-loop or VD-loop or extra loop with arbitrary
right isotope (H;,0;) i € Q. There exists a bijection 6; : G — H; ,i € Q such
that Hgly(x, u)d; € BSa2(H;,0) i € Q for all x,u € G where y(x,u) = RypnqLyLx €
BS»(Q).

Proof. This follows from Lemma 2.11 and the fact that a CC-loop or VD-loop or
extra loop is a G,-loop. 1

Corollary 2.14. Let M = (M, -,\, /) be
» a Moufang loop such that M = N(M)M? or
= a simple Moufang loop with identity such that M> # e or
m  Moufang loop which satisfies an My-law for k £ 1 mod 3

with arbitrary right isotope (H;,0;) i € Q. There exists a bijection 6; : G —
H; ,i € Q such that Gl._ly(x, u)0; € BS,(H;,0;) i € Q for all x,u € M where y(x,u) =
R[u\xJLuLx € BSZ(Q)

Proof. This follows from Lemma 2.11 and the fact that such a Moufang loop is a G-
loop in each case as shown in Corollary IV.4.7, Corollary IV.4.8 and Theorem 1V.4.10
of [12]. 1

Corollary 2.15. Let (G,-,\, /) be any commutative Moufang loop which belongs to
a family of right isotopic commutative Moufang loops §. For every arbitrary H; €
& i € Q, there exists a bijection 6; : G — H;,i € Q such that Oi_]y(x, u)g; €
BS1(H;, 0;) i € Q for all x,u € G where y(x,u) = Ry qLyLx € BS2(0).

Proof. This follows from Lemma 2.11 and the fact that a family of right isotopic
commutative Moufang loops forms an isomorphic family as shown in Theorem I'V.5.6
of [12]. 1

Lemma 2.13. Let (Q, -, \, /) be a Moufang loop with an arbitrary right isotope (H, o)
such that (Q, ) is isomorphic to (H, o) under 0. Then, 6~ 'y(x,u)8 € BS»(H, o) for all
x,u € G where y(x,u) = Ry qLyLx € BS2(0).

Proof. This follows from Lemma 2.12.

Lemma 2.14. A loop Q = (Q,-,\,/) is a right universal Osborn loop in which an
arbitrary right isotope is isomorphic to some principal isotope under the identity map
if and only if Q is an abelian group of exponent 2.
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Proof. By equation (8) of Theorem 2.6, it can be deduced that if (Q, o) is an arbi-
trary right principal isotope of (Q, -), (Q, *) a principal isotope of (Q, -) and y(x, u) =
RpnxLuLy € BS2(Q), then (Q, x, e, o) is isomorphic to (Q, u, #(x, u), *) under y L,

where ¢(x, u) = (u\[u/(u\x)]) for all x,u € Q.

We now switch to Theorem 1.4. If y~! = [ then y = [ if and only if y(x,u) =
RypnxqLyLy = I if and only if R,y = L,L, which implies y(u\x) = u - x\y for all
x,y,u € Q. Takingu = y = e, we get 2 =e. By Theorem 1.1, G is an abelian
group. This fact can also be proved by using the sufficient part of Theorem 1.4. The
converse is easy. i

Lemma 2.15. A loop Q = (Q,-,\,/) is a right universal Osborn loop which is iso-
morphic to some principal isotope under the identity map if and only if Q is an
abelian group of exponent 2.

Proof. The procedure of the proof is similar to that of Lemma 2.14 i.e. using y(e, u).
This fact can also be proved by using the sufficient part of Corollary 1.1. The converse
is easy. 1

Corollary 2.16. A loop Q = (0O, -,\, /) is a Moufang loop or extra loop or VD-loop
or CC-loop or universal WIPL which is isomorphic to some principal isotope under
the identity map if and only if Q is an abelian group of exponent 2.

Proof. Consequence of Lemma 2.15 1

Theorem 2.7. Let (Q,-,\,/) be a right universal Osborn loop, (Q, *) an arbitrary
right principal isotope of (Q,-) and (Q, o) some principal isotope of (Q,-). Let
v(x,u) = RypnqLyLy for all x,u € Q, then the composition

(.Lu.D) vy (Ra Ll
Q) ———————— (0, %) - — (Q,0) —— > (0,)) 9)
right principal isotopism isomorphism principal isotopism

holds.

Proof. This follows by using identity OS’(; of Theorem 2.6 the way identity OS;, of
Theorem 2.1 was used in to prove Theorem 2.2 .
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Abstract The author introduces new classes of analytic functions with respect to (j, k)-symmetric

points. Integral representation, interesting conditions for starlikeness and inclusion re-
lations for functions in these classes are obtained.
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1. INTRODUCTION, DEFINITIONS AND
PRELIMINARIES

Let A denote the class of functions of the form
f=z+ ) @ a,20, (1)
n=2

which are analytic in the open disc U = {z € C\ | z |< 1} and 8 be the class of
functions f € A which are univalent in U.

We denote by 8%, C, K and C* the familiar subclasses of A consisting of functions
which are respectively starlike, convex, close-to-convex and quasi-convex in U. Our
favorite references of the field are [2, 3] which covers most of the topics in a lucid
and economical style.

Let f(z) and g(z) be analytic in U. Then we say that the function f(z) is subordi-
nate to g(z) in U, if there exists an analytic function w(z) in U such that [w(z)| < |z|
and f(z) = g(w(2)), denoted by f(z) < g(z). If g(z) is univalent in U, then the subor-
dination is equivalent to f(0) = g(0) and f(U) C g(W).

Let k be a positive integer and j = 0, 1, 2, ...(k — 1). A domain D is said to
be (j, k)-fold symmetric if a rotation of D about the origin through an angle 27 j/k
carries D onto itself. A function f € A is said to be (j, k)-symmetrical if for each
zel .

f(e2) = &/ f(2), (2)
where & = exp(27i/k). The family of (j, k)-symmetrical functions will be denoted by
ff",]c. We observe that 3";, ffg and F ]1 are well-known families of odd functions, even
functions and k-symmetrical functions respectively.

o1
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Also let fj x(z) be defined by the following equality

>~

-1

f(€"2)

gVl

, (feAk=1,2,...;j=0,1,2,...(k=1), O3

=

fik(@) =

Il
[«

V:

where v is an integer.

The notion of (j, k)-symmetric functions was introduced and studied by P. Liczber-
ski and J. Potubinski in [4].

The following identities follow directly from (3):

fik(&2) = €7 fi1(2),

= 1 ¢ f(€%2)
’ VN — V-V g _ -
v=0
k—1
/7 v Vj=2v prr 1 f”(svz)
fj’k(a ) =¢&% 2 fj,k(Z) = Z .
v=0

Motivated by the concept introduced by K. Sakaguchi in [7], recently several sub-
classes of analytic functions with respect to k-symmetric points were introduced and
studied by various authors. In this paper, new subclasses of analytic functions with
respect to (j, k)-symmetric points are introduced.

We now define the following:

A function f € A is said to be in the class ng’ 9 if and only if it satisfies the condition
o @) )

Re[——=]>0 (zeW. (5)
(fj,k(Z)

We call the functions f € A that satisfy the condition (5) to be starlike with respect
to (j, k)-symmetric points.

Similarly, we define the class eﬁ,f"") of convex functions with respect to (j, k)-
symmetric points if and only if

Rl DN 0 ew. (6)
fi @
The different subclasses of ng "M can be obtained by replacing condition (5) by
zf (@)
< ¢(2), )
fik@

(zelWk=1,2...:j=0,1,2, ...(k=1),
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where ¢ € P, the class of functions with positive real part. We denote by S(SJ’ k)(gb),
the class of func_tions f € A that satisfies the condition (7).
Similarly let GE,J’ k)(¢) denote the class of functions in 8 satisfying the condition

(zf @)
[ @

Js

zeW k=1,2,...;j=0,1,2,...(k=-1)),

< ¢(2),

where ¢ € P.

Remark 1.1. For different choices of the parameters j, k and the function ¢(z), the
classes SE.]’ k)(¢) and (:’E.J’ k)(¢) reduce to various other well-known and new subclasses
of analytic functions. For details see [8].

2. INCLUSION RELATIONSHIPS AND
INTEGRAL REPRESENTATIONS OF THE
CLASSES sgf”‘>(¢) AND eg”“(qs)

Let us begin with the following:
Theorem 2.1. If f € eﬁ,j’ k)(q’)), then f is univalent in U.
Proof. From the definition of X (¢),

Re| L@ | . ®)
fi4@)

J

since Re{¢(z)} > 0. If we replace z by £"z in (8), then (8) will be of the form
el L €D (€2
fJ," k(SVZ)

Using (4) in (9), we get

f(&2)+ezf (£72)
Re -
8V]—Vf“]{’ k(z)
Letv=0,1,2,..., k—1in (10) respectively and summing them, we get
ro] B0 I D) + 2T D)
[i:@

}>0, (zeWv=0,1,2, ..., k—1). 9)

}>0, (zeW). (10)

>0, (zel.

Or equivalently,
[@+2f @
Re L L - 2k
[ @)

Js

]>0, (ze W),
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that is f; x(z) € C. Using this together with the condition (6) shows the functions in

@gj’ " are quasi-convex. It is well-known that the class of quasi-convex functions are

univalent, hence functions which are convex with respect to (j, k)-symmetric points
are univalent. |

By using the same method as that of Theorem 2.1, we may obtain the following
result.

Theorem 2.2. If f € ng’ k)(qb), then f; 1(z) € 8"

Remark 2.1. Using the condition (5) together with Theorem 2.2 shows that the func-
tions in S(SJ’ Y are close-to-convex. It is well-known that the class of close-to-convex
functions are univalent, hence functions which are starlike with respect to (j, k)-
symmetric points are univalent.

Theorem 2.3. Let f € ng’ k)(qﬁ), then we have

k-1

fir@ =z exp{%z Mdr} (11)

v=0 0 !
where f; 1(z) defined by equality (3), w(z) is analytic in U and w(0) = 0, | w(z) |< 1.
Proof. Let f € S(Sj’ k)(qj), from the definition of ng’ k)(¢), we have
z2f )
fix(@
where w(z) is analytic in U and w(0) = 0, | w(z) |< 1. Substituting z by £”z in the
equality (12) respectively (v =0, 1, 2, ..., k-1, & = 1), we have
£2f (£72)
fix(ez)

= ¢ (w(2), (12)

= ¢ (w(e"?)) (13)

Using (4) in (13), we get
ng—vjf’ (8VZ)
fix(@)

Letv=0,1,2,..., k—1in (14) respectively and summing them we get,

IO EEE=
f,f’kk(z) = ZO¢(w<s”z>),

= ¢ (w(e'2). (14)

From this equality, we get

fi®@ 1 lkz 6 (w(&’ z))—l
i@z k&
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Integrating this equality, we get

fik@) 14 qﬁ(w(s"{))—l
oe {4 }—;Zf &
f“¢(w(f))—1dt’
—o 0 !

NIH

or equivalently,

=1 e )
fj,k(Z)ZZexp{%Zf Mdt}.
v=0 V0 t

This completes the proof of Theorem 2.3. 1

Theorem 2.4. Let f € C’gj’ k)(¢), then we have

e
fsa = [ exp{ Z [ e }dg (1)

where f; 1(z) defined by equality (3), w(z) is analytic in U and w(0) = 0, | w(z) |< 1.

Remark 2.2. Several well-known and new results can be obtained as a special case
of the results stated in this section for different choice of the parameters. For example

see [8].

3. CONDITIONS FOR STARLIKENESS WITH
RESPECT TO SYMMETRIC POINTS

We now state the following result which will be used in the sequel.

Lemma 3.1. [5, 1] Let the function q be univalent in the open unit disc U and 0 and
¢ be analytic in a domain D containing q(U) with ¢(w) # 0 when w € g(U). Set

0(2) = 29 (2)$(q(2)), h(z) = 6(q(2)) + Q(z). Suppose that

1. Q is starlike univalent in U, and

2. Re(”é((;))) >0 forz e W

If
0(p(2) + 20 (DB(p(2)) < 0(q(2)) + 24 D)P(q(2)),

then p(z) < q(z) and q is the best dominant.
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Theorem 3.1. Let the function g(z) be convex univalent in U and also let

Re {a/( 8@ o)1) + 1) + L9 } >0 (16)
728’ (2) 78 (2)

and
h(z) = azg (2) + ag*(2) + (B — @)g(2),
where a >0, a + 3 > 0.

L k(Z
If f € Awith M # 0 satisfies the condition
z

2 2f f, 2(£ (2)° /
i {z f@_ TS50 2( @) }+ dO e, (17)

fir®@ (fj, k(Z))2 (fj, k(z))2 Jix@)

then f € S(Sj’ k)(g) and g is the best dominant.

Proof. Let the function p be defined by

p) = S @
fixk(@)

then p(z) = 1 + p1z + prz> + - -- € P. By a straight forward computation, we have

(zeW;z#0; feA),

2f @) . 2@ 21 @f )
fik@  fix(2) (fj,k(Z))z .

W (@) =

Thus by (17), we have
azp (2) + ap*(2) + (B — a)p(z) < h(z). (18)

By setting
o(w) = aw? + B - aw and o(w) = a,
it can be easily verified that 6 is analytic in C, ¢ is analytic in C with ¢(0) # O in the

w-plane.
If we let Q(2) = zg (2)¢(8(2)) and h(z) = 6(g(2)) + Q(2), then

0(2) = azg (2)

and ,
h(z) = a(g(2)* + (B - @)g(z) + azg (2).

Since g(z) is convex univalent in U it implies that Q(z) is starlike univalent in U.
Further, we have

(@) _ g@) 8(2)
Re 00 - Re {a(zg/(z)(g(z) 1)+ 1) +ﬁzg'(z)} >0
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The assertion of the Theorem 3.1 now follows by applying Lemma 3.1. §

fik(@)
z

Corollary 3.1. If f € A with # 0 satisfies the condition

NEACH 2f @ 2(F ) w5 @ _ h(2),
fik(@)

.\
(@) ()] i@

where

ala(a — b) + Bblz* + [2a(a — b) + Bla + b)|z + 8

h(@) = (1 + bz)?

bl 1-
l<b<a<l and ,822&2(|| “)

1+|b| 1-b

k) 1+
then f € §; (TZ?)

1+
Proof. We let g(z) = TZZ’ in Theorem 3.1. Clearly g(z) is convex univalent in U.
Hence the proof of the Corollary follows from Theorem 3.1. i

If we let j = k = 1 in the Corollary 3.1, we get the following interesting result.

Corollary 3.2. /9] If f € A with 1@ # 0 satisfies the condition
Z

2f @) zf @
h
o TP M@

where

ala — b+ Bblz> +[2(a — b) + Bla + b)lz+ B

" = (1 +b2)?

bl 1-
1<b<a<l and ﬁzZ(ll— “),

1+1b] 1-b

then f € 8 (12£).

fixk(@)

Z

Corollary 3.3. If f € A with #0,z¢e€Uand

1
DzC\{zEC:RezS—E,ImZZO},

then
20 T OLO AP e ),
L@ (@) (@) Sx

— fesih
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1+
Proof. If weleta =1, =1and g(z) = I < in Theorem 3.1. It follows that A(z) is
-z
convex with respect to the point u = —1/2. Hence the proof of the Corollary. i

If we let j = k = 1 in the Corollary 3.3, we get the following well-known result.

Corollary 3.4. [6] If f € A with 1@ #0, ze Uand
b4

1
D=C\{zeC:Rez§—§,Imz=O},

then S ) )
Zf @ zf @ zf (@)
D R 0.
@ e T T e( @ ) -
Corollary 3.5. If f € A with J@ # 0, z € U, satisfy the condition

<1+ 06z,

0l() = 2@ z2f’(z)f},k2(2) .\ zZ(f'(z))z2 . z2f (@)
fix(@) (fj,k(Z)) (f/k(Z)) fik(@)

1
whered=u(2a+1—a¢t)and0<,u£(1+2—), then
@

2f )
fik(@)

Proof. If weletB =1 and g(z) = 1 + uz in Theorem 3.1, then h(z) will be of the form
h(z) = 1 + Qe + Duz + ap’z?. For | z|= 1,

<1+ puz

W) —1|=uRa+1+auzl 2uQRa+1-au).

If we put 6 = (2a + 1 — ap), then from the above inequality it follows that i(z) is
superordinate to 1 + ¢6z. Hence the proof of the Corollary. §

If welet @ = 1 and u = 1 in the Corollary 3.5, then we have the following result.

fik(@)
z

Corollary 3.6. If f € A with # 0, z€ U, then

<2 (zel

fix@ @ fir i@

2f (2)
fik(@)

@) [1 WACEETON zf’(z)] »

implies -1y <1, forallz € U.
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If we let j = k = 1 in the Corollary 3.6, we get the following interesting result.
Corollary 3.7. If f € A, then

#@@+ﬁ@%1
f\ " f@

2f (@)

-1
f(@)

<2 (zel), = <1l (zelW).

It is well-known that a function f € A is called strongly-starlike of order 4, 0 <

A< 1L,if ,
f @ 7

arg Q) < /12, (zelW
and we denote by 88"(1) the class of such functions. Similarly, we denote the class
of strongly-starlike functions of order A with respect to (j, k)-symmetric points by
884 Q).

Now, we give the sufficient conditions for strongly-starlike of order A with respect
to (j, k)-symmetric points

Corollary 3.8. Let 0 < A < 1, and let
1+ z)ﬂ

1-72 1-z2

20z (1+z)”
+
1-z2

h(z) = (
fik@)

Z

2@ ZOLO 20@° e

fida (f@) (fu) @
then f € 88YX().

If we let j = k = 1 in the Corollary 3.8, we get the following interesting result.
Corollary 3.9. Let 0 < A < 1, and let
1+ z)/l
l-z

If f € Awith # 0, z € U, satisfies the condition

< h(2),

21z 1+z\*
1-22

h(z) = (

1-z

fik(@)

Z

If f € Awith # 0, z € U, satisfies the condition

M@VN@
f@ | f©@

+ 1] < h(2),
then f € 88*(1).
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Abstract Assume that X(¢) and Y(¢) are independent Wiener processes with drift —1 and 0, re-
spectively, and diffusion coefficient equal to 2 (in both cases). Let I(x,y) be the indi-
cator function of the event {r(x,y) < oo}, where 7(x,y) = inf{t > 0 : Y(r) = 0,X(t) >
0] X(©) = x,Y(0) =y}, in whichy # 0 or x < 0. We obtain an explicit expression
for ¢(x,y) = E [e“‘x[w"")]l (x, y)]. An application to an optimal control problem is also
presented.

Keywords: Brownian motion, first exit time, Kolmogorov backward equation, optimal stochastic con-
trol.
2010 MSC: 60J70.

1. INTRODUCTION

We consider the two-dimensional Wiener process (X(¢), Y(¢)) defined by the sys-
tem of stochastic differential equations

—dt + V2dB (1),
V2dBs(t),

dX(t)
dY ()

where B(#) and B(¢) are independent standard Brownian motions. Let
T(x,y) =inf{t > 0: Y () = 0,X() = 0| X(0) = x, Y(0) =y},
where y # 0 or x < 0. We define

1 if7r(x,y) < oo,
0 otherwise.

I(x,y) ={

That is, I(x, y) is the indicator function of the event {r(x,y) < oco}.
The function

b(x,y) := E|e XN (x, )], (1)

where a > 0, satisfies the Kolmogorov equation
¢yy TP =P = 0,

and is subject to the conditions ¢(x, 0) = e~** if x > 0, and ¢(x, y) — 0if x?+y> — co.

61



62 Mario Lefebure

Since the stochastic processes X(f) and Y(¢) are independent, if we replace the
first-passage time 7(x,y) by

To(x,y) =inf{r >0 : Y(®) = 0| X(0) = x, Y(0) =y},

where y # 0 and x € R, then the function ¢, (x, y) that corresponds to ¢(x, y) is easy to
obtain. Indeed, first we can state that 7o(x, y) actually does not depend on the variable
x. Moreover, it is well known that P[t(y) < co] = 1. Therefore, we can write that

bo(x,y) = E [e—“X[To@ﬂ ’ X(0) = x, Y(0) = y] .
Next, making use of the fact that X(¢) has a Gaussian distribution with mean x — ¢

and variance 2¢, and of the following formula for the probability density function of
the random variable 7¢(y) (see Lefebvre [3], for instance):

2
Jro(0) = bl exp{—y—} for ¢ > 0, )
4

13 4t

we can derive an explicit (and exact) expression for ¢,(x,y) by conditioning on the
random variable 7o(y). That is, we write that

bo() = E[e 00| X(0) = 5, ¥(0) =]

- E [ E [ o~ aX[ro]

_ f E[e_ax['ro(y)] 70(y) = £, X(0) = x, Y(O):y] Jro (D)t
0
foo foo o {_(u—x+t)2} 1 exp{_y_z}dudt
o - m 4¢ W 41

M 7 e™ (u—x+t)2+y2

The main difficulty in computing the function ¢(x,y) stems from the fact that it
is discontinuous on the boundary y = 0. A related problem for which the function
is discontinuous on the boundary has been considered by the author and Whittle
(see Lefebvre and Whittle [4]) in an optimization context. They defined the two-
dimensional diffusion process (X(¢), Y(¢)) by

7o), X0) = x, YO = |

dX(t) = Y(t) dt, (3)

dY(t) = bu(t)dt + o dB(t), 4

where b # 0 is a constant, u(t) is the control variable and B(¢) is a standard Brownian
motion. Hence, X () is a controlled integrated Brownian motion. They looked for the
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control #* that minimizes the expected value of the cost function

Ta(0) (1
J(x) = f (—quz(t) - /l) dt,
0 2

in which

Ty(x) =1inf{r > 0 : |X(1)| =d | X(0) = x},
with —d < x < d, and ¢ and A are positive constants. By appealing to a theorem
proved in Whittle [5], the authors were able to express the value of u* in terms of

the following mathematical expectation for the uncontrolled process (£(¢), n(¢)) that
corresponds to (X(¢), Y(¥)):

$1(x) = E [em(x)/ «

&0 = 1

where
a’q
T
and 74(x) is the same as 74(x), but for the process (&£(¢), n(¢)) obtained by setting u(¢)
equal to 0 in (4).

The function ¢,(x) is also discontinuous on the boundaries x = d and x = —d,
because the process X(#) cannot hit the boundary x = d for the first time with y < 0
or, equivalently, the boundary x = —d with y > 0.

The authors were not able to derive an exact expression for ¢,(x). Instead, they
used a technique that enabled them to obtain an approximate solution for the optimal
control.

Actually, a few years later, Lachal [2] considered, in particular, the problem of
computing the probability density function of the random variable

Tp(x,y) :==inf{t > 0 : X(#) = b | X(0) = x, Y(0) = y}

for the two-dimensional diffusion process (X(t), Y(¢)) defined by

dX()
dY ()

Y1) dt,
dB(p).

That is, X(#) is the integral of the standard Brownian motion Y(f). He derived the
following exact expression:

B [3 (3b-x 1y 3(b—x - ty)?
Jaen® = 6[ ﬂ(i_ﬁﬂ —Eﬁ)exp{——zﬁ

00 f
+ f zdz f fmw,—z)(S)q(x,y;b,z;t—S)dS],
0 0
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where

“ 3/'1 2 2 2 ,uz/s -30/2 dg
Jro0.—2)(8) = eXp{——(z —pz+ ) pdu e 02—,
o0 0 V2rs? s 0 V6

in which € is the sign of (b — x), z > 0 and

q(x,y;u,vit) = p(x,y;u,v;t) — p(x,y; u, —v; 1),

the function p(x,y;u,v;f) being the joint density function of the random vector
(X(n), Y(1)), which is known to be

V3 6 6
px,y;u,vit) = ﬁexr){—tg(u—x—ty)%t—z(u—x—ty)(v—y)

2
—;(v—y)z}.

We see that the exact solution to such a one-boundary problem is quite complicated,
and we can expect the solution in the case of a two-boundary problem to be even
more complicated. In the context of an optimization problem, such as in Lefebvre and
Whittle [4], this exact solution would not have been very useful, at any rate, because
one must be able to give an expression for the optimal control that the optimizer can
actually implement.

In Section 2, by making use of the Wiener-Hopf technique, we will calculate the
Fourier transform of ¢(x,y). We will invert this transform in the case when y = 0.
Finally, with the help of probabilistic arguments, we will obtain an explicit expression
for ¢(x,y).

In Section 3, an application to an optimal control problem will be presented, and
we will conclude this work with a few remarks in Section 4.

2. COMPUTATION OF THE FUNCTION ¢(X,Y)

To obtain an exact expression for the function ¢(x,y), we will first compute its
Fourier transform, with the help of the Wiener-Hopf technique. Let

1 o0 .
D(w,y) = \/T f d(x, y)e'“dx.
JT J—0c0

We find that ®(w, y) satisfies the ordinary differential equation
d*O(w, y)
dy?
The Wiener-Hopf technique consists in assuming that ¢(x, 0) is known for all x €
R, and not only for x > 0. We write that

(W? - iw)D(w,y) = 0. (5)

e ifx>0,
u(x) ifx <0,

¢(x,0) = {
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where u(x) is a function that will need to be determined later.
Next, the solution of Eq. (5) that tends to 0 as |y| increases to oo is

O(w,y) = [U(w)+\/—_l;} xp( Iy Vw? - lw)

where

0
U(w) := \/%_ﬂ- j_‘w u(x)e'“*dx

is the Fourier transform of u(x).
It can be shown (see Zwillinger [6], pp. 383-386) that, when a = 1,

1 [\/ﬁ—\/—_zz}

U —
@) Vo-il V221 -iw)

from which we deduce that

V=-2i
D(w,y) = - 2 —iw]. 6
== o oe(ier-io) ©)

Remark 2.1. There are a few misprints in Zwillinger’s book. In particular, in Eq. (104.4),
p- 384, it should be ¢, instead of ¢,. Moreover, the formula for the function U(w)
should be as above, rather than as in Eq. (104.17). That is, it is (1 — iw) in the
denominator, instead of V1 — iw.

Next, the formula for ®(w, y) in the case when a > 0 can be found in Davies [1],

p. 281:
1 z7r/4\/_a
D(w,y) = 2 7
(@) = \/ﬂ\/—_,(a_lwep( Ve = iw). ™

Remark 2.2. In Davies [1], the Fourier transform of f(x) is defined as follows:

Flw) = foo f(x)e“dx.

Therefore, we must multiply the formula on p. 281 by 1/ \2x. It is easy to check that
if we set a equal to 1 in (7), then we indeed retrieve Eq. (0).

In order to obtain the function ¢(x, y) that we are looking for, we must invert the
Fourier transform ®(w,y). However, it turns out to be a very difficult task in the
general case when y € R. We can, however, invert this transform when y = 0. Indeed,
making use of the mathematical software Maple, we find that

e ifx>0,

(]5()6, 0) = { e—ax [1 _ erf(\/—_x\ll + a)] if x <0, (8)
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in which erf'is the error function.

Remark 2.3. In Maple, the Fourier transform of f(x) is defined as follows:

F(w) = f B F(x)e™“*dx.

Now, with the help of Eq. (8) and probabilistic arguments, we can obtain an ex-
plicit expression for ¢(x, y) for any real y. First, we define (as in the Introduction)

To(y) = inf{t > 0: Y(1) = 0| Y(0) =y},

where y # 0. That is, 7o(y) is the first-passage time to O for the process Y(¢), indepen-
dently of the value of X[1o(y)].
Next, we condition on 7y(y) and X[ro(y)]:
p(x,y) = f f E [ 1(x, y) | X[ro)] = x1,70(y) = 1]
0 —00
X fx(ro)ro (X1 | 1) fro()dx, dt.

We can write that
o(x,y) = f f ¢(xl,0)fX(To)lT0(xl | t)f‘ro(t)dxldt

f f M fxolo (X1 | D fro(Ddxidt.

Finally, we mentioned in the Introduction that X(7¢) | {To = ¢} ~ N(x—t,2¢) and the
probability density function of the random variable 7((y) is given in Eq. (2). Hence,
we can now state the following proposition.

Proposition 2.1. The function ¢(x,y) defined in (1) is given by

$(x,y) f f e [1 = erf(v=x; VI + a)|
2

1 2 W y
exp{——()q —X+1) } xp{—— dxdt
2\t 2Vns3

[ [ ersigeofrin=ren)

bl { }
X —— exp dxdt.
2 Vnt

In the next section, we will briefly mention a possible application of the previous
proposition in stochastic optimal control.

X
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3. AN OPTIMAL CONTROL APPLICATION

In Lefebvre and Whittle [4], the authors used the process defined by (3), (4) as
a rudimentary model for an airplane. The process X(¢) denoted the height of the
airplane, the value x = —d represented ground level and x = d was a height at which
the airplane was likely to be detected by a radar. The aim of the optimizer was to try
to make X(¢) remain in the interval (—d, d) for as long as possible.

A possible application of the model considered in this paper is the following: as-
sume that an airplane is moving from right to left, from X(0) = x > 0, as it approach-
ing the runway. The initial height of the airplane is Y(0) = y > 0. The optimizer
wants the plane to reach the ground, represented by the value y = 0, at time 7(x, y),
with X[7(x,y)] > 0. That is, the value x = 0 denotes here the end of the runway.

Consider the controlled two-dimensional diffusion process defined by the system
of stochastic differential equations

—dt + byuy(Hdt + V2dB, (),
byus(t)dt + V2 dBa(t),

dX (1)
dXz(l‘)

where the constants »; and b, are different from zero.
Assume that the cost function, whose expected value we want to minimize, is given
by

2

where g1, g» and 7y are positive constants. Thus, the pilot should try to land his/her
airplane as close as possible to the end of the runway, taking the quadratic control
costs into account. Notice that we give an infinite penalty if the landing does not take
place in finite time. In practice, we could replace /(x, y) by

r(xy) |
Jo(r,y) = fo L1que ) + gu®1dt + X[t )] - y1n 16, y),

1 ifr(x,y) < t,
0 otherwise,

I()(x,y) = {

where 1y € [0, o).
If the constant vy is such that
b?
2=vy—L fori=1,2,

qi
then we can use the theorem in Whittle [5] to express the optimal control u;, for
i = 1,2, in terms of the function ¢(x, y) given in Proposition 2.1. More precisely, the
optimal control would be given by
x Q‘pxi(x’)’) _ g¢xi(x’y)

u; =7y = ,
YoTgi (xy) b plxy)
with a replaced by 1/y in Proposition 2.1.
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4. CONCLUSION

Thanks to the Fourier transform of the mathematical expectation ¢(x, y) defined in
(1) that was computed in Zwillinger [6] and Davies [1], we were able to obtain an
explicit and exact expression for the function ¢(x,y). In Section 3, we presented a
possible application of the results to an optimization problem.

As we have already mentioned, the main difficulty in the computation of the func-
tion ¢(x,y) is the fact that it is discontinuous on the boundary y = 0. We saw that
the solution to such a problem, like the one found by Lachal [2], is generally quite
complicated. The expression that we have given in Proposition 2.1 is rather involved,
but it is still usable in an optimization context.

As a sequel, we could consider other first-passage problems for two-dimensional
diffusion processes for which there is a discontinuity on the boundary. The Wiener-
Hopf technique is well adapted to compute the Fourier transform of the function
we want to determine in such a case. Then, the problem of inverting this Fourier
transform will generally be very difficult. Therefore, we could again appeal to prob-
abilistic arguments to solve this type of problems.
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1. INTRODUCTION

In the last decades, nonlocal boundary value problems (including multi-point bound-
ary value problems) for ordinary differential or difference equations/systems have be-
come a rapidly growing area of research. Several phenomena in engineering, physics
and life sciences can be modelled in this way. These problems have been studied by
many authors by using different methods, such as fixed point theorems in cones, the
Leray-Schauder continuation theorem, nonlinear alternatives of Leray-Schauder and
coincidence degree theory.

In this paper, we consider the system of nonlinear higher-order ordinary differen-
tial equations

($)

U™ + Aa(®) fu(®),v(t)) =0, t€(0,T),
V(1) + pb(H)g(u(®), v(1)) = 0, t€(0,T),

with the multi-point boundary conditions

p-2
u(0) = Y au(&), w(©0)=---=u"2(©0)=0, uT)=0,

(BC) =
v0) = » b)), V(0)=--=v"2(0)=0, W(T)=0,

i=1

where n, m, p,g e Nyon,m 22, p,g=>23,0<¢§ <---<¢,,<Tand0 < <
+ <My <T. Inthe case n = 2 or m = 2 the above conditions are of the form

69
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p=2 q-2
w(0) = > au(&), u(T) =0, 0rv(0) = > b(py), W(T) = 0, respectively, that is
without lcénditions on the derivatives of u lanld v in the point 0.

We establish intervals for the eigenvalues A and u such that there exists no positive
solution for problem (S) — (BC). By a positive solution of (S) — (BC) we mean a pair
of functions (u,v) € C*([0,T]) x C™([0, T']) satisfying (S) and (BC) with u(t) > 0,
v(t) = O forall ¢+ € [0,T] and (u,v) # (0,0). The existence of positive solutions
for the above problem was investigated in [4] by using the Guo-Krasnosel’skii fixed
point theorem. Some particular cases of the problem from [4] have been studied in
[1], [5], [11]. We also mention the paper [13], where we investigated the existence
and nonexistence of positive solutions (u(¢) > 0, v(#) > 0 for all z € [0, 7)) of the
system (S) with 4 = u = 1 and f(u,v) = f(v), g(u,v) = g(u) and the boundary
conditions u(0) = 3 a,u(fl-) +ag, w(0)=-=u"20)=0, w(T)=0,v0)=
Z?:_IZ biv(,) + by, V(0) = --- = v"2(0) =0, w(T) =0, (ag, bo > 0), by using the
Schauder fixed point theorem. The system (S) with n = m = 2 subject to various
boundary conditions was studied in [2], [3], [6]-[9], [12].

In Section 2, we present some auxiliary results which investigate a boundary value
problem for a n-th order differential equation (problem (1)—(2) below), and in Section
3, we give our main results.

2. AUXILIARY RESULTS

In this section, we present some auxiliary results from [10] related to the following
n-th order differential equation with p-point boundary conditions
W™ (@) +y(1) =0, 1€(0,7), )

p—2
w0 = Y au&), W) == u"2(0) =0, u(T)=0. @)
i=1
We present these results for the interval [0, 7] of the f-variable. Their proofs are
similar to those from [10] where T = 1.

p-2
Lemma 2.1. Ifd = 7" - Za,-(T”_l —g N #£0,0<é < - <§,,<Tand

i=1
y € C([0, T]), then the solution of (1)-(2) is given by

_ -l -1 p=2 n—1
u(t) = f g S)l)' y(s)ds + Z f (6 - i), y(s)ds +
=1
p—2 n—1 17 2 n—1
T—s T -
( a]f ( i), y(s)ds +dZ ai€l 1f ( si), ¥(s) ds—
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Tn 1 p=2 _ -1
a,f & i)' y(s)ds.

Lemma 2.2. Under the assumptions of Lemma 2.1, the Green’s function for the
boundary value problem (1)-(2) is

n—1 _ m—1 p-2

T f
Gi(t,s) = gi(t,s) + — Q7 a;g1(&;, s),
i=1
where
(t.5) = L CNT =) =T -, 0S5 <1<,
LS = T T | N T =5, 0<t<s<T.

Using the above Green’s function the solution of problem (1)-(2) is expressed as

T
u(t)zf Gi(t, s)y(s) ds.
0

Lemma 2.3. The function g| has the properties
a) g1 is a continuous function on [0,T] X [0,T] and g,(t,s) = 0 for all (t,s) €
[0,T]1%[0,T];
D) g1(t,s) < g1(01(s), 5), for all (1, 5) € [0, T] X [0, T];
c) Forany c € (O, 2),
n—1

c
min gi(t,s) >

tele.T—c] Tl’l—lgl(gl(s)’ S), for all s € [0, T]’
;ﬂ, s €(0,T],
where 01(s) = sifn =2 and 0(s) = 1_(1_% =2 ifn>3
Tm2) o

n-1 >

In the case n > 3, we choose the values of 1 in s = 0 and s = T such that ; be a
continuous function on [0, T'].

