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Abstract

Dantzig-Wolfe decomposition and column generation, devised for linear programs, is a success

story in large scale integer programming. We outline and relate the approaches, and survey mainly

recent contributions, not yet found in textbooks. We emphasize the growing understanding of the

dual point of view, which has brought considerable progress to the column generation theory and

practice. It stimulated careful initializations, sophisticated solution techniques for the restricted

master problem and subproblem, as well as better overall performance. Thus, the dual perspective

is an ever recurring concept in our “selected topics.”

OR/MS Subject Classification: Integer Programming: Column generation, Dantzig-Wolfe decom-

position, Lagrangian relaxation, branch-and-bound; Linear programming: large scale systems

To appear in Operations Research.
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1 Introduction

Almost five decades have passed since Ford and Fulkerson (1958) suggested dealing only implicitly

with the variables of a multicommodity flow problem. Dantzig and Wolfe (1960) pioneered this fun-

damental idea, developing a strategy to extend a linear program columnwise as needed in the solution

process. This technique was first put to actual use by Gilmore and Gomory (1961, 1963) as part of an

efficient heuristic algorithm for solving the cutting stock problem. Column generation is nowadays

a prominent method to cope with a huge number of variables. The embedding of column gener-

ation techniques within a linear programming based branch-and-bound framework, introduced by

Desrosiers, Soumis, and Desrochers (1984) for solving a vehicle routing problem under time window

constraints, was the key step in the design of exact algorithms for a large class of integer programs.

This paper is a survey on column generation biased toward solving integer programs. Numerous

integer programming column generation applications are described in the literature, as can be seen

from Table 1. Generic algorithms for solving problems by integer programming column generation

were presented by Barnhart et al. (1998b) and Vanderbeck and Wolsey (1996). Algorithmic efficacy is

considered by Desaulniers, Desrosiers, and Solomon (2001b). Some dissertations (Ben Amor, 2002;

Sol, 1994; Vanderbeck, 1994; Villeneuve, 1999) are a rich source of computational testing. Previous

general reviews include those by Desrosiers et al. (1995); Soumis (1997); Wilhelm (2001).

We merge promising contemporary research works with more classical solution strategies in order

to cover the whole integer programming column generation solution process. On the theoretical side,

we give a primer on decomposition and column generation, pointing out that in general one cannot

simply impose integrality constraints on the generated variables. On the algorithmic side, we em-

phasize the bounding role of the column generation algorithm and the importance of dual solutions

for achieving a good overall performance. The paper is divided in two major parts. The first part

covers the theory that is needed to expose integer programming column generation algorithms. In

§2, we recall the classical decomposition principle in linear programming, which leads to the formu-

lation of linear programs with a huge number of variables. In §3, we present both convexification

and discretization approaches for extending the decomposition principle in order to handle integrality

constraints. The second part is the algorithmic counterpart of the first. §§ 4, 5 and 6 cover the solution

of linear programming column generation, expanding respectively on the strategies developed for get-

ting dual solutions to the restricted master problems, generating new variables and compensating for

bad convergence behaviors. Section 7 integrates integer programming considerations, putting the pre-

ceding algorithms in perspective. Our conclusion brings attention to the strongest and most promising

ideas that are presented, in the hope that ever more complex column generation applications could be

successfully solved.

2 Column Generation and Dantzig-Wolfe Decomposition

In applications, constraint matrices of (integer) linear programs are typically sparse and well-structured.

Subsystems of variables and constraints appear in independent groups, linked by a distinct set of con-

straints and/or variables. Multicommodity flow formulations for vehicle routing and crew scheduling

problems are well known examples (Desaulniers et al., 1998; Desrosiers et al., 1995).

The general idea behind the decomposition paradigm is to treat the linking structure at a superior,

coordinating, level and to independently address the subsystem(s) at a subordinated level, exploiting

their special structure algorithmically. We are concerned with linking constraints, or price directive
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Reference(s) Application(s)

Agarwal et al. (1989); Desaulniers et al. (2001b); Desrochers et al. (1992); Löbel (1997, 1998);

Ribeiro and Soumis (1994)

various vehicle routing problems

Borndörfer et al. (2003); Desaulniers et al. (2001b); Desrochers and Soumis (1989) crew scheduling

Desrosiers et al. (1984) multiple traveling salesman problem with time windows

Krumke et al. (2002) real-time dispatching of automobile service units

Lübbecke and Zimmermann (2003); Sol (1994) multiple pickup and delivery problem with time windows

Anbil et al. (1998); Crainic and Rousseau (1987) airline crew pairing

Barnhart and Schneur (1996) air network design for express shipment service

Erdmann et al. (2001) airline schedule generation

Barnhart et al. (1998a); Desaulniers et al. (1997); Ioachim et al. (1999) fleet assignment and aircraft routing and scheduling

Crama and Oerlemans (1994) job grouping for flexible manufacturing systems

Eben-Chaime et al. (1996) grouping and packaging of electronic circuits

Park et al. (1996) bandwidth packing in telecommunication networks

Ribeiro et al. (1989) traffic assignment in satellite communication systems

Sankaran (1995) course registration at a business school

Vanderbeck (1994) graph partitioning e.g., in VLSI, compiler design

Vanderbeck (1994) single-machine multi-item lot-sizing

Hurkens et al. (1997); Valério de Carvalho (1999, 2000, 2002b); Vance (1998); Vance et al.

(1994); Vanderbeck (1999)

bin packing and cutting stock problems

Alvelos and Valério de Carvalho (2000); Barnhart et al. (1997, 2000) integer multicommodity flows

Bourjolly et al. (1997) maximum stable set problem

Hansen et al. (1998) probabilistic maximum satisfiability problem

Johnson et al. (1993) minimum cut clustering

Mehrotra and Trick (1996) graph coloring

Savelsbergh (1997) generalized assignment problem

Table 1: Some applications of integer programming column generation.
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decomposition only; see for example Benders (1962), Lasdon (1970), and Van Roy (1983) for different

points of view.

2.1 Column Generation

Let us call the following linear program the master problem (MP).

z⋆ := min
∑

j∈J

cjλj

subject to
∑

j∈J

ajλj ≥ b

λj ≥ 0, j ∈ J

(1)

In each iteration of the simplex method we look for a non-basic variable to price out and enter the

basis. That is, in the pricing step, given the vector u ≥ 0 of dual variables, we wish to find

arg min
{

c̄j := cj − uT aj | j ∈ J
}

. (2)

An explicit search of J may be computationally impossible when |J | is huge. In practice, one works

with a reasonably small subset J ′ ⊆ J of columns, with a restricted master problem (RMP). Assum-

ing that we have a feasible solution, let λ̄ and ū be primal and dual optimal solutions of the RMP,

respectively. When columns aj , j ∈ J , are implicitly given as elements of a set A 6= ∅, and the cost

coefficient cj can be computed from aj then the subproblem or oracle

c̄⋆ := min
{

c(a) − ūTa | a ∈ A
}

(3)

returns an answer to the pricing problem. If c̄⋆ ≥ 0, no reduced cost coefficient c̄j is negative and λ̄

(embedded in R
|J |) optimally solves the master problem as well. Otherwise, we add to the RMP a

column derived from the oracle’s answer, and repeat with re-optimizing the RMP. For its role in the

algorithm, (3) is also called the column generation subproblem, or the column generator.

The advantage of solving an optimization problem in (3) instead of an enumeration in (2) becomes

even more apparent when we remember that vectors a ∈ A often encode combinatorial objects like

paths, sets, or permutations. Then, A and the interpretation of cost are naturally defined on these

structures, and we are provided with valuable information about what possible columns “look like.”

Consider the one-dimensional cutting stock problem, the classical example in column generation

introduced by Gilmore and Gomory (1961). Given are paper rolls of width W , and m demands bi,

i = 1, . . . ,m, for orders of width wi. The goal is to minimize the number of rolls to be cut into orders,

such that the demand is satisfied. A standard formulation is

min{1T
λ | Aλ ≥ b, λ ∈ Z

|J |
+ } , (4)

where A encodes the set of |J | feasible cutting patterns, i.e., aij ∈ Z+ denotes how often order i is

obtained when cutting a roll according to j ∈ J . From the definition of feasible patterns, the condition
∑m

i=1 aijwi ≤ W must hold for every j ∈ J , and λj determines how often the cutting pattern j ∈ J
is used. The linear relaxation of (4) is then solved via column generation, where the pricing problem

is a knapsack problem.

With the usual precautions against cycling of the simplex method, column generation is finite and

exact. In addition, we have a knowledge about the intermediate solution quality during the process.
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Let z̄ denote the optimal objective function value to the RMP. Note that by duality we have z̄ = ūTb.

Interestingly, when an upper bound κ ≥
∑

j∈J λj holds for an optimal solution of the master problem,

we establish not only an upper bound on z⋆ in each iteration, but also a lower bound: We cannot reduce

z̄ by more than κ times the smallest reduced cost c̄⋆, hence

z̄ + c̄⋆κ ≤ z⋆ ≤ z̄ . (5)

In the optimum of (1), c̄⋆ = 0 for the basic variables, and the bounds close. The lower bound in (5)

is computationally cheap and readily available when (3) is solved to optimality. When the objective

already is a sum of the variables, that is, c ≡ 1, we use z⋆ instead of κ and obtain the improved lower

bound z̄/(1− c̄⋆) ≤ z⋆. For c ≥ 0 Farley (1990) proposes a more general lower bound at the expense

of a slightly increased computational effort. Let j ′ ∈ arg minj∈J{cj/ū
Taj | ū

Taj > 0}. Then

z̄ · cj′/ū
Taj′ ≤ z⋆ ≤ z̄ . (6)

Valério de Carvalho (2002b); Vance (1998), and Vance et al. (1994) tailor this to the cutting stock

problem with c ≡ 1. See Hurkens et al. (1997) for an implementation of both bounds.

2.2 The Decomposition Principle in Linear Programming

We briefly review the classical decomposition principle in linear programming, due to Dantzig and

Wolfe (1960). Consider a linear program (the original or compact formulation)

z⋆ := min cT x

subject to Ax ≥ b

Dx ≥ d

x ≥ 0 .

(7)

Let P = {x ∈ R
n
+ | Dx ≥ d} 6= ∅. It is well known (Schrijver, 1986) that we can write each x ∈ P

as convex combination of extreme points {pq}q∈Q plus non-negative combination of extreme rays

{pr}r∈R of P , i.e.,

x =
∑

q∈Q

pqλq +
∑

r∈R

prλr,
∑

q∈Q

λq = 1, λ ∈ R
|Q|+|R|
+ (8)

where the index sets Q and R are finite. Substituting for x in (7) and applying the linear transforma-

tions cj = cTpj and aj = Apj , j ∈ Q ∪ R we obtain an equivalent extensive formulation

z⋆ := min
∑

q∈Q

cqλq +
∑

r∈R

crλr

subject to
∑

q∈Q

aqλq +
∑

r∈R

arλr ≥ b

∑

q∈Q

λq = 1

λ ≥ 0 .

(9)

It typically has a large number |Q| + |R| of variables, but possibly substantially fewer rows than (7).

The equation
∑

q∈Q λq = 1 is referred to as the convexity constraint. If x ≡ 0 is feasible for P in

(7) at zero cost it may be omitted in Q. The convexity constraint is then replaced by
∑

q∈Q λq ≤ 1.
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Although the compact and the extensive formulations are equivalent in that they give the same optimal

objective function value z⋆, the respective polyhedra are not combinatorially equivalent (Adler and

Ülkücü, 1973; Nazareth, 1987). As (8) suggests, x uniquely reconstructs from a given λ, but not vice

versa.

Given a dual optimal solution ū, v̄ to the RMP obtained from (9), where variable v corresponds

to the convexity constraint, the subproblem (3) in Dantzig-Wolfe decomposition is to determine

minj∈Q∪R{cj − ūTaj − v̄}. By our previous linear transformation this results in

c̄⋆ := min
{

(cT − ūT A)x − v̄ | Dx ≥ d,x ≥ 0
}

. (10)

This is a linear program again. We assumed P 6= ∅. When c̄⋆ ≥ 0, no negative reduced cost column

exists, and the algorithm terminates. When c̄⋆ < 0 and finite, the optimal solution to (10) is an extreme

point pq of P , and we add the column [cT pq, (Apq)
T , 1]T to the RMP. When c̄⋆ = −∞ we identify an

extreme ray pr of P as a homogeneous solution to (10), and we add the column [cTpr, (Apr)
T , 0]T

to the RMP. From (5) together with the convexity constraint we obtain at each iteration

z̄ + c̄⋆ ≤ z⋆ ≤ z̄ , (11)

where z̄ = ūTb + v̄ is again the optimal objective function value of the RMP. Note that the lower

bound is also valid in the case the subproblem generates an extreme ray, that is, when c̄⋆ = −∞.

Dantzig-Wolfe type approximation algorithms with guaranteed convergence rates have been proposed

for certain linear programs, see Klein and Young (1999), and the references given therein.

2.3 Block Diagonal Structure

The decomposition principle has an interpretation as decentralized planning without complete infor-

mation at the center, see Chvátal (1983) and Lasdon (1970). In that context many applications have a

block diagonal structure of D, i.e.,

D =











D1

D2

. . .

Dκ











d =











d1

d2

...

dκ











,

where Dk and dk are of compatible size. This special structure can be exploited. Each P k = {x |
Dkx ≥ dk, x ≥ 0}, k = 1, . . . , κ is independently represented in the sense of (8). A superscript k to

the entities ck
j , ak

j , and λk
j for j ∈ Qk ∪Rk, indicates the respective subsystem k ∈ K := {1, . . . , κ}.

In analogy to (9) the master problem reads

z⋆ := min
∑

k∈K





∑

q∈Qk

ck
qλ

k
q +

∑

r∈Rk

ck
rλ

k
r





subject to
∑

k∈K





∑

q∈Qk

ak
qλ

k
q +

∑

r∈Rk

ak
rλ

k
r



 ≥ b

∑

q∈Qk

λk
q = 1, k ∈ K

λ
k ≥ 0, k ∈ K .

(12)
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Denoting by vk the dual variable associated with the kth convexity constraint, the κ subproblems are

analogues of (10)

c̄k⋆ := min{(ckT − ūT Ak)xk − v̄k | Dkxk ≥ dk, xk ≥ 0}, k ∈ K (13)

and the algorithm terminates when c̄k⋆ ≥ 0, for all k ∈ K. Otherwise, extreme points and rays

identified in (13) give rise to new columns to be added to the RMP. By linear programming duality,

z̄ = ūT b +
∑

k∈K v̄k, and we obtain the bounds

z̄ +
∑

k∈K

c̄k⋆ ≤ z⋆ ≤ z̄ . (14)

3 Decomposition of Integer Programs

In almost every application we are interested in optimizing over a discrete set X, that is,

z⋆ := min cTx

subject to Ax ≥ b

x ∈ X .
(15)

We consider the case of integer programming where X = P ∩ Z+ and P ⊆ R
n is a polyhedron.

However, X could have a much more complicated non-linear definition (Desaulniers et al., 1998). We

assume that z⋆ be finite.

3.1 Lagrangian Relaxation

A popular approach to solving (15) is Lagrangian relaxation. Relaxing constraints Ax ≥ b and

penalizing their violation in the objective function via Lagrangian multipliers u ≥ 0 results in the

following Lagrangian subproblem

L(u) := min
x∈X

cTx − uT (Ax − b) . (16)

L(u) is a lower bound on z⋆, because L(u) ≤ min{cT x − uT (Ax − b) | Ax ≥ b,x ∈ X} ≤ z⋆.

The best such bound on z⋆ is computed in the Lagrangian dual problem

L := max
u≥0

L(u) . (17)

Assume we are given optimal multipliers u⋆ for (17). By solving (16) we ensure that x ∈ X; the

optimality of u⋆ implies that u⋆T (Ax−b) = 0 (complementary slackness), but Ax ≥ b (feasibility)

has to be verified to prove optimality. If this condition is violated, the primal-dual pair (x,u⋆) is not

optimal.

The Lagrangian function L(u),u ≥ 0 is the lower envelope of a family of functions linear in

u, and therefore is concave. It is piecewise linear and only subdifferentiable in its breakpoints. The

most popular, since very easy to implement, and well documented choice to obtain (near) optimal

multipliers are subgradient algorithms (Wolsey, 1998). An alternative way is by linear programming.