Lemma 2.4. Assume that a; > 0 foralli=1,....,p =2, 0<§ <+ <&, <T
and d > 0. Then the Green’s function G| of problem (1)-(2) has the properties

a) Gy is a continuous function on [0,T] X [0,T] and G(t,s) > O for all (¢, s) €
[0,T]x[0,T];

b)Gi(t,s) < Jl(s)for all (t,s) € [0,T] X [0,T] and for any c € (0,T/2) we have

o2
min Gi(1, 5) > ;n_ljl(s) forall s € [0,T),

tele,T—c]

n—1 P=2

D aigi€ ), ¥sel0,T]

i=1

where Ji(s) = g1(01(s), s) +
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Lemma 2.5. Ifa; > Oforalli =1,...,p-2,0<§ < <§,, <T,d>0,
y € C([0,T]) and y(t) = O for all t € [0,T], then the solution of problem (1)-(2)
satisfies u(t) > 0 forall t € [0, T].

Lemma 2.6. Assume that a; > 0 foralli=1,...,p=2,0<§ <---<§, 5, <T,
d>0,yeC(0,T]), ce(0,T/2)and y(t) = O forall t € [0, T]. Then the solution of
n—1

max u(t).

problem (1)-(2) satisfies ZEE?iTrlC] u(t) > TnT et

We can also formulate similar results as Lemma 2.1 - Lemma 2.6 above for the
boundary value problem

V(6 + h(t) = 0, te(0,T), 3)
q-2
v(0) = > b, V(0) =+ =v"D(0) =0, WT)=0, 4)
i=1
where 0 < ’h c <My <T, bi>0foralli=1,...,g—2and h € C([0,T]). If
e=T1T"" I—Z b; T’" 1_ ) # 0, we denote by G, the Green’s function associated

to problem (3) (4) and defined in a similar manner as G;. We also denote by g», 6>
and J; the corresponding functions for (3)-(4) defined in a similar manner as g, 6;
and Jj, respectively.

3. MAIN RESULTS

We present the assumptions that we shall use in the sequel:
(H) O < ¢ < -+ <§p_2 <T,0<np <---< Ng—2 < T,a;>0,i=1,...,p—-2,
p-2 q-2
bi>0, i=1,....g=2,d=T"" —Za,-(T"—1 —& > 0,e=Tm! —Zbi(Tm‘l -
i=1 i=1
17;"_1) > 0.
(H2) The functions a, b € C([0,T], [0, o)) and there exist #;, t, € (0,T) such that
a(t)) > 0, b(rp) > 0.
(H3) The functions f, g € C([0, 00) X [0, 00), [0, 00)).
From assumption (H2), there exists ¢ € (0,7/2) such that ¢, t, € (¢, T — c). We
shall work in this section with this number c¢. This implies that

T—c T—c
f Ji(s)a(s)ds > 0, f Jo(s)b(s)ds > 0,

where J; and J; are defined in Section 2 (Lemma 2.4).
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We introduce the following extreme limits

. u,v ) . u,v
fo = limsup 1A ), gy = limsup 8 ),
u+v—07* I’E"' V) u+v—07* z’t + ‘))
P u,v P u,v
fo = liminf f—, 8o = liminf g ,
u+v—0t U+ v u+v—0t U +v
S — 1 f(u’ V) 5 — g(u’ V)
[ = limsup , 8o = limsup ,
u+v—oco Ut U+v—00 1( + \;
i .. u,v i .. u,v
fL = liminf it ), g, = liminf g .
ut+v—oo Y+ vy ut+v—oo Y+ vy

By using the Green’s functions G| and G, from Section 2 (Lemma 2.2), our prob-
lem (S) — (BC) can be written equivalently as the following nonlinear system of
integral equations

T
u(t) = Af G(t, s)a(s) f(u(s),v(s)ds, 0<t<T,
0
T
v(t) = ,uf Go(t, s)b(s)g(u(s), v(s)ds, 0 <t<T.
0

We consider the Banach space X = C([0, T]) with supremum norm || - ||, and the
Banach space Y = X x X with the norm ||(&, v)|ly = |lull + [[v]l. We define the cone
PcYby

P={(u,v)eY; ut) 20, v(t) >0, Yt€[0,T] and
inf  (u(?) +v(1) = Yll(w, vy},
tele,T—c]
where y = min{c" /7", "1 )T,

For A, u > 0, we introduce the operators Q1, Q> : ¥ — X and Q : Y — Y defined

by

T
O1(u,v)(t) = /lf G (t, s)a(s)f(u(s),v(s)ds, 0<t<T,
0
T
Oa(u, v)(r) = ,uf Ga(t, 9)b(s)g(u(s), v(s))ds, 0<t<T,
0

and Q(u,v) = (Q1(u,v), Q2(u,v)), (u,v) € Y. The solutions of our problem (S )—(BC)
are the fixed points of the operator Q. By using standard arguments, we can easily
show that, under assumptions (H1) — (H3), the operator Q is completely continuous.

Theorem 3.1. Assume that (H1)— (H3) hold. If [, 15, 8y &% < o, then there exist
positive constants Ay, [ such that for every A € (0, Ao) and p € (0, 1), the boundary
value problem (S) — (BC) has no positive solution.

Proof. Since f(')", f$ < oo, we deduce that there exist Mi, Mi’, ri, ri >0,r < ri
such that

fu,v) < M{(u +v), Yu,v=0, u+velo,rl,

fu,v) < M{u+v), Yu,v=0, u+ve|[r],oo).
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f(l/l, V)

r1£u+v§ri u-+v

We consider M; = max {M i, Mi’, } > (. Then, we obtain

fw,v)y <Mi(u+v), Yu,v=0.

Since g), g5 < oo, we deduce that there exist M}, MY, ry, 5 > 0, ry < 1} such

that
gu,v) < Mé(u +v), Yu,v>0, u+vel0,r],

glu,v) < Mé’(u +v), Yu,v>0, u+ve [ré, 00).

u,v
We consider M, = max {Mé,Mé’, max 8, v)

r<u+vsry, U +v

} > (. Then, we obtain

gu,v)y < Mr(u+v), Yu,v=0.

1 T
and yy = m, where B = f(; Ji(s)a(s)ds and D =

We define Ay =

T
Ja2(s)b(s) ds. We shall show that for every 4 € (0, Ag) and u € (0, ig), the problem

1
2M B

0
(S) — (BC) has no positive solution.
Let A € (0, Ap) and u € (0, iy). We suppose that (S) — (BC) has a positive solution
(u(t),v(1)), t € [0, T]. Then, we have

u(t) = gl(u, V(1) = /lfOT G, S)a(S)f(M(S)T, v(s))ds
< /lj; J1(8)a(s) f(u(s), v(s)) ds < ﬂleo Ji(s)a(s)(u(s) + v(s)) ds
< AM (J|ul| + IIVII)foT Ji(s)a(s)ds = AM Bl|(u, )|ly, Yt e[0,T].
Therefore, we conclude
llull < AM, Bll(u, V)lly < AoM1Bll(u, v)lly = %Il(u, V)l

In a similar manner, we have

T
WE) = Qo)D) = fo Ga(t, $)b(5)g(u(s). v(5)) ds
T T
<p fo Ja(s)b(5)gu(s), W(s)) ds <y fo Ja()b(s)u(s) + v(5)) ds
T
SMM2(||M||+||V||)f0 Jo(s)b(s)ds = uM>DI|(u,v)|ly, Yte[0,T].

Therefore, we conclude

1
VIl < uMDI|(u, v)lly < pogMaDl|(u, v)lly = Ell(u, Vly.
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Hence, [, )lly = llull + VIl < 3@ v)lly + 3@y = [, v)lly, which is a
contradiction. So, the boundary value problem (S) — (BC) has no positive solution. N

Theorem 3.2. Assume that (H1) — (H3) hold. _ _
a)lf fé, fL > 0, then there exists a positive constant Ao such that for every A > A
and p > 0, the boundary value problem (S) — (BC) has no positive solution.
b) If gé, gl > 0, then there exists a positive constant fiy such that for every u > 1,
and A > 0, the boundary value problem (S) — (BC) has no positive solution.

c)If fé, _éo gé, g., > 0, then there exist positive constants Ao and Mo such that for

every 1 > A and u > ﬁo, the boundary value problem (S) — (BC) has no positive
solution.

Proof. a) Since f!, fi, > 0, we deduce that there exist m’l, m’l’, r3, rg >0,r3 < ré

such that
fu,v) > m’l(u +v), Yu,v=>0, u+velo,rs],

f,v)y>=m{(u+v), Yu,v>0, u+ve/lr],o).

. . . (u,v)
We introduce m; = min m’l,m’l’, min S,
u+ve[r3,r§] u-+v

} > (0. Then we obtain

fu,v)yzm@m+v), Yu,v=0.

n—1

We define 70 =
v lm A

for every A > ’;i() and u > 0 the problem (') — (BC) has no positive solution.
Let A > Ap and u > 0. We suppose that (S )—(BC) has a positive solution (u(t), v(¢)),
t € [0, T]. Then, we obtain

T—c
> (0, where A = f Ji(s)a(s) ds. We shall show that
C

T
u(c) = Q1(u, v)(c) = ﬂfo Gi(c, s)a(s) f(u(s), v(s)) ds
T—-c T—-c
> /lf Gi(c, s)a(s) f(u(s),v(s))ds > /lmlf Gi(c, )a(s)(u(s) + v(s))ds

n—1 1

Aymc

—||(U, V
T ||( Ny

C
Am;c
>
- Tn—l

Therefore, we deduce

T—c
f Ji(s)a(s)y(llull + vl ds =

Aymic Agymic

T i vlly o
and so, [|(u, V)|ly = llull + [Vl = |lu|]| > ||(«, v)||ly, which is a contradiction. Therefore,
the boundary value problem (S) — (BC) has no positive solution.

b) Since go, gw > 0, we deduce that there exist mz, mz, r4, r4 >0,r4 < rz’1 such
that

[lull > u(c) > ||(u Wy = ll(u, vy,

gu,v) 2 mi(u+v), Yu,v=20, u+vel0,r],
gu,v) 2 my(w+v), Yu,v=0, u+ve[r],oo).
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gu,v)

n > (0. Then we obtain
u+velra,ry] U +V

We introduce m; = min {m’z, mé’,

gu,v)y >2my(u+v), Yu,v=0.

m—1 T—c

— T
We define yy = ———— > 0, where C = f Jo(s)b(s)ds. We shall show
,),Cm 1m2C

that for every p > 1o and A > 0 the problem (S') — (BC) has no positive solution.
Letu > iy and A > 0. We suppose that (S )—(BC) has a positive solution (u(t), v(t)),
t € [0, T]. Then, we obtain

T
WE) = a1, 1)(E) = fo Ga(c, $)b(5)gu(s), (5)) ds
T—c T—c
> f Gale, )b(s)g(u(s), v(s)) ds > pm f Gale, $)b(s)(u(s) + v(s)) ds

m Cm—l T—c
> 20 f Tyl + ) ds = ““—n(u Wy
Tm . Tm
Therefore, we deduce
yymac™'C
Ml = v(c) > ‘”Tz—n( Wy > OT—nm Wy = 16y,

and so, [|(u, V)|ly = llull + ||[v]| = IVl > ||(&, v)||y, which is a contradiction. Therefore,
the boundary value problem (S ) — (BC) has no positive solution.
¢) Because fé, oio, gf), gfx, > 0, we deduce as above, that there exist mj, mpy > 0
such that
fu,v)y zmi(m+v), guv)y=myu+v), Yu,v=0.

Tn-1 F/TO q — T7m-1 :UO
= — | an =

2 )= e T 2
A> }0 and y > ﬁo, the problem (S )—(BC) has no positive solution. Indeed, let 4 > Io
and u > 1. We suppose that (S) — (BC) has a positive solution (u(?), v(¢)), t € [0, T].
Then in a similar manner as above, we deduce

We define 1 = ) Then for every

2yc"lm A

n—1

Aymyc Hymaoc
[[eel| > Tll(u, Wy, VIl = T—H(M Wy,
and so,
Adymc pymyc™'C

G, Wly = [lull + (VI = —ll( Wy + ——F— Il vy

—_ T” Tm

Agymic"'A Hyymac
> —— 5w,y + O—ll(u vy

1 1
= 5l Wly + 311w vy = 11w, vy,
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which is a contradiction. Therefore, the boundary value problem (S) — (BC) has no
positive solution. i
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Abstract In this paper, we prove some fixed point theorems in compact metric and compact cone
metric spaces by using implicit relation. The presented theorems extend, generalize
and improve many existing results in the literature such as a theorem by D. Dori¢ et al.
[Dragan Dorié, Zoran Kadelburg and Stojan Radenovi¢, Edelstein - Suzuki-type fixed

point results in metric and abstract metric spaces, Nonlinear Anal. TMA 75 (2012) 1927
-1932]

Keywords: cone metric spaces, common fixed point, Edelstein’s theorem, Suzuki’s theorem.
2010 MSC: Primary 47H10, 54H25, 55M20.

1. INTRODUCTION

In 1962, M. Edelstein [6] proved another version of Banach contraction Principle.
He assumed a compact metric space (X,d) and a self-mapping 7 on X such that
d(Tx,Ty) < d(x,y) for all x,y € X with x # y, and he proved T has a unique fixed
point. In 2009, T. Suzuki [19] improved the results of Banach and Edelstein. Suzuki
replaced the condition“d(Tx, Ty) < d(x,y)” by “%d(x, Tx) <d(x,y) = d(Tx,Ty) <
d(x,y)” for all x,y € X. By this assumption, he established that 7" has a unique fixed
point. Recently D. Dori¢ et al. in [5] proved the following theorem and extended the
results of Edelstein and Suzuki:

Theorem 1.1. Let (X, d) be a compact metric space and let T : X — X. Assume that
1
Ed(x, Tx) <d(x,y) =
d(Tx,Ty) < Ad(x,y) + Bd(x,Tx) + Cd(y, Ty) + Dd(x,Ty) + Ed(y, T x)
holds for all x,y € X, where the nonnegative constants A, B, C, D, E satisfy
A+B+C+2D=1 and C# 1

Then T has a fixed point in X. If E < B+ C + D, then the fixed point of T is unique.

Also, they gave an example which does not satisfy Suzuki’s condition but it satis-
fies condition of Theorem 1.1.
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In 2007, Huang and Zhang [8] introduced cone metric spaces and defined some
properties of convergence of sequences and completeness in cone metric spaces.
They also proved a fixed point theorem of cone metric spaces. A number of authors
were attracted by these results of Huang and Zhang and were stimulated to investi-
gate the fixed point theorems in cone metric spaces. During the recent years, cone
metric spaces and properties of these spaces have been studied by a number of au-
thors. Also many mathematicians have extensively investigated fixed point theorems
in cone metric spaces (see [15], [18], [21]).

Furthermore, many authors considered implicit relation technique to investigation
of fixed point theorems in metric spaces (see [2], [11]-[13], [17], [20]).

In this paper, we introduce a new version of implicit relation technique by using
two functions. This helps us to extend our results on cone metric spaces.

This paper is organized as follows: In Section 2, we prove the generalization of
Theorem 1.1 in compact metric spaces by using implicit relation technique.

In Section 3, we generalize our results on compact cone metric spaces.

2. IMPLICIT RELATION

In this section, we introduce an implicit relation by using two functions. Also, we
prove a theorem in compact metric spaces. Our result extends Theorem 3 of [19] and
Theorem 3.1 of [6].

Let ¢ : [0, 00) —> [0, 00) and ¢ : [0, )’ —> [0, o) be two continuous functions
which satisfy the following conditions:

(M1) @(t1,t2,13,14,15) is increasing in variable #3;
(M2) ¥(u) < o(v,v,u+v,u,0) implies u < v;
(M3) y(u) < e(v,v,u +v,u,0) implies u < v where u > 0 and v > 0O;
(M4) Yy(u) < ¢(v,0,v,0,v) implies u < v, where u > 0 and v > 0.
Example 2.1. Let

(A) Y(r) = rand ¢(t1, 12,13, 14, 15) = 11;

(B) ¢(r) =2rand (11, 12,13, 14, 15) = 13;

(C) Y(r) =2r and p(t,t2,t3,t4,15) = 1] + 14,

(D) Y(r) =5rand (t|,tr,t3,t4,t5) =t +tr + 13 + 14 + 15,

(E) W(r) =2r and o(t1, tp, 13, 14, t5) = max{t|, tr, 13, t4, t5};

(F) (r) =2r* and (11, 1, 13, ta, 15) = 13 + 15.

It is easy to see that (M 1) — (M4) are satisfied for  and ¢ in (A), (B), (C), (D),
(E) and (F).
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(G) ¥(r) =rand ¢(t), 1,13, t4,t5) = aty + btr + ct3 + dty4 + ets, where a, b, c,d and
e are nonnegative numbers,a+b+2c+d=1,d# lande <b+c+d.
Clearly, (M1) holds. Now, let Yyum) — oV,v,u + v,u,0) =
(I1-c—d)u—(a+b+c)v < 0. By the assumption, we conclude 1-c—d = (a+b+c).
Sol—-c—d < 0impliesa=b=c = 0. Therefore, d = 1, which is a con-
tradiction. Hence, 1 —c —d > 0. Thus, u < v. So (M?2) is satisfied. A similar
argument shows that (M3) is satisfied. Moreover, if Yy(u) — ¢(v,0,v,0,v) =
u—(a+c+ey <0, thenu < (a+c+e. So, by the hypothesis we can write
u<(a+c+eyw<(a+b+2+d)y=v. Therefore, (M4) is satisfied.

(H) ¥(r) = rand ¢(t1, 0, 13,14, t5) = amin{ty, i} + bmin{tp, t3} + c min{tz, t4} + t5

where a, b and c are nonnegative numbers, a+b +c =1and c # 1.
Clearly (M1) holds. If y(u) — ¢(v,v,u +v,u,0) = (1 — c)u — (a + b)v < 0 then,
by using a + b + ¢ = 1, we conclude that u < v. This means (M2) is satisfied.
Similarly, we can show that (M3) is satisfied. Now, if y(u) — ¢(v,0,v,0,v) < 0
then u < v, since ¢(v,0,v,0,v) = v. Hence, (M4) is satisfied.

Theorem 2.1. Let (X, d) be a compact metric space and T be a self-mapping on X.

Suppose that ¢ : [0,00) — [0, 00) and ¢ : [0, 00)’ —> [0, o) are two continuous

mappings such that (M 1) — (M3) are satisfied. Assume that

%d(x, Tx)<dx,y) = (D)

Yd(Tx.Ty)) < ¢(d(x.). d(x, Tx). d(x, Ty). d(y. Ty), d(y. Tx)).

for all x,y € X. Then T has at least one fixed point. Moreover, if Y and ¢ satisfy
(M4), then T has a unique fixed point.

Proof. Let @ = inf{d(x,Tx) : x € X}. There exists a sequence {x,} in X such that
lim,, e d(x,, Tx,) = @. By compactness of X, there exist wy,w, € X such that
lim,, ;00 X, = wy and lim,_,o, Tx,, = wy. Hence

lim d(x,,w;) = lim d(x,, Tx,) = d(wi,wy) = a.
n—oo n—oo

Now, we show that @ must be equal to 0.
If @ > 0, then there exists N € N such that for all n > N, %a/ < d(x,,w>) and

d(xn, Tx,) < %a. Therefore, for all n > N, $d(x,, Tx,) < $a < d(x,, w>). Now, by
(1), we have

Y(d(T %, Tw2)) < @(d(xn, W2), A, Txn), d(tn, Twa), d(wa, Twa), d(w2, Txy)). (2)
By taking the limit as n — oo in (2), we get

Ydows, Tw2)) < g, @,dwi, Tws), d(wz, Tw2),0)

IA

IA

(. @, dwy, w2) + d(wa, Twn), d(w, Tw),0)

go(a/, a,a + dwy, Twy), dwy, Twy), 0),
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so by (M2), we have d(wy,Twy) < a. Therefore, d(w,, Tw;) = a@ > 0. Hence,
2d(w, Twy) < d(wa, Tws). Now by (1), we can obtain

Y(d(Two, T*wr)) < sﬂ(d(wz, Twa), d(wa, Tw), d(wa, T*w2),d(Twa, T*w»), 0)
< @(d(w, Twy), d(wa, Twy), d(Twa, T*w)) + d(wa, Twa), d(Twa, T*w2), 0).

By (M3), we get d(Twy, T2wy) < d(wy, Twa) = a, which is a contradiction of the
definition of . So @ = 0, that is, wi = w».

Now, we must show that 7" has at least one fixed point. Assume towards a contra-
diction that T does not have a fixed point. Hence 0 < %d(xn, Tx,) < d(x,, Txy,). Then
by (1), we have

Y(d(T xy, szn)) < w(d(xn, Txp), d(xn, Txy), d(xy, szn)e d(T xy, szn), d(T xy, Txn))'
By taking the limit as n — oo in above inequality, we get
Y(lim d(wy, T%x,)) < (0,0, lim d(wy, T?x,), lim d(wy, T%x,),0).
n—oo n—oo n—oo

It follows from (M2) that lim,_,c d(wi, T?x,) < 0, so lim,_. T2x, = w;. Further-
more, by using (1) and (M1), we obtain

Y(d(T X, T?5,)) < @(dCon, T, A, T, (i, T250), d(T X, T23), d(T %, T )
< @(dCen, Tx0), d(X, T, d(T 0, T2 ) + Ay, T), d(T 3, T7x,), 0).

Then by (M3) we have, d(T x,,, T>x,,) < d(x,, Txy,).
Now, suppose that both of the following inequalities hold for some n € N,

1 1
Ed(xn, Tx,) 2 d(x,, w1) and Ed(Txm T2x,) > d(Tx,, 1),

so, we have

d(xp, Txy)

IA

d(xna Wl) + d(Wl, Txn)
1 1
< Ed(x,,, Tx,) + Ed(Txn, T%x,)

1 1
< Ed(xn, Tx,) + Ed(xn’ Txy) = d(xn, T xp),
which is a contradiction. Thus, for each n € N, either

1
Ed(xn, Txn) < d(xna W]),

or
1
ATy, T%x,) < d(Tx,, 1),
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holds. So by hypotheses, we conclude that one of the following inequalities holds for
all n in an infinite subset of N:

(T xp, Tw1)) < 9(d (i, w1), dCtn, T, d(x, Tw1), d (w1, Twr), d(wy, Tx)),
or
Y(d(T 0, Tw1)) < @(d(T X, w1), d(T 0, T2, d(T %, Tw1), d(wy, Twy), d(wy, T2x,))-
If we take the limit as n — oo in each of these inequalities, then we have
Y(dw, Twy)) < ¢(0,0,d(wi, Twy), d(wy, Twy),0).

So (M?2) implies that d(w1, Twy) < 0, i.e., w; = Twy. Hence, we conclude that wy is
a fixed point of 7.

To prove the uniqueness of wy, suppose that wq is another fixed point of T such
that wy # wo. Hence, 0 = 1d(w1, Twy) < d(wi, wo). By (1), we have

Y(d(Twy, Twy)) < SO(d(Wh wo), d(wi, Twy), d(wi, Two), d(wo, Two), d(wo, TWI))-

So
Y(d(w1, wo)) < ¢(d(wi,wo),0,d (w1, wo), 0, d(wo, w1)).

Considering (M4), we have d(w, wg) < d(wy, wg), which is a contradiction. There-
fore w; = wg. Then wy is the unique fixed point of 7'. i

Theorem 2.2. Let (X,d) be a metric space and let F and T be two self-mappings
on X such that TX C FX and FX is compact. Suppose that  : [0, 00) — [0, c0)
and ¢ : [0, 00)> — [0, 00) are two continuous mappings such that (M1) — (M3) are
satisfied. Assume that

ld(Fx, Tx)<d(Fx, Fy) =
2 3)
Y(d(Tx,Ty)) < ¢(d(Fx, Fy),d(Fx,Tx),d(Fx,Ty),d(Fy,Ty),d(Fy,Tx)),

forall x,y € X. Then F and T have at least one point of coincidence. Moreover, if
and ¢ satisfy (M4) and F and T are weakly compatible, then F and T have a unique
common fixed point.

Proof. Define G : FX — FX by G(F(w)) = Tw. Replacing Tx and Ty by G(Fx)
and G(FYy), respectively, in (3), we have

%d(Fx, G(Fx)) < d(Fx, Fy) =

Y(d(G(Fx),G(Fy))) <
@(d(Fx, Fy),d(Fx,G(Fx)),d(Fx,G(Fy)),d(Fy,G(Fy)),d(Fy, G(Fx))),
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for all Fx, Fy € FX. Since FX is compact, by Theorem 2.1, G has a fixed point, i.e.,
there exists z € X such that Fz = G(Fz) = Tz := u. Moreover, if ¢ and ¢ satisfy
(M4) then G has a unique fixed point. So we conclude that z is a unique point of
coincidence of F and T. Furthermore, if F' and T are weakly compatible mappings,
we get FTz = TFz, so Fu = Tu. Therefore z = u and Fz = Tz = z. This yields z as
the unique common fixed point of F and 7. i

Corollary 2.1. Let (X, d) be a metric space and let F and T be two self-mappings on
X such that TX C FX and FX is compact. Assume that

1
Ed(Fx, Tx) <d(Fx, Fy) =
d(Tx,Ty) < Ad(Fx, Fy)+ Bd(Fx,Tx) + Cd(Fx,Ty) + Dd(Fy,Ty) + Ed(Fy, Tx)

forall x,y € X, where A,B,C,D,E >0,A+ B+2C+D =1and D # 1. Then F and
T have at least one point of coincidence. Moreover, if E < B+ C + D and F and T
are weakly compatible, then F and T have a unique common fixed point.

Proof. The proof follows from Theorem 2.2 and part (G) of example 2.1. I

Corollary 2.2. Let (X, d) be a metric space and let F and T be two weakly compatible
self-mappings on X such that TX C FX and FX is compact. Assume that

1
Ed(Fx, Tx)<d(Fx,Fy) = d(Tx,Ty) < d(Fx, Fy),

forall x,y € X with x # y. Then F and T have a unique common fixed point.

Proof. The proof follows from Theorem 2.2 and part (A) of example 2.1. I

Corollary 2.3. Let (X, d) be a metric space and let F and T be two weakly compatible
self-mappings on X such that TX C FX and FX is compact. Assume that

1

Ed(Fx, Tx)<d(Fx,Fy) = d(Tx,Ty) < amin{d(Fx, Fy),d(Fx,Tx))}

+ bmin{d(Fx, Tx),d(Fx,Ty)}
+ cmin{d(Fx, Ty), d(Fy, Ty)} + d(Fy, Tx),

forall x,y € X wherea+b+c=1,c # 1. Then F and T have a unique common
fixed point.

Proof. The proof follows from Theorem 2.2 and part (H) of example 2.1. 1

Remark 2.1. We can obtain some new results by using Theorem 2.2 and other exam-
ples of Y and ¢.
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3. CONE METRIC SPACES

In this section, we generalize our results on compact cone metric spaces.

Definition 3.1. [8] Let E be a real Banach space with norm ||.|| and P be a subset of
E. P is called a cone if and only if the following conditions are satisfied:

(i) P is closed, nonempty and P # {6};
(ii) a,b > 0 and x € P implies ax + by € P;
(iii) x € P and —x € P implies x = 6.

Let P C E be a cone, we define a partial ordering < on E with respect to P by x <y
if and only if y — x € P. We write x < y whenever x <y and x # y, while x < y will
stand for y — x € intP (interior of P). The cone P C E is called normal if there is a
positive real number K such that for all x,y € E, 0 < x <y = ||x]| < K||y|l. The
least positive number satisfying the last inequality is called the normal constant of P.
If K = 1, then the cone P is called monotone.

Definition 3.2. [8] A cone metric space is an ordered pair (X, d), where X is any set
andd : X X X — E is a mapping satisfying:

(D1) 0 <d(x,y) forall x,y € X; and d(x,y) = 0 if and only if x = y;
(D2) d(x,y) =d(y,x)forall x,y € X;
(D3) d(x,y) <d(x,7) +d(z,y) forall x,y,z € X.

Let (X, d) be a cone metric space, P be a normal cone in X with normal constant
K, x € X and {x,} a sequence in X. The sequence {x,} converges to x if and only if
d(x,, x) — 6. Limit point of every sequence is unique.

It is well known that there exists a norm ||.||; on E, equivalent with the given [|.||,
such that the cone P is monotone w.r.t. ||.||;(see [1], [10], [16], [22]). By using this
fact, from now on, we assume that the cone P is solid and monotone. In this case, we
can define a metric on X by D(x,y) = ||ld(x,y)||. Furthermore, it is proved that D and
d give the same topology on X (see [14]).

We will use the following lemma in the proof of the next results.

Lemma 3.1. [7] Let (X,d) be a cone metric space. Then
0=<x<y=[xll <yl

Proof. According to ([22], Proposition (2.2), page 20) [-(y — x),y — x] is the neigh-
borhood of 6. Hence, for a sufficiently large n, we have %y € [-(y —x),y — x], ie.,

Y <y — x. From this, it follows that x < (1 — 1)y, thatis [lxl| < (1= 1)llyll < IIyll. m
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Lemma 3.2. Let yy, : [0,00) — P and ¢, : [0, )’ — P be two mappings
satisfying the following conditions:
(P1) u < vimplies gop(., V) — gop(., LU,.,.)EP;
(P2) wp(u) - gop(v, v,u+v,u,0) ¢ intP implies u < v;
(P3) ¢,(w) —¢,(v,v,u+v,u,0) ¢ P implies u < v, where u > 0 and v > 0;
(P4) ¥, () — @, (u, 0,v,0,v) ¢ Pimplies u < v, where u > 0 and v > 0.
Define y : [0, 00) —> [0, c0) and ¢ : [0, c0)> — [0, ) by
Y(r) =1y, and (i1, 12,13, 14, 15) = |l (11, 12, 13, 14, 15)].-
Then Y and ¢ satisfy (M1) — (M4).

Proof. First, notice that [, ()| < lg,(v,v,u + v,u,0)]| implies
lpp(u) - <pp(v, v,u+v,u,0) ¢ intP. Indeed, if tpp(u) - gop(v, v,u+v,u,0) € intP, then
(v, v u+v,u, 0) < ¥, (). Therefore, by Lemma 3.1, we get ||<pp(v, v,u+v,u,0) <
Ipr(u)II, which is a contradiction. So, we conclude from (P2) that u < v. Now, sup-
pose that ||¢//p(u)|| < ||g0p(v, v,u + v, u,0)|, then wp(u) —@,(v,v,u+v,u, 0) ¢ P. (Ar-
guing by contradiction, if 1//p(u) - <pp(v, v,u+v,u,0) € P, then ||g0p(v, v,u+v,u,0)] <
||¢/p(u)||.) Hence, (P3) implies # < v. By a similar method, it can be shown that
(@)l < |le(u, 0,v,0,v)|| implies u < v. |

Example 3.1. Suppose that p € P. Let
(A) Y ,(r) =rpand ¢,(t1, 12,13, 14,15) = 11 p;
(B) ¢, (r) =2rp and ¢,(t1, 12,13, 14, 15) = 13p;
(C) ¥ p,(r) =2rp and ¢, (11, 12, 13,14, 15) = (11 + 14)p;
(D) ¢, (r) = 5rp and @,(t1,12, 13,14, 15) = (11 + 12 + 13 + 14 + I5)p;
(E) ¢p(r) =2rp and ¢, (11, 12,13, 14, 15) = pmax{ty, 12, 13, 14, I5};

(F) ¢,(r) = 2r7p and ¢, (t1, 13, 13, 14, 15) = (] + 13)p.
It is easy to show that (P1) — (P4) are satisfied for ¥, and ¥, in (A), (B), (O),
(D), (E) and (F).

(G) t//p(r) = rp and cpp(tl, 1, 13,14, t5) = (at| + bty + ct3 + dty + ets)p, where a, b, c, d
and e are nonnegative numbers, a +b +2c+d =1andd # 1. So, (P1) — (P3)
are satisfied. Moreover, if e < b + ¢ + d then (Py) is satisfied.

(H) ¥,(r) =rpand ¢,(t1,12,13,14,15) = (amin{zy, £} + b min{zy, 13} + ¢ min{z3, 14} +
ts)p, where a, b and c are nonnegative numbers, a+b+c =1and c # 1. Then
(P1) — (P4) are satisfied.
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Theorem 3.1. Let (X,d) be a compact cone metric space and T be a self-mapping
on X. Suppose that s, : [0,00) — P and ¢, : [0, 00)’ — P are two continuous
mappings such that (P1) — (P3) are satisfied. Assume that

1
Ed(x, Tx)—d(x,y) ¢ intP =

U, (D(Tx,Ty)) < ¢,(D(x,y), D(x, Tx), D(x, T), D(y, Ty), Dy, Tx)),

“4)

for all x,y € X where D(x,y) = ||d(x,y)|l. Then T has at least one fixed point.
Moreover, if ,, and ¢, satisfy (P4), then T has a unique fixed point.

Proof. Let 1D(x.Tx) < D(x,y). So 3d(x, Tx) — d(x,y) ¢ intP. Therefore, by (4), we
have

Y,(D(Tx,Ty)) < tpp(D(x, ¥), D(x, Tx), D(x,Ty), D(y, Ty), D(y, Tx)).

Thus, by Lemma 3.2, we get

¥ = 0, (DT x, T < llp,(D(x, ), D(x, Tx), D(x, Ty), D(y, Ty), Dy, TX)l| := .

It is easy to see that ¥ and ¢ are continuous. Also, it follows from Lemma 3.2 that
Y and ¢ satisfy (M1) — (M3). Hence, the conditions of Theorem 2.1 are satisfied.
Therefore, T has at least one fixed point. Furthermore, ¥ and ¢ satisfy (M4). Then T
has a unique fixed point. I

Theorem 3.2. Let (X, d) be a cone metric space and let F and T be two self-mappings
on X such that TX € FX and FX is compact. Suppose that y,, : [0,00) — P and

e, = [0, 00)> —s P are two continuous mappings satisfying (P1) — (P3). Assume that
1
Ed(Fx, Tx)—-d(Fx, Fy) ¢ intP =
U ,(D(Tx,T)) < ,(D(Fx, Fy), D(Fx, Tx), D(Fx, ), D(Fy, T), D(Fy, ).

for all x,y € X where D(x,y) = ||d(x,y)|. Then F and T have at least one point of
coincidence. Moreover, if  and ¢ satisfy (P4) and F and T are weakly compatible,
then F and T have a unique common fixed point.

Now, we obtain the following new results by using Theorem 3.2 and parts (A), (G)
and (H) of example 3.1.

Corollary 3.1. Let (X,d) be a cone metric space and let F and T be two weakly
compatible self-mappings on X such that TX C FX and FX is compact. Assume that

1
Ed(Fx, Tx)—-d(Fx, Fy) ¢ intP = (D(Fx, Fy) — D(Tx, Ty))intP C intP,
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for all x,y € X with x # y, where D(x,y) = ||d(x,y)|l. Then F and T have a unique
common fixed point.

Corollary 3.2. Let (X,d) be a cone metric space and let F and T be two self-
mappings on X such that TX C FX and FX is compact. Assume that

1
Ed(Fx, Tx)—d(Fx, Fy) ¢ intP = M(x,y)intP C intP,

forall x,y € X, where

M(x,y) = aD(Fx, Fy)+ bD(Fx,Tx) + cD(Fx,Ty) + dD(Fy,Ty) + eD(Fy, Tx)
- D(Tx,Ty),

and a,b,c,d,e >0, a+b+2c+d=1andd # 1. Then F and T have at least one
point of coincidence. Moreover, ife < b+ c+d and F and T are weakly compatible,
then F and T have a unique common fixed point.

Corollary 3.3. Let (X,d) be a cone metric space and let F and T be two weakly
compatible self-mappings on X such that TX C FX and FX is compact. Assume that

1
Ed(Fx, Tx)—d(Fx,Fy) ¢ intP = N(x,y)intP C intP,

forall x,y € X, where

N(x,y) = amin{D(Fx, F'y), D(Fx, Tx)} + bmin{D(Fx, Tx), D(Fx, Ty)}
+ cmin{D(Fx, Ty), D(Fy,Ty)} + D(Fy,Tx) — D(Tx, Ty),

anda,b,c>0,a+b+c=1andc # 1. Then F and T have a unique common fixed
point.

Remark 3.1. We can obtain some new results by using Theorem 3.2 and other exam-
ples of Yy, and ¢,,.
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Abstract

A scheme of fractional steps type, associated to the nonlinear phase-field transition sys-
tem in one dimension, is considered in this paper. To approximate the solution of the
linear parabolic system introduced by such approximating scheme, we consider three
finite differences schemes: 1-IMBDF (first-order IMplicit Backward Differentiation
Formula), 2-IMBDF (second-order IMBDF) and 2-SBDF (second-order Semi-implicit
BDF). A study of stability and the numerical efficiency analysis of this new approach,
as well as physical experiments, are performed too.

Keywords: fractional steps method, stability and convergence of numerical methods, computer aspects

of numerical algorithms, phase-field transition system, phase changes.
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1.

INTRODUCTION

Consider the nonlinear parabolic boundary value problem

J {0
chu+§Egp:kAu in Q'= [0 T]XQ (1 1)
{ 120 =EAp+ 5 (0 — @) + 2u ’ ’

subject to the non-homogeneous Cauchy-Neumann boundary conditions:

and initial conditions:

where:

P _
{ gyt = w(t, ) on X := [0,T] x 9Q, (1.2)
we=0
u(0,x) = up(x), (0, x) = @y(x) on Q, (1.3)

= Q) is a bounded domain in R with smooth boudary 9€,

m 7 > (is a given positive number,
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= the unknown functions u and ¢ represent the reduced temperature distribution
and the phase function (used to distinguish between the phases of (), respec-
tively,

" up, ¢, : Q — R are given functions,

m w:[0,7] x 9Q — R also is a given function - the temperature surrounding at
0Q,

m the positive parameters p, ¢, 7, &, ¢, k, h, a, have the following physical mean-
ing: p - is the density, c - is the heat capacity, 7 - is the relaxation time, & - is
the length scale of the interface, ¢ - denotes the latent heat, k - the heat conduc-
tivity, i - the heat transfer coeficient and a is an probabilistic measure on the
individual atoms (a depends on &).

The mathematical model (1.1), introduced by Caginalp [3], has been
established in literature as an alternative of the classic two-phase Stefan problem to
capture, among others, the effects of surface tension, supercooling, and superheating.

As regards the existence, it is known that under appropiate conditions on ug, ¢,
and w, the system (1.1)-(1.3) has a unique solution u, ¢ € WZ’I(Q) NL>2Q), p > %
(see Morosanu [6]).

Numerical approximation of the phase-field system (1.1) subject to the homoge-
neous Neumann boundary conditions: a%” + hu = 0 on X, has been analyzed in
Morosanu [5]. For other numerical investigation of the phase-field model (subject to
various other boundary conditions), see Arnautu & Morosanu [1], Morosanu [4, 6]
and references there in.

In order to approximate the above nonlinear problem, a scheme of fractional steps
type was introduced and analyzed in Benincasa & Morosanu [2], namely, for every
e > 0, it was associated to system (1.1)-(1.3) the following approximating scheme:

d & {0, ¢ s
pPCHU + 579 = kAu ) .
{ THY" = EAE + 500" + 2 in 07, (1.4)
Jd & P
Fou° + hu® = w(t, x) .
6 = on zl” (15)
{ 597 =0
u®(0, x) = up(x)
{ @5 (ig, x) = z(e, ¢°(ig, X)) on Q2 (1.6)

where z(g, ¢° (ig, x)) is the solution of Cauchy problem:

{ Z(5)+ 222(5)=0 s€(0,8), (1.7
20) = ¢ (i, x)  ¢2(0,%) = @p(x), '



On the numerical approximation of the phase-field system ... 93

fori=0,1,---, M1, with Q% = (ie, i+ 1)&) X Q, I¢ = (iz, (i+ 1)e)xdQ, M, = [ L],
Q% 1 = (Mg = 1)e, T] x Q and ¢ (ie, x) = lilrn ©°(t, x), ¢° (ig, x) = liTm ©°(t, x).
e tlie tTie

In other words, the fractional steps method consists in decoupling the nonlinear
system (1.1)-(1.3) in a linear parabolic system and a nonlinear ordinary differential
equation containing the nonlinearity ¢ of (1.1),, expressed on a partition of the time
interval [0, 7] which is composed from M, subintervals, the first M. —1 having the
same length &.

The following result establishes the relationship between the solution (u,¢) in
(1.1)-(1.3) and the solution (4%, ¢®) in (1.4)-(1.7).

Theorem 1.1. Assume that ug, ¢, € Wgo(Q) satisfying %uo +hug = w(0, x), 6%900 =
0 and w € WY([0,T], L*(Q)). Furthermore, Q c R" (n = 1,2,3) is a bounded
domain with a smooth boundary. Let (u®,¢®) be the solution of the approximating
scheme (1.4)-(1.7). Then, for € — 0, one has

@), %)) = (u(®), o(t)) strongly in LY (Q) foranyt e (0,T], (1.8)

where u, p € Wg’l([O, T1; L*(Q)) N L*([0, T1; H*(Q)) is the solution of the nonlinear
system (1.1)-(1.3).

Based on the result of convergence given by Theorem 1, we will concerned in this
work with the numerical approximatin of the solution (#°, ¢®) of the linear system
(1.4)-(1.7).

The rest of paper is organized as follows: in Section 2, for each type of scheme: /-
IMBDEF, 2-IMBDEF, 2-SBDF, we have introduced the discrete equations corresponding
to (1.4)-(1.7); consequently, conceptual algorithms have been formulated: Alg_1-
IMBDF, Alg 2-IMBDF, Alg_2-SBDF, respectively. A stability result for each new
approach is stated and proved too. Some physical experiments are reported in the last
Section.

2. NUMERICAL METHODS

In this Section we are concerned with the numerical approximation of the solution
(u?, ¢®%) in (1.4)-(1.7). As already stated, we will work in one dimension, i.e. Au® =
u%, and Ap® = ¢% . To fix the ideas, let Q = [0, b] C R, and we introduce over it the
grid with N equidistant nodes

xj=(j-Ddx j=1,2,...,N, dx=b/(N-1).

Given a positive value 7 and considering M = M, as the number of equidistant
nodes in which is divided the time interval [0, T], we set

ti=@G-e i=12,....M, e=T/(M-1).
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Now we denote by (ui., goi.) the approximate values in the point (#;, x;) of the un-
known functions (1%, ¢®). More precisely
u. = u®(t;, xj)

/ i=1,2,....M, j=1,2,...,N,
¢ = ¢°(ti, x)) /

~

or, for later use

; not T

u = (u’l,u’z,...,uj\,) ¢ not (goi,cp’z,...,(pjv) i=1,2,...,M. 2.1
We continue by explaining how we treat each term in (1.4)-(1.7). The Laplace oper-

ator in (1.4) will be approximated by a second order centred finite differences, which
means:

ul_ | =2ul+u,
J J i+l
,oae i=1,2,..M, j=1,2,.,N, (2.2)
P - Al P12+
‘pxx(tb xj) - dX(pJ ~ dx?

X

e (ti, X)) = At

e

(Agy is the discrete Laplacian depending on the step-size dx).
From the initial condition (1.6);, we have

L= uf(t,x)) = up(x;) j=1,2,...,N. (2.3)

Uj

Involving the separation of variables method to solve the Cauchy problem (1.7) (see
Morosanu [4]), we get

A&, 2 (11, X)) = 2(&, 9o (0)) = Po(X) | gy 04
e, 2 (1, 0N =92 (11, 0) gty 1= 2 M= L. '

Corresponding to €, already choosen in one dimension, the boundary 9Q is re-
duced to the set {0, b}. Thus the boundary conditions (1.5); become

{ —u,(0) + h u(0) = w(t, 0)

Mx(b) +h I/l(b) = W(l, b)’ (25)

0
where the sign in front of —u = u, is ¥ because the normal to [0, b] at O (b) point in

%
the negative (positive) direction.
Using in (2.5) a farward (backward) finite differences to approximate u,(0) (ux(b)),

we get 4 '
Uy — i
———— +huy = w(0)
; dx, i=12,....M,

ul, —u . .
N N-1 de_l +huy =w'(b)
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ie.
(1+dx h)u’i - u’2 = dx w'(0) .
{ —ul_ + (L +dx hyuiy = dxwih) ' L2....M, 26)
where wi(0) = w(t;,0), wi(b) = w(t;,b),i = 1,2, ..., M.
To approximate ¢ (0) (¢,(b)) we will use a backward (forward) finite differences;
this leads to
Go=¢ Pha=ey i=12...M, @.7)
where ¢f, and ¢/, | are dummy variables.
For approximating the partial derivative with respect to time, we employed a first-
order scheme and a second-order scheme, namely:

i—1 i i—1

P ui.—u P @'
Gut, xp) ~ ==, ¢t x)) ~ =+ (2.8)
i=23,....M, j=1,2,...,N,and
3ul — 4yt~ yyi=2 3tpi.—4goi.’l+<,pi.’2
O 8t x)m d 0 0 e N TS ) 2.
oY (i, xj) ~ 28 ¥ (i, xj) ~ e (2.9)

i=23,....M, j=12,...,N.

Finally we refer to the right hand in (1.4): igpa (t;, x;) +2u®(t;, xj). To approximate
this quantity (the reaction term), will involve two approaches: an implicit and a semi-
implicit formula, i.e.:

ngg(ti, xj) + 2uf(tj, xj) = Z(plj + 2u’j, (2.10)

i=12,....M,j=1,2,...,N, and

1 i i1 1 i i~2
Zgos(t,-,xj) + 2uf(t;, xj) ~ 2 [%cpj +2u; } - [%% +2u 7|, (2.11)
i=2,3,...M,j=1,2,...,N (see Ruuth [7, pp. 156]).

We are now ready to build those three approximation schemes, mentioned at the
begining.

A. 1-IMBDF - First-order Implicit Backward Difference Formula. To develop
such a scheme, we begin by replacing in (1.4) approximations stated in (2.2), (2.8)
and (2.10). We deduce:

Wiy ’ ol i1 )
pc T+ =L = kA,
w’»—;-_l i o L i iy @12)
i Y _ i 1 i
T = =& Aap + g+ 2u,

fori=2,3,...,.M,j=1,2,...,N.
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Using in (2.12) the equalities from (2.2) and arranging convenient, we conclude
that, via 1-IMBDF, the system (1.4) is discretized as follows
—kﬁy?_l + [pc‘+ Zkﬁ] u’l - kﬁuiﬂ +'§<p§. = pcu.j._l + %(p}‘l 2.13)
2eul -+ 4280 5 - £ - e, =T
fori=2,3,...,.M,j=1,2,...,N.

/ ) , the linear system (2.13) will be
J 7i=2.M, j=1.N
solved ascending with respect to time levels. For the first time level (i = 1), the
values of u;. and ¢! are computed by (2.3) and (2.4), respectively. Moreover, let us
point out from (2.13) and (2.6)-(2.7) that we have 2N unknowns for each time-level
i,i=2,3,...,M (see also (2.1)). 4 _ . '
If, corresponding to j = 1 and j = N, in (2.13); we take u, = u| and u},,, = u),
respectively, and if we set

u',
In order to compute the matrix ( ]

¢
c1:—kg% ¢y = pc —2c =73
e

s ==& c6=T7-2c5- 5,

than the system (2.13), coupled with (2.6)-(2.7), can be rewritten in matrix form as

i i-1 i
A(Z,-):B(Zi_l )+(Z} ) i=2,3,.,M, (2.14)
2
where
Ay Ap Az App
A= B=
( —2Ay Axp ) ( 0 A )
with Ay, A1z, A1z, A21, A2y, Apz having the same size N X N, and
a c—-1 0 --- 0 0 0
c1 co ci - 0 0 0
Ay = . : . . .
0 0 0 C 2 cl
0 0 0 0 -1 a
ai=ci+c+1+dx-h,
cs+cg ¢35 O 0 O 0
Cs5 cC6 C5 --- 0 0 0

(e}
(e}

“ e CS C6 CS
0 0O 0 -+ 0 ¢5 cs5+cg
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¢z 0 --- 0 O d 0 --- 0 0
0 ¢z -+ 0 O 0 dt --- 0 0
Ap= 1 & 0 1] A= P b
0 0 -+ ¢ O 0 0 dt 0
0 0 -+ 0 c3 0 0 0 dt
pc 0 0 O T 0 0 0
0 pc 0 O 0 7 0 0
A=+ .0 Az = :
0 0 -+ pc O 00 -~ 70
0 O 0 pc 00 -~ 01
dx - w'(0)
0 0
dy = dy =
0 0
dx - w'(b)

Therefore, the general design of the algorithm to calculate the approximate solu-
tion of nonlinear system (1.1)-(1.3), via fractional steps method and 1-IMBDF, is the
following one

Begin Alg_1-IMBDF
Choose T >0, b>0;
Choose M >0, N >0 and compute &, dx;
Choose ugp, ¢y, w;
i:=1—>u' from the initial conditions (2.3);
For i=2 to M do
Compute ¢! =z(e,¢®(ti_1,-)) using (1.6), and (2.4);
Compute u',¢' solving the linear system (2.14);
End-for;
End.

B. 2-IMBDF - Second-order Implicit Backward Difference Formula. To solve
the system (1.4) we consider now a second-order implicit scheme, i.e.:

3ul —dui= 12 ¢ 3¢ —dgi~l 142 )
i J 7YY i i
pe = o +3 e = kAdxuj
3¢t -4 ' . . ,
i i £ i 1 i i
T 55 =& Adxgoj + 2.+ 2uj,

(2.15)

fori=2,3....M,j=1,2,...,N, and ud, 900 considered as dummy variables.
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Following the same schedule as above, we conclude that, via 2-IMBDF, the system
(1.4) is discretized as follows:
2C1M;_1 + (3pc + 4kﬁ) ui. + 201u§+1 + 3C3(,0§.
=pc (47" — u?) + 3 (47! — 0172,
p P ( i] J ) 3(20] ; SDJ ) (216)
—4g u'; + 2C5(pj_1 + (3’r —4c5 — 5)golj »
¥2es¢l, =7 (4! 02),
fori=2,3,...,.M,j=1,2,...,N.

Remembering the same considerations (developed at begining of Section) with
respect to: initial conditions - relations (2.3)-(2.4), boundary conditions - relations
(2.6)-(2.7), unknown vector for each time-level i - which was denoted by u' and ¢/,
and setting

Cc7 :?)pC‘|'4-ki cg :3T—4CS— f’
dx? a

the system (2.16) can be written as a matrix equation,

U i1 ui-2 di
. = . —_— . ] 1 =
() 1) o) () ie2nm e
where
Enn 3Ap
E =
( —4A  Ex )
with E11, E having the same size N X N, and
ey, 2c1-1 0 -+ 0 0 0
2¢q c7 2c¢; -+ 0 0 0
Ey = . ) : . .
0 0 0 2¢y c7 2cy
0 0 0 0 2 -1 e

e1=2ci+c7+1+dx-h,

2c5 +cg  2cs 0 s 0 0 0
2c5 cg 2c5 --- 0 0 0
Ep=| © 1o
0 0 0 ce 2C5 Cg 26‘5
0 0 0 s 0 2c5 2c5 + cg

Summing up, we can conclude that the general design of the algorithm to calculate
the approximate solution of nonlinear system (1.1)-(1.3), via fractional steps method
and 2-IMBDF, is the following one
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Begin Alg 2-IMBDF
Choose T >0, b>0;
Choose M >0, N >0 and compute &, dx;
Choose ug, ¢y, w;
i:=1—>u' from the initial conditions (2.3);
@' =z(e,¢%(t1,7) from (2.4)1;
i=0-u=u',¢"=p';
For i=2 to M do
Compute <,0"‘1 = z(&,¢%(ti-1,*)) using (1.6), and (2.4);
Compute u',¢' solving the linear system (2.17);
End-for;
End.

C. 2-SBDF - Second-order Semi-implicit Backward Difference Formula. The

purpose of this Subsection is to implement a 2-SBDF method to approximate the

solution (#%, ¢®) in (1.4)-(1.7). The work is based especially on relations (2.9) and

(2.11). Consequently, replacing in (1.4) the approximations mentioned above, we
deduce the following system of equations:
i i—1 i—2 i i—1 i—2

pe 3uj—4uzj€ +u; + gfupj 450216 ¢ _ kAdxui.

3¢t —4pt 4 i? , . , , .
J J i &2 i 1 -1 i—1|_| 1L ,i-2 i-2
T =& Adx<pj+2 [2a‘,0j +2uj ] [2agoj +2uj ]

(2.18)
-

i =23,..,M j=1,2,..,N, where, following the same strategy as in previous
Subsection, we obtain the discrete system (see also (2.16)):

i i i i
26114]._1 +c7u; + 2c1uj+1 + 3C3(pj

= pelhe i) v e (4 - ),

205(,03._1 + (31 — 4c¢5) 903. + 2C5g0’j+1 (2.19)
=8¢ u‘j_l + (47 + Za—g)go’j_l —4e u’j_z - (T + %)go’j_z,
i=2,3,....M,j=1,2,...,N.
Setting
g &
cog=31—4cs cip=41+2—- cp=7+-,
a a
the system (2.19) can be rewritten in matrix form as
Ul w1 ui-2 di
a4 )or( )2 23)e(4) im2nm am

where

X = Ein 3Ap Y= 4A13 4Ap 7= Az A
0 X» 8Ar1 Y» 4A21 Z»
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with A1z, Xo2, A13, A1, Yoo, Zoo having the same size N X N, and

2c5 +c9  2c5 0 0 0 0
2c5 cog 2 --- 0 0 0
Xn=| S SN
0 0 0 2C5 Co 205
0 0 0 -+ 0 25 2c5+0¢9
C10 0 0 0 Cl1 0 0 0
0 clo - 0 0 0 c11 0 0
Y= ¢+ = i Ze= o
0 0 -+ ¢ O 0O 0 - ¢1 O
0 0 -~ 0 cpo o 0 - 0 ¢y

Summing up, we can conclude that the general design of the algorithm to calculate
the approximate solution of nonlinear system (1.1)-(1.3) by fractional steps scheme
via 2-SBDF method is the following one

Begin Alg 2-SBDF

Choose T >0, b>0;
Choose M >0, N >0 and compute &,dx;
Choose ug, ¢y, w;
i:=1—>u' from the initial conditions (2.3);
o' =z2(e,¢%(11,-) from (2.4);;
i=0—-ul=ul,¢ = ¢!
For i=2 to M do
Compute goi‘l = z(&, 9% (ti-1,*)) using (1.6); and (2.4);
Compute u',¢' solving the linear system (2.20);
End-for;
End.

As it is well known, most initial value problems reduce to solving large sparse
linear systems of the form (2.14), (2.17) or (2.20). For later use (e.g., numerical
implementation of conceptual algorithms), we will proof the following

Lemma 2.1. If
) € €
+&— #F —, 2.21
THE dx? 7 2a 221

then the matrix coefficients in linear system (2.14) can be factored into the product of
a lower-triangular matrix and an upper-triangular matrix (LU - factorization).

Proof. Let denote by a,,,, m,n = 1,2,--- ,2N, the elements of matrix coefficients
in linear system (2.14). Analyzing the main diagonal elements of block matrices Aj;
and Ay, in (2.14), first we finding that a; = ¢;+ca+1+dx-h = pc+kﬁ +1+dx-h#0
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and ¢c; = pc —2c; = pc + Zkﬁ # 0. Observing now that c5 + c¢ # 0 reflect the
assumptions expressed in (2.21), as well as that ¢ # 0, we find easily that a,,,, # 0
Vm =1,2,---,2N. So Gaussian elimination can be performed on the system (2.14)
without interchanges; consequently A has an LU factorization. i

Remark 2.1. i. if
e £
dx? 7 2da’
then the matrix coefficients E in linear system (2.17) has a LU factorization;
ii. always, the matrix coefficients X in linear system (2.20) has a LU factorization.

T+§2

3. STABILITY CONDITIONS

To establish conditions of stability for the linear difference equations (2.14), (2.17)
and (2.20) introduced in the previous section, we will use in our analysis the Lax-
Richtmyer definition of stability, expressed in terms of norm || - ||, (see Smith [8], pp.
48). To fixed the ideas, we will focus our atention on equation (2.14). This may be
rewritten in a more convenient form as

i i-1 i
u . — -1 l/i- -1 dl .
( varphi' )_A B( e )+A ( d ) i=23,..M (3.1

(the existence of A™! will be proved in the proof of Proposition 3.1 below). In addi-
tion, the matrix A can be written in the form

A=DI+D'G) (3.2)
where D = diag(ay,c2,- -+ ,c2,a1,¢5 + C6,C6, "+ * ,C6,C5 + C6) and G = A — D. Thus,
noting a, = ¢s + cg, we have

0 1_71 0 - 0 0 2 0 0 0 0 0
% 0 g_; ) 0 z—; 0 0 0
0 0 0 &€ 0 0 0 0 2 0
2 2
plg 0 0 0 “l 0 0 0 0 0 0 2
- fl—j 0 0 0 0 0 2 0 0 0 0
2 y 'S
0 = 0 0o 0 £ 0 2 0 0 0
0 0 0 -~ -2 0 0 0 . 80 &
6 C6 Co
o 0 0 -~ 0 -2 0 0 0 - 0 2 0
2 ap

and a simple analysis of all lines in matrix D™'G allows us to deduce that we only
have four distinct lines. The sum of each such line is written in vector v below (recall
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thata; =ci+cp+ 1 +dx-hand ap = ¢5 + ¢g)

cir+c3—1 2ci+c3 —2e+c5 —2e+2cs
v= , , , - (3.3)
aq (&) ay Ce

Let’s denote by

Vmax = max{lc; + ¢z = 1, 12¢1 + c3l,| = 2 + ¢s], | = 2& + 2cs5l},

and
Vmin = min{lcy + ¢ + 1 +dx - hl,|c2l, |azl, [cel}.

Now we are able to prove the following result with respect to the stability in matrix
equation (3.1).

Proposition 3.1. Suppose that vy — Vimax > 0. If one of the following conditions is

true: .
. pc+ 5
i) pc + g >T1 & 2

Vmin — Vmax

or
T

ijpc+b<t & —— <1,
Vmin — Vmax

then the equation (3.1) is stable. Otherwise, it is unstable.

Proof. The proof is reduced to checking the condition of stability which, based on
the Lax-Richtmyer definition mentioned above and taking into account the relation
(3.1), it reduces to check the inequality

A7 Bl < 1.

We begin our analyse by determining an estimate for ||[D~'G||. As we have already
noted (see relation (3.3)), this is equivalent with the following equality: [|D™'G||e =
max |v|, wherefrom we easily derive the estimate

1D\ Glloo < —ax. (3.4)

Vmin
The estimate (3.4) allows us now to prove the existence of A™'. Indeed, since by
hypothesis we have assumed that v, < Vpin than ID7'Gll»» < 1 which guarantees
that there exist (I + D'G)™. Moreover, there exist A™! and
Al = (I + D'G)'D!. Using the well known inequality: ||(/ + D7'G) !l <
m and making use of (3.2), it follows that

1
A e < 1T+ DG YleollD oo € ————1ID"Y[lo. 3.5
1A~ ] I[¢ ) leollD™| - IID‘IGIIOOH Il (3.5)
How ||[D7!Glle < 1 imply that 1 — [|D7!'Glle > 1 — % > 0, we easily deduce from
this that
1 Vinin
< — < .
1- ”D G“oo Vmin — Vmax
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Since [|D7V|e < VL and involving the above estimate, from (3.5) we finaly obtain

1
A oo < ——. (3.6)

Vmin — Vmax

Now we turn our attention to matrix B. Analyzing the matrix B lines, it follows that

{
1Bl = max {pc + E’T}' 3.7
Summing up and making use of (3.6)-(3.7) we derive the following estimate

_ _ 1
A" Bllo < A" leol1Blloo < —————1|Bllcos

'min — Vmax

which, in either cases i) or ii) leads us to the estimate ||A™' Bl < 1 as we claimed at
begining of proof. I

Remark 3.1. Concerning the stability of the linear system (2.17) we can finding
easily that the conditions 1), ii) in Proposition 3.1 are kept and,

Vimax = Max{|2cy + 3c3 — 1],12¢1 + 3c3|, | — 4e + 2¢5), | — 4e + 4esl},
Vimin = min{|2¢y + ¢7 + 1 +dx - hl, |c7], |2¢5 + cgl, |csl},

while, for the linear system (2.20) the parameter T in conditions 1), ii) - Proposition
3.1, must be replaced with 2e + T + % and,

Vmax = max{|2cy + 3¢z — 1, 12¢1 + 3csl, [2¢s], [4esl},
Vmin = min{|2¢y +c7 + 1 +dx - hl, |esl, |2¢5 + col, |col}.

4. NUMERICAL EXPERIMENTS

The aim of this Section is to present numerical experiments implementing the con-
ceptual algorithms Alg_1-IMBDF, Alg 2-IMBDF and Alg_2-SBDF. Corresponding
to input data 7', b, M, N, we have used several different values while, for the model’s
parameters we have considered industrial values, which are:

m the casting speed (¢ = 12.5 mm/s),

m physical parameters:
e the density (p = 7.85 kg/m?),
o the latent heat (£ = 65.28 kcal/kg),
e the termal conductivity (k = 7.8e — 2),
o the length of separating zone (¢ = .5),

o the relaxation time (7 = 1.0e + 3 % &2),
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o the coeflicients of heat transfer (h = 32.012),

eq= \/E;

The initial values ¢y(x;), j = 1,2,...,N, ploted in Figure 4.1 - left side, were
computed via Matlab function csapi(£i0) - cubic spline interpolant to the given

data:
fi0=[-14-14-144-142-142-144-1.43-1.43-142-142-14-14-125-1.2-1.17-1.15 ...
-1.1-1.08-1.0-95-9-.85-.88-.6.0.5-92-25.8-.7.58.75.58-.63-.59.69-72.7-59-5 ...
7-79-87-88.0.72-8.81.0-.89.0.7.55.68-49.79.0-.1-8-78-.83.69-.8.68.5.7...

S591.1.081.11.151.171.21.251.31.31.251.241.31.311.31.321.3 1.3];

The initial values ug(x;), j = 1,2,...,N, ploted in Figure 1 - right side, were
computed as solution of the discrete form to the stationary equation (2a)~'[¢y(x) —
gog(x)] + 2up(x) = 0 (see Caginalp [3]), i.e.:

2a) " Teo(x)) = (Po(x))] + 2up(x) =0 j=1,2,..,N.

Now (see (2.4)1) we are able to calculate the vector (z (s, @o(x j)))jzﬁ’ ploted in

Figure 2, and the vectors: ‘,01 = (go})j:m and u! = (u})]:m (see relations (2.3),
(1.6); and (2.4)). As the schemes 2-IMBDF and 2-SBDF involves three time levels,
we consider at the first time level i := 0 the values u° = u! and ¢ = ¢!. Con-
sequently, the right side of the linear systems (2.17) and (2.20), corresponding to
the first iteration of the cycle ”for” in algorithms Alg 2-IMBDF and Alg_2-SBDF

(i = 2), become:
1 2 1 2
3B( Z’l )+( Zg ) and ( iﬁi Yzj{IZZzz )( Z’] )+( Z% ), respectively.

We will continue with the presentation of numerical experiments regarding the
stability of equation (3.1) (see Proposition 3.1). The shape of the graphs ploted in
Figures 3 and 4 shows the stability and accuracy of the numerical results obtained by
algorithm Alg_1-IMBDF. For this test we haveused 7 =2,b =1, M = 100, N = 40
and the temperature surrounding at 9Q={0, b} given by: w(t;,0) = —15, w(t;,b) = 7.5,
i=1,2,..,M.

Taking now k=.785, we can verify that v, — Vjax=-15.2372 which means that
the first hypothesis in Proposition 3.1 in not verified. Consequently the numerical
scheme is unstable. Figure 5 shows that it really is. Furthemore, if we keep k=.785
and take 7=1.0e+2 *62 (in place of T:I.Oe+3*§2), we get also Viip — Vipax < 0. So,
again we are in a unstable case. Moreover, analyzing the graph in Figure 6 we found a
more pronounced instability. Let’s remark that the instability of the solution occurred
following a slight change (modification) of only two physical parameters (k and 7 in

this case). This highlights the strong dependence of approximation scheme regarding
physical parameters.



On the numerical approzimation of the phase-field system ...

The initial condition fi,

The initizl condition u

0
1.5 T 0.4 T
— =0 — i=]
M=100 nal N=100
1l J
st ] ]
ot J ]
0.5+ 1
n f ] y
1.5 L
a] 0.5 1 1
Fig. 1. The initial conditions ¢, and u
The approximate solution z(2ps,.)
1.5 T T T T T T T T T
— i=
MN=100
eps=0.01

0.4 0.5 06 07 0.a 0.9 1

Fig. 2. The approximate solution z(g, -) of Cauchy problem (1.7)
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The approximate salution o, =2, M, M/2, 3/, M.

0.4 T T T T T T T T T
— =2
oaH — =26
— i=51
— =78
02n — =100
N =40

04

0.1

.2

0.3

0.4

0.5 5

_06 1 L L 1 L L 1 L L

Fig.

S0

Example of numerical stability: # at different levels of time

The approximate solution fii, i=2, WA, M2, 30 ML
15 T T T T T

Fig. 4. Example of numerical stability: ¢' at different levels of time



0.4

On the numerical approzimation of the phase-field system ...

The approximate salution o, =2, M, M/2, 3/, M.

0.3F

0.2

04

0.1

.2

0.3

0.4

0.5

=

=26
=51
=76
=100
N =40

.6

0.8

Fig. 5. Anexample of slight numerical instability

The approximate solution ui, i=2, WA, M2, 30 ML

Fig. 6. Anexample of strong numerical instability
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The approximate salution o, =2, M, M/2, 3/, M.
0.4 : . : : : . r . :
i=2

i=26 -
i=51 P4 i
=76 4

0.2

=100

Fig. 7. u' corresponding to w'(0) = —60, via Alg_1-IMBDF

We turn to numerical stability conditions and we change the temperature surround-
ing at 0 € 9Q by setting w(t;,0) = —60, i = 1,2, ..., M. The numerical results, ob-
tained by algorithms Alg_1-IMBDF and Alg_2-SBDF, were ploted in Figures 7 and
Figure 8 below, respectively. Analyzing the approximations near to zero, we ob-
serve a instability just for u#, due to the nature of boundary conditions that we have
considered (1.2);. In addition we also find a difference in the error of approximation.

On stability, we mention that similar results were also obtained by implementing
the algorithms Alg_2-IMBDF and Alg_2-SBDF. In this sense, we reproduce in Fig-
ure 9 the numerical result obtained by Alg_2-IMBDF, executed with the same values
as in Alg_1-IMBDF (see Figure3).

5. CONCLUSIONS

As the novelty of this work we notice the use of three finite difference schemes
in order to approximate the linear system given by a scheme of fractional steps type.
Even if each brings particularities in the implementation (memory space required, the
right side), executed in the same conditions, produced essentially the same numerical
results (see figures 3 and 9). Not least, let’s remark that conditions of stability are sus-
tained by both theory and numerical experiment and that are significantly dependent
on the physical parameters.
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The approximate salution o, =2, M, M/2, 3/, M.

0.6

— =2
— =26

— i=51 |
— i=76

— M=100

0.z

.2

0.4

06F

M =40

0.8

0.4

0.1 0.z 03 04 0.5 o6 07 0.8 0.9 1

Fig. 8. u' corresponding to w'(0) = —60, via Alg_2-SBDF

The approximate solution ui, i=2, WA, M2, 30 ML

Fig. 9. u obtained by Alg_2-IMBDF
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Analyzing the numerical results in terms of physical phenomena, we constat that
the temperature distribution tends to become parabolic and the phase function dis-
tribution say that the instability of the portion of material will disappear. Moreover,
analyzed together (see figures 3 and 4, for example), highlight theoretical meaning
assigned to functions u and ¢ as well as the zone of separation between material
phases.

The numerical solution obtained by this way can be considered as an admissible
one for the corresponding boundary optimal control problem (from this perspective,
compare figures 7 and 8). Generally, the numerical method considered here can be
used to approximate the solution of a nonlinear parabolic phase-field system contain-
ing a general nonlinear part.
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1. INTRODUCTION

Let I' be an orientated, closed and of piecewise Lyapunov type contour, which
divides the complex plane in domains F* and F~ (c0 € F7), t,...,1, angular points
of I with angles 8, formed by lateral tangents to I' in these points. In the space
L,(T', p) consider the operator

(™
(AQ)(1) = ar(1)(t) + ax(t) f P2 e+
T—1t
_ 1)
] () (
+a3(0p() +as(% | Lldr,
r
where p(t) = []_, |t - e (-1 < By < p-1Danda;) (j =1,2,3,4) are
continuous functions in every point ¢ € I" excepting points #; (k = 1,...,n) in which

there exist finite limits (a(#;+0). In what will follow it is comfortable to write operator
(1) in other form. With this purpose we do the following notations:

ai(t) + ax(t) = a(t), ai(t) —ax(t) = b(1),
az(t) + ag(t) = c(t), az(t) —as(t) = d(1),
Vo)) =), P=U+S5)/2, Q=I-P

where S is singular integral operator with Cauchy kernel. With these notations oper-
ator (1) is written in the form

A=aP+bQ+ (cP+dQ)V. )

The operator A becomes linear in the space L,(I', p) if this space is considered over
the field of real numbers. Denote it by Z,p(F, 0).

111
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In the case of Lyapunov contour operator A was studied in monograph [1] see also
the bibliography of this work. In determining Noetherian conditions for operator (2)
an important role played the fact that in the case of contour of Lyanupov type the
operator VSV + § is compact in the space L,(I',p). As it is shown in this work,
if contour I' has angular points, then operator VSV + § is not more compact and
reasoning from above mentioned works cannot be applied. Moreover, it turns out
that the very Noetherian conditions for operator A depend also of measures of angles
on the contour I'.

In this work the symbol of singular integral operator with complex conjugation of
form (2) is constructed. It is proved that the symbol is a matrix of variable order: in
points 7, (k = 1,...,n) of forth order, but in the other pointes this order is equal to
two. The symbol depends also of coefficients of the operator, of the space L,(I, p)
and of the measures of angles on the contour of integration. Noetherien conditions
and index of operator A are expressed by the determinant of its symbol. We establish
certain relations between operators of form (2) and boundary problems of Riemann
type [11, [2], [3] for analytic functions.

Similar results are obtained also for operators Z’]’.’zl [1;_; Ajk, where A j are oper-
ators of form (2).