Replace X by conv(X) in (15); this does not change z⋆. Changing the Lagrangian subproblem
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and the dual accordingly, we are enabled to write (16) and (17) in terms of extreme points and rays of

conv(X). This turns the Lagrangian dual into a linear program, and for a given vector ū of multipliers

L(ū) = (ūT b + v) + min
x∈conv(X)

(cT − ūT A)x − v = z̄ + c̄⋆ , (18)

that is, the lower bound obtained from the RMP in Dantzig-Wolfe decomposition in (11) is the same

as the Lagrangian bound.

3.2 Convexification

The strong relation of Dantzig-Wolfe decomposition and Lagrangian relaxation is now investigated

(see Nemhauser and Wolsey, 1988). When X = ∅, which may happen during branch-and-bound, then

L = ∞ in (17). Otherwise, let again Q and R denote the index sets of extreme points and extreme

rays, respectively, of conv(X). For given multipliers u, the Lagrangian bound is

L(u) =

{

−∞ if (cT − uT A)pr < 0 for some r ∈ R
cTpq − uT (Apq − b) for some q ∈ Q otherwise.

(19)

Since we assumed z⋆ to be finite, we wish to avoid L(u) = −∞. We state this as follows

L = max
u≥0

min
q∈Q

cTpq − uT (Apq − b)

subject to (cT − uT A)pr ≥ 0, r ∈ R
(20)

or as a linear program with many constraints

L = max v
subject to uT (Apq − b) + v ≤ cT pq, q ∈ Q

uT Apr ≤ cT pr, r ∈ R
u ≥ 0 .

(21)

The dual linear program of (21), composed of many variables, reads

L = min
∑

q∈Q

cT pqλq +
∑

r∈R

cT prλr

subject to
∑

q∈Q

Apqλq +
∑

r∈R

Aprλr ≥ b
∑

q∈Q

λq

∑

q∈Q

λq = 1

λ ≥ 0 .

(22)

Consequently, we can solve (17) by either (21) or (22); the former gives us the multipliers, but the

latter provides us with an x feasible to (15) via the substitution (8). Moreover, in (22) we get comple-

mentary slackness and feasibility of Ax ≥ b for free, which is not the case in subgradient algorithms.

Also x ∈ conv(X); therefore only one issue remains to be checked: The integrality of x, cf. §7.
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Applying Dantzig-Wolfe decomposition to (15) with X replaced by conv(X), we directly obtain

the above correspondence. This explains the notion of convexification (Vanderbeck, 1994).

z⋆ := min
∑

q∈Q

cqλq +
∑

r∈R

crλr

subject to
∑

q∈Q

aqλq +
∑

r∈R

arλr ≥ b

∑

q∈Q

λq = 1

λ ≥ 0

x =
∑

q∈Q

pqλq +
∑

r∈R

prλr

x ∈ Z
n
+ ,

(23)

where again cj = cTpj and aj = Apj , j ∈ Q ∪ R. When we relax the integrality of x, there is no

need to link x and λ in (23), and we may also relax the coupling constraint, obtaining precisely (22).

Still, in order to get integer solutions, we have to impose additional conditions on the x variables.

These conditions will appear in the compact formulation (15), at the level of the master problem or of

the subproblem, or both, and the decomposition process—such as Lagrangian relaxation or Dantzig-

Wolfe decomposition—has to be repeated at every node of the search tree.

One objection against subgradient algorithms for solving the Lagrangian dual is that they exploit

only local information for the iterative update of the dual multipliers. On the contrary, solving an RMP

based on (22) is a more elaborate update strategy which makes use of all the information gathered

during the solution process. Only, the partly occurring large linear programs could not be solved

until recently. Still, when the number of rows, and thus dual multipliers is very large, subgradient

algorithms may be the only practical alternative. Hybrid methods are good compromises (Barahona

and Jensen, 1998; Kallehauge, Larsen, and Madsen, 2001; Kohl and Madsen, 1997), e.g., starting

the multiplier adjustment with a subgradient algorithm and finishing the computation using a linear

program.

Besides subgradients and simplex-based methods, the Lagrangian dual can be solved with more

advanced (non-linear) alternatives with stronger convergence properties. Among them are the bundle

method (Hiriart-Urruty and Lemaréchal, 1993) based on quadratic programming, and the analytic

center cutting plane method (Goffin and Vial, 2003), an interior point solution approach. However,

the performance of these alternatives is still to be evaluated in the context of integer programming.

3.3 Discretization

Requiring integrality of the variables λ of the master problems (22) or (23) does not lead to an integer

program equivalent to (15), since the optimum integer solution of (15) may be an interior point of

conv(X). Alternatively, discretization (Johnson, 1989; Vanderbeck, 2000) is a true integer analogue

to the decomposition principle. It is based on the following (see Nemhauser and Wolsey, 1988).

Theorem 1 Let P = {x ∈ R
n | Dx ≥ d,x ≥ 0} 6= ∅ and X = P ∩ Z

n. Then there exists a finite

set of integer points {pq}q∈Q ⊆ X and a finite set of integer rays {pr}r∈R of P such that

X =







x ∈ R
n
+ | x =

∑

q∈Q

pqλq +
∑

r∈R

prλr,
∑

q∈Q

λq = 1, λ ∈ Z
|Q|+|R|
+







. (24)
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Substitution for x in (15) as given by (24) yields an integer master problem

z⋆ := min
∑

q∈Q

cqλq +
∑

r∈R

crλr

subject to
∑

q∈Q

aqλq +
∑

r∈R

arλr ≥ b

∑

q∈Q

λq = 1

λj ∈ Z+, j ∈ Q ∪ R ,

(25)

where again cj = cT pj and aj = Apj , j ∈ Q ∪ R. It is interesting that, when X is bounded, (25) is

a linear integer program even for arbitrary linear and non-linear cost functions c(x) in (15). Because

of the convexity constraint, variables λq, q ∈ Q are restricted to binary values, thus

c(x) = c





∑

q∈Q

pqλq



 = c(pq⋆) = cq⋆ =
∑

q∈Q

cqλq

holds for precisely one q⋆ ∈ Q. This cannot be generalized to the unbounded case, since there need

not be a unique representation of x as a combination of the λ’s. This is the case when we can combine

a point in X by a point in Q and several extreme rays. Then the objective function value c(x) depends

on the actual combination.

Remark. In the important special case that X ⊆ [0, 1]n convexification and discretization coincide.

All integral points in the bounded set X are already vertices of conv(X), and only binary λq, q ∈ Q
in (24) make sense. That is, x is the trivial convex combination of only one vertex, and therefore

x ∈ {0, 1}n ⇐⇒ λ ∈ {0, 1}|Q|. Many large scale applications belong to this class, in particular,

many decomposition procedures that give rise to set partitioning and set covering problems.

3.4 Column Generation for Integer Programs

Consider the following integer program (IP)

z⋆ := min
∑

j∈J

cjλj

subject to
∑

j∈J

ajλj ≥ b

λj ∈ Z+, j ∈ J

(26)

for which the linear relaxation is solved by column generation using a given oracle for the pricing

subproblem. Unlike the situation in §3.2 we do not have available an explicit compact formulation on

which we can analyze the solution of the linear relaxation of (26) and decide about how to branch.

Villeneuve et al. (2003) constructively show that a compact formulation equivalent to (26) exists

under very mild assumptions. Their proposal involves a duplication of the variables and the domain

of the oracle in such a way that a block diagonal structure with identical subproblems results. Their

general branching strategy works on the variables of the compact formulation. Multicommodity flow

formulations for various applications of vehicle routing and crew scheduling proposed by Desaulniers
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et al. (1998) follow this scheme. For the classical cutting stock problem (4), the above procedure leads

to Kantorovich’s formulation (1960) where a commodity is defined for each (identical) available roll.

Let K be the set of rolls of width W . Define yk, k ∈ K as a binary variable assuming value 1 if roll k
is used and 0 otherwise, and xk

i , k ∈ K, i = 1, . . . ,m as a non-negative integer variable that denotes

the number of times order i is cut in roll k. The compact formulation reads as follows:

min
∑

k∈K

yk

subject to
∑

k∈K

xk
i ≥ bi, i = 1, . . . ,m

∑

i=1,...,m

wix
k
i ≤ Wyk, k ∈ K

yk ∈ {0, 1} k ∈ K
xk

i ∈ Z+ k ∈ K, i = 1, . . . ,m.