2. PROPERTIES OF OPERATOR VSV + 8§

Theorem 2.1. Let I be a closed contour of Lyapunov type. Then operator VSV + §
is compact in the space L,(T', p)

Proof. Denote by I'y the unit disc (I'g = {¢ : [¢f| = 1}) and by S operator St,. Then

<VSOV+SO>¢=—1.f‘”_(”dﬂlf@d_Lf@dT_

i T—f 7 T—1t mi T
Ty Ty Ty

Thus, if I" is the unit disc, then VS ¢V +S is compact in L,(I", p). We shall consider
the case in which I" is any closed Lyapunov contour. Let v : I(j — I' be a map which
verifies conditions: there exists the derivative /() not equal to zero and v’(¢) verifies
Holder conditions. Denote B : (L,(I', p) — (L,(I'g, py), where

po@) = [ [ M@ = vzl (@) = 1)
k=1

where operator defined by relation (By)(z) = ¢(v(z)) (z € I'y). Then

- 1 v'(§) 1

BSB™' -Sp)p=— f - de. 3

( e | St G (3)
Ty

Since v'(£) is not equal to zero and satisfies Holder conditions, operator BS B~' -5

has (see [4]) weak singularity on I'y X I'g and, hence is compact in the space L,(I’, p).
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As operators V and B commute, from (3) and from what was already proved we
obtain that operator
B(VSV +S8)B ' —vS,V -5, 4)

is compact in L, (I, p), from which it results that VSV +S§ is also compact in L, (I, p).
The theorem is proved. I

Let us show that assertions of Theorem 2.1 are false if contour I' has angular
points. Suppose for example, that I' > I'y U I'», where I'y and I, are segments of
straight line which joins point z = 0 with z = 1 and, respectively z = 0 with z = i.
In point z = 0 € I' contour forms an angle of measure 7/2. We shall show that
in this case operator VSV + § is not compact in Ly(I'). Suppose, by absurd, that
VSV + S8 € T(L,(IN). Let X be characteristic function of I'; and M = X(VSV + §).
We will show that M ¢ T(L,(I')) and as a result we shall obtain a contradiction.

Consider in the space Ly(I') sequence {¢, ()} of functions defined by relations

Vi, forte[0,1]
@n(t) = .
0, forreT\[0,:]

We have [l¢,ll,a) = 1. We will show that from the sequence ¢, = My, is not
possible to extract any convergent subsequence. By the definition of operator M we

have
n

X
(Me,)(®) = X()(VSV +S)e, = (t) \/_ ( ) =

1/n

_X(@) t—t
= i Wf@—r)(r—f)d’
0

nP!? -7 p
M7 ¢ = — f|(T_t)(T_i)dT| di] =
r
1 n

1 1
= cpn‘”/2 f'arctg—| dt < cpn(p_z)/2 f(arctg—)pdt <
nt t
0 0

(o)

_ 1\r . (-
< cpn'P=212 f(arctg;) dt = ¢,n' P22,
0

Therefore,

where ¢, and ¢, are constants depending only of p. Hence it results that

lim HM‘/’n”L,,(F) =0, for 1< p< 2.
n—oo
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Thus if the sequence ¥, = My, (€ L,(I')) would contain a convergent subsequence,
then this subsequence necessarily would converge to zero. But

n 1

~ 1 - 1
”‘//n”iz(r) = ||M<pn||iz(r) > Cp farctgz?dt > Cp farctgz;dt > 0,
0 0

from which it results that {i,,} in the space L,(I') does not contain any convergent
subsequence. Therefore operator M is not compact in the space Ly(I).

3. NOETHERIEN CRITERIONS

Conditions in which operator of the form (2) (and more complicated operators) are
of Noether type are expressed with the help of symbol. That is why we shall firstly
define the symbol of operators al, P, Q and V. Denote by a(t, &), P(t,£), Q(t,£) and
V(t,&) (tel, —oo < & < o0) the symbols of these operators respectively. Put

ait) 0
0 a || forre'\{#,...,t,}
alt, &) = a(ty +0) 0— 0 0 (5)
0 alty, +0) O 0 k=1 ):
0 0 alty, —0) 0 P U= Lo s
0 0 0 a(ty — 0)
1 0
HO 1 , forte'\{r1,..., 1.},
o bk
P(1,6) = A ©)
L |l o -1 0 " r=1
FA| w0 o1 oo | &b
Ok Vs
0 -3¢ 0z
where z; = exp(é + i%) (00 <& < +00); O(t,6) = E(t) — P(t,&), where
H , forte\{t1,...,t,},
E(@) = (7)

,fort=1(k=1,...,n).

SO O~ O
oo —=O = O
S = O O
- o O O
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Finally

, forte\{t1,....t,},

0

V(t,¢&) = ®)

SO = O = O

,fort=1(k=1,...,n).

SO O = O
— O

- o O O

0 0

If operator A has form (2), then we define its symbol, A(z, £), by relation

A1, &) = a(t,§)P(1, &) + b(1,£)O(t, )+
+(c(t, )P, &) + d(1,£)Q(t, ) V(. £).

Ifa,b,c,d € CP,(I'), then the symbol of operator A € L(Lg(l", p)) is defined by
relation (9), in which a(t,£), b(t,&), c(t,€) and d(¢, &) are, respectively, matrices of
order m, defined by equalities (5).

(€))

Theorem 3.1. The operator
A=aP+bQ+ (cP+dQ)V

(a,b,c,d € CP(I')) is Noetherian in the space I:p(F,p), if and only if
detA(t,£) #0 (tel, —o0o <& < ).

Beforehand we will prove two lemmas.

Lemma 3.1. The operator A is Noetherian in the space I:p(F, p), if and only if in the
space if,(l“, p) = ﬂp(l“, p) X ip(F, p) the operators

v aP+bQ_ cP+dQ_ (10)
" || e VPV +dVQV aVPV +bVQV
is Noetherian. Moreover, IndA = %IndA.
Proof. The identity
X+ YW 0 B l /! W X Y 1 1 an
0 X-YW| 2| -W||[|WYyw WwWXW||lW -W|’

is true [5], where X, Y, W are any linear and bounded operators which act in Banach
space Band W? = I.
Put in identity (11) X = aP + bQ, Y = cP +dQ, then

A=H

i Ao |,
HO Al H™, (12)
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where

1
Ar=aP+bQ~(cP+dQ)V, H=3

I 1
vV =V

Let (Mp)(t) = ip(t), then one can immediately verify that MAM™" = A and
assertions of lemma follow from equality (12). i

Remark 3.1. Let I be of Lyapunov type, then by Theorem 2.1 we have VSV = S + T,
and, hence, VPV = Q + To, VQV = P + T3, where Tj € T(L,(T,p)) (j =1,2,3).
From this it results that operator A differs from operator

A()= P+

o Q

0

WK
S0
Q0

by a compact term.

Operator A is a singular integral operator with piecewise continuous matrix en-
tries. For this operators conditions under which they are of Noether type are known
(see [5]). These  conditions consists in  the  fact  that
det Ay(t, &) # 0 for every (1,£) € I' x R. One can observe than in this case det Ay(z, &)
coincides with det A(t, £), defined by equality (9).

From Lemma 3.1 it follows

Corollary 3.1. Let I' be of Lyapunov type. For the operator A to be Noetherian it is
necessary and sufficient that

detA(t,&) #0 (€T, —oo <& < 00).

Lemma 3.2. The operator A is locally Noetherian in point ty € I'\{ty, ..., t,,}, if and
only ifdet Ap(t,&) # 0 (-0 < € < ).

Proof. Denote by u(ty)  I'\{#1,...,1,} a neighborhood of the point #5. Let [bea
closed Lyaponov contour which contains the neighborhood u(#y). In the space I:,,(F)
consider the operator
B=aP+b0+ @P+dQ)V,

where P = (I+S¢)/2, O = 1- P and a, b, &, d are continuous functions on T
restrictions of which on u(#y) coincide with functions a, b, ¢, d. Obvious operators
A and B are quasi equivalent in point 7g. Hence, both are locally Noetherian in point
to. By Corollary 3.1, condition det B(fp,&) # 0 (¢ € R) is necessary and sufficient
for B to be locally Noetherian in point #y. Since det B(t,£) = det A(t, €), lemma is
proved. i

Now we can give the proof of the theorem.

Proof. By Lemma 3.2, it is sufficient to show that condition det A(#, &) # 0 (—o0 < ¢ < 00)
is necessary and sufficient for the operator A to be Noetherian in point #; (k = 1,...,n).
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To begin with suppose that n = 1. Together with contour I" consider contour
I'y(= T'y,) which also has an unique singular point z; of the some measure 6 = 6(t;)
with the property that if z € I'j, then also the point Z € I'y. Hence, z; = 0. Then there
existsamap u : I'1 — T, so that y/(r) # 0 (t € I'}) and satisfies Holder conditions.
Denote by B : Ly(T,p) = Ly(T', p)(p(t) = |t = 111, py(t) = |zf*) the operator

(Bp)(2) = ¢(u(z)).

We have BaB™! = aiI (a1(z) = a(u(z))), BVB™' = V and BSB™! = §, + T},
where §1 = S, and Ty € T(L,(I', py)). Taking this into account we get

~rx1 _ || a1P1+b10 c1P+diQ
AB =\l syp v+ dvov avev+bivov || T (13)
where
_ |lB o
B=|y gl Pr=0+50/2 Q1=1-PrandT € T(Ly[T1.py).

Denote by W the operator of shift, defined by relation (We)(z) = ¢(w(z)), where
w(z) = Z (z € T'1). We observe that the derivative w’(z) is discontinuous in point z = 0,
and w’(+0) = exp(if;), w’(-0) = exp(—if). It is easy to verity that

VS,V =WS W (14)

Substituting (14) in (13) and using Lemma 3.1, we obtain that operator A is locally
Noetherian in point ¢, if and only if the operator

My =

a1P1 + lel_ C1P1 +d1P1_
AWPW+diWoW aysWP{W+bWOW

has this property in point z = 0.

The operator M) is a singular integral operator with shift W studied in the work
[7]. From this work we get that operator M, is locally Noetherien in point z = 0, if
and only if det M{(0,&) = 0 (£ € R). Since det A(1, &) = det M;(0, &) it follows that
for n = 1 the theorem is proved.

Pass to the general case. Let u; = u(t;) (C I') be a neighborhood of point #; con-
taining no points 7; # . As before consider contour I'; (= I'y,) with a single angular
point z = 0 with condition that together with every point z it contains the point Z two.
Denote by y;, a map from a neighborhood u, to a neighborhood vy = v¢(0) (C I'y) and,
moreover, (4 () = 0. Since I" and I'; in point #; and respectively z = 0 form angles of
the same measure 6, then ;, may be chosen in such a way that w; (r) # 0 (1 € u(t))
and this derivative to satisfy Holder conditions. If f € CP(I'), then we agree to de-
note by fx(2) (z € vi(0)) the function f (;11:1 (z)), where ,u,:l is the inverse of y;. Extend
functions ax(z), bi(z), ck(z), dr(z) by continuity on contour [, and denote then by the
same letters.
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In the space L%(Fk, |zP%) consider the operator

ax Py + bi Ok ckPr + diQx

M=\l G WP W + A WOLW G WPW + WO W

B

where (We)(z) = ¢(2) and S = St,. The operator A, defined by relation (12), is
quasiequivalent in point # to operator My in point z = 0 :
Ty Py APy T, 2 Py M, Py,

where

1), terl, 1), t s
(PFsO)(t)={ A (T¢f)(r)={ A

Therefore, A and M;, are locally Noetherian operators (A in point #; and My in z =
0). By Theorem 3.1, the operator My has this propriety if and only if det M;(0, &) #
0 (¢ € R). It remains to convince ourselves that det M;(0,&) = detA(t, &) and the
theorem is proved. I

As a consequences one can formulate the following result.
Theorem 3.2. Let functions a, b, c and d belong to the set CP,,(I'). Operator
A=aP+bQ+ (cP+dQ)V
is Noetherian in the space Li(T, p), if and only if
detA(1,&) #0 (t €T, £€R).

Let operator A have the form
A=) AjAp--Ajs,
j=1

where
Aje=apP +bjQ+ (cuP +dQ)V (ajk, bjk, cjr, dj € CPy(I)).

Define the symbol of operator A as follows

r

AW = Y ApLHAREE) - A1, €),

J=1

where A j(z, &) is the symbol of operator A j;. With the help of Theorem 3.2, repeating
reasoning from the proof of Theorem 3.1, it is easy to obtain the following result.

Theorem 3.3. Operator A is Noetherian in the space Ly(L, p), if and only if

detA(r,£) = det ) [ [Ap(t,6) #0, (teT, £€R).

=1 k=1
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4. CONCLUDING REMARKS

In this section it is shown that conditions under which operator
A=aP+bQ+ (cP+dQ)V

is Noetherian depend of the presence of angular points an contour I" and of measure
of these angles.

In Section 2 it was proved that operator VSV + §, in general, is not compact in
space ip(F, p). Using Theorem 3.1 it is possible to prove that VSV +S§ € T(L,(T', p)),
if and only if contour I' is of Lyapunov type. Really, the sufficiency is established
by Theorem 2.1. Let I' be a piecewise Lyapunov contour and 7o an angular point
with angle 6y = 8(tp) (0 < 6y < ). Admit that if operator VSV + S is supposed to
be compact in space L,(I, |t — tolP0), then operator Ay = VSV + S — Al must be
Noetherian for every 4 € C\{0}.

The symbol of operator A, in point fy has the form

-2 0  w@ o

0 -1 0
rmwo=| oo ot L 79
0 wlé) 0 -1
where
W) =2 exp [(2m — 6)(€ + i(1 + By)/ p)] — exp [6o(& +i(1 + By)/p)] ‘

exp [27(€ + i(1 + By)/p)] — 1

By Theorem 3.1, operator A, is Noetherian if and only if det A (z,£&) # 0
(t €T, —oo < & < 00). Particularity, for all values of 4 which verify conditions

det A (#9,&) =0 (—o0 < ¢ < )

operator A, is not Noetherian in L, (T, |t — o). That is, for all values 1 = +w(¢)
(—oo < ¢ < o0) operator A, is not Noetherian. Since 6y # 7, it result that w(€) £ 0, a
contradiction to hypothesis.

The symbol of operator

A=aP+bQ+ (cP+dQ)V

depends on measures of angles formed by lateral tangents in points of contour I'.
This is seen from the definition of symbol of operators P and Q. It we consider that
c(t) = d(r) = 0, then operator A has the form A = aP + bQ and, as it is known
[3], [4], [8], conditions under which it is do not depend angles 6(tx), though the
symbol, defined in this work, depends on 6(#;) explicitly. In connection with this it
appears naturally the question whether the dependence of the symbol of operator A
on measures of 6(t;) (k= 1,...,n) is essential. In other words, do conditions under
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which operator A (|c(?)| + |d(#)| # 0) is Noetherian really depend on 6; = 6(t;)? We
will know that the answer to this question is affirmative.
Let

A=+ V2)P+(1-V2)0+V.

If contour I' is of Lyapunov type, then operator A is Noetherian in all spaces f,p(F, 0).
/s

Let contour I have an angular point 7y with angle 6(tp) = 5 and p = 2. Then the

2
symbol of this operator in point (¢, 0) has the form
1 1 1+i O
1 0 1-i
A=)y 0 1 1
0 1+i 1 1

and det A(#p, 0) = 0. So, operator

A=(1+V2)P+(1-V2)0+V

is not Noetherian in the space L,(I"). This example shows that the presence of angular
points influences essentially Noetherian conditions of operator (2).

Concluding this section we consider the generalized boundary problem of Rie-
mann which consists of the following. Determine two analytical functions ®*(z) and
®(z) in F* and, respectively in F~ with the following properties: can be represented
in F* and respectively in F~ using Cauchy integral; limit values ®*(¢) and ®~(¢) on
contour I" belong to the space L,(I', p); limits ®*(r) and ®~(f) at boundary verify
conditions

O* (1) = a(t)® (1) + b(H)D (1) + c(2), (15)

where a, b, ¢ are known functions. In the case of Lyapunov contour Noether theo-
rems for problem (15) are proved in works [1], [2] and others. From these works,
particularly one can deduce that if a, b, c € C(I'), then the boundary problem (15)
is Noetherian if and only if |a(r)] # 0 (V¢ € I). In the case of piecewise Lyapunov
contour the following result is true.

Theorem 4.1. The Riemann boundary problem (15) is Noetherian in space I:p(F, 0)

it and only if the conditions are verified:
@) la(®)| >0, VteTl;
20 Ok
7, -z

(ii) la(to))> — |b(tk)|2( o ) # 0 for everyk = 1,...,n and every t € I, where
'k
zk = exp(& + (1 +B)/p), —o0 <& < oo

The proof is done ordinary. Using Plemelj and Sohotski formulae, the problem
(15) can be reduced to a singular integral equation with complex conjugation. We
write the symbol of this equation and apply Theorem 3.1.
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Remark that in the case of piecewise Lyapunov contour Noetherian condition for
problem (15) also depend on measures of angles 6; and, moreover, they depend also
on the coeflicient b(¢), that is not observed in the case of Lyapunov contour.

The result of this work can be generalized also to the case when contour is formed
from a finite number at piecewise Lyapunov curves without points of self-intersection.
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Abstract A generalization of the classical Lie theorem on integrating factor for autonomous poly-
nomial first-order differential system was obtained. Its application for differential system
with cubic nonlinearities on nonsingular invariant manifolds (containing GL(2, R)—orbit

of maximal dimension 4) and singular invariant manifolds (containing GL(2, R)—orbits
of dimension < 4) was shown.
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1. INTRODUCTION

Let consider an autonomous system of first-order differential equations with poly-
nomial right-hand sides as follows:

X =Py, y=0(xy), (1

where the coeflicients and variables in P and Q take the values from the field of real
numbers R.

Systems of the form (1) arise in solving of various problems in engineering [1],
medicine [2,3], biology [5], energy security [4], etc.

In [6,7,8,9,10,11] the classifications of orbit dimensions for different polynomial
differential systems with respect to the groups of centroaffine transformations GL(2, R)
as well as the group of affine transformations A f f(2, R) have been carried out. It has
been remarked that differential systems on singular invariant manifolds (containing
the orbits having dimensions less than the maximum dimension) can be quite suc-
cessful studied qualitatively by using invariants and comitants [10,13]. However, the
most complex systems belong to nonsingular invariant manifolds, i.e. to the systems
on orbits of maximal dimension. Therefore the approach to study of such systems is
not always clear and single-valued. From these considerations, it is the necessary to
develop an approach that enables to single out some of these systems and the strategy
for their studying as well.

One of the method to study of autonomous first-order differential systems is the
integrating factor method. However, the classical approach to this issue leads to the

123
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solving of a partial differential equation, which is not always successfully done. So,
to get around this issue the Lie theorem on integrating factor was applied [14]. How-
ever, the classical Lie theorem on integrating factor also has to deal with a partial
differential equation associated with problems in its solving. In this paper a gener-
alization of the Lie theorem on integrating factor for polynomial differential systems
was obtained, which allows getting away from the solving of partial differential equa-
tions to a system of algebraic equations. It turned out that this theorem is also related
to the systems on nonsingular invariant manifolds. On an example of the differential
system (1), with cubic nonlinearities, it is shown that the generalized Lie theorem on
integrating factor can be applied for study of certain classes of polynomial differential
systems, belonging to the orbits of dimension 4 and 3 relatively to the centroaffine
group GL(2,R).

2. THE CLASSIFICATION OF ORBITS FOR
DIFFERENTIAL SYSTEMS WITH CUBIC
NONLINEARITIES

Let denote the set of coeflicients of the right-hand sides of (1) as a and their Eu-
clidean space as E (a). We denote by a(g) the point from EV(a), corresponding to the
system obtained from (1) with coefficients a after the transformation ¢ € GL(2,R),
where

q: Xx=ax+py, y=vyx+0y, A;=ad—-py#0.

Definition 2.1. The set O(a) = {a(q);q € GL(2,R)} is called the GL(2,R)-orbit of
point a for the system (1).

Let consider the differential system (1) with cubic nonlinearities, written in tensor
form

# =l + aly A (jLanfy = 1.2), @

[e7

where the coefficient tensor a’ , is symmetric in the lower indices, for which the

complete convolution is performed here. Following [12], the differential Lie opera-
tors corresponding to centroaffine group GL(2, R), which is admitted by the system
(2) have the following form:

x1=xﬁ+@1, x2=y£+92, DC3=JC£+®3, x4=yﬁ+®4,
0x 0x ay Oy
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where
0 0 0 0 0 0 0 0
Di=-d—=+e—+2p—+q——s—+3t—+2u—+
od " Coe " Pop o as o T M ou Va
0 0 0 0
D, = —ea—+(c—f)—+eﬁ —t% (p—u)% +(2q—v)5+
+(3r - w)ﬁ + t2 + 2u2 + 3vi,
D dﬁ+(f— )——dﬁ+3 i-|r2 £+ 2+(3 - )—
3= %% ¢ of  lop T aq e TN TE
0 0
+(2v - q)— +(w— r)— -5,
ov ow’
0 0 0 0 0 0 0 0
Dy=d— —e— +q— +2r— +3s— —t— +v— + 2w—,
Y% "9 "9 T ar T %8s e T an T ow
and 1 1 1 1 1 1
c=a, d=ay p=ay, q=ayy T=d5, $=dpy,
2 2 2 2 2 2 )
e=ay, [=a, t=aj, uU=day, V=dy, W=dpy.
Operators X;—X4 and thereafter (3) generate a reductive Lie algebra L.
From [12] it is known that
dimgr O(a) = rankM,, 5)

where M is the matrix constructed on the coordinate vectors of Lie algebra L4 from
(3). From (5) we obtain that rankM, can be equal to 4, 3, 2, 1, 0, and consequently we
have that dimpO(a) = 4,3,2, 1,0, respectively. Following [14], it can be argued that
GL(2,R)—orbits of maximal dimension 4 generate nonsingular invariant manifolds,
and GL(2,R)—orbits of dimension < 4 generate singular invariant manifolds of the
system (2).

From [15,16] let’s give the following centroaffine invariants and comitants of the
system (2):

P, = a xgx Py =d’, x%xPx7x4 Epgs

apy

Ps; = azaﬁaﬂ X X0l Py = aaﬂydg#exyx X0, Ps = aﬂy(saﬁﬂgx”x‘sx’lxy,
gp,di(sqaﬁw x'eP1e™, Q1 = al, ﬁyéxaxgxyx Epg» Q2 = aga{iwx"x
0O3=a aBﬁéx x°, O7 = agafmyaqwx xell Ky = agxgxygay, I = aj,
L = agaé, Ji = ap,aﬁqsqus” Jr = agpragqsqus”,
Jy = agmagqsazﬁvgl’q ) ©6)
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where 77 (g,,) is the unit bivector with coordinates el=g2=0,%=-&'=1
(e11 = &2 =0, g2 = —&21 = 1). Using the expressions (6), the following comitants
are constructed:

My =3P Py —2J1Py, Ny =P5(I] - b) + 207 + 3K;Ps + 21 P> 0y,

Ny = JoaPs— JyPy £0, N3 = 2P Py(4Q; — 3K2Py) + 2P3(203 + I Py),
Ny = K3(2P] — 6Py + 4Ps) + 2P1K2(Q3 — Q). (7

Moreover, by using the equation (5), the expressions (6), (7), and Theorem 5.9
from [12] the following theorem is proved:

Theorem 2.1. [9] The dimension of the GL(2, R)-orbit of the system (2) is equal to
4 KrPiPy(N3+Ny)#0,0rKy, =0, PIPo M #0,
orKy =P =0, PNy, 20, or P =0, KhaN| £0,
or P, =0, KhP1Q7 #0;
3N3+Ny =0, KhP Py 20, 0r Ky =M =0, PPy 0,
orKb =P =Ny=0,PPs£0,0rP1 =N, =0, KbP> 20,
orP=07=0 KhP1(P1Q1+Ps)£0,0rP, =Ky =0,J; #0;
26P,=07=P101+Ps=0,P}+K;%0,0rPi=P,=0,K, %20,
or P1=P5=K>,=N,=0, P, 20, or J1 =0, P,=K,=0, P; £0;
0<:>P1 EPQEKZEO.

3. GENERALIZED LIE THEOREM ON
INTEGRATING FACTOR FOR POLYNOMIAL
DIFFERENTIAL SYSTEMS

Let consider the polynomial differential system (1), where PQ # 0, and the corre-
sponding equation
,_ 2y
YT Py
From Marius Sophus Lie (1842-1899) it is known the following theorem:

®)

Theorem 3.1. [14] The differential equation y' = f(x,y) admits an one-parameter
0 0

continuous group Gy with the operator X = £'(x, y)a— + &E(x, y)a— if and only if the
X Y

coordinates of the operator satisfy the defining equation fi + f(fi - §}C) - fzfyl, =

flfx + fzfy, where f;,.f;, (i = 1,2) and f, f, there are partial derivatives of the

-1
corresponding functions in x andy. Moreover u = (52 - f¢é 1) is an Lie’s integrating
factor for the equation dy — fdx = 0.

Theorem 3.2. [17] If the polynomial system (1) with PQ # 0 admits Lie operatory) =

0
x, y)a +&(x, y)a—y + D, where D # 0 is an operator of linear representation of a
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one-parameter continuous group G in the space of coefficients of the polynomials P
and Q of the system (1), then in order the corresponding equation (8) allows the same

O(x, y)) _
P(x,y))

operator Y, it is necessary and sufficient the fulfillment of the identity D (
0, which is equivalent to the identity PD(Q) — QD(P) = 0.

Corollary 3.1. If the conditions of Theorem 3.2 are satisfied, we have that the equa-
om y’ — Q)

P(x,y)
operator Y by excluding the operator D.

= 0 0
allows the operator Y = £'(x, y)a— + &(x, y)a—, obtained from the
X y

From Corollary 3.1 and Theorems 3.1-3.2 we obtain

Theorem 3.3. (Generalized Lie theorem) If the system (1) with PQ # 0 admits the
0 0
operator Y = &' (x, y)a + & (x, y)@ + D, with D # 0 and the identity

PD(Q) - 0D(P) =0, €)

holds then the function u = (£'Q — §2P)_l is the Lie’s integrating factor for this
1y 2P —(ics . .
system, and &' Q — &P = 0 is its particular integral.

4. LIE’S INTEGRATING FACTORS FOR THE
SYSTEM WITH CUBIC NONLINEARITIES

Let write the linear combination of the operators (3) in the form
D :0/@1 +ﬁ@2+’y®3 +6®4, (10)
where a, 3, y, d are undefined real parameters.

Remark 4.1. Hereafter let consider the general case, i.e. when in (2), (4) and (10)
all coefficients and parameters are different from zero.

Remark 4.2. Let call degenerate the system of the form (2) with proportional right-
hand sides, where the proportionality factor is a number or an expression, depending
only on the coefficients of this system.

Theorem 4.1. The differential system (2), (4) with inverse polynomial Lie’s integrat-
ing factor =" with degree < 4 with respect to phase variables is subdivided into
the following classes: 17 (13 degenerate) systems on nonsingular invariant mani-
folds (which contain GL(2,R)-orbits of dimension 4) and 9 (2 degenerate) systems
on singular invariant manifolds (which include GL(2,R)-orbits of dimension 3), i.e.
4 systems for which u~" is represented as a product of two polynomials, one being
homogeneous of the second order and other — nonhomogeneous of the second order,
1 system, for which u~" is represented as a product of two polynomials, one being of
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the first order, and other heterogeneous of the third order, 5 systems for which u™'
is represented as a product of three polynomials, two being of the first order and the
third — heterogeneous of the second order, 1 system, for which u~" is represented as
a product of two linear homogeneous polynomials.

Proof explanation of the theorem 4.1. Subject to the expressions of the operators
(3) for the differential system (2), (4) we obtain that the identity (9) is split into 15
polynomial equations linear relative to the parameters a,(,v,d and of the second
degree relative to the coefficients of the mentioned system:

up = cea + 62,3— (c? + de — cf)yy —ced =0,
up =dea +efff—cdy —ded =0,
us =dfa+(de—cf + fAB—-d*y—-dfs =0,
uy = (ep — 3ct)a — 2etB + 2cp — fp + 3eq + dt — 3cu)y + (ep + ct)o = 0,
us = (fp —2dt — 3cu)a + (ep — ct — ft — 3eu)B+
+(dp + 3cq + 3er — 3cv)y + Beq + dt)d = 0,
ug = pta + t2/3 - (p*+ 3gt —3pu)y — pté =0,
uy = qta + tuf — (pg + rt — pv)y — qté = 0,
ug = (fg—er—3du—cvia+ (fp+eq—dt—cu—2fu—2ev)f+
+(2dq + 2cr + fr+es—dv—cw)y + (fg + 3er + du — cv)d =0,
ug = (3rt + 3qu — pv)a + (gt — pu + 3u” + 2tv)B - (3q2 + 2pr+ (11
+st + 3ru — 3qv — pw)y — 3rt + 3qu — pv)6 = 0,
U = sva + (su — gw +vw)B —rsy — své = 0,
upl = (es+3dvia — 3fqg — 3du — 3fv — ew)s—
—@Bdr+cs+ fs—dw)y — 3fr+2es —cw)d =0,
up = (fs+dw)ya— Q3fr—es—3dv+cw—-2fw)s-
—2dsy — 3fs—dw)s =0,
uiz = (2st + 9ru — pw)a + (3rt — 3pv + uy + tw)B—
—(9gr + ps + 3su —3gw)yy — (2st + 9ru — pw)o = 0,
uis = (3su + 3rv — gw)a + (st + 3ru — 3qv + 3v* — pw + 2uw)B—
—(3r2 +2gs+ sv—rw)yy — Bsu+3rv—gw)s =0,
s = swa + 3sv = 3rw + w?)B — s?y — swé = 0.
By solving the algebraic system (11) relative to the coefficients of the system (2),
(4) and the parameters «,f, 7, 9, subject to Theorem 2.1 and the operators X;-X4
mentioned above, using Theorem 3.3, we obtain the following classes of systems

with polynomial inverse Lie’s integrating factor y~! (degenerate systems are not pre-
sented):



Lie theorem on integrating factor for polynomial differential systems 129

I. Systems on nonsingular invariant manifolds of dimension 4 relative to the
group GL(2,R):

t dO 4
) % =cx+dy+-x° +3qu+3rxy + % =,
e c
; + e® +1x°+3 30 +@q) 3
=ex+— 4+ 3ux?y - =
y ot y 2t A3t

where Q = 3e?q> — deqt — cert — 3cequ + cdtu, ® = —3deq + 3cer + d’t, ® =
—3eq + dt + 3cu.
Polynomial inverse Lie’s integrating factor of this system has the following form:

-1 _ ea/ tyfﬂ?z, where F| = cetx? + (=3e?q — c*t + det + 3ceu)xy — cdty* = 0,
c e’

Ty = e + 2tx® + c(Beq — db)xy + (=3deq + 3cer + d*t)y> = 0 are the particular
integrals of the mentioned system.

pyx — (pa + 3ua + 3vy)y o. i tyx + 2ta + 3uy)y 0
= y =

2
) ty3 ty3

where © = ey? + try>x? — 2tayxy + (4ta® + 6uay + 3vy?)y?.
Polynomial inverse Lie’s 1ntegrat1ng factor of this system has the following form
1= t2 BOPYF,F,, where T = tyx® + Qta — py + 3uy)xy + (pa + 3ua + 3vy)y? =
J, = ® = 0 are the particular integrals of the mentioned system.

3) x= 2] —L(ex +cy) |3 = 3e°rx® + ce(3er + SH)xy — A1

y=2 2(e)c +cy)|2e? + Petx? — (33 r + SAh)xy + 3ce’ry?.
Polynomial inverse Lie’s integrating factor of this system has the following forrn
= 9’13"23"3, where F1= —ex+cy =0, Fo=ex+cy =0, F3= ¢ — 3e?rx? +

3c? ry = 0 are the particular integrals of the mentioned system.

4 5=l 1),

y= 2231[2C etx + (3e r+ct)y](e + e’tx? —ZCetxy+cty)

[2c etx + 3er + ¢ t)y] (e — e2tx? + 2cetxy — ¢

Polynomial inverse Lie’s integrating factor of this system has the following form:
/fl = Zce5 3’1&"23"3, where 1 = —ex+cy = 0, F, = 2c%etx + (3 r + c3t)y =
F3= 3 — &2tx? + ?ty? = 0 are the particular integrals of the mentioned system.

II. Systems on singular invariant manifolds of dimension 3 relative to the

group GL(2,R):

2t(c—f)+3eu B 13gx ~ 3(et- ft+eu)®x 2_®2 3

231 4

3Q t— t+3 ®
y:ex+fy+tx +3u)cy——xy2 (C f3t eu) 3
e? e

1) x

0
cx+—y+
et




130 Victor Orlov

where Q = ¢2q + ¢t — 2cft + 2t + 2ceu —2efu, A © = 3e2q +2c%t —4cft+ 22t +

3ceu — 3efu.
Polynomial inverse Lie’s integrating factor of this system has the following form:
ul=— 703 23"13“2, where F) = —e%1x% + e(c — f)txy + @y? = 0 A~

Fr= -3 (c + f)r — 3t(ct — ft + 2eu) [e x> —e(c— fxy — ®y2] = 0 are the particular
integrals of the mentioned system.

. e® 30 ,  3(p-w® , @23
2) k= ex- gyt pr - XY = xy — gy
(»+ 3“)@)3

812

where © = p? — 9u? + 12tv, ® = p* — 2pu — 3u® + 4tv, ¥ = —ep + 2ct + 3eu.

Polynomial inverse Lie’s integrating factor of this system has the following form:
p' = =5 F1F, where Fy = 427 = 26(p — 3u)xy + (p* = 9u® + 12tv)y* = 0 and F =
—4t(ep—dct—=3eu)+ 122 (p+u) x> —6t(p=3u)(p+u)xy+3(p+u)(p> —9u>+12tv)y> = 0
are the particular integrals of the mentioned system.

Yy =ex+ Zy+tx + 3ux’y + 3vxy® +

) eu(2ta + 3uy) s 3, 3u ut 4
3) x:cx—2—y—ux——xy— Xy - =y,
t°y t &
. 2eta + cty + deuy 3 2 3u2 u3
y=ex+ y y+itx +3uxy+Txy +t—2y.

Polynomial inverse Lie’s integrating factor of this system has the following form:

ul= rftfz where F| = tx+uy = 0 and T = By(ea —cy)x + t2(ea — cy) 2ta + 3uy)y +

By(ta + uy)x® + 3tuy(ta + uy)x>y + 3tuy(ta + uy)xy* + uy(ta + uy)y® = 0 are the
particular integrals of the mentioned system.

epu 3pu 3pu® u’
4) x =cx+%y+px3+%x2y+ ]Zz Xy +‘Dt3 Y,
) ct+eu—ep 3 5 3u? u
y:ex+fy+tx‘ +3uxy+7xy +t—2y‘.

Polynomial inverse Lie’s integrating factor of this system has the following form:
y‘l 3"13’2&"3, where F1=tx—py =0, F,=tx+uy = 0, and F3 = 1(ct + eu) +
(p+ u)(tx + uy)2 0 are the particular integrals of the mentioned system.

ea(3ta — py + 3uy) 3 3a(ta—py+uy) ,
y+px’ + xX“y—
ty? v?

5) X=cx+

30?2t — py + 2uy) 2 @>Bta — py + 3uy) 3
- 73 xy© + 74 Y
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2eta — (ep — ct — 3eu)y
+ y
ry
3a(ta +2uy) ,  a*Qta +3uy) ,
— 5 Xy~ + 3 y.
Y Y

Polynomial inverse Lie’s integrating factor of this system has the following form:
-1 _ 5155

y=ex +1x + 3ux2y—

= T where ¥ = —ay + yx = 0, I, = tyx + Bta — py + 3uy)y = 0,
T3 = y*(ea—cy)+(ta—py)lay—yx]* = 0 are the particular integrals of the mentioned
system.
2 2
6) i=crt ep(p+3u)y+px3+3ﬂxz _3p© 5, pi(p+3u) 4

2 2t§ o %t(f)xy ( 4t33)2 g
. ct+ 3eu —ep 3 5 5 p(p+3u

—ex+ ————y+1x°+3 -y -
yE e 2t YRR MY 412

',
where ® = (p — u)(p + 3u).