(27)

There are alternative compact formulations which lead to the same linear relaxation when the de-

composition principle of §3.2 is used. Valério de Carvalho (1999, 2002a) proposes a network-based

compact formulation where the classical knapsack subproblem is solved as a particular minimum cost

flow problem. Each subproblem path flow in that network gives a valid cutting pattern, and it cor-

responds to an extreme ray, except the null pattern which is the single extreme point. However, no

master problem is used but each generated column is split into its arc components, i.e., in terms of the

original arc flow variables. A restricted compact problem is solved on the current subset of arcs, and

the remaining arcs have to be priced out in order to prove optimality or to identify arcs to be included

in the formulation. The flow conservation constraints are activated only as needed, i.e., for the termi-

nal nodes of the generated arcs. Similar techniques to solve large scale linear multicommodity flow

problems are used by Löbel (1997, 1998) and Mamer and McBride (2000).

Some imagination is needed to find an appropriate compact formulation, but we strongly recom-

mend to look for one. Once this is established, finding integer solutions to the compact formulation

is theoretically no more difficult than for any integer program, only a lower bound is computed via

column generation. A valid argument to prefer an extensive formulation over its compact counterpart

is that the former may be stronger in the sense that its linear programming relaxation gives a tighter

approximation to the convex hull of integer points, see §5.3.1 on the integrality property.

Let us finally stress again the need for generating columns in every node of the branch-and-bound

tree. There are cases where the master problem has to be solved in integers, but it is well known

that the linear program RMP may be integer infeasible (Barnhart et al., 1998b). Villeneuve et al.

(2003) demonstrate the defect that even if feasibility could be ensured, without branching we may

miss (probably all) optimal integer solutions. Consider the following example, if c2 > 1, variable z2

cannot be generated using Dantzig’s rule:

min z1 + c2z2 + z3

subject to z1 + 2z2 + 3z3 = 2
z1, z2, z3 ∈ Z+ .

(28)

Given the dual variable u ∈ R associated with the equality constraint, z2 is of minimum reduced cost

if and only if c2 − 2u ≤ 1 − u and c2 − 2u ≤ 1 − 3u, that is, if c2 ≤ 1 − |u|, in contradiction to

c2 > 1. If 1 < c2 < 2 the unique optimal integer solution is (z1, z2, z3) = (0, 1, 0) of value c2 while

the solution restricted to the variables that can be generated is (z1, z3) = (2, 0) of cost 2 > c2.
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4 The Restricted Master Problem

The purpose of the RMP (as is the purpose of subgradient algorithms in Lagrangian relaxation) is to

provide dual variables: To be transferred to the subproblem, and to control our stopping criterion. In

the end only, we have to recover from the RMP a primal feasible solution to the compact formulation.

Primal methods, like column generation, maintain primal feasibility and work towards dual feasi-

bility. It is therefore only natural to monitor the dual solution in the course of the algorithm. In our

opinion, the dual point of view reveals most valuable insight into the algorithm’s functioning. We call

the polyhedron associated with the dual of the RMP the dual polyhedron. A dual solution to the RMP

needs not be unique, e.g., if the primal is degenerate. This is significant inasmuch the dual solution di-

rectly influences the selection of new columns. Since a dual basic solution corresponds to an extreme

point of the optimal face, it may be a bad representative of all the dual solutions obtainable.

Solving the RMP by the simplex method leads to an optimal basis essentially chosen at random,

whereas the application of an interior point method produces a solution in the relative interior of

the optimal face (Bixby et al., 1992). Therefore, e.g., analytic centers (Elhedhli and Goffin, 2004;

Goffin et al., 1993), volumetric centers, central path methods (Kirkeby Martinson and Tind, 1999),

and central prices (Goffin et al., 1993) have been proposed. The computational use of various of these

proposals for obtaining integer solutions is evaluated by Briant et al. (2005).

Extreme point dual solutions are immediately available when using the simplex method, and be-

cause of their “random” nature they may result in different, even complementary kinds of columns

(Vanderbeck, 1994). More elaborate suggestions in the spirit of the above may speed up computation

times for very difficult RMPs, see also Anbil, Forrest, and Pulleyblank (1998).

4.1 Solution Methods

4.1.1 Initialization

No matter what method we use, we have to initialize the RMP. The well known simplex first phase

carries over to column generation (Chvátal, 1983). Artificial variables, one for each constraint, penal-

ized by a “big M” cost, are kept in the RMP to ensure feasibility in a branch-and-bound algorithm. A

smaller M gives a tighter upper bound on the respective dual variables, and may reduce the heading-

in effect (Vanderbeck, 2004) of initially producing irrelevant columns. Details on initialization, espe-

cially for mixed integer programs, are given by Vanderbeck (1994, 2004).

In some applications, the unit basis is already feasible. Then, an estimate of the actual cost coef-

ficients should be used instead of M . Heuristic estimates of the optimal dual variable values are im-

posed as artificial upper bounds by Agarwal, Mathur, and Salkin (1989) by introducing unit columns

with appropriate cost. The bounds are gradually relaxed until they are no longer binding. This relates

to the stabilization approach, see §6.2. Similar techniques are proposed, e.g., by Vanderbeck (2004).

Poorly chosen initial columns lead the algorithm astray, when they do not resemble the structure of

a possible optimal solution at all. They must then be interpreted as a misleading bound on an irrelevant

linear combination of the dual variables. Even an excellent initial integer solution is detrimental to

solving a linear program by column generation (Vanderbeck, 1994). On the other hand, bounds on

meaningful linear combinations of dual variables give good experiences (Ben Amor, 2002; Valério de

Carvalho, 2000), cf. §4.2.1. Another option is a warm start from primal solutions obtained in earlier,

similar runs (Anbil, Forrest, and Pulleyblank, 1998). However, the best results are obtained when both
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estimates of the primal and the dual solutions are used (Ben Amor, 2002; du Merle et al., 1999).

4.1.2 Traditional Approaches: Simplex and Barrier

As is the case for general linear programs, depending on the application and the available solvers,

we do not know beforehand which of the several traditional ways of solving the RMP will perform

“best.” Lasdon (1970) comments on the suitability of primal, dual, and primal-dual simplex methods.

In presence of primal degeneracy, the dual simplex may be preferred to the primal. The sifting method

can be a reasonable complement for large scale RMPs, see Anbil, Forrest, and Pulleyblank (1998);

Bixby et al. (1992), and Chu, Gelman, and Johnson (1997). For some linear programs Barrier methods

(Bixby, 2002) can prove most effective, although there is no possible warm start.

4.1.3 Subgradients and Volume Algorithm

The RMP may itself be solved by subgradient algorithms by relaxing all its constraints in the objective

function (Caprara, Fischetti, and Toth, 1999, 2000; Wedelin, 1995). This approach has been applied to

set covering applications for which these authors provide ways to compute a number of integer primal

solutions at each iteration of the column generation process. The solution method may be dynamically

switched during the solution process like e.g., by Bixby et al. (1992). Because of these alternatives,

we do not even need to maintain a basis.

Rather than computing an exact solution to the RMP, an approximation may suffice. Assuming

P is non-empty and bounded, the volume algorithm (Barahona and Anbil, 2000) is an extension of

subgradient algorithms, and rapidly produces primal as well as dual approximate solutions to the

RMP. It is named after a new way of looking at linear programming duality, using volumes below

the active faces to compute the dual variable values and the direction of movement. The pricing

subproblem is called with a dual solution “in a neighborhood” of an optimal dual solution. Then, one

can compute the probability that a particular column (which induces a face of the dual polyhedron)

is generated. The subgradient method is modified in order to furnish estimates of these probabilities,

i.e., approximate primal values for λq, q ∈ Q that sum to 1. Primal feasibility may be mildly violated.

When used in alternation with the simplex method, the volume algorithm produces dual solutions

with a large number of non-zero variables (Anbil, Forrest, and Pulleyblank, 1998). This quality is

claimed to accelerate column generation for reasons as discussed above. Promising computational ex-

perience is given for various combinatorial optimization problems (Barahona and Anbil, 2002; Bara-

hona and Jensen, 1998). Advantages of the volume algorithm are a straight forward implementation

with small memory requirements, numerical stability, and fast convergence.

Elaborate hybrids may evolve, see e.g., Anbil, Forrest, and Pulleyblank (1998); Bixby et al.

(1992); Borndörfer et al. (2003); Desaulniers, Desrosiers, and Solomon (2001b). Heuristics are used

to construct or improve dual variable values at any time in the algorithm. The choice of a method in

general will also depend on how fast or how accurate a solution is needed, whether particular prob-

lem structures are present, and what implementation skills or solvers are available. One apparent

trend is not to insist on optimality, but to attack even larger problems, for which still a guaranteed

approximation quality can be obtained. This is specially true for integer programs, see §7.1.
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4.2 A Dual Point of View

The dual of the RMP is the dual master problem with rows omitted, hence a relaxation. An optimal

dual solution obtained from the RMP may still violate constraints of the full dual master problem.

Thus, the pricing problem is a separation problem for the dual. Dantzig-Wolfe decomposition and

related methods can be interpreted as special cases of Kelley’s (1961) cutting plane method devised for

solving convex programs. It is sometimes more instructive and revealing to adopt the dual perspective.

Remark. Consequences from the equivalence of separation and optimization (Grötschel, Lovász,

and Schrijver, 1988) arise in this context. Exponential size RMP linear programs are polynomially

solvable by column generation under the assumption that the pricing problem is solvable in polyno-

mial time (Mehlhorn and Ziegelmann, 2000; Minoux, 1987). Conversely, solving an RMP is NP-

hard, if the pricing problem is (Johnson, Mehrotra, and Nemhauser, 1993).

4.2.1 Restriction of the Dual Master Problem

It is known that set partitioning type master problems can be converted to set covering type, preserving

the optimal objective function value, when taking subsets does not increase cost. This constrains the

dual space by restricting the dual variables in sign. Further, we are not restricted to only add columns

from the master program. Using structural information we can do better (Ben Amor, 2002; Valério

de Carvalho, 2000; see also Holmberg and Jörnsten, 1995). Consider a pair of feasible and bounded

primal and dual master problems min{cT λ | Aλ = b, λ ≥ 0} and max{bTu | ATu ≤ c} and their

extended counterparts of the form

min cT λ + fTy

subject to Aλ + Fy = b

λ, y ≥ 0

max bTu

subject to ATu ≤ c

F Tu ≤ f ,

where structural inequalities F Tu ≤ f are added to the dual at initialization time, i.e., before column

generation starts. We assume that these inequalities do not change the optimal objective function

value. These constraints correspond to additional variables y ≥ 0 in the primal, which are not present

in the original master problem. From the primal perspective, we obtain a relaxation. The size of a

primal basis is not affected. A good restriction of the dual polyhedron is sought, ideally to the optimal

face.

Structural inequalities exploit specific problem knowledge. Consider the one-dimensional cutting

stock problem (4). It can be easily shown that if the orders are ranked such that w1 < w2 < · · · < wm

then the dual multipliers satisfy u1 ≤ u2 ≤ · · · ≤ um. Hence we can impose m − 1 dual constraints

that must be satisfied at each iteration of the column generation process. These constraints can be

generalized to larger sets. Let Si = {s | ws < wi}. Then

∑

s∈S

ws ≤ wi ⇒
∑

s∈S

us ≤ ui, S ⊂ Si . (29)

A primal interpretation of these constraints is given by Valério de Carvalho (2000); a direct proof of

their validity in the dual space can be found in Ben Amor (2002). Using the above m − 1 simplest

dual constraints and, for each order i, at most one constraint of type (29) with |S| = 2, there is a

considerable speedup for solving the linear relaxation of (4).
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We also observe that in the case of the so-called “difficult” triplet-problems, where each roll is cut

into exactly three orders without any waste, the optimal dual multipliers are known in advance and

assume values ui = wi/W , i = 1, . . . ,m. Using this a priori perfect dual information the number of

column generation iterations dramatically decreases for a number of test problems (Ben Amor, 2002).

Computational experiments conducted by Ben Amor (2002) on the multiple depot vehicle schedul-

ing problem show that constraining the dual multipliers to a small interval around their optimal values,

column generation can be accelerated by a factor of 100. This is because poor dual cutting planes,

with respect to the interval, are not generated. Optimal multipliers are usually not available. Good

estimates can be obtained from a relaxation of the problem, from tests of previous experiments, or

derived by subgradient algorithms. As a further benefit, restricting the dual space may partly remove

primal degeneracy (Ben Amor, 2002; Valério de Carvalho, 2000). See also §6.2.

4.2.2 Row Aggregation for Set Partitioning Problems

When the master problem is a set partitioning problem, large instances are difficult to solve due to

massive degeneracy, say, when the number of non-zero elements per column roughly exceeds ten.

Then, the value of the dual variables are no meaningful measure for which column to adjoin to the

RMP. As a remedy, Elhallaoui et al. (2003) propose a dynamic row aggregation technique. Their

intuition is that in applications like vehicle routing and crew scheduling, some activity sequences

are more likely to occur than others: In airline crew scheduling a pilot usually stays in the aircraft

with which he starts his duty day. Since aircraft itineraries are known prior to solving the crew pairing

problem, it is natural to “guess” some aggregation of the flights to cover. This allows for a considerable

reduction of the size of the RMP in each iteration.

No aggregation is done at the level of the subproblem and the cost of a column remains unchanged,

regardless of whether aggregated or not. Still, the aggregated RMP provides us with aggregated dual

multipliers. These are split into estimates of the dual multipliers for the unaggregated RMP solving

shortest path problems, based on the columns already generated and the reduced cost optimality cri-

terion. The estimated duals are used in the subproblem to generate new columns. To ensure proper

convergence and optimality, the aggregation is dynamically updated throughout the solution process.

Tests conducted on the linear relaxation of the simultaneous vehicle and bus driver scheduling

problem in urban mass transit show that this solution approach significantly reduces the size of the

master problem, the degeneracy, and the solution times, especially for larger problems: For an instance

with 1600 set partitioning constraints, the RMP solution time is reduced by a factor of eight.

5 The Pricing Problem

We are free to choose a subset of non-basic variables, and a criterion according to which a column is

selected from the chosen set. According to the classical Dantzig rule, one chooses among all columns

the one with the most negative reduced cost. Various schemes are proposed in the literature like full,

partial, or multiple pricing (Chvátal, 1983). Column generation is a pricing scheme for large scale

linear programs. In Gamache et al. (1999) up to 300 NP-hard subproblems arise, and partial column

generation is used. That is, only a subset of subproblems is chosen at each iteration to generate new

columns. This also avoids the generation of many similar columns.

The role of the pricing subproblem is to provide a column that prices out profitably or to prove that
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none exists. It is important to see that any column with negative reduced cost contributes to this aim.

In particular, there is no need to solve (3) exactly; an approximation suffices until the last iteration. We

may add many negative reduced cost columns from a subproblem, even positive ones are sometimes

used. We may solve a temporary restriction of the subproblem, or a relaxation, which is the case for

the vehicle routing problem with time windows (Desrochers, Desrosiers, and Solomon, 1992).

5.1 Dominance and Redundancy of Columns

Let us speak about strength of dual constraints. A column with reduced cost c̄ is dominated if there

exists another column with reduced cost no larger than c̄ for all dual variables ranging within their

respective domains (Vanderbeck, 1994). On the other hand, a column with reduced cost c̄ is undomi-

nated, if for all other columns there exists a set of dual variables yielding reduced cost strictly larger

than c̄. If dominance is detected after the solution of the pricing problem, the column is replaced by

the dominating column in a post-processing phase. For instance, let A be the collection of sets of a set

covering problem. A column as corresponding to a set s ⊆ A is dominated, if adding to s an element

r ∈ A \ {s} incurs no cost, since cs − uTas ≥ cs − uTas − ur = cs∪{r} − uT as∪{r} for all u ≥ 0.

An even stronger concept is introduced by Sol (1994). By analogy with the search for strong

cutting planes, ideally facets of the dual polyhedron, we ask for strong columns in the RMP. A column

as is called redundant if the corresponding constraint is redundant for the dual problem. That is,

as =
∑

r⊂s

arλr and cs ≥
∑

r⊂s

crλr . (30)

A column is strictly redundant if (30) holds with strict inequality. The pair (A, c) satisfies the sub-

column property if cr < cs, for all subsets r ⊂ s ∈ A. In this case, a set partitioning problem can

be solved as a set covering problem. If only cr ≤ cs holds, strict inequality can be obtained by mod-

ifying the cost structure by cr := cr + |r|. This adds to z⋆ a constant term equal to the number of

rows and does not change the problem. Sol (1994) gives a characterization of redundant columns in

the case that all subproblems are identical. He also proves that there is no redundant column when all

subproblems are different from one another. For set partitioning problems with identical subproblems

the generation of redundant columns can be avoided using an alternative pricing rule.