Polynomial inverse Lie’s integrating factor of this system has the following form:
ﬂ_l = —#?13"23"3, where 1 = tx —py = 0, F, = 2tx + (p + 3wy = 0, F3 =
—2t(ep —4ct —3eu) +3(p + u)[22 x> — t(p — 3u)xy — p(p + 3u)y*] = 0 are the particular
integrals of the mentioned system.

2p+3 3 3p*(p+2 32p+3
7 x = cx+—ep( P M)y+px3+%x2y— P (592 u)x 2,0 (2p+3u) 5

2 N ’
ep+ct+3eu 3p(p+2u 2(2p+3u
y = ext LTI " Y10 +3ux’y— p(Pt )xy2+p ( ‘;)2 )y3,

Polynomial inverse Lie’s integrating factor of this system has the following form:
y‘l = (e”;fcﬂyff‘"]&"z, where 1 = tx — py = 0and &, = tx + 2p + 3u)y = 0 are the
particular integrals of the mentioned system.

Taking into consideration Remark 4.1, the propositions of Theorem 4.1 are proved.O

Remark 4.3. It can be verified that the differential systems above obtained have an
interesting geometry, for example, for some of them the origin of coordinates may be
a center or a focus, a saddle or a node.
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INFINITY AND STRAIGHT LINES OF TOTAL

PARALLEL MULTIPLICITY SIX
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Abstract In this paper the cubic systems with the infinite line filled up with singularities (i.e. with
the degenerated infinity) and having invariant straight lines of total multiplicity six are
classified. It is proved that there are 11 affine classes of such systems. For every class
was carried out the qualitative investigation in the Poincaré disc.

Keywords: cubic differential system, invariant straight line, phase portrait.
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1. INTRODUCTION

We consider the real cubic differential system

3
= ¥ P (x,y) = P(x,y),

r=0 (1)
dy _

3
dr — Z:er(x’y) = Q(X,)’),

where P,,Q, are homogeneous polinomials of degree r, GCD(P,Q) = 1 and
|P3(x, )| +1Q3(x, y)| # 0.

The curve f(x,y) =0, f € C[x,y] is said to be an invariant algebraic curve of (1)
if there exists a polynomial Ky € Clx, y], such that the identity %P(x, y)+ % O(x,y) =
f(x,)K¢(x,y) holds.We say that an invariant algebraic curve f(x,y) = 0 has the
parallel multiplicity equal to m, if m is the greatest positive integer such that £~
divides K.

The system (1) is called Darboux integrable if there exists a non-constant function
of the form f = fl/l' ---ff“’, where f; is an invariant algebraic curveand 1; € C, j = 1,3,
such that either f = const is a first integral or f is an integrating factor for (1). We
will be interested in invariant algebraic curves of degree one, that is invariant straight
linesax+ By +y =0, (a,B) # (0,0).

At present, a great number of works are dedicated to the investigation of polyno-
mial differential systems with invariant straight lines.

The problem of estimation the number of invariant straight lines which can have a
polynomial differential system was considered in [1]; the problem of coexistence of
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the invariant straight lines and limit cycles in [4], [5]; the problem of coexistence of
the invariant straight lines and singular points of a center type for cubic system in [3],
[10]. The classification of all cubic systems with the maximum number of invariant
straight lines, taking into account their multiplicities, is given in [6].

In [1] it was proved that the cubic system (1) can have in the finite part of the phase
plane at most eight invariant straight lines. The cubic systems with exactly eight
invariant straight lines has been studied in [6], [7] and with invariant straight lines
with total parallel multiplicity equal to seven in [11], [13]. A qualitative investigation
of systems (1) with six real invariant straight lines along two (three) directions is
given in [8] ([9]). In [12] were examined some cubic systems with degenerate infinity
having invariant straight lines of total parallel multiplicity five or six, three of which
are parallel. In this paper we continued the investigation from [8], [9], [12] and a
complet qualitative study of cubic systems (1) with degenerated infinity and invariant
straight lines (real or complex) of total multiplicity six is given.

Theorem 1.1. Assume that a cubic system with degenerate infinity possesses invari-
ant straight lines of total parallel multiplicity six. Then via an affine transformation
and time rescaling this system can be brought to one of the 11 system 1)-11). More-
over, its phase portrait on the Poincaré disc corresponds up to topological equiva-
lence to one of the portraiths given in Fig. I - Fig. 11. In the table below for each
one of the systems 1) - 11) the first arrow shows the straight lines and either the first
integral or integrating factor that corresponds to each system.

1) y=y(—a+2x—y+x); - (2) —Fig. 1;

x=x(x+ 1(x—-a), a>0,
Configuration (3r, 1r, 1r, 1r)

i=(x-a)x*+1), aeR,

2) y=y(=1=2ax -y + x); — (3) —Fig. 2;
Configuration (17 + 2¢g, 1r, 1¢y, 1cy)
= x(x - 12y - 1),

3) y=y-D2x-1) - 4 -Fig3;
Configuration (2r, 2r, 1r, 1r)
X =2xy(x—1),

4) y=0*+DRx—-1); — (5) —Fig. 4;
Configuration (2r, 2¢o, 1cy, 1c1)
=y(2+ 1),

5) y= x(y2 +1); — (6) — Fig. 5;
Configuration (2¢, 2¢g, 17, 1r)
= x(1 =2y +2x% +2y%),

6) y=Q2y—D(=y+ x> +y%); — (7) —Fig. 6;
Configuration (2¢y, 2¢y, 11, 1r)

h=x+1,h=x,=x-a,l4y=y,Is=(@+ 1)x—-y,
le =x—-y—a, Ll4/(lzls) = const.

2
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y=y(—l+2x+y+ax2—2xy); - (8) — Fig. 7,

X =x(x = (1 +ax—2y),
7)
Configuration (2r, 1r, 1r, 17, 1r)

¥ == +a)x+alx —y) +xy; - (9) - Fig. 8;

f=y(l+(x-a)}),a#0,
8)
Configuration (2¢, 1cy, 1cy, 11, 17)

X=y+ x> +2axy—y* +ax’+
+(@* + b* — X%y — axy?,

9) y = —x —ax® + 2xy + ay* + ax’y+ — (10) — Fig. 9;
+(@* + b* = Dxy? —ay®, ab # 0;

Configuration (1r, 1r, lcy, 1cy, Ley, Ley)

x = x(1 + 2ax = 2y + (a*> + b> — b)x*—
—2axy + (1 = b)y?),

y =y +bx* + 2axy + (b — 2)y* + (a>+

10) 157 — byy - 2axy? + (1 — by, — (11) — Fig. 10;
b(b — D)(lal + |b + 1]) # 0;
Configuration (1, 1r, 1¢y, 1cy, ley, 1ey)
i = x(1+ (a+b)x — 2y + abx* - 2axy+
+a—b+ 1)),
L o 2_
1 y=y(1+2ax+ (b —-a-2)y+abx 5 (12) - Fig 11;

—2axy + (a — b + 1)y?),
abla—-1)b-1)b—-a-1)#0,a>b;
Configuration (1r, 17, 1r, 1r, 1r, 1r).

h=x-i,hb=x—-a,lh=x+i,l4=y,
Leg=(@FDx+y+1xai; pxy) =1/(Lilslsl).

h=xbh=x-1,5L=y, h=y-1,I5=x-y, lg=x+y-1;

1 /(l3l4) = const.

h=xh=x-1,La=y+xi, I56=y+xi2x-1);
I314/(Islg) = const.

ho=xxi,l3a=yxils=x-ylg=x+y;
(li)/(I3ls) = const.

11’2 :yiix, 13,4 :y-T-ix— 1,I5=x, I :2y— 1;
L3l (Isle)* = const.

h=xbh=x-1, L=y, 4=x+y-1,Is=(@+ Dx-y,
le =ax—y+1; [1lh/(l4ls) = const.

ho=x—a+i,lza=y+ix,ls=ax+y—a*—1,
le =ax—y- a*-1; BLl/(Lk) = const.

hop=yFxi,ha=y—-(axtbix—-1,Is56=1+ax—y=+by,
l1r/(I514) = const.

3)

“4)

&)

(6)

(N

®)

(€))

(10)
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ho=yFxi,3a=y—-(axbix—-1,ls=1+ax—y+by, 1
lg = x; 11121314/(1516)2 = const. an

h=xbh=y,h=y-x,yj=y—ax—-1,lIs=y—-bx—-1,
le=ax+b-a-1)y+1; lilg/(lxls) = const.

(12)

_______ =

Fig. 9 Fig. 10.a) Fig. 10.b)

Fig. 11.a) Fig.
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2. SOME PROPERTIES OF THE CUBIC
SYSTEMS WITH STRAIGHT LINES

By configuration of straight lines we understand the R? plane with a certain num-
ber of straight lines.

To each bidimensional differential system (with invariant straight lines) we can
associate a configuration consisting of invariant straight lines of this system. It’s easy
to show that reciprocal affirmation is not always true.

The problem arise to determine such properties for invariant straight lines that
allow to construct all realizable configurations of straight lines for (1). Below we
shall enumerate such properties. Theirs proofs are not complicated and are not given
in this paper.

Proposition 2.1. In the finite part of the phase plane the system (1) has at most nine
singular points.

Proposition 2.2. In the finite part of the phase plane on any straight line there are at
most 3 singular points of the system (1)

Proposition 2.3. If system (1) has complex invariant straight lines then they occur in
complex conjugated pairs (I and ).

Proposition 2.4. The intersection point (xg, yo) of two invariant straight lines |, and
Iy of the system (1) is a singular point for this system. Moreover, if 1|, 1, € R[x,y] or
I, = [, then xo,yo € R.

Proposition 2.5. A complex straight line [ can pass through at most one point with
real coordinates.

Proposition 2.6. If a straight line passes through two distinct real points or through
two complex conjugated points, then this straight line is real.

A complex straight line passing through a real point will be called a relative com-
plex straight line and a complex straight line not passing through any real point - a
purely imaginary complex straight line.

Proposition 2.7. Through one and the same point of a purely imaginary straight line
can pass at most one real straight line.

Proposition 2.8. A complex invariant straight line of the system (1) is purely imagi-
nary iff this straight line is parallel with his conjugate (1 || I).

Proposition 2.9. If [} and [, are two parallel invariant straight lines of the system
(1), then only one of the following properties occurs:

1. 11,1 € Rlx,y], 2. 1y is real and I, is purely imaginary,

3. Iy and I are purely imaginary, 4. 1} and I, are relative complex.

We say that the cubic system (1) has degenerate infinity if the following identity
holds

yP3(x,y) = xQ3(x,y) = 0. (13)
If (13) holds, then infinity consists only of singular points.
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Proposition 2.10. The identity (13) is invariant under affine transformation of the
system (1).

Proposition 2.11. The invariant straight lines of the cubic system (1) with degenerate
infinity passing through the same point My (xg, o), X0,Yo € C have at most three
slopes.

Proposition 2.12. Through one and the same point of a complex invariant straight
line of the cubic system with degenerate infinity can not pass more than one real
straight line.

Proposition 2.13. The straight line passing through three distinct singular points of
system (1) with degenerate infinity is invariant for (1).

Proposition 2.14. The maximum number of the invariant straight lines for a differ-
ential cubic system with degenerate infinity is equal to six.

Proposition 2.15. Let the cubic system (1) has two concurrent invariant straight
lines 1y, ly. If 1y has the parallel multiplicity equal to m, 1 < m < 3, then this system
cannot have more than 3 — m singular points on I \ [;.

We say that three straight lines are in generic position if all lines have different
slopes and no more that two lines pass through the same point.

Proposition 2.16. Ifthe cubic system (1) has three invariant straight lines in generic
position, then their total parallel multiplicity is at most four.

Proposition 2.17. The cubic system (1) with degenerate infinity can have at most one
triplet of parallel invariant straight lines.

Proposition 2.18. The cubic system (1) with degenerate infinity can have at most two
pair of parallel invariant straight lines.

3. THE PROOF OF THEOREM 1.1
Using the Propositions 2.17 and 2.18, the family of cubic systems [(1),(13)] with

six invariant straight lines can be divided in four classes:

A) Systems with a triplet of parallel invariant straight lines;
B) Systems with two pairs of parallel invariant straight lines;
C) Systems with only a pair of parallel invariant straight lines;
D) Systems with invariant straight lines of different slopes.

The class A) was studied in [8], [12] and is characterized by the systems 1) and 2)
of Theorem 1.1.
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3.1. CLASS B): TWO PAIRS OF PARALLEL
INVARIANT STRAIGHT LINES

For cubic systems from the class B) are possible the next 13 configurations of the
straight lines:

B1) 2r,2r, 1r, 1r) B2) 2Q2)r,2r, 1r,1r)
B3) 2Q2)r,2Q2)r, 17, 1r) B4) (2r,2¢cp, 17, 1r)
B5) 2(2)r, 2¢q, 11, 17) B6) (2r, 2¢y, 1¢q, 1¢y)
B7) 2(2)r,2¢g, 1cy, 1cy) B8) (2¢¢, 2¢g, 1r, 1r)
B9) (2¢q, 2¢q, 1¢1, 1¢1) B10) (2¢¢,2¢y, Ir, 1r)

B11) 2(2)c1,2(2)cy, 11, 17) B12) (2¢y,2c¢1, 1y, 1cq)
B13) 2(2)c1,2(2)cy, 1cy, 1c)

By (2r,2r, 1r, 1r) we denoted the configurations which consists of six distinct real
straight lines /1, ...,ls € R[x,y], of which [, [, and I3, 4 form two pairs of parallel
straight lines, i.e. [y || b, 3 || ls, s ¥ Iz and [; f Iy, j=1,...,4,k =5,6. In the case
of configuration (2cg, 2¢, 1¢1, 1¢1) we have six straight lines [y, . . ., lg, where [1, 5, I3
and /4 are purely imaginary, /s and /¢ are relative complex, /1, > and /3,/4 form two
pairs of parallel straight lines. The configuration (2(2)r, 2r, 1r, 1r) consists of six real
straight lines, where Iy = b, 3 || ls, h ¥ I3, [; f I, j = 1,...,4, k = 5,6 and the
straight line /; (or l;) has parallel multiplicity equal to two.

Remark 3.1. The propositions 2.2, 2.5, 2.12, 2.15 and 2.16 do not allow the realiza-
tion of the configurations B2) - BS), B7), B9) and B11)-B13) in the class of the cubic
systems with degenerate infinity.

Configuration B1) (2r, 2r, 1r, 1r). Via an affine transformation and time rescaling
the system [(1),(13)] with two pairs of real invariant straight lines can be written into
the following form:

X=x(x-D+a), y=yy-Dx+b), abg{-1;0)}. (14)

The system (14) has the invariant straight lines [} = x, b =x—-1,3 =y, b =y -1
and the singular points (0, 0), (1,0), (0, 1), (1, 1), (b, —a). Therefore, any other in-
variant straight line of (14) must pass through the singular points (0,0) and (1, 1)
or through the singular points (1,0) and (0, 1). The straight lines s = x — y and
le = x +y — 1 passing through these points are invariant for (14) iff a = b = —1/2.
Replacing in (14) the values @ = —1/2, b = —1/2 and t = 271, we get the system 3)
from Theorem 1.1.

Configuration B6) (2r, 2¢g, 1cq, 1¢q). The cubic system with degenerate infinity
possessing two pairs of parallel invariant straight lines with the configuration (2r, 2¢g)
can be written as:

x=x(x-Dy+a), y=0>+1Dx+b), be{-1;0}. (15)
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The system has the invariant straight lines [} = x, b =x—- 1,13 =y+i,l4 =y —iand
the singular points (0, —i), (0,1), (1,1), (1, —i), (=b, —a). Let Is and [¢ are two relative
complex straight lines. According to the Proposition 2.3, they must pass through the
intersection points of the straight lines /y,..., /4. Let [5s passes through the singular
points (0, —i), (1,i), and lg through (0, 7), (1, —i), therefore they are described by the
equations Is = i(2x — 1) + y = 0 and /s = i(1 —2x) +y = 0. The straight lines /5 and /¢
are invariant for (15) if and only if a = 0 and b = —1/2. So, we obtained the system
4) from Theorem 1.1.

Configuration B8) (2¢g, 2¢cg, I, Ir) In this case the pairs of parallel invariant
straight lines can be brought to form /j, = x +i and 34 = y +i. The system
[(1),(13)] with these invariant straight lines is:

=P+ Dy +a), y=0G*+Dx+b). (16)

The system (16) has the singular points: (—i, —i), (i, 1), (i, i), (i, —i), (—=b,—a). The
real straight lines /5 and /s can pass only through the pairs of reciprocaly conju-
gate singular points (—i, —i), (i, i) or (=i, i), (i, —i), therefore they are described by the
equations /5 = x —y and lg = x + y. The invariance of these straight lines for the (16)
it is conditioned by a = b = 0, i.e. we have the system 5) from Theorem 1.1.

Configuration B10) (2¢y, 2¢y, 1r, 1r) Through an affine change of coordinates, the
straight lines [y, ..., [4 can be brought to the form /j» = y +ix, [34 =y +ix— 1. The
cubic system [(1),(13)] possessing these invariant straight lines can be written into
the following form:

A7)

X = ax + by + bx* = 2axy — by* + x> + xy?,
y=—bx+ay+(a— x> +2bxy — (a+ 1)y* + x>y + y>.

This system has the singular points: (0, 0), (-i/2,1/2), (0, 1), (i/2,1/2), (=b, a). The
real invariant straight lines /5 and g can pass only through the singular points (0, 0),
(0,1) and (-i/2,1/2), (i/2,1/2), therefore they are described by the equations /s = x
and /g = 2y — 1. These straight lines are invariant for the system (17) iff » = 0 and
a = 1/2. Thus, was obtained the system 6) from Theorem 1.1.

3.2. CLASS C): ONE PAIR OF PARALLEL
INVARIANT STRAIGHT LINES

For cubic systems from the class C) are possible the next 9 configurations of the
straight lines:

C1) Q2r,1r,1r, 1r, 1r) C2) 2QQ2)r,2r,1r,1r,1r)

C3) 2r, 1r,1r,1cy, 1) C4) Q) 1r,1r,1cy, Lcy)
C5) @2r, 1cy, 1cy, 1cy, 1er)  C6) 2Q2)r, 1cy, 1cy, 1y, 1cy)
C7) Qco, 1r, 1r, 17, 1r1) C8) (2¢p, Ir, Ir, 1¢cq, 1¢y)
C9) 2cy, Lcy, 1cy, 1ey, 1cy)
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Remark 3.2. The propositions 2.2, 2.5, 2.11, 2.15 and 2.16 do not allow the real-
ization of the configurations C2) - C7) and C9) in the class of the cubic systems with
degenerate infinity.

Configuration C1) 2r, 1r, 1r, Ir, Ir). Let the straight lines /1, I, I3, 4 with the
configuration (2r, 1r, 1r) are invariant for the system [(1),(13)]. These straight lines
can be brought to the form [} = x, [ = x—1, /3 = yand Iy = x+ y — 1. Therefore, the
system [(1),(13)] has the following form:

(18)

X = x(x — 1)(bo1 + b11 + azox + azy),
¥ = y(bo1 + b11x — b1y + azox® + az1 xy),

The intersection points of the straight lines of the system (18) are (0, 0), (0,1) and
(1,0). Through the singular point (1,0) pass the invariant straight lines /,,/3 and
l4. According to the Proposition 2.11 any other real invariant straight line must pass
through (0, 0) or (0, 1). Let /s and /s are real invariant straight lines of the system (18),
according to the Proposition 2.2 their intersection point belongs to the /: Is Nl =
(1,a+1) € I, where a # 0, a € R. Let /5 passes through (0, 0), (1, a+1) and /s through
(0,1), (1,a+1), i.e. they are described by the equations /s = (a+1)x—y, I = ax—y+1.
These straight lines are invariant for the (18) iff a3g = a, a1 = —b;; = —2. Using
these condition and rescaling the time ¢+ = —1/bg;7 in (18), we obtain the system 7)
from the Theorem 1.1.

Configuration C8) (2¢g, Ir, 1r, 1¢;, 1¢q). Let the system [(1),(13)] has four in-
variant straight lines of the configuration (2c¢g, 1cy, 1¢1). The straight lines can be
written as /12 = x —a +iand [34 = y + ix. The system [(1),(13)] with these invariant
straight lines has the form:

¥ = ((x = a)* + D(asox + axy),
{ ¥ = (a* + D)(azoy — ax1 %) + baox* — 2aazxy + (bao — 2aar))y*+ (19)
+a30x2y + a21xy2.

This system has the singular points O1(a — i, 1 + ai), Ox(a +1i,1 —ai), Oz(a+1i,—1 +
ai), O4(a — i,—1 — ai), 05(0,0), Og(az1(1 + a*)/byo, —azo(1 + a*)/by), O1 =1 N
4, Oy = b nls, O3 =1 NIy, O4 =11 NI3. Any other real invariant straight line of
the system (19) must pass through one of the two pairs of conjugate complex singular
points Oy, O, and O3, O4. Therefore, I5 = ax+y—a2—1 =0and/s = ax—y—a2—1 =0.
This straight lines are invariant for the system (19) iff asg = 0 and byg = a. Moreover,
after rescaling the time ¢t = 1/a;7 we get the system 8) from the Theorem 1.1

3.3. CLASS D): INVARIANT STRAIGHT LINES
WITH DIFFERENT SLOPES

For cubic systems from the class D) are possible the next 4 configurations of the
straight lines:
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D1) (1cy, ley, ey, 1ey, ey, 1er)  D2) (1eq, 1eq, 1eg, 1cq, 1r, 1r)
D3) (1cy, ey, 1, 1r, 11, 11) D4) (1r, 1r, 1r, 1r, 1r, 1r)

Remark 3.3. The propositions 2.2, 2.5 and 2.11 do not allow the realization of the
configurations D1) and D3) in the class of the cubic systems with degenerate infinity.

Configuration D2) (1c¢y, 1¢g, 1¢g, 1cq, Ir, Ir). Let the system [(1),(13)] has the
invariant straight lines /; € C[x, yI\R[x, ¥, j = 1,4, [; = L1, j= 1,3, [ {f Ik, j # k.
Via an affine transformation and time rescaling we can write [j = y+ix =0, l34 =
y—(axbi)x—-1=0,a,b €R, b(al +|b=£1]) # 0. There are two affine different
systems [(1),(13)] with these invariant straight lines:

x=y+ x> +2axy —y* + 2a — bp)x> + (a® + b* — 1)x%y — booxy?,
{ ¥ = —x+ (boa — 2a)x* + 2xy + boay? + (2a — bp)x*y+ (20)
+(a® + b* — 1)xy* — booy’;

i=x+cy+Qa+c)x* +2(-1+ac)xy — cy* + (=2 + a®> + b* — b+
+2ac)x> + (=2a — ¢ + a*c + b*c)x?y — (1 + bpp)xy?,

y=—cx+y+ Q2+ by - 2ac)x* + 2(a + c)xy + b02y2 + (=2 +a*+
b? — by + 2ac)x2y +(=2a—c+d*c + bzc)xy2 - (1+ boz)y3.

2h

Let Oy is the intersection point of the straight lines /; and I, j # k. Then we have

012 =(0,0), 013 =(-1/(=i+a+bi),1/(1 -b+ ai)),_
Or4 = (=1/(=i+a—bi), 1/(1 +b+ai)), O34 =1(0,1), 023 =014 and
024 = O43.

The straight line passing through the singular points O3 and O24 (O14 and O,3) it
is described by the equation 1 + ax —y + by = 0 (1 + ax —y — by = 0). Using only
the information provided by the singular points we can state that besides the invariant
straight lines /1 23 4, both systems can have invariant straight lines described by the
equations 1 +ax—y+by=0,1+ax—y—by=0and x =0.

The straight line x = 0 can’t be invariant for (20), because the coefficients of the
monomials y, —y* from the right side of the first equation of the system (20) are
constant. The straight lines Is = 1 + ax —y+ by and lg = 1 + ax — y — by are invariant
for (20) iff bgy = a. Therefore, replacing by, = a in (20) we obtain the system 9)
from the Theorem 1.1. The straight line 1 + ax —y + by = 0 is not invariant for the
system (21). Asking for x = 0 to be invariant we obtain ¢ = 0 and by, = b — 2 or
by = —b — 2, i.e. the system 10) from the Theorem 1.1 or the system

X = ‘P(X,y,a,_b,o)’ y:l//(X,y,a,_b,O), b(b+ 1)(|Cl|+|b_ ll) * 0 >

where ¢(x,y, a, b, c) and Y¥(x,y, a, b, c) are the right sides of the system (21). The two
systems are topologically equivalent.
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Configuration D4) (Ir, Ir, Ir, 1r, Ir, Ir). Let the system [(1),(13)] has at least
five real invariant straight lines with diffefrent slopes /;, j = 1,5. Via an affine trans-
formation we can bring these straight lines to be described by the equations: x =
0,y=0,y=x,y=ax+1,y =bx+1,abla-1)(b—-1)+#0,a < b. The cubic

system with these invariant straight lines has the form:

{ x=x(1+(@+bx—-2y+ abx?* — axy + Cyz)’ (22)

y=y(1 +ax—(c+ 1)y +abx? — axy + cy?).

Let Ojx = Ij NI, j # k. Any other invariant straight line /s of the cubic system (22)
must pass through the singular points O24 = (=1/a,0)and O35 = (1/(1-b),1/(1-b))
or through the singular points O,5 = (-=1/b,0) and O34 = (1/(1 — b),1/(1 - b),
therefore it is described by the equation: ax+ (b—a—-1)y+1=0,b—a—-1 #0or
bx—(b—-a+1)yy+1=0,b—-a+1#0. The straightlineax+(b-a-1)y+1=0
is invariant for the system (22) iff c = 1 + a — b. Replacing c = 1 + a — b in (22) we
obtain the system 11) from the Theorem 1.1.

The straight line bx — (b —a + 1)y + 1 = 0 is invariant for the system (22), iff
¢ =1 —a+ b, but this system is affine equivalent with the system 11).

3.4. QUALITATIVE INVESTIGATION OF THE
SYSTEMS 3)-11)

In this section, the qualitative study of the systems 3) — 11) from Theorem 1.1 will
be done. For this purpose, in order to determine the topological behavior of trajecto-
ries, the finite and the infinite singular points will be examined. This information and
the information provided by the existence of invariant straight lines, we will be taken
into account constructing the phase portraits of systems 3) — 11) on Poincaré disk.

We denoted by S P singular points; A; and A, the characteristic roots of the S P;
TSP — type of SP; § — saddle (1;4; < 0); N° — stable node (11,4, < 0); N —
instable node (11, A2 > 0); DN*® — “decritic” stable (instable) node (1; = A5 # 0);
C - centre.

In the next tables, the first column will b N
indicate the singular points of the systems; 1@
sponding to these singular points and the ‘

the second column - the eigenvalues corre-
third column - the types of the singulari-

ties. All these points are simple and together

a

with the invariant straight lines, entirely de-

termine the phase portrait of each of the sys- R

tems 3)-11). ‘
System 11) from Th. 1.1 was obtained for Fig. 12

abla-1)b-1)b-a-1)#0,a > b. In
the space of parameters we get three sectors
as shown in Fig. 12. The sectors J; and J3 provide two topologically equivalent
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phase portraits.

Tab. 1-3
System 3)

|  SP | aza4 | TSP|  SP | Az | TSP |

| 010,0) | —a:—a | DN* | 0,(1,0) | a:—a | S |

| 0s0.1) | —as-a | DN* | 041,1) | ai-a | S |

| Os(-a,-a) | —a;—a | DN* | Xo(1,0,0) | a:—a | S |

| Y(0,1,0) | —1;-1 | DN* | \

‘ System 4) ‘

| 03,00 | = | C |Xo(1,0,00| £2i | C |

| Yo(0.1,0) | 1:-1 | S | \

\ System 5) \

| 00,00 | £ | S |X(1,00)| i | C |

| Yo(0,1,0) | =i | C | \
| sp | Az | TSP|  SP | Az | TSP |
‘ System 6) ‘
| 010,0) | 1; 1 | DN' | 0)0.1) | 1:1 | DN |
I I S B |
‘ System 7) ‘
| 0,000 | -1:-1 | DN*| 0x0,1) | 1;1 | DN |
| 051,00 | a+lia+1 | DN' | O4-10) | == | 5§ |
| Os(la+1) | —a=li—a—1| N | Os(Z5.40) | =<8 | S |
| 1.(0,1,0) | 1; -1 | s | \
\ System 8) \
| 010,0) | zi@+D) | € | 0€H0) | 22| 5 |
| 15(0,1,0) | +i | ¢ | \
‘ System 9) ‘
| 010,0) | +i | ¢ | 0x0.1) | xbi | C |
| |

| s |
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| Ssp | Az | TSP |
| System 10) | b<0 | b>0|
| 010,00 | 1,1 | DN |
| 005 | x| S|
| 030,1) | -bi-b | DN' | DN* |
| System 11) | WU | L
| 01(0,0) | 1;1 | N |
| 020,1) |a-bia-b| N' |
| 030, 70 | =155 | S |
| O30 | 5 [N [ N
| O30 | =52 | s
Ol | =5 | s
| O ) | [N | N
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Abstract The object of the present article is to study and develop the generalized fractional inte-
gral operators introduced by Saigo and Maeda for N-function. The considered general-
ized fractional integration operators contain the Appell hypergeometric function F; as
a kernel. We establish two results of the product of two N-functions involving Saigo-
Maeda operators which are also believed to be new. On account of the general nature
of the Saigo-Maeda operators and also of the N-functions, a large number of new and
known results involving Saigo, Riemann-Liouville and Erdélyi-Kober integral operators
are special cases of our main results.

The results obtained provide extension of the results given by Ram and Kumar [6] for
the generalized fractional integration of the product of two H-functions.

Keywords: Aleph function, generalized fractional integration, fractional calculus, Mellin-Barnes type
integrals, Appell function F5, H-function, /-function.
2010 MSC: 26A33, 33E20, 33C20, 33C45.

1. INTRODUCTION AND PRELIMINARIES

The object of this paper is to study the generalized fractional integration operators
associated with the Appell function F3 [10] as a kernel, introduced by Saigo-Maeda

[9].
The Aleph-function is defined by means of a Mellin-Barnes type integral in the fol-
lowing manner [13, 14]:

(ajsAj) oo [7i(@joA ) i1, ] 1

(57:B))y oo (7501 B) i g | 27

where z #0,i = V-1 and

Pixqi,Tis T

x[z] — N"’l,l’l |:Z

fﬂfa’?ﬁm;r (s) z2ds, (1)
L

o m AT (b + Bys)} T2, {T (1 - a; - Ajs)]

pravtir le T jl'i:m+1 {F(l - bji - Bﬁs)} H?;nﬂ {F (aﬁ + Aj,-s)}.
The integration path L = Ly, (y € R) extends from y —ico to y + ico, and is such
that the poles of F(l -aj— Ajs) , j= (L_n) (the symbol (I,_n) is used for 1,2,...,n)

2
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do not coincide with the poles of I' (b j+B js) , Jj = (I,_m) The parameters p;, g; are
non-negative integers satisfying the condition 0 < n < p;, 1 <m < ¢q;, 71 > 0
fori = rr The parameters Aj, Bj,Aj;, Bj; > 0 and aj,bj,a;;,bj; € C. The empty
product in (2) is interpreted as unity. The existence conditions for the defining integral
(1) are given below:

01> 0, Jarg@| < S 1= T 3)
¢ >0, larg()| < gtpl and R{C}+1< 0, &)
where
@ = ZA +ZB —TI[Z AJ1+ Z Bﬂ] (5)
Jj=n+1 Jj=m+1
1 .
4= Zb —Za1+7’l[z bji— Z aﬂ] tsp-a). (1=T7). ©
j=m+1 j=n+1

Remark 1.1. Fort; = 1,i = 1,r in (1), we get the I-function due to V.P. Saxena
[16], defined in the following manner:

m,n _oemn
IZ:Z"[Z] Npqlr[] z’cpqlr[

(aj’Aj)l,n """ (af’Aj))1+1,p[' .
(b.f’Bf)l,l11 """ (b./"BJ')m-ﬁ—qu- '
. 1 Q Sd 7
= o . plqlr(S)Z ds, (7)
where the kernel Q [’)";' Iy (s) is given in (2). The existence conditions for the integral
in (1.1) are the same as given in (3) - (6) witht; = 1, i = 1,r

Remark 1.2. If we further set r = 1, then (1.1) reduces to the familiar H- function
[3,4]:

Hyylal =N 2] = N

ap.Ap . 1 iy
Zgbq,&,))] ~ Tmf Qg 9 27°ds, (8

where the kernel Qp"?’;_ 1.1 (8) can be obtained from (2).

pqll[

Remark 1.3. Fractional integration of Aleph function is discussed by Saxena and
Pogdny [14]. A detailed account of N- function is given in the papers by Saxena et
al. [13, 14].

The K- function of two variables occurring in the present paper will be defined and
represented in the following manner, which is also believed to be new and given first
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time by authors as following:

N[x,y]

Ot a1 [ (a7:@1.A7), (1) 1y o [TH(ERCD a1 (EED) | T E) 1!
y

(b7:8):85), P CR27) TS L1 CIN 1) ) PR 678 ) Tyese [7(£-F))]
1 1 i 2

AP}

Pq:PisqisTisP;»q;T;5"

my+1 ’[1;

(27”)2 f f ¢ (5,€) 01 (s) 02(&) x°y " dsde, )
where
" T (l—a;—as—A;
6(s.6) = o {r(1 - g —ays - A) (10)

[T (T (aj + @js + 4;6)) T4 T (1= b - Bys - Bj)}
e T2 (-0 -
e Lt T (D= i = Dyss)) T, 0 (T (e + Cos))

(11)
172 (f + Fg)) T {F( e - Eif)}
T T (T (1 fii - ﬂf)} e (T (e”f{’;?}

0:(6) = Q"2 (€)=

Pid;Tisr

2. GENERALIZED FRACTIONAL CALCULUS
OPERATORS

Let a,a’,B,B8’,y € C, Re(y) > 0 and x € R,, then the generalized fractional
integration operators involving Appell function F5 as a kernel are defined by Saigo
and Maeda [9] as following:

(aa BB Vf)

f(x—t)yl YFy(a, BBy 1 —t/x,1 — x/f) £ (1) dt,
(13)

I*()

and

(<27 ) = 2 f (t =)' 3 (0,0 BB ys 1 = xft, 1 = 1]x) £ (1) db,
(14)
here, Re () denotes the real part of v, and F3 (@, @, 8,8';v; 2, £) is the familiar Appell

hypergeometric function of two variables is defined by:

Fi(a,a,B.B y;2,é) = ZZ (@ (@0 Bl )y 2 &2 (2l <1, 16l < D). (15)

=0 0 Vimsn m! n!

I'(y)
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Lemma 2.1 ([9], p. 394, eqns. (4.18) and (4.19)). Let a,&’,B3,B',y € C, then there
holds the following power function formulae:
(i) IfRe(y) > 0, Re (p) > max [0, Re(a + o’ + B —y),Re (o’ — )], then
Ia/’a/vﬁﬁ,,)’xp—l — xp—a'—a/+y—] F(p) F(p ty-—a- a _ﬁ) F(p +ﬁ, - a")
o Tp+y-a-aNTp+y-a -PTp+p)
(ii) IfRe(y) > 0, Re(p) < 1+min|[Re(-B), Re(a + & —y), Re(a + B — )|, then

(16)

Ia,d/,ﬁ,ﬁ',’yxp—l — xp—(l—rx’+y—l Fl+a+ad —y-pll+a+p —y-pTQ _B_p).
- rM-pld+a+ad+B —-y-pI'l+a-B-p)
A7)

Remark 2.1. Generalized fractional integration formulas for the product of special
functions are discussed by Ram and Kumar [6], Gupta et al. [2] and Saigo et al.
[10].