Proposition 2 Let (A, c) satisfy the subcolumn property for a set partitioning problem and ū be a

vector of dual multipliers. If as ∈ A is a strictly redundant column, then it cannot be an optimal

solution to the pricing problem

min

{

c(a) − ūTa

1Ta
| a ∈ A

}

. (31)

5.2 Alternative Pricing Rules

Proposition 2 indicates that not using the Dantzig rule may be theoretically advantageous. For ex-

ample, steepest-edge pricing (Forrest and Goldfarb, 1992; Goldfarb and Reid, 1977) and the practical

Devex variant (Harris, 1973) are reported to perform particularly well for set partitioning RMPs (Sol,

1994). The rationale behind the dual pendant deepest-cut (Vanderbeck, 1994) is to cut away as much

of the dual space as possible. While steepest-edge is inherently based on the simplex method, deepest-

cut is more independent from a particular solution method. This latter property leads to the lambda
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pricing rule (Bixby et al., 1992). Assume that cj ≥ 0, j ∈ J . Clearly, the reduced cost cj − ūTaj are

non-negative for all j ∈ J if and only if

min
j∈J

{

cj

ūT aj

| ūTaj > 0

}

≥ 1 . (32)

At first glance, this is just a reformulation. However, (32) takes advantage of structural properties of

(particular) set partitioning problems: Picking columns with a small ratio accounts for smaller cost

coefficients as well as for more non-zero entries in aj .

Many publications on simplex pricing are available, only a few of which have been related to

column generation. One proposal is to generate columns which maximally improve the objective

function value (Swoveland, 1974). The computational usefulness of such comparably aged propos-

als needs assessment from a modern implementation point of view. The natural question for which

columns serve our goals best is not consistently to answer owing to the multiple, sometimes contrary,

evaluation criteria. Computational efforts may cancel theoretical benefits. When the subproblem is

solved by dynamic programming, many negative reduced cost columns are available. Among these,

a posteriori choosing columns according to the alternative proposals is a practicable compromise in

view of possible difficulties in efficiently implementing alternative pricing rules.

Still, pricing rules are sensitive to the dual variable values, in case of non-unique dual solutions.

Although primal as well as dual information went into pricing strategies, complementary slackness

conditions have not been satisfactorily exploited or applied.

5.3 Pricing Integer Programs

When the compact formulation (15) is an integer program, so is the pricing problem. It may be difficult

to solve, and the efficiency of decomposition hinges on the question whether repeatedly solving the

subproblems is “easier” than solving (15) at once.

5.3.1 Integrality Property

When conv(X) is an integral polyhedron already the linear program (18) gives an integer solution.

This is called the integrality property of the subproblem. Of course, it intimately depends on the

subproblem formulation. For subproblems whose natural formulation gives integral optimal solutions

anyway, e.g., shortest path problems, the lower bound on the optimal integral z⋆ in (15) obtained from

the linear relaxation of the extensive formulation is no better than the one obtained from the compact

formulation (Geoffrion, 1974). On the other hand, when this property does not hold, one has potential

to improve the lower bound, but one has to work harder to obtain integral subproblem solutions in

the first place. Thus, when the integrality gap is large, one would prefer a subproblem without the

integrality property; this also holds for Lagrangian relaxation (Geoffrion, 1974). On the other hand,

in presence of the integrality property, the computation time gained by fast combinatorial algorithms

and their ease to implement may outmatch the disadvantage of a large gap.

When the polyhedron conv(X) is well studied like e.g., a knapsack polytope, the relevant litera-

ture can be exploited to strengthen the linear relaxation of the pricing integer programs (Vanderbeck,

1994). When problems are small or cuts are of insufficient strength plain branch-and-bound may be

the faster alternative. A more thorough investigation of the subsystem polytope can give encouraging

results when adding strong valid inequalities to the pricing problem before using branch-and-bound
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(Johnson, Mehrotra, and Nemhauser, 1993). A combinatorial algorithm to solve the subproblem, if

available, may be even more efficient. This is the case for constrained shortest path problems. Dy-

namic programming algorithms usually provide many columns per iteration. This is to be preferred

over adding only one from a linear program.

5.3.2 Structured Sets of Columns

What columns are good for integer solutions? Even columns that are part of an (optimal) integer

solution may interfere with solving the linear RMP by influencing its “guide,” namely the dual variable

values (Vanderbeck, 1994). The RMP may require longer solution times due to the enlarged problem

size. Conversely, columns which are of no use for the linear relaxation may be required for the integer

feasibility of the RMP. The concept of adjoining partial solutions seems to offer significant advantages

as for obtaining integer solutions. Desrochers, Desrosiers, and Solomon (1992) remark that adding

columns to a set partitioning RMP that are orthogonal sets replicate the structure of the optimal integer

solution. Savelsbergh and Sol (1998) observe that less similar columns are generated when the dual

solution is far from optimal.

Lagrangian pricing exploits the problem information provided by the original formulation (Löbel,

1997, 1998). Based on a dual solution to the RMP, one obtains primal solutions from several La-

grangian relaxations and deduces the columns to be adjoined to the RMP. Considerable customization

is necessary, e.g., deciding which Lagrangian subproblems to use. Furthermore, the deduction of

columns can be non-trivial. Nonetheless, the charm of using Lagrangian relaxations of the compact

formulation rests upon controlling the structure of added columns. Very large scale linear programs

emerging from practical vehicle routing problems are optimally solved using this pricing scheme.

6 The Tailing Off Effect

Simplex-based column generation is known for its poor convergence. While usually a near optimal

solution is approached considerably fast, only little progress per iteration is made close to the opti-

mum. Also, it may be relatively time consuming to prove optimality of a degenerate optimal solution.

Figuratively speaking, the solution process exhibits a long tail (Gilmore and Gomory, 1963), hence

this phenomenon is called the tailing off effect. There is an intuitive assessment of the phenomenon,

but a theoretical understanding has only been partly achieved to date; the monographs by Lasdon

(1970) and Nazareth (1987) make notable contributions.

6.1 Computational Difficulties

In general, the trajectory of solutions to (7) as constructed from solutions λ to the RMP passes through

the interior of {x ∈ R
n | Dx ≥ d, x ≥ 0}. In the optimum, complementary slackness conditions

have to be satisfied. Since changes of primal and dual variables are applied iteratively, not simultane-

ously, a certain amount of “cleaning up” (Nazareth, 1987) is to be expected. Very small adjustments

may be necessary close to optimum.

Finding an appropriate combination in (8) might be hindered by the possibly “complex combi-

natorial structure” of faces of the polyhedron defined by the subproblem (Kim and Nazareth, 1991).

This complication may be worse in presence of several subproblems. A problem specific reformula-

tion of the pricing problem in order to a priori restrict attention to a set of well structured columns
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may help (Hurkens, De Jong, and Chen, 1997), see also Barnhart et al. (1998b). The diameter of the

polyhedron associated with (9) is not smaller than that of the polyhedron corresponding to (7) (Adler

and Ülkücü, 1973). This is interesting, considering that the diameter is the maximal number of steps

an ideal vertex following algorithm takes.

In finite precision arithmetic one has to cope with numerical instability. There are examples for

bad numerical characteristics of the master problem in contrast to a well behaving compact formula-

tion (Nazareth, 1984, 1987). Then, our stopping criterion may not work correctly (Ho, 1984; Minoux,

1986). We remark, however, that tailing off also occurs when columns are computed exactly, e.g., by

use of combinatorial algorithms.

6.2 Stabilized Column Generation

It has been observed that the dual variable values do not smoothly converge to their respective optima,

but vehemently oscillate, seemingly following no regular pattern. This behavior is regarded as a major

efficiency issue, and its absence is seen as a (possibly the) desirable property.

A simple idea was mentioned in §4.1.1, viz. bounding the dual variable values (Agarwal, Mathur,

and Salkin, 1989). A more sophisticated control of the dual variables is as follows. Let again ū

denote an optimal solution to the current restricted dual RMP. By imposing lower and upper bounds,

respectively, dual variables are constrained to lie in a “box around ū.” The such restricted RMP is

re-optimized. If the new dual optimum is attained on the boundary of the box, we have a direction

towards which the box should be relocated. Otherwise, the optimum is attained in the box’s interior,

producing the sought global optimum. This is the principle of the Boxtep method introduced by

Marsten (1975) and Marsten, Hogan, and Blankenship (1975). Several other stabilization approaches

have been proposed, see e.g., Senne and Lorena (2002), where a so-called Langrangian/surrogate

relaxation is used for this purpose. In the sequel we describe three of these.

6.2.1 Weighted Dantzig-Wolfe Decomposition

In the computation of the Lagrangian dual (17), one can search “for good Lagrangian multipliers in

the neighborhood of the best multipliers found so far” (Wentges, 1997). In lieu of pricing with the

optimal dual variables ūk+1 in the k + 1st iteration, a convex combination is used

ūk+1 :=
1

ωk

ūk +
ωk − 1

ωk

ūbest,k , ūbest,k ∈ arg max
{

L(ūi) | i = 1, . . . , k
}

, (33)

where L(u) is defined in (16), and

ωk := min{const, (k + number of improvements of L(ūbest,·))/2}

with const ≥ 2. Obviously, (33) is biased towards the dual solution, which produced the respective

best Lagrangian lower bound in the column generation process. This emphasis becomes even stronger

as the algorithms proceeds, and grows with the number of improvements of the lower bound. This

can be seen as a stabilization of heuristically good multipliers. The constant const is instrumental in

ensuring the consideration of enough fresh information from the current RMP.

Rewriting (33) as ūk+1 := ūbest,k + ω−1
k (ūk − ūbest,k) the method is interpreted as feasible

direction search, emerging from ūbest,k in the direction of the current dual solution ūk with step length

ω−1
k . Finiteness of this weighted version is proven. In computational experience with capacitated
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facility location problems, the method delivers better Lagrangian lower bounds, when termination is

guided by a small size of the duality gap. On the other hand, the same experiments indicate that the

primal objective function value of the RMP decreases more slowly when using this method.

This is an example where ideas from proposals for multiplier adjustment in subgradient meth-

ods can be transferred to the column generation context. In fact, the two approaches are combined

(Barahona and Jensen, 1998), i.e., every few iterations some or all of the dual variables obtained

from the RMP are improved by some iterations of a subgradient algorithm before passing them to the

subproblem. In early iterations this produces good multipliers, later on improves the lower bound.

Considerably reduced computation times are reported for their particular application. A similar ob-

servation is made by Mahey (1986). The voluminous fund of “Lagrangian literature” may further

provide stimulation in this direction.

6.2.2 Trust Region Method

It is desirable not having to customize the stabilization device. For a direct control of dual variables

(Kallehauge, Larsen, and Madsen, 2001) consider the dual RMP with additional box constraints cen-

tered around the current dual optimal solution û, i.e., ûi − δ ≤ ui ≤ ûi + δ. The method is related

to the work of Madsen (1975) in the sense that these bounds are adjusted automatically, depending on

how well the dual restricted master problem approximates the Lagrangian dual problem. This type of

method is called a trust region method. The trust region parameter δ is updated in each iteration ac-

cording to the original update scheme by Marquardt (1963). Only iterations yielding primal progress

are actually performed, and Kelley’s (1961) cutting plane method is applied to generate rows of the

dual RMP, i.e., columns of the primal. When the duality gap closes (up to a preset accuracy) for a

dual solution in the interior of the current box, optimality is reached, and the algorithm terminates.

6.2.3 A Stabilization Approach Using Primal and Dual Strategies

Stabilized column generation (Ben Amor, 2002; du Merle et al., 1999) involves a more flexible, linear

programming concept of a box, together with an ε-perturbation of the right hand side. Consider the

following linear program.

min cT λ − δ
T
−y− + δ

T
+y+

subject to Aλ − y− + y+ = b

y− ≤ ε−

y+ ≤ ε+

λ,y−,y+ ≥ 0

(34)

After changing the sign of w−,w+, respectively, its dual reads

max bTu − εT
−w− − εT

+w+

subject to ATu ≤ c

−u− w− ≤ −δ−

u − w+ ≤ δ+

w−,w+ ≥ 0 .

(35)

In (34), surplus and slack variables y− and y+, respectively, account for a perturbation of b by

ε ∈ [−ε−, ε+], helping to reduce degeneracy. Their usage is penalized via δ−, δ+, respectively. The
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interpretation of (35) is more interesting. The original dual variables u are restricted to the interval

[δ− − w−, δ+ + w+], that is, deviation of u from the interval [δ−, δ+] is penalized by an amount of

ε−, ε+ per unit, respectively. The motivation is to steer u towards a hopefully good estimate of an

optimal solution u⋆ to the unperturbed problem min{cT λ|Aλ = b,λ ≥ 0}. When does (34) yield

an optimal solution this problem? Sufficient is (a) ε− = ε+ = 0 or (b) δ− < û < δ+, where û is an

optimal solution to (35); (a) for the obvious reason, and (b) by complementary slackness conditions

and ε± ≥ 0. Therefore the stopping criteria of a column generation algorithm become c̄⋆ = 0 and

y− = y+ = 0.

The parameters are updated dynamically so as to make greatest use of the respective latest infor-

mation. With intent to reduce the dual variables’ variation select δ± to form a small box containing

the (in the beginning estimated) current dual solution, and solve the linear program (34). If the new

û lies in the box described by δ±, reduce its width and augment the penalty given by ε±. Otherwise,

enlarge the box and decrease the penalty. This allows for fresh dual solutions when our estimate was

bad. The update could be performed in each iteration, or alternatively, each time a dual solution of

currently best quality is obtained. This latter method proves most effective in implementations. An

update of the dual estimates can be seen as a serious step in the bundle method.

It is clear that a problem specific adaptation of the parameter choice is needed. The experiments

by Ben Amor (2002) and du Merle et al. (1999) indicate considerable speedup of up to a factor

of ten or a growth in the size of manageable problems when using the stabilization approach. A

related proposal (Agarwal, Mathur, and Salkin, 1989) gives similar experiences. Vanderbeck (2004)

concludes that among more sophisticated implementation techniques, stabilization may promise the

largest performance gains. It is important to note that (34) is a relaxation of the unperturbed problem

which is faster computed, and can be used in a branch-and-bound algorithm.

7 Integer Solutions

Having introduced decomposition techniques for integer programs in §3, we still need ideas on how

to actually obtain integer solutions. The literature is rich on that subject, see Table 1. In fact, X may

as well contain non-linear aspects other than discreteness. Various notions have been coined for the

synthesis of column generation and branch-and-bound, like branch-and-price (Barnhart et al., 1998b)

and IP column generation (Vanderbeck and Wolsey, 1996). Our point is that—besides the decom-

position principles—essentially it all boils down to branch-and-bound. Consequently, this section is

about lower bounds and branching decisions.

7.1 Lower Bounds and Early Termination

In each node of a branch-and-bound tree we derive lower bounds on the best possible integer solution

in the respective branch from solving the RMP linear relaxation by column generation. One would

expect that the tailing off effect be amplified by the multitude of linear programs to solve. However,

the contrary is true. The need for integer solutions provides us with a very simple amendment: Stop

generating columns when tailing off occurs and take a branching decision. This early termination is

based on the following. Assuming cj ∈ Z, j ∈ J , column generation can be terminated as soon as

⌈LB⌉ = ⌈z̄⌉, with LB e.g., one of the lower bounds of §2.1. For this purpose they have been widely

used in the literature, e.g., Sol (1994); Vanderbeck (1994); Vanderbeck and Wolsey (1996). With the

incumbent integral objective function value ẑ, a node can be pruned as soon as ⌈LB⌉ ≥ ẑ.
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Early termination makes the algorithm effective for integer programs in contrast to linear pro-

grams. Of course, we need not wait until ⌈LB⌉ = ⌈z̄⌉; we may terminate heuristically even earlier.

Here is a tradeoff between computational efforts and the quality of the obtained lower bound upon

premature termination. We remind the reader that this is the usual way to stop subgradient algorithms

in Lagrangian relaxation. Note that monitoring the relative decrease of the objective function value

over a predefined number of iterations (Gilmore and Gomory, 1963) is not robust against temporary

stalls.

Integrality helps us also in other places. For a single subproblem the computation of an a priori

upper bound on c̄⋆ is given in (Vanderbeck and Wolsey, 1996, Prop. 4). When the subproblem is

solved as an integer program, an initial upper cutoff can be applied. When the pricing problem is

detected to be infeasible we terminate.