3. LEFT-SIDED GENERALIZED FRACTIONAL
INTEGRATION OF THE PRODUCT OF TWO
N-FUNCTIONS

In this section, we study the left-sided generalized fractional integration Igf/
defined in (13).

BBy

Theorem 3.1. Let a,a’,B,8,y,0,4,w e C, Re(y)>0, (u,v>0),and

Re(0)+u min Re (%)H} min Re(%) > max [0, Re (@’ =), Re(a+a’ +B —7y)].
1<j<my J 1<j<my J

Further, let the constants aj,bj,aji,bj; € C, Aj,Bj,A;,Bj € R, (i=1,...pi; j=1,..,q);

Cj,dj,Cj,',dj,‘ € C, Cj,Dj,Cj,’,Dji € R, (l = 1,...,pl/.; j= 1,...,q;), T,‘,T; > OfOI’

i = 1,r also satisfy the conditions are given (3) - (6). Then the left-sided general-

ized fractional integration Igf BBy of the product of two N-functions exists and the
following relation holds:

.0’ BBy | o1 omi.n
{104_ ! NPi,qi,Ti;r At

(Llj,Aj)l’m 2 [T] (aj’Aj)]n|+l,pi ]
(bj, Bj)l,ml R [Tj (bj, Bj mi+1.g;
(

(cjv Cj)l,,12 s [T', cj, Cj)]n2+1,p; ]} (x) = xo-a-a’+r-1
(CT) N £ U |
-0, uv),d-c—-y+a+d +8; uv),

0,3:my,ny;mp,no Ax!
(l-oc-y+a+a;uv), 1-0-F;5uv)),

3.3:piqiTis g T | wx?
n2+l,pl’. (18)
(=a—y+a B ) (b.B)), oo [T3(01:B) ]y 1457 (D)), e [75(d5D5)]

P47

my N
N2 [wt”

X N

my+1 ,ql'.
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Proof. In order to prove (18), we first express the product of two Aleph functions
occurring on the left hand side of (18) in terms of Mellin-Barnes contour integral
with the help of equation (1) and interchanging the order of integration, we obtain
(say I):

_ 1 mp,ny s ma,ny —£ J ,Bﬂ)’ o—pus—vé—1
_WLQMM,(S)A ds | Q. ©w de (I “1) ()

= (27.”)2 le sz er’rxllqzn‘ln i (s) QZ}Z(;ZT, . (é‘:) /l_sw_"’c (Ig;a BBy tC"—,uS—vé—'—l) (X) ds dé‘-’,

from (16), we arrive at

_ 1 ff T(o-pus—vE) T(o—pus—vE+y—a—a —p)
S Ju, I T —pus—vé+y—a-a)T (o —pus—vé+y—a —p)

Lo-—ps—vi+f —a) 172 (T (b + Bjs)) T AT (1 - a; = Ays))
Plo—ps=vef) 5 0 1 (T (1= bji = Bis)| T, 40 (T (0 + Ajis))

12 {r (d; + ng)} M2 {r(1 - ¢ - C))

1 T (T (1= i = D)) 11, {1 (e + Ci6))
X xTTHSTVEma=a kY=l 48,8 g g (19)

By interpreting the Mellin-Barnes counter integral thus obtained in terms of the N-
function of two variables as given in (9), we obtain the result (18). This completes
the proof of Theorem 1. I

Special Cases of Theorem 1:
Ifweputr; =1, T; =1@G=1,2,..,r)in (18) and take (1.1) into account, then we
arrive at the following result in the term of /-function [16].

et |

(Cj, Cj)l,nz y ey (Cj, Cj)n2+1,17,,- ‘]} (x) = xo-—a—a’+)/—1
(). Dj)Lm2 oo (), Dj)mzﬂ’q;

AxH

Corollary 3.1.

{Igf BB s 7[0‘ llzflqi;l] A

S Y
Pl

% 10’3,: ml,lfl;,mz,,.nz
3,3:piqisp}a;r

-0 uv),d-c—y+a+d +B;u,v),
(I-oc-y+a+aiuv), 1-0c-pF;uv)),

(I-0o- ’8 +a V) (a]’ j)l,nl O (aj’Aj)n1+1,p,- ;(Cj’ Cj)l,nz v (Cj’ Cj)n2+1,p;
(1-0- Y+ a’ +ﬁ;,u, v): (bj, Bj)l,m1 5 euey (bj, Bj)m1+1,qi ;(dj, Dj)l,mz 5 euey (dj, Dj)m2+1,ql’.
(20)
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The existence conditions for (20) are the same as given in Theorem 1.
Ifweputt; = 1,7, =1 (i = I,_r) and set r = 1 in (18) and take (8) into account,

then we arrive at the following result in the term of product of two H-functions given
by Ram and Kumar [[6], Eqn. (17), p. 36].

Corollary 3.2.
Ia,a’,ﬁ,ﬁ',)/ o—1 HMom | g (aj’ Aj)l,p Hrriz,r/lz v (Cj’ Cj)l,p’
0+ [f P ( b, Bj)l,q (w1 (dj, Dj)l’q/ (x)

(I-o;uv),l-c-y+a+ad +p;uv)),

_ o—a—a' +y=1150,3:my,n13ma,no AXH
— H ’. -
(l-oc-y+a+aspv), 1-0c-F5un0),

3.3:p.q:p'q

(I-oc-F +a51v): (aj’Aj)l,p;(cj’Cj)l,p’ e
Ql-oc-y+ad +8unv): (bj’Bj)l,q ; (dj’Dj)l,q’
The existence conditions for (21) are the same as given in Theorem 1.
Now, if we follow Theorem 1 in respective case @’ = 8 = 0,8 = —n, @ =

a + B, vy = a. Then we arrive at the following corollary concerning left-sided Saigo
fractional integration operator [7].

Corollary 3.3. Let a,8,n,0,4,w € C, Re (@) > 0, u,v > 0 and let the constants
aj,bj,aj,-,bji eC, Aj,Bj,Aji,Bj,' ER, (i = 1,...,[7,'; ] = 1,...,6],'); CLCZj,Cji,dji eC,
C;,D;,Cj,Dji € Ry (': 1,. ,p;;j: 1,. ’.), T,-,Tf > 0 fori = 1,r. Further, sat-

isfy the condition Re (o) +u min Re (B, ) +v min Re (g’]) > max [0, Re (B —1n)].

1<j<my 1<j<my

Then the left-sided Saigo fractional integral Igf’" of the product of two N-functions
A ( ajs )1n1 R Tj(aj’Aj

exists and the following relation holds:
[ )]n1+1,p1 ]
(01 B1), |7 (03 Bi)l,, o
i)

(Cj’cj)l,n [ (CJ’ ]n2+1p :i] (x)
(D)), [T}(dJ’DJ)]mZH,q;

(I-0o5uv),d-0c—-n+p;u1v):
oc+Biuv),l-0c—-a-n; wv):

TV R (71 CTAT)] ML (TN o) N L1 TN ) |
(bj’ Bj)l,ml > [Tj (bj’ Bj):lm1+1,qi > (dj’ Dj)l,m2 > I:T; (dj’ Dj)]mz+1,q;

(YaﬁJ] (T 1 omy,ny
IO+ [ NI’: qi,Tisr

my,n
lelzl

pql‘rlr

wt’

o 2:
= x7 £-1 8(2)2m1n| mQ/l’l% )
PisqisTisP;q;-T;5"

(22)




Generalized fractional integration of the product of two N-functions... 153

For 8 = —a in Corollary 1.3, the Saigo operator reduces to Riemann-Liouville
operator [17] and we obtain the following result:
Corollary 3.4.

{13+ [fo-_l NZI’EZ}Ti;r [/l *+ ((Z{’zf))l,nl ’ ’ [Tj (aj’zj)]ﬂﬁl,m }

mew%@@MWW}m

(4 0)) (D),

— o+l RO Lminisma.ny Ax (1 -osmv): (aj’ j)l,m > [Tj (aj’ j)]n1+1,pi ’
- ;. . o/ ’ /. U
LL:piqistispl g tir | wx (1-0c-a;u,v): (bj, Bj)l,ml - [Tj (bj, Bj)]

(Cj, Cj)l,nz ) eeey [T; (Cj’ Cj)]n2+1,p,/- ‘ .

(dj’ Dj)l,mz e [T; (dj’ Dj)]m2+l’qt,'

Now, if we set § = 0 in Corollary 1.4, the Riemann-Liouville operator reduces to
Erdélyi-Kober operator [17] and we obtain the following result:

my,n
N ’25/2 /.

P q;5T;sr

wt’

1,m2 5 aeey

my+lq;’

(23)

Corollary 3.5.
I+ tO’—l Nl’l’l],ﬂ] A t/.[ (aj’Aj)l,l’ll > [TJ (aj’Aj):lnl-f-l,pi
n,a Piqi,Tisr . ) [T . (b - B )]
) Imy > 77 AN A m+1,qi
c-,C-) e [T’. (c-,C-)]
N o ( I =T, FANE A m+1,p; (x)
| 0.03) 02
d]’Dj Lmy > 7 TJ dj’Dj m2+1,ql’.
_—— NO,]ZmlJll;mZJIZ AxH (1 -o-muv): (aj’Aj)l m "
LLpigitippapmir | wx’ | (1 —0 —a — U, v) (bj, B;j Loy "

(24)

h@@mw%%wmwh@@mww.
h@@mﬂf@mme#%Mng

We can also obtain results of /-function and H-function for the corollaries 1.3, 1.4
and 1.5 by following the same method as done in corollaries 1.1 and 1.2.

4. RIGHT-SIDED GENERALIZED FRACTIONAL
INTEGRATION OF THE PRODUCT OF TWO
N-FUNCTIONS

In this section, we study the right-sided generalized fractional integration i
defined in (14).

BBy
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Theorem4.1. Leta,o’,B,8,y,0, 4, w € C, Re (y) > 0, (u,v > 0); Re(0)—u min Re(B—’)

<]<m1

—v min Re( )<1+m1n[Re(—ﬂ) Re(@+a —vy),Re(a+B —v)].

1<j<my

Further, let the constants aj,bj,a;;,bji € C, Aj,Bj,Aji, B € R, (i=1,..,pi; j=1,..,q);
Cj,dj,Cji,dj,' e C, Cj,Dj,Cji,Dj,' € R+ (i = 1,...,pl'-; ] = 1,...,q;), Tl',T; > OfOI”
i = 1,r also satisfy the conditions as given (3) - (6). Then the right-sided general-

ized fractional integration 1" BBy of the product of two K-functions exists and the
following relation holds:

At #

(17(1,1[3713/77 (T 1 omy,ng
I NP! qi>Tisl

gk
v |Ti D}, B
]’ J L’ Ti\%j>Bj mi+1,q;
Eicj,DCj)]’nz,...,[T%(Cj,cj)]n2+1,p; U (x) = xo-a-a+r-1
( J j)l,mz’m’ [Tj (dj’Dj)]szrl,q;

(c+y—a-d;uv), (c+y—a-B;5u,v),(0c+Bu,v):
(5,v), (C+y—a—-a =5 p,v),(0—a+puv):

(aj.4)),, - [Ti (@ a))], L (€)o7 e Cf)]n2+1,p;
(05B1), >+ (73 (05 Bi) 1 g (5 D3)y oo |75 D)),

Proof. In order to prove (25), we first express the product of two Aleph functions
occurring on the left hand side of (25) in terms of Mellin-Barnes contour integral
with the help of equation (1) and interchanging the order of integration, we obtain

(say I):
1 ’ /
— f Q]Z,“q,n‘ln ., (s) A~ Sds f QW,lz tlz, (f) a)_fdf( (“Yﬁ,ﬁ Y t(r+,us+v§-'—1) (x)
Ly L

- (27”-)2 DLt

f f Qi (5) QU2 (§) A wE (190 PP sl () dis de,
L JL,

N {w fv
(AN

X N

0,3:my,n1;ma,ny AxH
3.3:pigi TP g T | wx”Y

} . (25)

= (27Tl)2 Diq;Tir

from (17), we arrive at

ffF(l+a+a’—y—a’—ys—v§)F(l+a+/3’—y—0'—,us—v§)
L JI,

:(27ri)2 Frl—-oc-us-v&) TU+a+a’ +p —y—0 —us—vé)
[ (1-B-0—ps—-vi) T2, {r (b + Bjs)) T {0 (1 - a; - 4js))
P ra=poo—pus=v) 5o 7, 40 {0 (0= b= Bis)) THL, o {T (4 + Ajis))

72 {0 (dj + D)} T2, {T (1 - ¢ - Cie)}

Bier 7 T (U (1= i = D)} 117, (T (e + Ci)
x xo-+,us+vf—a—a/+y—l /l_‘w_‘f ds df (26)
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By interpreting the Mellin-Barnes counter integral thus obtained in terms of the N-
function of two variables as given in (9), we obtain the result (25). This completes
the proof of Theorem 2. |

Special Cases of Theorem 2:
Ifweputr; = 1,7, = 1(=1,2,..,r) in (25) and take (1.1) into account, then we
arrive at the following result in the term of /-function [16].

Corollary 4.1.

If’a”ﬁ’ﬁ,’y [to-—l e l/l - (aj’Aj)l,nl ’ “"(aj’Aj)nl+l,p,- }

Disqisr (b' B') )
P my P 41,

c-C~) (c-C~)
7 | ( P I Ny o\ m+1,p;
TPl . . . .

4 (dj,Dj)Lmz,...,(d.,,D.,)mZH’q’/_

0,3: my,ny;my,ny Ax7H
wx™V

] (x) = xa’—a—a’+y—1

< 1 (c+y—-a-ad;uv), (c+y—a-5;u,v),
3.3:pingisp i (sp,v), (C+y—a—-a = p5 pv),

(0 +Bu,v): (aj’Aj)l,nl - (aj’Aj)nlﬂ,p,- ;(cj,Cj)Ln2 ""’(Cf’cj)n2+1,p; }

(O' -—a +ﬂ;/.1, U) : (bj, Bj)l,ml 5 eees (bj, Bj)m1+l,qi 5 (dj, Dj)l,mz 5 eney (dj, Dj)m2+l,q,/.
27

The existence conditions for (27) are the same as given in Theorem 2.

Ifweputr; = 1,7, =1 (i = ﬁ) and set r = 1 in (25) and take (8) into account,
then we arrive at the following result in the term of product of two H-functions given
by Ram and Kumar [[6], Eqn. (20), p. 39].

Corollary 4.2.
I“,“"ﬁ,ﬁ's}’ {t(r—l HMom | H (aj’Aj)l,p mny | Y (CJ" Cj)l,p, ‘] (x)
- g . B rq D
(0 51),. (4.),"
— xa'fafw’erleO,S:ml,nl;mz,nz AxH (o + Y —-a-—- a’; J25 v), (o +ﬁ;/~l’ v),
33:paqip’ g’ wxV | (v, (c+y—a—-ao -F; uv),
(c+y—a-p;uv): (aj,Aj)l’p;(cj,Cj)Lp, } 28)
(0’ +ﬁ - a5, U) : (bj, Bj)l,q ) (dj, Dj)l,q’
The existence conditions for (28) are the same as given in Theorem 2.
Now, if we follow Theorem 2 in respective case @’ = 8 = 0,8 = —n, a =

a + f3, v = . Then we arrive at the following corollary concerning right-sided Saigo
fractional integration operator [7].
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Corollary 4.3. Let a,8,n,0, 4, w € C, Re (@) > 0, u, v > 0 and let the constants
aj,bj,aj,-,bjl- eC, Aj,Bj’Aji,Bji ER, (i= 1,..pis j= 1,...,611'); C];dj,Cj,',dji eC,
Cj,D;,Cj,Dj € R, (i =1,. ,pl’; j=1,. ’), T,-,T’ > 0 fori = 1,r. Further, sat-

isfy the condition Re (0)—u min Re ( B]) v min Re ( ) < I+min [Re (B),Re (1)].

1<j<my 1<j<my
Then the right-sided Saigo fractional integral ik of the product of two N-functions
exists and the following relation holds:

(bj’B)lml " [ (b]’ J mi+1,g;
N {w v (Cj, )1"2 [ , )]"2+1 i D (x)
Pt (d]’D )1 my [TJ (dj’Dj)]m2+l,q’.
(0 =B v), (= m wv): (apAg), s
(osu,v), (C—a—-B-n; w,v): (bj, Bj)l,ml

73 (@A), o (€C)y oo [T e Cf')]n2+1,p;

(7385, 11,7 (D32 D1) e |75 Df)]m2+1,q;

For B = —a in Corollary 2.3, the Saigo operator reduces to Riemann-Liouville oper-
ator [17] and we obtain the following result:

Pixqi,Tist

Ia’ﬁvn[ o—1 xml B!

—ﬁ 1 NOZ mi,n mz ny Ax7H
2,2:pi.qi, 7'117 [I, T,r (,L)X_U

‘ . (29)

Corollary 4.4.
Ioz[ o—1 N mT . A H (aj’Aj)l TR [Tj (aj’Aj):Inﬁl,p,- ‘
e (01-B)), 7 (81 Bl
(d]’ Dj)l,mz v [Tj (d]’ Dj)]m2+1,q;

At (O’ +a; U, v): (aj,Aj)l,n] 5 enes [Tj (Clj,Aj)]nH_] o .
wx™? (3, 0) (bj’Bj)L,m s [ (b BJ)]mwlq,
(Cj’ Cj)l,nz rrm I:T; (Cj’ Cj)]n2+1’p; ]

(d]’ Dj)l,mz > I:T; (d]7 Dj)]m2+1,ql',

o+a—1 o0,1:my,ny;my,ny

=X
L1:pinqitisp}oq;Tisr

(30)

Now, if we set 5 = 0 in Corollary 2.4, the Riemann-Liouville operator reduces to
Erdélyi-Kober operator [17] and we obtain the following result:
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Corollary 4.5.

- o—1 omi,.ng —u
Lo |17 Rplgimsr |41

P iy mi+1,gi

— (Cj’ Cj)l,nz 2 [T; (Cj’ Cj)]n2+l,p’.
[

N |97 (4D (dj,D BRI
e (j’ j)l,mz’ ’ ]( ) j)]mz+1,q;
_ o1 Ol M (c—n; wv): (aj,Aj)Lnl y enes
= L pingisTiop gt ~v . .
LepigiTipLan T | wx (c—a—-nu,v): (bj, Bj)l,ml s ees
oA (6€), e[ C)
[J VA VIR R AV WSl A N VA VPRS Woi 31)

ESTCI:2) | R (7o) N (A CF Df)]m2+1,q;

We can also obtain results of /-function and H-function for the corollaries 2.3, 2.4
and 2.5 by following the same method as done in corollaries 2.1 and 2.2.

Remark 4.1. (i). If we specialize the first H-function in Corollary 1.2 and 2.2 to
the exponential function by taking u = 1, then we obtain the result given by Ram and
Kumar [[6], Eqn. (21), p.41].

(ii). If we further set w = 0, then we obtain the result given by Ram and Kumar [
[6], Eqn. (22), p.41].

(iii). If we reduce the H-function to the generalized wright hypergeometric func-
tion [18], we have the results given by Ram and Kumar [[6], Eqn. (23), p.41].

(iv). A number of several special cases as Mittag-Leffler function, Whittaker func-
tion and Bessel function of the first kind can be developed for Corollary 1.2 and 2.2,
but we do not mention them here on account of lack space.
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Abstract We consider the problem of reconstructing, from the interior data u(x, 1) and u,(x, 1), a
function u satisfying a linear elliptic equation

Au=0, xeR, 0<y<1.

The problem is ill-posed. Using the method of Green functions, the method of
Fourier transforms, and the quasi-boundary value method, we shall regularize the prob-
lem. Error estimate is given.

Keywords: Fourier transform; linearly ill-posed problem; quasi-boundary value methods.
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1. INTRODUCTION

In this paper, we consider the problem of reconstructing the temperature of a body
from interior measurements. In fact, in many engineering contexts (see, e.g., [1]),
we cannot attach a temperature sensor at the surface of a body (e.g., the skin of a
missile). Hence, to get the distribution of temperature on the surface, we have to use
the measured temperature inside the body.

Precisely, we consider the problem of finding the temperature u(x,y), x € R, 0 <
y < 1 satisfying

Au=0, xeR, 0<y<1 (1

subject to the conditions
u(x, 1) = ¢(x), 2
uy(x, 1) = (), 3)

where ¢(x), Y(x) are given. The problem is called the Cauchy problem for linear
homogeneous elliptic equation. Using the method of Green functions and the method

159
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of Fourier transforms, we can rewrite the above system in the following form (see [8])

u(p,y) = l’@(p) [e(l—y)lpl + e(y—l)lpl] + L@(p) [e(y—l)lpl _ e(l—y)lpl] ) 4)
2 2|pl

The homogeneous problem was studied, by various methods in many papers. Us-

ing the mollification method, the homogeneous sideways parabolic problems were

considered in [2, 3, 4, 5-7] and the references therein. Similarly, many methods have

been investigated to solve the Cauchy problem for linear homogeneous elliptic equa-

tion such as the quasi-reversibility method [9], fourth order modified method [10],

Meyer wavelets [11], etc. Moreover, in [11,12,13], the error estimate was not given.

Especially, in [10], the authors considered the same form of the system (1)-(3) as
follows

Au=0, 0<x<1,yeR

u(0,y) = ¢(y),
uy(0,y) =0,

and in the case x = 1, they showed that the error between the aprroximate problem
and the exact solution is

llee(T, ) — (1, )| <
In—
0

where ||-|| is the norm on L*(R) and

1 1
€ = max{,u”,zp”‘l,iluz}E,

1

ln(g (lng)‘z”)’

llu(L,)ll, <E, p=0,
|Ill, denotes the norm in H”(R) defined by

+oo 1/2
wa»m=Lf@+¥meM@],

(o)

It is easy to see that the error above is not near to zero if p = 0. In the current
paper, we shall prove that

L4
nm@m—wwﬂm§c@{g)
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where |||, is the norm on L*(R), C is a positive constant. It is easy to see that the
convergence of the approximate solution is also proved.

In the present paper, we shall regularize (1)-(3) using the method of integral equa-
tion. We approximate problem (4) by the following problem

— N ) ]
us(p,y) = , %90(17) [e‘ie’ 7;:\ G} 1)\p|]

1— 2(1-y)lpl _z}w _q
i |p|:2<1*y>\p| ] |:€+e’2|17|:| eV )|P|w(p)

=

or

eIl

u(x,y) = . f W | +e@‘”""]e"f”dp
1 — e2U-»lipl e~ 2Ipl
\/ﬂf [ |ple21-)Ipl
S

The rest of the article is divided into two sections. In Section 2, we shall study the
ill-posedness and the regularization of problem (1)-(3). In Section 3, we shall give a
numerical experiment.

— ] e@_])lpla(p)eipxdp.
€ e

2.  MAIN RESULTS
2.1. THE ILL-POSEDNESS OF PROBLEM (1)-(3)

The Cauchy problem for linear homogeneous elliptic equation is severely ill-posed.
We shall prove solutions do not depend continuously on the given data. Indeed, we
choose

1 n
Q if |p| >
©u(p) =] el + e—lpl} |p3/2 lpl = n ©
0 if |pl <n
and R
where p € R, n € N.
Then, we have
”A “2 = ; 2 d < f e—2|p|n_d
Pz elrl + e~lpl rap P 4P

|p|>n

IA

L[ e2rlgp < lfe 2|p|dp _1

|p|>n
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From (4) and by choosing @,,, 1///\” in (7)-(8), we have

2 n? _ 1
|rd"(" O)HLZ(R) vy f lpI 7 dp = 1 ®)

|plzn
1
Letting n — oo in (9) and (10), we have [[§, [}z, = 0 while [ 012, = 7-
So, the problem is ill-posed.

2.2. REGULARIZATION OF PROBLEM (1)-(3)

Assume that u,, is the exact solution of (1)-(3), v., is the solution of problem
(6) corresponding to the exact data ¢,,, ¥,, and v, is the solution of problem (6)
corresponding to the measured data ¢, ¥, where ¢,., ¥,,, ¢, ¥, are in the right-
hand side of (6) such that ||<p6 - <pex||2 <€, ﬂ‘ﬁe - ‘ﬁex”z < € where |||, is the norm on
L*(R). Then, we have

1

2|p|$ex(p) [e(y—l)lpl _ e(l—y)lpl] . (9)

— 1 ~ _
Uex(p,y) = E(Pex(p) [e(l Pl 4 0 1)|p|] +

D — =ylpl _
Talp)) = 38 [ + eV
1| 1=e20-2lpl ~2y|pl “Dipl
+§ [ ‘p|§2(lfy)|p\ ] [Ei—e*z‘lﬂ] e(y Npl'?”ex(p)a
D - -lpl _
ve(p,y) = 19.p) [ 22 + D]
1| 1=e20-2lpl —2ylpl DIl
2 [\plsz“*-")'m [:I—e*ZW] et )lpl'ﬁ «p).

We have the estimate
||V€ - uex”Z = |F}\e _ﬁex”z < Hve _,V\etz + |F/\ex _Eetz . (10)
We first have the following lemma

Lemma 2.1 (The stability of a solution of problem (5)). Suppose that ¢,., ¥, ¢.
¥, € L*(R) and ||g0E - %x”z <€ ”l//E - (//ex“2 < €. Then we have

_ 3,
Ve ) =Vex 0|, < \—5@ +€)

forally € (0,1).
Proof. First, from (12) and (13), we have

. _ 1[ e _ _ .
Ve(psy) =Vex(p.y) = 5 | —— + € [2u(p) = Berlp)]




An ill-posed elliptic problem of reconstructing the temperature from interior data 163

11 = e20-»lpl e~ Ipl _ _
Z O=Dlpl -
3 [ |l || e + e—zm}e [we(p) %x(p)]-
(11
ol _
Using the inequality N < e for every x # 0, we have
X
1 — 2U-2lpl
meZ(—l—)’)lPl <2,forO<y<1. (12)
Moreover, one has, for s >y > 0 and a > 0,
e yinl 1 v
a+e Pl (geslol 4 1)i (@ + e-slply=F T L
Letting @ = €, s = 1, we get
-ylpl
L <ol (13)
€+ eIl
From (15), (16), (17) and take note that ¢~DPl < 1 for 0 < y < 1, we obtain
. 1[ el O .
Ve, y) = Vex(p, )| < Sl e )""] [8e(P) = Gor(p)|
1 1 =2 =2l ] —
—e0=Dlpl —
+—e |p|62(1—)’)|l’| € + e_2|p|] |¢’E(p) l//ex(p)|
| — —~ . —~
<5 (@7 + 1)) B + €7 ) = bap)]-
(14)

Applying the inequality (a + b)* < 2(a® + b?), we get
Fepy) - Tulpy)| < (e + 1) [Bup) B
2(e7) frp) - U]
In addition, since (@, - @,,) € L*(R) and (¢, - ) € L*(R), we have
(Ve = Vex) € LA(R). (15)

From (19), (20) and take note of the inequality Va? + b2 < a + b fora,b > 0, we
have

”\75(',)’) _Vex('ay)’lz < % (Ey_l + 1) ”’9-55 _aex”z + \/iey—l ”l///\e _Zex”z
< %(ey‘1+l)e+ \/Eey_le:(\%+ \/E)ey+\%e
<

3
W(ey + €).
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This completes the proof of Lemma 2.1. 1

Theorem 2.1. Let ¢, ¢ be as in Lemma 2.1. Assume that g, (p)e'”! € L*(R), ://\ex(p)eml" €
L2(R), then for every 0 <y < 1 we have

Ve, ) = ttex(, Il < M(€" + €)

where
M =+ = (B, 2 e, (16)
1. —ypl
Proof. First, from (11) and (12), we have v, (p, y)=ttex(p, y) = <pex(p) ¢ e eyl
i
111 = 20-»Ipl el ) .
— _ p2(=y)lpl| ,O-Dipl
2[ P20 || e+ el € ]e Vex(P).
(17)
Moreover, one has, for 1 >y > 0,
S0l _ e Pl _ ece P! , (18)
€+ e_lpl e‘lpl(e + e_lpl)
and take note that (17), we get
-ylpl
L < el (19)
—|I7|(€ + e_|p|)
From (24) and (25), we obtain
=ylpl
adld _ e(l—y)lpl < Eyelpl (20)
€+ eIl B '
Similarly, we also have
—2yipl
€T 209l ¢ 20
T e <ee ', 2D

From (23), (26), (27), (16) and take note that e®~DIPl < 1 for 0 < y < 1, we obtain
il

[Vex(p,) —ﬁex(p,y)| <= rex(p)|‘ " e1-VIp
2Pl | =Pl 2ol LoDl
— —YIp —Dip
| p|62<1 P | D le | [ex(p)]

< Eey |‘Pex(17)elpl| + e |$ex(p)ezlpl| )
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Applying the inequality (a + b)* < 2(a® + b?), we get

Vee(po ) —Tx(p )| < L@ Bt
+2 (Ey)2 |$ex(p)ezlpl|2 .

Therefore
— 1 -
|Fex('> V) — Uex(s, y)”; < 5 (Ey)Z ”‘pex(p)elplni
+2 (Ey)z ”;l’\ex(p)ez'p'”i :

Since @, (p)el”!, ’Jex(p)ez”" € L*(R) and the inequality Va2 +b% < a + b for
a,b > 0, we have

— 1 . .
Hvex(', V) = Uex (-, y)||2 < %fy ||(,Dex(p)e|p|”2 —+ \/zey '|l//ex(p)ez|P|||2
| Y. —
=~ (B, +2[Femer]) e
(22)

From (14), using Lemma 2.1 and (29) we get

176 3) = b )l < \%(e" . % ()], + 2[[Fnpre?],) €
<M(e +e€)
where 3 |
M=+ ([P, + 2 [Ferr™],).

This completes the proof of Theorem 2.1.

Theorem 2.1 gives a good approximation for the case 0 < y < 1.

To get an approximation result for the case y = 0, we shall use the result of the
following Lemma.

Lemma 2.2. Let ¢, { be as in Lemma 2.1. Assume that ¢, (p)el’! € L*(R), /w\m(p)ezu7| €
L*(R) and that problem (4) has a solution satisfying u, € L*((0,1); L*(R)). Then for
all € € (0, 1) there exists a y. > 0 such that

4 1y
Vex(:s ye) = tex(s, 0)“2 < \/gcl (ln(g))

where

1
N = f . 9)|[3 ds (23)
0
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and

Ci = max {N, % (IEextpre, +2 H%(p)ez“"llz)} . (24)
Proof. We have

y
Uex(X,y) = Uex(x,0) = f uy(x, s)ds.
0

It follows that
1
es3) = e OB <3 [ T 9ds = NP,
0

Using (29) and (30) and (31), we have

[Vex(C,¥) = ttex 0l < Vex(5,y) = thex (s Wlp + llttex (5 y) = ttex (-, 0)llp
< Ci(\y+€).

For every € € (0, 1), there exists uniquely a positive number y, such that 4/y. = €<,
ie.,
Inye

Ye
Using inequality Iny > —(1/y) for every y > 0, we get

=2lne.

\ [\l
[Vex(ss ye) — ttex(+, O)ll, < \/§C1 (ln (;)) .

This completes the proof of Lemma 2.2. |

In the case of non-exact data, one has
Theorem 2.2. Let ¢, i be as in Lemma 2.1. Assume that ¢, (p)e’! € L*(R), ’Jex(p)ezh”| €
L*(R) and that problem (4) has a solution satisfying u, € L*((0,1); L*(R)). Let

€ € (0,1) such that ||<,0E - <,oex||2 < € ||¢e - wex”z < €. Then from ¢, Y. we can
construct a function we satisfying

We(,y) = ttex(, Yl < M(€" + €)

foreveryy € (0,1) and

L\ 14
e+ 0) = tiex( O)l> < C(ln(g))
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where

3 1 —
2+ (e, 2 e,

M
1
Cr=maxt | [l 9lf ds. < (B, + 2[Fustrrc ],
0
d

an 3 3
C=—+-—+V&C,.
V8 V2
Proof. Let y. be the unique solution of
Vye = €<. (25)

We define a function w, as follow

Welry) = ve(»y), 0<y<l
7 Ve("ye), y = 0

From Theorem 2.1, we have

IWe(-,y) = ttexC, Ml = 1ve(,y) = ex(, M, < M(€" + €) (26)

for every y € (0, 1).
From Lemma 2.2, we have

1\ 14
[[Vex(-, )75) — Uex(+, 0)”2 < \4/§C1 (ln (;)) . (27)
Using Lemma 2.1 and (32), (34), we get

lIwe(:, 0) = sex(-, 0)ll2

”Ve('v ye) - uex('a O)”2

< e, ye) = vex(s, )’e)”z + [Vex(-s ye) = tex(-, 0)”2
3 ey 3 4R 1\
< 76 +76+ Cl(ln(e))
1\ 14
)
€
where
C=—+—+VBC
\F \f i

This completes the proof of Theorem 2.2. 1
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Remark 2.1. The condition u, € L*((0, 1); L*(R)) is difficult to check. We can present
some conditions of ¢, . Since (4), we have

— 1 . 5 1 — ~ B
p.y) = 58(p) [e1IP] 4 0-DI] 357 [0 — (0-0) - (28)
Therefore
0 __ 1 ~ i 1 - . i
5Py = SIplep) |-l 4 0= 5P p) [t 4 1=0P]
Y Ipl
1 - 1 _ 1 - 3 )
= SIplePE(p) [~e P+ 0D 4 | plePig(p) [ 0D 4 W]
2 2lpl

If1ple”@(p) € L2R), e?ly(p) € LX(R) then uy € L2((0, 1); LA(R)).
3. A NUMERICAL EXPERIMENT
Consider the linear homogeneous elliptic equation
Au=0, xeR,0<y<1

where u satisfies
u(x, 1) = p(x),

uy(x, 1) = y(x).

4
Consider the exact data ¢,,(x) = ——, ¥,(x) = 0 then
x-+4

+00
1 4
Gox(p) = — “Pxdx = \2me P! 29
©ex(P) \/erx2+4e x me (29)
and _
Yex(p) = 0. (30)

From (35), (36) and (11), we have
Uex(p,y) = \/g[e(l—y)lpl n e(y—1)|p|] =)

Consider the measured data ¢ (x) = (% + 1) @0 (X), we have
n

+00

1/2
HQOE - Soetz = ||¢e _aex”z = [f2628_4|p|dp] = €.

—00
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From (35), (36) and (13), we have the regularized solution

Ve(p,y) = \/g(% + 1)

Letebee; = 107!, e = 1075, €5 = 10710 respectively. If we put

e_ylpl - _
G T

€+ e Pl

y=1{0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

we get the following tables for the case 0 <y < 1

| a=10" | | e =107 | €3 =10710

oy Fetely | [ | Tl |y [ e,
02| 01119 | [02]20428x107 | [0.2]20433%x10717 |
03] 00957 | [03]1.6272x107 | |03 | 1.6275x 107! |
| 04| 0082 | |04]13241x107°| |04 13243x107' |
| 05] 00707 | ]05]1.0952x1075 | |0.5]1.0953x107' |
0.6 0.0607 | [0.6]9.1612x10°| | 0.6 |9.1619x 107! |
|07 ] 00519 | ]0.7|77117x10°% | |07 |77122%x 107" |
| 0.8 00441 | |08]65021x10°| |08 |65025%x107'" |
|09 00370 | |09]54650x107° | |09 |54653x107'" |
| 1| 00305 | | 1 [45545x10°| | 1 |45547x107" |

169

and we have the graphic is displayed in Figure 2, Figure 3, Figure 4 on the interval

[-5,5]x[0.2,1]
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FIGURE 1. The Fourier transform of the exact solution in the case 0 <y < 1.