7.2 Pricing Out the Original x Variables

Assume that in (15) we have a linear subproblem X = {x ∈ R
n
+ | Dx ≥ d} 6= ∅. Column generation

then essentially solves the linear program

min cTx subject to Ax ≥ b, Dx ≥ d, x ≥ 0 .

We obtain an optimal primal solution x⋆ but only the dual multipliers u⋆ associated with the constraint

set Ax ≥ b. However, Walker (1969) describes how to retrieve the dual variables w⋆ associated with

Dx ≥ d: Take the dual vector obtained from solving the linear subproblem in the last iteration of

the column generation process. Knowing the full dual information allows for a pricing of the original

variables, and therefore a possible elimination of some of them. Together with an integral solution

this can be exploited to discard original binary variables with reduced cost larger than the optimality

gap. Hadjar, Marcotte, and Soumis (2001) apply this technique to remove more than 90% of the flow

variables in multiple depot vehicle scheduling problems.

In the general case of a linear integer or even non-linear pricing subproblem, the above procedure

does not work. Poggi de Aragão and Uchoa (2003) suggest to directly use the extensive formulation:

If we keep the coupling constraint x =
∑

q∈Q pqλq +
∑

r∈R prλr in the master problem (23), it

suffices to impose x ≥ ε, for a small ε > 0, at the end of the process. The shadow prices of these

constraints are the reduced costs of the x vector of original variables. Note that there is no need to

impose the additional constraints on already positive variables. Computational experiments underline

the benefits of this procedure.

7.3 Branching and Cutting Decisions

A valid branching scheme divides, desirably partitions, the solution space in such a way that the

current fractional solution is excluded, integer solutions remain intact, and finiteness of the algorithm

is ensured. Moreover, some general rules of thumb prove useful, such as to produce branches of

possibly equal size, sometimes referred to as balancing the search tree. Important decisions should be

made early in the tree. In the case that we require the variables of the master problem to be integer,

like in (25), a so-called compatible branching scheme is needed which prevents columns that have

been set to zero on from being regenerated without a significant complication of the pricing problem

(Johnson, 1989; Savelsbergh, 1997; Vance, 1998). This, in general, would lead to finding the k th best

subproblem solution instead of the optimal one (Ribeiro, Minoux, and Penna, 1989). Aside from the
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conceptual complication, this modified or destroyed a possibly well exploited structure. This is all the

more important when e.g., combinatorial algorithms are used for the subproblem solution.

When integer solution are sought for the master problem, general branching schemes are given by

Vanderbeck (2000) and Vanderbeck and Wolsey (1996). The most common scheme in conjunction

with column generation is Ryan and Foster’s (1981) designed for set partitioning problems.

Proposition 3 Given A ∈ {0, 1}m×|J ′| and a fractional basic solution to Aλ = 1, λ ≥ 0, i.e.,

λ /∈ {0, 1}m. Then there exist r, s ∈ {1, . . . ,m} such that 0 <
∑

j∈J ′ arjasjλj < 1.

When such two rows are identified, we obtain one branch in which these rows must be covered by

the same column, i.e.,
∑

j∈J ′ arjasjλj = 1, and one branch in which they must be covered by two

distinct columns, i.e.,
∑

j∈J ′ arjasjλj = 0. Note, that this information can be easily transferred to

and obeyed by the pricing problem.

This excellent scheme already hints to a powerful insight which is used already in standard branch-

and-bound, viz. to branch on meaningful sets of variables. Our most valuable source of information

are the original variables of the compact formulation; they must be integer, and they are what we

branch and cut on, see e.g., Desaulniers et al. (1998); Gamache et al. (1998); Sol (1994). To this end,

let us assume that we have a compact formulation on hand, see §3.4. Branching and cutting decisions

both involve the addition of constraints, at least implicitly. One could require integrality of x at any

node of a branch-and-bound tree (Holm and Tind, 1988), but this is not efficient. A problem specific

penalty function method is proposed by Hurkens, De Jong, and Chen (1997). Alternatively, given

an added set of constraints, these restrictions on the compact formulation (15) can be incorporated in

Ax ≥ b, in x ∈ X, or partially in both structures. In any case, the new problem is of the general form

of (15) to which we apply a decomposition. The new RMP is still a linear program, and as long as the

possible modification of the subproblem’s structure is tractable we face no severe complications.

Consider for example the vehicle routing problem with time windows (Desaulniers et al., 2001a;

Desrochers et al., 1992): Decisions can be taken on the network flow variables as well as on the start-

ing time of the service at a customer. Additionally, we may impose subtour elimination constraints, or

more generally, κ-path cuts where κ is a lower bound on the number of vehicles needed to service a

certain set of customers (Kohl et al., 1999). Also possible are the trivial cuts on the total number of ve-

hicles and on the value of the objective function, decisions on a single arc, or on a linear combination

of arc flow and time values.

Ioachim et al. (1999) perform branching on time variables that are already integer, but obtained as

a convex combination of several time values. Gamache et al. (1998) impose a very deep cut into the

subproblem structure. It does not only cut off the current infeasible solution but at the same time it also

removes a number of non-optimal integer solutions from the subproblem structure. Generally speak-

ing, a decision imposed on the pricing problem is preferable to one imposed on the master problem

as it directly controls the generated columns. An example of that is the 2-cycle elimination for con-

strained shortest paths with time windows (Desrochers, Desrosiers, and Solomon, 1992), generalized

by Irnich and Villeneuve (2003). The choice of the structure on which to impose decisions is a matter

of algorithmic efficiency and performance. We remark that adding cutting planes in conjunction with

column generation in a branch-and-bound search is usually called branch-and-price-and-cut, see e.g.,

Barnhart et al. (1998a); Barnhart, Hane, and Vance (2000), and Park, Kang, and Park (1996).

Finally, one should be aware that even if a new decision set goes into the master problem structure,

the pricing problem may change. Ioachim et al. (1999), in the routing and scheduling area, have linear

combinations of time variables which appear in the master problem structure; this has the consequence
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that these time variables also appear in the objective function of the subproblem together with the flow

variables. This changes the way to solve the constrained shortest path problem (Ioachim et al., 1998).

The implementation of a column generation based integer programming code still is an issue. Not

so because of the complex interaction of components but because of the vast possibilities to tune each

of them. All strategies from standard branch-and-bound apply, including depth first search for early

integer solutions, heuristic fathoming of nodes, rounding and (temporary) fixing of variables, pre- and

postprocessing, and many more (Desaulniers, Desrosiers, and Solomon, 2001b; Vanderbeck, 2004).

Concluding, two decades ago, Chvátal (1983) saw no efficient way of handling the difficulty of

finding an optimal integer solution to a problem solved using a column generation scheme. Today, this

is no longer true when a compact formulation is available and columns are generated at each node of

the search tree. This fundamental and indeed extremely simple approach has been in use now for more

than twenty years (Desrosiers, Soumis, and Desrochers, 1984), and is being refined ever since. The

price we have to pay for this simplicity is that besides RMP, subproblem, and branch-and-bound also

the compact formulation has to be represented in order to recover a solution in terms of the original

variables x.

8 Conclusions

The growing understanding of the dual point of view brought considerable progress to the column

generation theory and practice. It stimulated careful initializations, sophisticated solution techniques

for the restricted master problem and the subproblem, as well as better overall performance.

Computational defects of Dantzig-Wolfe decomposition are well documented, and we cannot rec-

ommend its classical implementation as a pricing scheme for large scale linear programs. However,

structural dual inequalities, primal and dual stabilization strategies as well as non-linear implementa-

tions turn column generation into a very promising approach to decomposable linear programs.

Column generation is clearly a success story in large scale integer programming. The linear pro-

gramming bound obtained from an extensive reformulation is often stronger, the tailing off effect can

be lessened or circumvented at all, and the knowledge of the original compact formulation provides

us with a strong guide for branching and cutting decisions in the search tree. Today we are in a posi-

tion that generic integer programming column generation codes solve many large scale problems of

“industrial difficulty,” no standard commercial MIP solver could cope with. This is all the more true

since non-linearities occurring in practical problems can be taken care of in the subproblem.

For very hard problems the best algorithmic choice may not be obvious. Having identified the

computational bottleneck, one should invest in implementing more sophisticated ideas which we dis-

cuss in this paper. The good news is: There are plenty of them. In addition, all components greatly

benefit from customization and tailoring. Problem adequate heuristics are most vital ingredients in an

actual implementation. Thus, ample room for research and experiments is left, and hopefully some

directions have been pointed out.
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