FIGURE 2. The Fourier transform of the regularized solution with e; = 107!,
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FIGURE 4. The Fourier transform of the regularized solution with e3 = 10717,

In the case y = 0, from (32) and using inequality Iny > —(1/y) for every y > 0, we
get
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Therefore, we will choose y,, = 0.4, y,, = 0.2, y,, = 0.01, with € = 1071,
€2 = 107, €3 = 107! respectively, numerical results are given as follows

| [VeC.3) = Tex O], |

|
| e1=107" | ye, =04 | 0.3020 |
| =107 | y, =02 | 0.1311 |
| e3=10710 | y,, = 0.01 | 0.0077 |
3 T T T T T T T T
Note
1:6,=10"1 gy, =04
256 2: =02 b
3 =0.01
4
2k -
161 i,
1k -
nsr- -
D_5 4 4 ]

FIGURE 5. The Fourier transform of the exact solution and the Fourier transform of
the regularized solution in the case y = 0.

Notice that, in Figure 5, the 3rd curve expresses the Fourier transform of the reg-
ularized solution corresponding €3 = 1071%, y., = 0.01 coincides with the 4th curve
expresses the Fourier transform of the exact solution.
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Abstract The weakly contractive metric type fixed point result in Berinde [Nonlin. Anal. Forum,
9 (2004), 45-53] is almost” covered by the related altering metric one due to Khan et al

[Bull. Austral. Math. Soc., 30 (1984), 1-9]. Further extensions of both these results are
then provided.

Keywords: complete metric space, contraction, fixed point, altering metric, subunitary and right Boyd-
Wong function.
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1. INTRODUCTION

Let (X, d) be a complete metric space; and T € F(X) be a selfmap of X. [Here,
for each couple A, B of nonempty sets, F(A, B) stands for the class of all functions
from A to B; when A = B, we simply denote F(A, A) as F(A)]. Put Fix(T) = {z €
X; z = Tz}; each element of this set is called fixed under T'. In the metrical fixed point
theory, such points are to be determined by a limit process as follows. Let us say
that x € X is a Picard point (modulo (d, T)) when i) (T"x;n > 0) is d-convergent, ii)
lim,, (7" x) belongs to Fix(T). If this happens for each x € X, then T is called a Picard
operator (modulo d); and, if in addition, iii) Fix(T) is a singleton (z1,z, € Fix(T)
implies z; = z2), then T is referred to as a strong Picard operator (modulo d); cf.
Rus [13, Ch 2, Sect 2.2]. In this perspective, a basic result to the question we deal
with is the 1922 one due to Banach [2]: it states that, whenever T is a-contractive
(modulo d), i.e.,

(@01) d(Tx,Ty) < ad(x,y), ¥Yx,y € X,

for some «a € [0, 1[, then T is a strong Picard operator (modulo ). This result found a
multitude of applications in operator equations theory; so, it was the subject of many
extensions. For example, a natural way of doing this is by considering “’functional”
contractive conditions of the form

(a02) d(Tx,Ty) < F(d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y, Tx)), VYx,y€X;
where F : RS — R, is an appropriate function. For more details about the possible

choices of F we refer to the 1977 paper by Rhoades [12]; see also Turinici [15]. Here,
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we shall be concerned with a 2004 contribution in the area due to Berinde [4]. Given
a,d > 0, let us say that T is a weak (a, A)-contraction (modulo d) provided

(a03) d(Tx,Ty) < ad(x,y) + Ad(Tx,y), forall x,y € X.

Theorem 1.1. Suppose that T is a weak (a, A)-contraction (modulo d), where a €
[0, 1[. Then, T is a Picard operator (modulo d).

In a subsequent paper devoted to the same question, Berinde [3] claims that this
class of contractions introduced by him is for the first time considered in the literature.
Unfortunately, his assertion is not true: conclusions of Theorem 1.1 are “almost”
covered by a related 1984 statement due to Khan et al [9], in the context of altering
distances. This, among others, motivated us to propose an appropriate extension of
the quoted statement; details are given in Section 3. The preliminary material for
our device is listed in Section 2. Finally, in Section 4, a ”functional” extension of
Berinde’s result is established. Further aspects will be delineated elsewhere.

2. PRELIMINARIES

Let (X, d) be a metric space. Let us say that the sequence (x,,) in X, d-converges to
x € X (and write: xninc) iff d(x,, x) — 0; that is
d01) YVe>0,dp = p(e): n= p = d(x,,x) < e&.
Denote lim,(x,) = {x € X; xnivc}; when this set is nonempty, (x,) is called d-
convergent. Note that, in this case, lim,(x,) is a singleton, {z}; as usually, we write

lim,(x,) = z. Further, let us say that (x,) is d-Cauchy provided d(x,,, x,) — 0 as
m,n — oo, m < n; that is

102) Ve>0,dg =q(e): g <m <n= d(x;;, x,) < &.

Clearly, any d-convergent sequence is d-Cauchy too; when the reciprocal holds too,
(X, d) is called complete. Concerning this aspect, note that any d-Cauchy sequence
(xp;n = 0) is d-semi-Cauchy; i.e.,

(b03) p,, := d(xp, x441) — O (hence, d(x,, xp+;) = 0, Vi > 1), as n — oo.

The following result about such sequences is useful in the sequel. For each sequence
(zp;n = 0)in R and each z € R, put z,, | ziff [z, > z, Vn] and z, — z.

Proposition 2.1. Suppose that (x,;n > 0) is d-semi-Cauchy, but not d-Cauchy. There
exists thenn > 0, j(n) € N and a couple of rank sequences (m(j); j = 0), (n(j); j = 0),
in such a way that

J<m(j) <n()), a(j):=d@Xm;), Xnp) > 1, Vj20 ey

n(j) =m(j) 2 2, B(j) := d(Xm(j), Xn(j-1) S 1, ¥Vj = j(n) 2
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a(j) | n (hence, a(j) — n)as j — o (3)
@p.g(J) 1= d(Xm(jy+ps Xn(jy+q) = 1> as j = o0, ¥p,q €{0,1}. 4)

A proof of this may be found in Khan et al [9]. For completeness reasons, we
supply an argument which differs, in part, from the original one.

Proof. (Proposition 2.1) As (b02) does not hold, there exists n > 0 with
A(j) ={m,n) e NXN;j<m<ndxyux,)>n#0, Vj=0.
Having this precise, denote, for each j > 0,
m(j) = min Dom(A())), n(j) = min A(m(j)).

As a consequence, the couple of rank-sequences (m(j); j > 0), (n(j); j > 0) fulfills
(1). On the other hand, letting the index j(r7) > O be such that

d(xg, xe1) <m, Yk = j(), &)

it is clear that (2) holds too. Finally, by the triangular property,
n < a(j) < B+ Pu-1 SN+ Pugjy-1> YJ = j);
and this yields (3); hence, the case (p = 0, g = 0) of (4). Combining with
() = Ppcjy < dXm(j) Xn(jy+1) < @) + ppgjy> Vi Z j)

establishes the case (p = 0,¢g = 1) of the same. The remaining situations are de-
ductible in a similar way. I
3. MAIN RESULT

Let X be a nonempty set; and d(., .) be a metric over it [in the usual sense]. Further,
let ¢ € F(R,) be an altering function; i.e.

(cO1) ¢ is continuous, increasing, and reflexive-sufficient [¢(¢) = 0 iff = 0].
The associated map (from X X X to R,)
(c02) e(x,y) = ¢(d(x,y)), x,y € X
has the immediate properties
e(x,y) = e(y,x), Yx,y € X (e is symmetric) (6)
e(x,y) = 0 & x = y (e is reflexive-sufficient). @)

So, it is a (reflexive sufficient) symmetric, under Hicks’ terminology [8]. In general,
e(.,.) is not endowed with the triangular property; but, in compensation to this, one
has (as ¢ is increasing and continuous)

e(x,y) > e(u,v) = d(x,y) > d(u,v) (8)
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d d
X=X, y,—y implies e(x,,y,) — e(x,y). 9

Suppose in the following that
(c03) (X,d) is complete (each d-Cauchy sequence is d-convergent).

Let T € F(X) be a selfmap of X. The formulation of the problem involving Fix(T) =
{x € X; x = Tx} is the already sketched one. In the following, we are trying to solve
it in the precise context. Denote, for x,y € X,

(c04) M(x,y) = e(x,y), Ma(x,y) = (1/2)[e(x, Tx) + e(y, Ty)],
M3(x,y) = minfe(x, Ty), e(Tx, )},
M(x,y) = max{M;(x,y), M2(x,y), M3(x, y)}.
Further, given ¢ € F(R,), we say that T is (d, e; M, )-contractive, provided
(c05) e(Tx,Ty) < y(d(x,y)M(x,y),Vx,y € X, x # y.
The properties of ¢ to be used here write
(c06) ¥ is strictly subunitary on R(l :=]0,c0[: () < 1,Vs € R(l
(c07)  is right Boyd-Wong on RY: limsup,_, ., y(t) < 1, Vs € RY.

This is related to the developments in Boyd and Wong [6]; we do not give details.
The main result of this exposition is

Theorem 3.1. Suppose that T is (d, e; M, yr)-contractive, where € F(R,) is strictly
subunitary and right Boyd-Wong on RY. Then, T is a strong Picard operator (modulo
d).

Proof. First, let us check the singleton property for Fix(T'). Let z;,z, € Fix(T) be
such that z; # zp; hence ¢ := d(z1,22) > 0, € := e(z1, z2) > 0. By definition,

M\(z1,22) = &, Mx(22,20) = 0, M3(x,y) = &; hence M(x,y) = &.
By the contractive condition (written at (z1,22))
e=e(z1,22) = e(Tz21, Tz2) S Y(6)M(z1,22) = Y(O)e;

hence, 1 < () < 1; contradiction. This established the singleton property. It
remains now to verify the Picard property. Fix some x¢p € X; and put x, = T"xo,
n > 0. If x, = x,4 for some n > 0, we are done; so, without loss, one may assume

(c08) p, :=d(xy, xp+1) > 0 (hence, o, := e(xy, Xp41) > 0), for all n.

There are several steps to be passed.
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I) For the arbitrary fixed n > 0, we have

M (xp, Xpt1) = Op,
M (xp, Xpv1) = (1/2)[0n + 0pp1] < max{oy, opi1},
M3(xp, Xu+1) = 0; hence M(xy, Xu+1) < max{oy, op41}.

By the contractive condition (written at (x;, X,+1)),

Op+1 < lﬁ(ﬂn) max{o,, 01}, Yn.

This, along with (c08), yields (as i is strictly subunitary on R?)
One1/on < Y(p,) < 1, Vn. 10)
As a direct consequence,
o, > oy (hence, p, > p,.. ), for all n.

The sequence (p,,; n > 0) is therefore strictly descending in R.; hence, p := lim,(p,,)
exist in R, and p, > p, Vn. Likewise, the sequence (o, = ¢(p,);n = 0) is strictly
descending in R, ; hence, o := lim,(07,) exists; with, in addition, o = ¢(p). We claim
that p = 0. Assume by contradiction that p > 0; hence o > 0. Passing to lim sup as
n — oo in (10) yields

1 < limsupy(p,) < limsupy(?) < 1;
n

t—p+
contradiction. Hence, p = 0; i.e.,
0, = d(Xy, Xp41) = 0, as n — oo. (11D

II) We now show that (x,;n > 0) is d-Cauchy. Suppose that this is not true.
By Proposition 2.1, there exist > 0, j(7) € N and a couple of rank sequences
(m(j); j = 0), (n(j); j = 0), in such a way that (1)-(4) hold. Denote for simplicity
¢ = @(n); hence, ¢ > 0. By the notations used there, we may write as j — oo

Aj = e(Xm(jy+1- Xn(je1) = @(a1,1())) — .

In addition, we have (again under j — oo)

My (X jys Xn(j)) = @(a())) = ¢
Mo (Xm(jy Xn(jy) = (L 2[00y jy) + @(0nj)] = 0
M3 (X jy» Xn(j)) = min{e(ao,1())), (a1,0())} = &;

and this, by definition, yields

Hj = M), Xn(j)) = £ as j — oo.
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From the contractive condition (written at (X j), Xn(j)))

Ajluy < yla(f), Vj= jon);
so that, passing to limsup as j — oo

1 <lim sup Y(a())) < limsupy(r) < 1;

J t—n+

contradiction. Hence, (x,; n > 0) is d-Cauchy, as claimed.

III) As (X, d) is complete, there exists a (uniquely determined) z € X with xnim;
hence vy, 1= d(x,,7) = 0asn — oo.

Two assumptions are open before us:

i) For each h € N, there exists k > h with x; = z. In this case, there exists a
sequence of ranks (m(i); i > 0) with m(i) — oo asi — oo such that x,,;) = z, ¥i; hence,
Xm(y+1 = T'z, Yi. Letting i tends to infinity and using the fact that (y; 1= x,)+15i > 0)
is a subsequence of (x;;i > 0), we get z = Tz.

ii) There exists & € N such thatn > h = x,, # z. Suppose that z # Tz; i.e., 6 :=
d(z, Tz) > 0; hence, w := e(z, Tz) > 0. Note that, in such a case, 6,, := d(x,,Tz) — 6.
From our previous notations, we have (as n — o)

Ay = e(Xn11,T2) = @(6n+1) = ¢(6) = w.
In addition (again under n — o),
M (xp, 2) = @(y,) = 0, Ma(xy,2) = (1/2)[0y + w] = w/2
M;3(x,,2) = min{‘ﬁ(én)’ 90(7n+1)} — 0;

wherefrom,
My = M(x,,2) = w/2,as n — oo.

By the contractive condition (written at (x;,, 2))

we then have (passing to limit as n — o), w < w/2; hence w = 0. This yields 8 = 0;
contradiction. Hence, z is fixed under T and the proof is complete. i

In particular, the right Boyd-Wong on R property of i is assured when this func-
tion fulfills (c06) and is decreasing on R?. As a consequence, the following particular
version of our main result may be stated.

Theorem 3.2. Suppose that T is (d, e; M, yr)-contractive, where € F(R,) is strictly
subunitary and decreasing on R®. Then, T is a strong Picard operator (modulo d).

Let a,b,c € F(R;) be a triple of functions. We say that the selfmap T of X is
(d,e;a, b, c)-contractive if
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(c09) e(Tx,Ty) < ald(x,y))e(x,y) + b(d(x,y))le(x, Tx) + e(y, Ty)]+
c(d(x,y)) min{e(x, Ty),e(Tx,y)}, Vx,y € X, x # y.

Denote for simplicity ¥ = a + 2b + c; it is clear that, under such a condition, T is
(d, e; M; r)-contractive. Consequently, the following statement is a particular case of
Theorem 1.1 above:

Theorem 3.3. Suppose that T is (d, e; a, b, c)-contractive, where the triple of func-
tions a,b,c € F(Ry) is such that their associated function W = a + 2b + ¢ is strictly
subunitary and right Boyd-Wong on RY. Then, conclusions of Theorem 1.1 hold.

In particular, when a, b, c are all decreasing on R?, the right Boyd-Wong property
on R(l holds; note that, in this case, Theorem 3.3 is also reducible to Theorem 3.2.
This is just the 1984 fixed point result in Khan et al [9].

Finally, it is worth mentioning that the nice contributions of these authors was the
starting point for a series of results involving altering contractions, like the one in
Dutta and Choudhury [7] or Nashine et al [10]. Some other aspects may be found in
Akkouchi [1]; see also Pathak and Shahzad [11].

4. FURTHER ASPECTS

Let again (X, d) be a complete metric space and T € F(X) be a selfmap of X.
A basic particular case of Theorem 3.3 corresponds to the choices g=identity and
[a, b, c=constants]. The corresponding form of Theorem 3.3 is comparable with The-
orem 1.1. However, the inclusion between these is not complete. This raises the
question of determining proper extensions of Theorem 1.1, close enough to Theorem
3.3. A direct answer to this is provided by

Theorem 4.1. Let the numbers a,b € R, and the function K € F(R,) be such that
(d01) d(Tx,Ty) < ad(x,y) + bld(x,Tx) +d(y, Ty)] + K(d(Tx,y)), Vx,ye X

(d02) a+2b<1and K(t) > 0ast — 0.

Then, T is a Picard map (modulo d).

Proof. Take an arbitrary fixed u € X. By the very contractive condition (written at
(T"u, T"'u)), we have the evaluation

AT u, T u) < Ad(T"u, T"™ 'w), Vn > 0. (12)
where A := (a + b)/(1 — b) < 1. This yields
d(T"u, T 'u) < A"d(u, Tu), ¥n > 0. (13)

Consequently, (7"u; n > 0) is d-Cauchy; whence (by completeness)

d
T"u—>z := T*u, for some z € X.
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From the contractive condition (written at (7"u, 7)),
d(T" ', T7) < ad(T"u, 2) + bld(T"u, T 'u) + d(z, T2)] + K(d(T"'u, z)), VYn.

Passing to limit as n — oo gives (via (d02)) d(z, Tz) < bd(z, Tz); so that, if z # Tz,
one gets 1 < b < 1/2, contradiction. Hence z = T'z; and the proof is complete. §

In particular, when & = 0 and K(.) is linear (K(t) = At, t € R, for some 4 > 0),
this result is just Theorem 1.1. Note that, from (13), one has for these "limit” fixed
points, the error approximation formula (which — under the accepted conditions for
our data — is available as well in case of Theorem 3.3)

d(T"u, T™u) < ["/(1 = D))d(u, Tu), ¥n € N. (14)

However, the non-singleton property of Fix(7') makes this “local” evaluation to be
without practical effect in Theorem 4.1, by the highly unstable character of the map
u — T%u: even if the distance d(u,v) between two initial approximations would
decrease, the distance d(Tu, T*v) between the associated fixed points may not de-
crease.

Finally, another interesting particular case to consider is that of ¢ being an arbitrary

altering function and [a, b, c=constants]; we do not give details. Further aspects may
be found in Bhaumik et al [5] see also Sastry and Babu [14];
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Abstract Mathematical models of linear discrete-time set-valued Pareto-Nash-Stackelberg control
processes are examined as extension of mono-valued Pareto-Nash-Stackelberg control
models proposed by V. Ungureanu in [10]. A straightforward principle is applied to
solve Pareto-Nash-Stackelberg control problems. Models and results are presented in
natural order by beginning with the simplest case and, by sequential considering of
more general cases, the results for the highlighted Pareto-Nash-Stackelberg set-valued
control are presented. The maximum principle of Pontryagin is extended for considered
control processes, too.

Keywords: linear discrete-time set-valued control problem, non-cooperative game, multi-criteria strate-
gic game, Pareto-Nash-Stackelberg set-valued control.
2010 MSC: 49N05, 62C25, 91A06, 91A10, 91A20, 91A44, 91A50, 91A65, 93C05, 93C55.

1. INTRODUCTION

Pareto-Nash-Stackelberg control processes, examined in [10] as extension and in-
tegration of optimal control processes [6, 1] with simultaneous and sequential games
[9, 8,4, 5, 2], are generalized by considering the set-valued multi-criteria control pro-
cesses of a system with discrete-time dynamics described by a system of set-valued
linear equations. The Pareto-Nash-Stackelberg set-valued control problems of linear
discrete-time system are solved by applying a straightforward principle [10]. The
characteristics and properties of Set-Valued Algebra [7] together with Interval Anal-
ysis [3] serve as foundation for obtained results.

Exposure starts with the simplest case of linear discrete-time set-valued optimal
control problem and, by sequential considering of more general cases, finalizes with
the Pareto-Nash-Stackelberg set-valued control problem. Maximum principle of Pon-
tryagin [6, 10] is extended, formulated and proved for all the considered problems,
too. Its equivalence with the straightforward direct principle is established.
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2. LINEAR DISCRETE-TIME SET-VALUED
OPTIMAL CONTROL PROBLEM

The system may be imagined as an n-dimension dynamic body the state of which is
described by the set of points in every time moment. So, the initial state is described
by the initial set X° ¢ R”. The optimal control problem naturally arises:

T
F(X,U) Z(cfxf +b'U") — max,

=1 (1)
X! AL BiXt t=1,..,T

D'U" < d,t=1,..,T

where X, X' ¢ R", ¢’ € R", U' c R", b’ € R", A”"! € R™™" B' ¢ R™" d' ¢ R,
D' € RP X' = (¢, X, U = (W', U", t = 1,..,T, U = (U, U%...U"), X =
(X%, x', ..., XT). Set operations in (1) are defined obviously [7]: AX = {Ax : x € X},
VX c R",YA c R™",

Remark, the objective set-valued map F' : X X U — R, F(X, U) C R, represents a
summation of intervals. So, the applying of interval arithmetic [3] is intrinsic.

By performing direct substitutions in (1):

x! =A%+ B'U',

Xx? =A'X'+BU? = AY(A°X" + B'U") + B*U? =
=A'AX? + A'B'U' + B*U?,

X =A’X?+ BU? = AX(A'A'X? + A'B'U' + B*U?) + BUP =
= A2A'APX0 + AZA'B' U + A2B2U? + B3UP,

XT ‘:”AT—IxT—l + BTUT —
T-1 T-1 T-1
=[Jax + l_[A’BlUl + HA’BZUZ I
t=0

t=1 =2
+ AT—IBT—IUT—l + BTUT,
and by subsequent substitution of the resulting relations in the objective map:

F(X,U) =
=c1(A'X" + B'UY) + 2(A'A°X0 + A'B'UT + B2U?)+
+c3(A%A! AOXO + AZA BlUl + AZBZU2 +B3U3)+

+cT(ﬂA Xf+]_[A B'U! +1_[A’192U2
AT TRT-1T- 1+BTUT)+
+blU1 +bL2Ur + ... +DTUT =
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= (' + PAY + SA%AY + .+ TAT1AT2 AHAYXO+
+(c'B' + 2A'B' + A%A'B! + .+
+cTATTAT2 A'B' + HU '+
+ (2B + PA’B? + *ASAB? + .+
+cTATIAT2 A2B2 + P)U? + ..+
+(c"BT + p")UT,
the problem (1) is transformed into:

FWU) =" +A" +3A2A + .+ TAT1AT2 AHA X0+
+(c'B' + PA'B' + PA%A'B! + .+
+cTAT1AT2 A'B' + bHU ' +
+(c?B? + CA%B? + *APAPB? + .+ (2)
+cTATTAT2 A2B? + PHU? + ..+
+ (BT + b")UT — max,

DU <d,t=1,..T.

Obviously, (1) and (2) are equivalent.

The form of the objective map (2) establishes that the optimal control doesn’t
depends on initial state X°.

By applying the specific interval arithmetic properties of linear set-valued pro-
gramming problems, we can conclude that the solution set of problem (2) is equiva-
lent with the solution set of traditional point-valued linear programming problem, that
is we can consider that, in general, the cardinality of every control set U!, U?, ..., UT
is equal to 1. So, the solution of the problem (2) may be obtained as a sequence of
solutions of T linear programming problems. Apparently, we constructed polyno-
mial method of solving (1). In fact, the method has a pseudo-polynomial complexity
because of possible exponential value of T on n.

Theorem 2.1. Let (1) be solvable. The control @', @2, ..., a" , is optimal if and only if
i’ is the solution of linear programming problem

(c'B' + ¢™*TA'B + -+ cTAT-1AT-2  A'B' + b')! — max,
D' < d,
fort=1,..,T.

The following theorem is an important particular corollary of the precedent theo-
rem.

Theorem 2.2. IfA° = A = .. = AT"' = A B' =B>= .. =B" =Band(l) is
solvable, then the sequence ', i, ..., ", forms an optimal control if and only if i is
the solution of linear programming problem

(c'B+c™AB + ¢™2(A?B+ -+ (AT B+ b — max,
D' < d,
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fort=1,..,T.

Theorem 1.1 establishes a principle for solving (1). The maximum principle of
Pontryagin may be applied for solving (1), too. Because the cardinality of every con-
trol set U', U?, ..., UT is equal to 1, let us consider the following recurrent relations:

T _ T

p = C
Po= pA =T 1, *

Hamiltonian functions are defined on (3) as
Hu')={(p'B" + b, u'),t=T,..,1.
Theorem 2.3. Let (1) be solvable. The control i, @?, ..., ", is optimal if and only if

H(i')= max H,u"),t=T,..1.
u':D'ut <d'

It’s obvious that theorems 2.1 and 2.3 are equivalent.

3. LINEAR DISCRETE-TIME SET-VALUED
STACKELBERG CONTROL PROBLEM

Let us modify the problem (1) by considering the control of Stackelberg type,
that is Stackelberg game with T players [8, 2, 9, 10]. In such game, at each stage ¢
(t = 1,...,T) the player ¢ selects his strategy and communicates his and all precedent
selected strategies to the following 7 + 1 player. After all stage strategy selections,
all the players compute their gains on the resulting profile. Let us name such type
of system control as Stackelberg control, and the corresponding problem - linear
discrete-time set-valued Stackelberg control problem. Described decision process
may be formalized in a following manner:

T
Z(CUX’ +b1UY — max,
U

t=1

Fi(X,U)

T
FaX,U) = Z(CZ’X’+b2tU’) — s max,
U2

=1

4)
T
Fr(X,U) = Z(CT’Xt+bT’Ut)———>maX,
t=1 ut
X = XA 4 BXr=1,..,T,
DUt < d,t=1,..,T,

where XY, X' c R", ¢™ € R", U' c R™, b™ € R", A™™! € R™" Bl ¢ R™™_J' e Rk,
D' € RP ot xt = (¢t XYy, b'U" = (b, U, t,n=1,..,T.
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The set of strategies of player , (1 = 1,2, ..., T), is determined only by admissible
solutions of the problem:

T
F(X, U"U™) = Z;(c”tX’ + MUY —7 max,
X = A;(_ﬂ—lAﬂ'—l + B™X”™
DUt < d".

Player’s nr, (r = 1,2,...,T), decision problem is defined by the precedent linear
set-valued programming problem. Since, the controlled system is one for all players,
by performing the direct substitutions as above, (4) is transformed into

FUNUT™) = (" + ™A + PA?A + .+
+ "TAT-1AT2 ANHA X0+
+ (™' B' + ™A'B! + ¢ A’A'B! + .+
+TAT-TAT2 _A'B! + ™ U +
+ (B + PA’B? + ™ ASAPB? + .+ o)
+ TATTAT=2  A2B? + ™)U? + ..+
+ (BT + HUT — max, 7 = 1,..,T,

D'U" < dt=1,..T.
As in precedent case of optimal control, the cardinality of every Stackelberg con-
trol set U, U?,...,UT may be reduced to the solution set of the traditional linear

programming problem. From equivalence of (4) and (5) the proof of theorem 3.1
follows.

1 72

Theorem 3.1. Let (4) be solvable. The sequence u',u, ..., al forms a Stackelberg
equilibrium control if and only if W" is optimal optimal solution of

("B + ™ ATBT 4o TTATIAT=2  ATB™ + p™ )™ — max,
uﬂ'
D'y™ < d”,
foreverym=1,..,T.
The following theorem is an important particular case of theorem 3.1.

Theorem 3.2. If A" = A = ... = AT' = A B' =B>=..=B" = Band (4) is
solvable, then the sequence ', i, ..., i’ , forms a Stackelberg equilibrium control if
and only if u" is the solution of linear programming problem

(™ B+ AB + ¢ 2(A)?B + ... + T (AT B + V™)™ — max,
uil'

D" < d”,

form=1,..,T.
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Theorem 3.1 establishes a principle for solving (4). The maximum principle of
Pontryagin may be applied for solving (4), too. Let us consider the following recur-
rent relations

T _ C?TT

pm — pﬂH"lAt + c’”,f =T-1,..,1, (6)

<
|

where 7 = 1, ..., T. Hamiltonian functions are defined on (6) as

Hy(u') =p™B +b™,u'y,t =T,..,.1,nr=1,..,T.

2

Theorem 3.3. Let (4) be solvable. The sequence of controls @', @2, ...,a", forms a

Stackelberg equilibrium control if and only if

Hmr(ﬁ”) = _max Hﬂﬂ'(uﬂ)’
u*: DTyt <d"

Jorm=1,..,T.

The proof of theorem 3.3 may be provided by direct substitution of relations (6) in
Hamiltonian functions and by comparing the final results with linear programming
problems from theorem 3.1. Obviously, theorems 3.1 and 3.3 are equivalent.

From computational point of view, method for solving problem (4) established by
theorem 3.1 looks more preferable than the method established by theorem 3.3.

4. LINEAR DISCRETE-TIME SET-VALUED
PARETO-STACKELBERG CONTROL
PROBLEM

Let us modify the problem (4) by considering control of Pareto-Stackelberg type.
At each stage a single player makes decision. Every player selects his strategy (con-
trol) on his stage by considering his criteria and communicates his choice and prece-
dent players choices to the following player. At last stage, after all stage strategy
selections, the players compute their gains. Such type of control is named Pareto-
Stackelberg control, and the corresponding problem is named linear discrete-time
set-valued Pareto-Stackelberg control problem.
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The decision process is formalized as follows:

T

Fi(X,U) = Z(c“xf+b“Uf)—>efmax,
=1 Ut
T

Fy(X,U) = Z(CZ’waZ’Uf)?efmax,
t=1 (7)
T

Fr(X,U) = Z(CT’Xf+beUf) — ef max,
=1 ut

X = ATIX'yBXt=1,..,T,
DUt < d,t=1,..,T,

where X0, X' C R", ™ € R*" U' C R", b™ € R*" A"l ¢ R™" B' € R"" d' €
R¥, D' € R*" t 7 =1,...,T. Notation ef max means multi-criteria maximization.

The set of strategies of player nr, (r = 1,2, ...,T), is determined formally by the
problem:

T
Fo(X, UTU™) = Z(c’”xf +b™U") — ef max,
=1 ur
X = Xﬂ—lAﬂ—l + B™X”
DU < d”.

By performing the direct transformations as above, (7) is transformed into

FAUYNU™) = (™ + A + BA2A + .+
+ TTAT-1AT2 ANHAOXO+
+ (™ B + ¢A'B! + P A2AB! + .+
+ TAT1IAT2 A'B! + "YU +
+ (B2 + ¢™A%B? + ™ A3ABY + .+ ®)
+ TTAT-1AT=2 A2B2 4 U2 + ..+
+ (C”TBT + Tyt 7 efmax,7n=1,..,T,

DU < d,t=1,..,T.

By the properties of interval arithmetic relations, we can conclude that (8) is equiv-
alent with simple multi-criteria linear programming problem. Additionally, from
equivalence of (7) and (8) the theorem 4.1 follows.

1 =2

Theorem 4.1. Let (7) be solvable. The sequence ii',ii?, ..., ", forms a Pareto-Stackelberg
equilibrium control if and only if " is efficient solution of multi-criteria linear pro-
gramming problem

(" B™ + " HATB + -+ TTATIAT=2  A7B™ + b7 )" — ef max,
u

D" < d”,
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Jorm=1,..,T.
As above, a particular cases of (7) is examined.

Theorem 4.2. If A = A' = .. = AT"' = A B' = B> = .. =B = Band (7)
is solvable, then the sequence ii', i, ...,i’, forms a Pareto-Stackelberg equilibrium
control if and only if " is efficient solution of multi-criteria linear programming
problem

(™ B + ™ AB + ¢ 2(A)?B + ... + T(A)T B + b™)u" — ef max,
ulr

D™ < d”,
form=1,..,T.

Let us extend the Pontryagin maximum principle for (7). By considering the re-
current relations

pnT _ ch

p™ ; p”’J;lAt +c™t=T-1,..,1, ©)

where 1 = 1,..., T, the Hamiltonian vector-functions may be defined on (7) and (9)
as
Hy) = {(p"B" + b, u'y,t=T,..,1,n=1,..,T.

2

Theorem 4.3. Let (7) be solvable. The sequence of controls @', @, ...,i", forms a

Pareto-Stackelberg equilibrium control if and only if

" € Argef max H,,(u"),
u": DTy <dr

form=1,..,T.

By direct substitution of (9) in Hamiltonian functions and by comparing the final
results with multi-criteria linear programming problems from theorem 4.1 the truth
of theorem 4.3 arises. Theorems 4.1 and 4.3 are equivalent.

It can be remarked especially that the method of Pareto-Stackelberg control deter-
mining, established by theorem 4.1 — 4.3, needs the solutions of multi-criteria linear
programming problems.

5. LINEAR DISCRETE-TIME SET-VALUED
NASH-STACKELBERG CONTROL PROBLEM

Let us modify the problem (4) by considering the control of Nash-Stackelberg
type with T stages and v; + v» + ... + vr players, where vy, vy, ..., vy are the num-
bers of players at stages 1,2,...,7. Every player is identified by two numbers (in-
dices) (7, ), where 7 is the number of stage on which player selects his strategy and
m e {l1,2,...,v;} is his number at stage 7. In such game, at each stage 7 the players
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1,2,...,v; play a Nash game by selecting simultaneously their strategies and by com-
municating his and all precedent players selected strategies to the following 7 + 1
stage players. After all stage strategy selections, on the resulting profile all the play-
ers compute their gains. Such type of control is named Nash-Stackelberg control,
and the corresponding problem — linear discrete-time set-valued Nash-Stackelberg

control problem.

The decision process may be modelled as

For(X, U™UT™)
v=1,.,.T,n=1,...,vq,
Xt

DmUm

where X°, X' ¢ R, ¢™ € R",

<

T Vs
Z(c”"Xt + Z b —= max,
=1 pu=1
v (10
XA+ Y BTUT =1, T,

=1

d™t=1,..T,n=1,..,v,

U‘m C Rm’ bTﬂl‘}l c Rm’ Al—l c Rnxn’ B™ ¢ RnXm’
d7 e RE, D7 e R tr=1,..,T,n=1,.,veou=1,....v.
By performing direct transformations

Vi
x! = A0X0+ZBI”U1”,
n=1
v2
XZ — A1X1 + ZBZRUZR —
n=1
21 %
= Al (AOXO + ZBanln + ZanUzn _
n=1 n=1
1 %)

+ Al ZBanln n ZanUzn’

=1 =1

V1

V2
ALAOXO 4 Al ZBanln 4 ZBZFUZH)’L

=1 =1

v3
4‘:51433”1]3” -
=1

4 V2
= A2AlAOXO 4 A24! ZBanln +AZZBZ7TU27T+

V3
+‘:E:AB3RLJ3R,
=1

=1 =1
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VT
rIXT = AT-1xT-14 Z BT yT™ =
=1
T-1 T-1 % T-1 V)
= [Jax+]]a ) B v+ |a ) B U+t
=0 =1 =1 t=2 =1

V-1 VT
+AT-1 BT—lﬂUT—lzr + Z BTnUTﬂ’

=1 =1

and by subsequent substitution in the objective/cost functions, the problem (10) is
reduced to

Fer(UTUT™) = (¢™ + ™A + ¢ A2A + 4
+CT7rTAT—1AT—2 AI)AOX0+
+(CT7rlBll + CTﬂzAlBll + CTﬂ3A2AlBll + o+
+C‘r7rTAT—1AT—2mAlBll + bTﬂll)U11+
+(CT7rlBIZ + CTRZAIBIZ + CT7r3A2A]B12 + o+
_I_CT;rTAT—lAT—Z AIBIZ + b‘r]rll)U12+
+..+
+(cr7rlBlv1 + CTﬂZAlBlvl + CTﬂSAZAlBlvl + .+
+C‘mTAT71AT72 A1B1v1 + bTﬂlVl)U1V1+
+(C‘rrr2B21 + CTIT3A2B21 + CT7r4A3AZBZl + o+
4T AT-IAT-2 A2 21 4 pre2ly2l o o (11)
+(CT712322 + CT7r3AZBZZ + CTﬂ4A3A2BZZ + o+
+CT7rTAT—1AT—2 AZBZZ + bTﬂZZ)UZZ + o+
+..+
+(CT7rZBZV2 + CTﬂSAZBZVZ + C‘r7r4A3AZB2v2 + o+
+cTTAT-TAT =2 AZB?2 4 b2\ U2 4+ .+
+...+
+(CT7'(TBTVT + bTﬂTVT)UTVT — max,

UTﬂ'

v=1,..,.T,n=1,..,vs
DU < d7r=1,.,.T,n=1,.., v,

The problem (11) is equivalent to the point-valued problem. The control sets
v, u?, .., uT may be identified with sets of cardinality 1. Evidently, (11) defines
a strategic games for which Nash-Stackelberg equilibrium is also Nash equilibrium
and it is simply computed as a sequence of solutions of

fTﬂ(u‘m”u—Tn) — (CTITTBTIT + C'm‘r+1A‘rB‘rrr+
+CTﬂT+2AT+1ATBTﬂ 4ot
+cTTAT-1AT=2  ATB7 4+ (12)
+b‘rm'7r)u'm — max,
uTﬂ'

D7 y™ da%r=1,...T,nr=1,...,v;.

IA
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Equivalence of (10) and (12) proves the following theorem 5.1.

Theorem 5.1. Let (10) be solvable. The sequence all, @', .. alr, forms a Nash-
Stackelberg equilibrium control if and only if u™ is the optimal solution of linear
programming problem (12) fort=1,...T,n=1,...,v:.

An important particular cases of (10) is evident.

Theorem 5.2. [fA° =A' = ... = AT 1 = A B"" =B"? = ... = B"" = Band (10) is
solvable, then the sequence all, @2, . alr, forms a Nash-Stackelberg equilibrium
control if and only if u™™ is optimal in linear programming problem

fT”(u‘rﬂHu—‘m) — (C‘rﬂ‘rB + c‘m‘r+1AB + CTﬂT+2(A)ZB + o+
+CT71'T(A)T—TB + b‘m‘rzr)u‘rir T,r) max,
u

DTﬂ'uTﬂ' < dTﬂ'
fort=1,., T, n=1,.., v,
Pontryagin maximum principle is extended for (10). Let us consider the following
recurrent relations
Tl _ T

p - 9
p‘rm — pTﬂl+1At +c™ =T —=1....1 (13)

where v =1,..., T, =1, ..., v;. Hamiltonian functions are defined as
HTﬂt(uTﬂ) — <pT7rtBT7r + bTﬂ'Tﬂ', MTﬂ-),t — T, - 1’

wheretr=1,..,T,x=1,..,vp,and p™, ¢t =T,..,1,7=1,...T,n = 1,..., v, are
defined by (13).

12

Theorem 5.3. Let (10) be solvable. The sequence of controls @', a'?, ..., a">", forms

a Nash-Stackelberg equilibrium control if and only if

Hopp(a™) = max H‘mt(u‘m)’
uT”:DT”uT”SdT”

fort=T,.,1,r=1,.,T,n=1,..,v;.

Theorems 5.1 and 5.3 are equivalent.

6. LINEAR DISCRETE-TIME SET-VALUED
PARETO-NASH-STACKELBERG CONTROL
PROBLEM

Let us unify (7) and (10) by considering the control of Pareto-Nash-Stackelberg
type with T stages and v; + v» + ... + vr players, where vy, v», ..., vy are the corre-
spondent numbers of players on stages 1,2, ...,T. Every player is identified by two
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numbers as above in Nash-Stackelberg control: 7 is stage on which player selects his
strategy and & player number at stage 7. In such game, at each stage 7 the players
1,2,...,v; play a Pareto-Nash game by selecting simultaneously their strategies ac-
cordingly their criteria (k;1, k72, ..., kry, are the numbers of criteria of respective play-
ers) and by communicating his and all precedent selected strategies to the following
7 + 1 stage players. After all stage strategy selections, all the players compute their
gains on the resulting profile. Such type of control is named Pareto-Nash-Stackelberg
control, and the corresponding problem linear discrete-time set-valued Pareto-Nash-
Stackelberg control problem.
The mathematical model of decision control process may be established as

T Vi
For(X,U™U™™) = Z(CWXI + Z bTHU™) — ef max,
=1 u=1 v
v=1,.,.T,n=1,...,vq, (14)

Vi
X' = Ar-lyxt! 4 ZBmUm =1 T
=1
DrUT < d™t=1,...T,n=1,..,v,,
where XO X! c R". ™ ¢ Rk,,,xn U™ c R™, pTH ¢ Rk,pXm At—l € R™Xn_ BTr o pnxm
d7 e RE, D" e R tr=1,..,T,n=1,.,veou=1,....v.
By performing similar transformation as above, (14) is reduced to a sequence of

multi-criteria linear programming problems

an<uT7r||u—m) = (¢"B7 4+ T ATRT 4
+CTm'+2AT+1ATBTﬂ 4ot
+CTnTAT—1AT—2 L ATBT+ (15)
+b7 U™ F) ef max,
D"y < d7r=1,...,T,n=1,...,v,.

Equivalence of (14) and (15) proves the following theorem 6.1.

Theorem 6.1. Let (14) be solvable. The sequence all, g2, .. alr, forms a Pareto-

Nash-Stackelberg equilibrium control in (14) if and only if ™ is an efficient solution
of multi-criteria linear programming problem (15), fort=1,...T, n =1,...,v,.

As a corollary follows theorem 6.2.

Theorem 6.2. [fA” = Al = ... = AT"! = A Bl = B2 = .. = B’ = Band
(10) is solvable, then the sequence i'',7'?, ..., a7, forms a Pareto-Nash-Stackelberg
equilibrium control if and only if u™ is an efficient solution of multi-criteria linear

programming problem

fﬂr(uﬂr”u—‘m) — (CTm'B + CT?TT+1AB + CTﬂT+2(A)2B + .+
+c™T(A)T"B + b7 —s ef max,
uTﬂ

DT7T uTT( < dTﬂ'
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Jortr=1,..T,n=1,..,v,.

Pontryagin maximum principle may be generalized for (14), too. By considering
recurrent relations

p‘m‘T — C‘mT

p‘rﬂ't - p‘rﬂt-i,—lAt + CTm,l‘ =T-1,...1, (16)

wherer=1,...,T, =1, ..., v;. Hamiltonian vector-functions are defined on (16) as
H‘mt(u‘m) — <pr7rtBT7r + bTﬂTﬂ’ uTﬂ>’l, — T, - 1.

Remark, the vector nature of (16) via (13).

12

Theorem 6.3. Let (14) be solvable. The sequence of controls ', a'?, ..., a’>", forms

a Pareto-Nash-Stackelberg equilibrium control if and only if

u™ € Argef max Hey (u™),
uTT(:DTﬂuTﬂ'SdTﬂ

fort=T,.,1,r=1,., T, n=1,..,v;.

Theorems 6.1 and 6.3 are equivalent.

7. CONCLUDING REMARKS

Different types of control processes may be observed in real life: optimal control,
Stackelberg control, Pareto-Stackelberg control, Nash-Stackelberg control, Pareto-
Nash-Stackelberg control, etc. Traditionally the single valued control is studied. But,
really the control may have a set valued nature, too. For such type of control processes
the mathematical models and solving principles are established.

The direct-straightforward and classical Pontryagin principle is applied for deter-
mining the desired control of set-valued dynamic processes. These principles are the
bases for pseudo-polynomial methods, which are exposed as a consequence of theo-
rems for set-valued linear discrete-time Pareto-Nash-Stackelberg control problems.

The results obtained for different types of set-valued non-linear control processes
with discrete and continuous time will be exposed in a future paper.
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Abstract In this paper we recall the notion of Stokes-Dirac structure and we construct several
examples of such structures. Then we discuss the integrability of some Stokes-Dirac

structures by introducing the convenient Courant brackets. Our theory has potential
applications in the control theory and the electromagnetism.
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1. INTRODUCTION

When studying a complex physical system one can rely on various methods. Two
of these are the network modelling and port-based network modelling, which basi-
cally mean that the complex physical system is first decomposed into simpler physi-
cal subsystems which can be studied separately, and secondly, study the interactions
between the subsystems previously determined. In so doing one studies the complex
physical system in a hierarchical and controlled manner.

On of the tools used to study the interactions, i.e. the power transfer, between the
subsystems, is the Dirac structure, as defined by Courant and Weinstein, in [3]. In
the same paper they also define the integrable Dirac structure by means of a bilinear
skew-symmetric map, which later came to be known as the Courant bracket. The
Dirac (integrable) structure mainly bridges the Poisson manifolds and the presym-
plectic structures, and has many extensions, see [10]. It also provides conditions for
the existence of solutions for important classes of mixed algebraic and differential
equations. For more on this subject see [4], [5], [9], [8] or [6].

In 2002, Schaft and Maschke define in [1], a new type of Dirac structure, called
the Stokes-Dirac structure. In this case the main ingredients are the Poincaré du-
ality theorem and the Stokes formula. There, they show that the equations of elec-
tromangetism, as given in [11], and other important PDE’s can be derived from such
structures. The Hodge-Dirac and Laplace-Beltrami-Dirac structures are later defined
in [12]. Some properties of the Stokes-Dirac like structures can be found in [13].

The main goal of this paper is to define the integrable Stokes-Dirac structures.

It is structured as follows.

199
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In the first section we define the Dirac structure and the integrable Dirac struc-
ture, using the Courant bracket, as defined by Courant and Weinstein, in [3]. Then
we construct several examples of such structures and then give several equivalent
conditions for the integrability of a Dirac structure.

In the second section, following [1], we define the Stokes-Dirac structures.

In the third section we define the integrable Stokes-Dirac structures, using two
Courant like brackets, previously defined.

2. DIRAC STRUCTURES

In this section we define the Dirac and integrable Dirac structures. The latter
depends on the Courant bracket. Then we give some equivalent conditions to the
integrability of a Dirac structure.

Let £ and F be linear spaces of dimensions m and n respectively, endowed with
a bilinear non-degenerate pairing (,) : E X F— R, and consider the total space
(F X E,{)4)-

As an example of such linear spaces and pairing (, ), let E be a linear space (of
dimension m), F = E* and let (,) be the duality pairing of £ and E*. Another
non-trivial example is obtained as follows. Let M be a smooth oriented (compact)
m-manifold, F = AK(M), i. e. the space of all k-forms, on M, and E = A"k (M.
Now consider the nondegenerate bilinear pairing (, ) : A (MYx A" % (M) —> R, given
by:

@p = [ @ro. @1
M
for any a € A¥ (M) and B e A™ % (M). Tt is obvious that by defining (,) in this way,

by the Poincaré duality theorem we effectively identify the dual of F' with E.
The next step is to associate to (, ), the non-degenerate symmetric, bilinear pairing

{, )+, given by:
((rtset). (2 e), =

for any (fl,el), (fz,ez) € FXE.

(7" ¢%) + (2] (22)

| =

Definition 2.1. Ler F and E be linear spaces, and let (,) : F X E— R be a non-
degenerate bilinear pairing and consider a subspace D C (F X E,{,),). The orthog-
onal complement of D, denoted by D+, with respect to {, )., is given by:

D ={(f.2) e FxE|{(f.0).(f.2)), =0,V (s.0) € D}. 2.3)

Definition 2.2. Let F and E be linear spaces (of finite dimensions), endowed with
a bilinear nondegenerate pairing (,) and consider the total space (F X E,{,),). The
linear subspace D C (F X E,{,),) is a Dirac structure if

D =Dt 2.4)
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Example 2.1. Ler E be a linear space of dimension m, and let E* be the algebraic
dual of E, and consider the linear maps A : E—-E* and B : E*—E respectively.
The maps A and B are skew-symmetric maps if and only if their graphs, are Dirac
structures.

In order to define a Dirac structure with respect to a smooth (m-)manifold M, we
consider the big tangent bundle of M, i.e. T?*M = TM®T* M, where T M is tangent
bundle of M and T*M is the cotangent bundle of M. The map (,) is defined as
the duality pairing between TM and T* M, respectively. In this case the symmetric
bilinear pairing ¢, ). is given by:

(X, @), (Y,B)), = 3 (iva + ixP), (2.5)

for any (X, @), (Y,B) € TbieM. Let (,)_ be the skew-symmetric and bilinear pairing
given by:
(X.@),(Y.B), = 3 (iya —ixP), (2.6)

for any (X, @), (Y,8) € T"¢ M.
The orthogonal complement of a subbundle D C (Tbig M,{, >+), denoted by D+,
and it is given by:

D+ ={(X.8) e T"®M | (X, @), (Y,B)), = 0, forall (X,a)eD}.  (2.7)
Definition 2.3. Let M be a smooth m-manifold and let (Tb €M, (, )+) be the big tangent
bundle of M. The subbundle D C (Tbig M, {, )+) is a Dirac structure if

D =D+, (2.8)
Example 2.2. Let w be a 2-form on the smooth manifold M. Then the subbundle
D, = {(X,0) e T M | @ = ixw}, 2.8)
is a Dirac structure. One can easily check that converse is also true.

Example 2.3. Let B : A' (M) — y (M) be a skew-symmetric map. Then the subbun-
dle
Dy = {(X,0) € VM | X = B(@) (2.8”)

is a Dirac structure. This map extends the one previously defined in Example 3.
Similarly, the map A from Example 3 is extended to a linear skew-symmetric map,
also denoted by A, that give rise to a Dirac structure.

For the definition of the integrable Dirac structure we use the Courant bracket [, |,
which is given by:

[(X.a).(Y.B)]¢ = (IX. Y]g . LxB - Lya + Yd (iya — ixp)), (2.9)
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for any (X, @), (Y,5) € F(Tbig M). It is easy to check that [, ] is bilinear and skew-
symmetric.

When restricted to the sections of a Dirac structure D c T8 M, the Courant
bracket [, ]¢ is given by:

(X, @), (Y. B)]c = (X, Y], LxB - Lya + d(a(Y))), (2.10)

for any (X, ), (Y,) € T'(T"¢M).

One can easily check that the first component of the Jacobiator of the Courant
bracket [, ] always vanishes, while the second component of the Jacobiator of [, ]
does not, since

L (X, @), (Y,),(Zy) =
= 3dg (Ly (B(2) + L, (¥ (s)) + L. (@ (")) + 2.11)
+3dg (y ([s,v]g) + @ (v, 21g) + Bz s]E) ,

for any(X, @), (Y,8), (Z,y) € I' (D), where J = (Ji, J») is the Jacobiator of [, ]c. For a
detailed computation of J, we refer the reader to [2] or [3].

Example 2.4. Let w be a 2-form on M. Then the subbundle D, ¢ TP M is integrable
if and only if wlrpnrmy is closed, i.e. dwlronrm = 0.

Let T be a map given by

T (X,a),Y,8),(Zy) = (2.12)
= (LxB) (Z) + (Lyy) (X) + (Lza) (Y),

for any (X, @), (Y,8),(Z,y) eT(TM & T*M).
The following statements holds good.

Theorem 2.1. Let D c T?8M be a Dirac structure and consider the map T, given

by (2.12). Then D is an integrable Dirac structure iff T|rpy vanishes on the sections
of D.

Theorem 2.2. Let D ¢ TY8M be a Dirac structure and let p : D—TM, given by
pX,a) = X. Then D is an integrable Dirac structure iff the triple (D, [,1c,p) is a
Lie algebroid.

These theorems provide equivalent conditions to the integrability of a Dirac struc-
ture, of which the second one is the most used when solving mixed algebraic and
differential equations. We will not go down this path but instead present some inter-
esting extensions of the Dirac structure, called Stokes-Dirac and Hodge-Dirac struc-
tures.
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3. STOKES-DIRAC STRUCTURES

In this section we define the Stokes-Dirac and Hodge-Dirac structures. Let M be a
smooth oriented m-manifold, with smooth boundary M. Let T*4 (M) be the vector
bundle of alternating multilinear forms, of degree g, on M. The fiber at each point
is the space T; I (M) consisting of all g-multilinear alternating continuous functions
on the fiber T; (M), for each p € M. The sections of AY(M) := T'(T*4(M)) are
called g-forms. The set A9(M) is an F(M)-module, where A (M) = F(M) denotes
the space of differentiable functions defined on M.

We denote by AZ (M) the space of g-forms with compact support on M and by
AL (M) the space of I-forms with compact support on dM. We recall that there is a
non-degenarate bilinear pairing (, ), : Al (M) x Az ~? (M) — R, given by (@, ), =
fM B A a, so the dual of AZ (M) is identified with A7 (M), for each ¢ < m. Also,
there is a non-degenarate bilinear pairing (, )gy; : AL (OM) x A== (OM) — R, given
by (@.B)au = [;,,8 A @, so that the dual of AL (9M) is identified with AZ~'~ (9M),
foreach/ <m—1.

Now, we consider the F(M)—modules A” (M) and A? (M), respectively, such that
p +¢g =m+ 1, and define the linear spaces F,, and &, by:

Fpg = A2 (M) x AL (M) x TP (OM), (3.1)

and
Epg = AT (M) X AT (M) x AT (OM). (3.2)

Now, consider the total space F, , x €, . It is obvious that the maps (, )y, and (, )y,
previously defined, yield a non-degenerate pairing (,), on F,, 4, X €, 4, given by:

(£ f- 1)+ (epegren)) = fM[e,, Nfy+egNfy|+ LM e A fyr  (3.3)

for any ( Ips Jo» fb) € J,4 and (ep, eq,eb) € &, 4, which by symmetrization yields a
non-degenerate bilinear pairing

Or  (Fpg X Epag) X (Fpg X Epg) = R,

given by:

<(fp’ff1 fb’ep’e‘I’eb) ( fz f b)> = (3.4)
= (oo 1) (B cBecd) + ((fp’f2 fb)( b))
for any (fl’;,fq",fg,e;,, e, 62) €FpgxEpgrandi=1,2.

Definition 3.1. Let M be a smooth oriented m-manifold with smooth boundary OM,
and consider the total space (3"1,,(1 X Epgs s >+) given by (3.1), (3.2) and (3.4). Let
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D C Fpy x €,y be a subbundle and denote by D+ its orthogonal complement with
respect to {, ),. We say D is a Dirac structure, on M, if

D =D (3.5)

Example 3.1. ([1]) Let M be a smooth oriented m-manifold with smooth boundary
OM, and consider the total space (3’" g X Epgs (s )+). The subbundle D C J), ;X €, 4
given by:

D = {(fp,fq,f;,,ep,eq,eh) € Fpg X Epql fp=(=1) dey, (3.6)
Iy =dep, fy = eplom, es = (=1 e lom},

where r = pq + 1, is a Dirac structure, i.e. D = D*+. This type of Dirac structures
are called Stokes-Dirac structures.

Example 3.2. ([1]) Furthermore, let N is a smooth oriented n-manifold (with smooth
boundary ON), and let Af (N) denote the space of d-forms, on N, d < n. Assume that
there is a map G : Af (N) = AL (M) x AL(M), such that its dual, G* : A" (M) x
AL (M) —>Ag_d (N), satisfies:

fM[e,,AG (f5) + eq A Gy (f)] = f (ep) + Gy (eg)| A fr B

for any e, € A."" (M), e; € AL (M) and f; € AL(N). In order to define the
Stokes-Dirac structure with respect to both M and N, we extend F,, x &, , to the

total augmented space I, , x €, ., defined by:

Fpa =Fpg X A¢(N) and €pg = Epg X AN, (3.8)

The space S"Z,q X 8%7(1 is endowed with the bilinear pairing {,)$, given by

((5o-fy- T fi-epepees) (- S 13- S G eocicl)), = B9)
=5 fi- Firep e ) (0 130 1o eno el ei)), +
+(fi-ea)y + (d-€d)y
for any (fl’;, ;,flf,fé, ei,, ef],e;;,eé) € 3'"” X €% andi =1, 2, and thus the definition

p.q
follows.
The subbundle D*  F7, X £ ., given by:

D= (fp’fq’fb fd’ep’eqaeb’ed) € gm X 8(1 |
fr= (= 1)’deq+G (f) s fy = dep+G (eq) (3.10)
fr= €p|(')M, ep = (=1)y""9* €q|,9M,ed = Gp ( p) G; (eq)},
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is a Stokes-Dirac structure, that is D% = (D%)*.

Example 3.3. ([12]) Suppose that m = 21 + 1 and let M be a smooth oriented m-
manifold. Let p = q = 1+ 1 and consider the total space (F;;x E11,(,)y). The
subbundle D c F; x &y, given by

D = {(for fy€pr€q) € Tpg X Epg | o = = * eqr fy = *ep}, (3.11)
is a Dirac structure, called the Hodge-Dirac structure.

Now, we define the distributed port-Hamiltonian system as follows.

Let M be a smooth oriented m-manifold and let D be the Stokes-Dirac strucure,
given by (3.6), and consider a smooth Hamiltonian H : AP (M) x AL(M) — R, given
by:

H (ap, o) = fM:H(ap,aq,z), (3.12)

where H : AL (M) x AL (M) x M—A™ (M) is a smooth density. By computing the
time derivative of H, along a trajectory t € R — (a/p 1), (t)) e AL (M) x AL(M)

one gets:
o

dH p day

E(ap (1), g (1) = fM[é,,HA -+ 6gH A1 (3.13)
Definition 3.2. Let M is a smooth oriented m-manifold with smooth boundary OM
and let D be the Stokes-Dirac structure given by (3.6), and let H be a smooth Hamil-
tonian, as in (3.12). The triple (M, D, H) is a distributed port-Hamiltonian system if
there exist trajectoriest € | CR — (a/p ®),a, (t)) € AP (M) x AL (M) such that:

by %% s ps,H)eD (3.14)
__’ __5 2 E . .
o’ o’ P

In practice, the spaces AZ (M) and A (M) denote the spaces of energy variables
of two different physical energy domains which interact with each other, while the
spaces A, ” (OM) and respectively A, 7 (M) denote the boundary variables, whose

”A”- product represents the boundary energy flow.
Letm =3, p = 2, and g = 2. In this case the Stokes-Dirac structure D is given by:

D= {(fp,fq,fb, ep,eq, eb) € Frp X &

(3.15)
fi =—dey, fr=dey, fp=-eilom, er = ealom}.

Let M be a 3-dimensional space domain with smooth boundary dM, and denote
by B = Bjj(t,x)dx' A dx/ € A2(M), and D = D;;(t,x)dx' A dx/ € A2 (M) the
magnetic field induction 2-form and the electric field induction 2-form respectively.
Let & = E; (t,x)dx' € AL (M) and H = H; (¢, x)dx' € A} (M) denote the electric field
intensity and magnetic field intensity.
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The constitutive equations of M are xD = £€ and xB = uJ{, where * denotes the
Hodge map, € is the electric permittivity of M, and u is the magnetic permittivity of
M.

Now, consider the triple (M, D, H), where H is a smooth Hamiltonian, given by:

H:lf[ﬁ/\®+9{/\3]. (3.16)
2Jm

The triple (M, D, H) is a distributed port-Hamiltonian system since the implicit Hamil-
tonian equations for the electromagnetism are given by:

D _ _ 0B _ —

S =d(0pH) = dH, - 5 =d(0pH) = d¢, 3.17)
Jo = 6pHlom, er = 6Hlom,

in the case of a zero density electric current, otherwise % = dH+fy, where fy €

A%2(N)and M = N.

4. INTEGRABILITY

In this section we define the integrable Stokes-Dirac structure, by means of a
Courant like bracket [,],,c, and then consider the case of a smooth oriented 3-
manifold M, where we explicitely define the Courant like bracket [, ], .

Let M a smooth, oriented m-manifold and let p, ¢ € N be such that p + g =
m + 1 and consider a subbundle D c JF,, x €,,. Also, consider the subbundles
AL (M) x AP (M) x A4 (OM) and AL (M) x Az~ (M) x A2~ (OM), respectively,
and define the canonical projections

7yt Fpg X Epg— (AL (M) X AZ™" (M) x AL (9M)), (4.1)
and
Mgt Fpg X Epg— (ALM) X AL™T (M) x AL (0M)), (4.2)
which are given by:
Tp (fpsfq,fbaep’ €y, eb) = (fp,fb, ep), 4.3)
g (fp’ fq’ fbaep’eq» €b) = (fqv €q, ed), (44)

for any (fp,fq,fb,ep, eq,ed) €TFpyXEpy-

The subbundles A2 (M)xAL™? (M)xAL ™7 (OM) and AL (M)xAL ™ (M)A (OM)
are endowed with the (non-degenerate) bilinear pairings <, ), , and (, ), ., which are
given by:

((55-1-0) (- 55-63)),,. = (430 5.€.0.0)..(£7.0. . €5.0.0)).  (45)



On the integrability of a Stokes-Dirac Structure 207

and

((fg-eirer) (15 5o h)),.. = ((0.15:0.0.€5.€0). (0. /7.0.0.¢5. 7)) 46)

for any (f1, f1, fi.eh. el e) € Fpg X Epgri=1,2.

Definition 4.1. Let M be a smooth oriented m-manifold with smooth boudary OM,
and let D C ), X €, 4 be a subbundle. We say D is a pseudo-Dirac structure if

the subbundles m, (D) (AL (M) x AZ™" (M) x AL (0M) ,(.),,.1) and 7y (D) C
(Ag (M) x AT (M) x A1 (0M) , ¢, )q&) are Dirac structures.
Definition 4.2. Let D C F, ;X &, 4, be a pseudo-Dirac structure. We say D is an inte-
2
grable pseudo-Dirac structure if there exist two maps [, 1,0,c : (F (ﬂ'p (D))) —I (ﬂ'p (D))
2
and [, o g.c : (F (ﬂ'q (D))) —T (JTq (D)), bilinear and skew-symmetric, such that

1
[T (7 (D)).T (m, D)] - €T (D). 4.7)

and respectively,

[T (7 (D). T (7, (D))]O’q’c cI(n, (D). (4.8)

Letm =3, p = g = 2 and let g be a Riemannian metric on M.

Definition 4.3. Let M be a smooth oriented 3-manifold with smooth boundary M,
and let D € F, 5 % €2 be a pseudo-Dirac structure on M.

2
Let[,1o0c : r(ﬂp (Fa2 % 82’2)) -T (ﬂ'p (Fr2 % 82,2)) and
2
[Jo2.c: F(nq (F22 % 82,2)) -I (nq (F22 % 82,2)) be given by:

(A7) (1 73 D)y =
= (Lyt = Ly fiL + 3Gy £ = iy /), 0,4 |be], bed )
(b)) (k)] -
= (Lbeéfzz - Lbe%fz + id(lbe%fl lbeéfz ) ﬁ [be%’ beZ] 0),
forany fl, 1 f), f3. € AE(M), f), f2 € ALOM), e}, €1, e, €5 € AL (M),and

e}j, ei € AL (M), where the maps b : T* M—TM and t : TM—T* M are the canonical
isomorphisms of the metric g.

4.9)

The following hold good.

Lemma 4.1. The maps [, 10.c and [, lo2.c are bilinear and skew-symmetric.
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This proof follows from the properties of the Courant bracket [, ], the Lie bracket
[, 17 and that of the isomorphisms b and .

Lemma 4.2. Let M be a smooth oriented 3-manifold with smooth boundary OM,
and let p = q = 2 and consider the pseudo-Dirac structure D C Fp5 X €33, i.e.
np (D) and ny (D) are Dirac structures. The integrability conditions (4.7) and (4.8)
are equivalent to:

f de3 A (§]be]. ef]) = - f (Lot f2 = Ly f11+ld(ibez L= fHyne, (4.10)
M M 1 1 2 1 1

and,

fM de; A (f[bed.be3]) = f Lyr /5 = Ly fo + d(zbezfz et ) A €3 (4.11)

for any fll, flz, le, f22, € Ag (M) and e%, e%, eé, e% € A(l) (M).

Now we define the anchor maps p,, : (F22 %X E22) »TM and
Pyt (F22 % E22) =T M, respectively, by:

pp (R i Syl eheh) = b(ed). (4.12)

and,

pq (I S7 Sy eloeiey) = b (). (.13)

for any fl, f2, f3. f3, € AZ(M), f} € NL(OM), e, € A} (OM) and e|, €7, e},
es € AL(M).

Lemma 4.3. The following hold:

1
([(fl fl fbvel’elveb) (fz fz fb’ezvezveb)]zoc): (4.14)
=[p, (Al 12, £y elsetoeh)opy (B B £ ehs el

and, respectively,

pq([(fll,ff,fl},e{,el, ANV Z,ez,eb)]mc)— (4.15)
= [pq (fll’flz’fbl’el’el’eb)qu (fzvfz,fb,ez,ei,ei)]

forany fl, 2, 3, f3 € Ne(M), f,f} € AL(OM), e, e, € AL(OM) and e},
e%, e;, e% € Ai (M).
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The proof of this lemma follows from the definition p,, and p,, and the properties
of b.

Now we compute the Jacobiators of [,],9¢ and [,]p2c. By a straightforward
computation we obtain:

1 1 1 2 2 2 3 3 3
(A Sy el) . (2 5 h) ) o (175 S5 €120 (4.16)
r .
= [(ng{flz - Lbe%fll + E(dlbe%fll - lbe%flz)y O’ ﬁ [beie be%])’(f?, fb?”e:l”)]p,c
1
3 2 1 . 1 . 2
= L)1~ Doarloel S + Dyar Ly fi + 5Ly Gy fy = Bhel /1)
+1d(i sLi f2— i 5L 2f1+1i s(dGy o f =iy 1 f2) — i 3
2 be; “be; /1 be; =bei/ 1 2 bey be7/1 be; /1 [be},beﬂ 17/
0.4 [[be}. bet|.bei )
and,
([(52se2.€5) (/53 63)] o+ (5 €3 €3 )Mo = (4.17)
I . .
= [(LbeéfZZ - Lbe%fZ1 + zd(lbe%fg - lbe%fZZ)’ﬁ[be;’ be%] ,0),(]?,6;,62)]%6‘
1
3 2 1 . 1 . 2
= (L[beé,be%]fZ - Lbenge;fZ + Lbengeng + EdLbe%(lbeng - lbeéfz)
+l(d(i sLoaf2—i 5Ly o f) + Ly Ay o fl =i 1 f2) —i 1))
) be3 ~belJ2 be3 ~be2J2 2 be3 “\the2 J2 belJ2 [beé,be%] 2775
# [[be;, beg] , beg] ,0),

forany |, f2.17, f3s f33€ AZ(M), [, f2. f € AL(OM), e}, €2, €3 € AL (OM) and

272
e{, e%, e?, eé, e%, eg € Ag. (M). From the previous formulae, follows

Lemma 4.4. Let( l.l, iz,fbi, el.l, 61.2, 62) el(Dyn) i= 1, 3. The Jacobiators of [, hhoc
and [, loo ¢ are given by
Doc (A fh ). (fL 7. e}) . (£ £ e))) = (4.18)
= ({ibefl‘be?fll - ibe}Lbe?flz + ibe?l‘be}eflz_

. 3 . 3 . 1
_lbe%Lbe}fl + lbe{Lbe%fl - lbe?Lbe%fl }
1d odi 3. di 1. di 2
+Z {lbe% lbe{fl - lbe% lbe?fl + lbe{ lbe?fl -

. . 3. . 3. . 1
~hetdip2 f{ + y2dipe1 fi = ip2diy 3 fi )=
1

S 2 3
3 lipeoat + uetse 1 et} 0-0)
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and
1 1 1 2 2 2 3 3 3
Joo.c ((fz »€9,€ ) s ( 2,6, eb) s (f2 ,€5,€ )) = 4.19)
. 1. 2 . 2
= ({lbeZLbe3f2 - lbelLbe3f2 + lbe3Lbelf2 -
2 V6 L) 2 Y%

. 3 . 3 . 1
_lbe%Lbeéf2 + lbeéLbeng - lbenge%fZ}
+ld{' di f3 i di fl vidi fz_
28 %he) S T e he3 Jo T Bhel Hhed 2
. . 3 0. . 30 . . 1
~betdiya fy + bhadine f = hhadip s f 1+

1. 1. . 2 . 3
+§{l[be%,be;]f2 + l[be%,be;]fé + l[beé,beg]fZ }’ 0, 0)
Theorem 4.1. Let D be a pseudo-Dirac structure. Then the Jacobiators Jyoc and

Joa.c vanish if and only if both (, (D), [, 12.0.¢ Ir(r,my) ) a1l (7 (D) [ Jo.2.€ Iy 0))
are Lie algebras.

The if part follows from the vahishing of the Jacobiator of both [, ], 9 ¢ and [, o 2.¢»
and the anchor properties of p, and p,. The only if part is a consequence of the Lie

algebra structure that both (m (D), hoc, pp) and (7r2 D), o2c> pq) respectively
are endowed with.

Theorem 4.2. Let D be an integrable pseudo-Dirac structure.
Then (ﬂ'p D), hoc Ir(ﬂp@)),pp) and (ﬂ'q D), [ o2c Ir(ﬂq@)),pq) are Lie algebroids.

Definition 4.4. Let M be a smooth oriented 3-manifold and consider the total space
(F22 %X €22,(,)4). On the sections of T2 X €12 we define the Courant bracket:

(A5 Sy et esey) (L B S )], o = ((4.20))
([(fll’ 6117’ e%) ’ (flz’ fz’ e%)]z,o,c K [(fZl’ eé’ el) ’ ( 22’ e%’ el%)]o,z,c)’

for any ( il, l.z,fli, el.l, el.z, e;')) e'(Fra % E22).

Lemma 4.5. The Courant bracket [, 125 ¢ is skew-symmetric and linear. The maps
pp and p, are anchor maps.

It is obvious that [, ], ¢ is not always a Lie bracket

Definition 4.5. Let M be a smooth oriented 3-manifold with smooth boundary M,
and consider the Dirac structure D C F55 X E2,. We say D is an integrable Dirac
structure if is closed under the Courant bracket [, 12 c.

Corollary 4.1. The Dirac structure D C F», X €, is integrable if:
[ lebnei(i )+ drea(s.f)] - (@.21)
=jﬁﬂ@ﬁ4Aﬁ+ﬂ@¢4Agy
M
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forcmy(f1 f2 fb,e e ,e )EF(DZZ) i=1,3, where
ci (£l £1) = 1 1, 1 g ol - gl
LA 1) = Lot = L i+ 5dGpor fi = et £, (4.22)
and
Co (L 13) = Ly f3 — L 2 + Yy 2~ iy ). (4.23)

Lemma 4.6. Let M be a smooth oriented 3-manifold, and let D 2C 52X Ea5 be the

Stokes-Dirac structure given by (3.6). The integrability condition (4.21) is equivalent
to

- f e3 Nd[Lyge} — Ly e5 + 3(ip1des — iy de})] (4.24)
M
2 d L 1 - L 1 1. d 1 _ d 1 _
+ e3 A [ be%eZ be%el + 2(lbe% € lbe% el)] -
M

= ‘fM[— [ﬁ [beé, bei] Ade3 + 4 [be%, beﬂ A de?] ,

for any( 1.1, iz,fb",el.l,eiz,e;')) el (D) i=1,3.

Corollary 4.2. Let D c F,, X €y be the Hodge-Dirac structure given by (3.11).
Then the Dirac structure D is integrable if:

- fM ey ALy (%) = Lyt (%€3) + 3dlin,1 (%€3) = iyt (%l (4.25)
; fM &3 ALy (%ed) = Ly (we!) + Sdli (we!) = iz (xel)] =
= L [—ﬁ [be;, be}] A *e% + 4 [beg, beﬂ A *e;].
for any (fl f2.flel el e ) el(Dyy), i
Corollary 4.3. The map |, 1, ¢ is a Lie bracket iff (Dz,g, [, ]2’2’6‘) is a Lie algebra.

Theorem 4.3. The triple (Dz,z, [ 122, pp) is a Lie algebroid if [,]y2¢ is a Lie
bracket.

The author of this paper would to thank for the support offered by Prof. M. Anas-
tasiei and the ”Alexandru Ioan Cuza” University of Iasi. This reseach is supported
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