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Teleparallel gravity can be seen as a gauge theory for the translation group. As such, its fundamental field is
neither the tetrad nor the metric, but a gauge potential assuming values in the Lie algebra of the translation
group. This gauge character makes of teleparallel gravity, despite its equivalence to general relativity, a rather
peculiar theory. A first important point is that it does not rely on the universality of free fall, and consequently
does not require the equivalence principle to describe the gravitational interaction. Another peculiarity is its
similarity with Maxwell’s theory, which allows an Abelian nonintegrable phase factor approach, and conse-
quently a global formulation for gravitation. Application of these concepts to the motion of spinless particles,
as well as to the COW and gravitational Aharonov-Bohm effects are presented and discussed.

1 Introduction

Like the other fundamental interactions of nature, gravita-
tion can be described by a gauge theory [1]. The teleparallel
equivalent of general relativity [2], or teleparallel gravity for
short [3], can indeed be understood as a gauge theory for the
translation group. In this approach, the gravitational inte-
raction is described by a force similar to the Lorentz force
equation of electrodynamics, withtorsion playing the role
of force [4].

On the other hand, due to the universality of free fall, it
is also possible to describe gravitation not as aforce, but as
a geometricdeformationof flat Minkowski spacetime. Ac-
cording to this point of view, a gravitational field produces
a curvature in spacetime, and its action on (structureless)
particles is described by letting them follow the geodesics
of the curved spacetime. This is the approach of general
relativity, in which geometry replaces the concept of gra-
vitational force, and the trajectories are determined, not by
force equations, but by geodesics. We notice in passing that
an immediate consequence of this dual description of gravi-
tation is that curvature and torsion might be related with the
same degrees of freedom of the gravitational field.

As a gauge theory for the translation group, which is
an Abelian group, the teleparallel formulation of gravity
becomes in several aspects similar to the electromagnetic
Maxwell’s theory. By exploring this analogy, as well as by
using well known results of electrodynamics, the basic pur-
pose of this paper will be to study some specific properties
of teleparallel gravity.

The first point to be examined refers to the weak equiva-
lence principle, which establishes the equality of inertial and
gravitational masses. As is widely known, the electromag-
netic interaction is not universal and there exists no elec-
tromagnetic equivalence principle. Nevertheless, Maxwell’s
theory, a gauge theory for the Abelian groupU(1), descri-

bes quite consistently the electromagnetic interaction. Gi-
ven the analogy between electromagnetism and teleparallel
gravity, in which the equations of motion are not geodesics
but force equations quite analogous to the electromagnetic
Lorentz force equation, the question then arises whether the
gauge approach of teleparallel gravity would also be able to
describe the gravitational interaction in the lack of universa-
lity, that is, in the absence of the weak equivalence principle.
As we are going to see, the answer to this question is posi-
tive: teleparallel gravity does not require the validity of the
equivalence principle to describe the gravitational interac-
tion. In fact, although the geometrical description of general
relativity breaks down, the gauge description of teleparallel
gravity remains as a consistent theory in the absence of uni-
versality [5]. It belongs, therefore, to a more general type of
theory.

A second point to be explored is the so called global
formulation, which is an approach based on the action of
a nonintegrable phase factor. Relying on the well known
phase factor approach to Maxwell’s theory [6], a teleparallel
nonintegrable phase factor approach to gravitation will be
developed, which represents the quantum mechanical ver-
sion of the classical gravitational Lorentz force of teleparal-
lel gravity. As a first application of this global approach,
we consider the Colella, Overhauser, Werner (COW) expe-
riment [7], which consists in using a neutron interferometer
to observe the quantum mechanical phase shift of neutrons
caused by their interaction with Earth’s gravitational field.
By considering the Newtonian limit, it is shown that the tele-
parallel global formalism yields the correct quantum phase-
shift predicted (as well as experimentally verified) for the
COW experiment. As a second application of the teleparal-
lel global approach, we obtain the quantum phase-shift pro-
duced by the coupling of the particle’s kinetic energy with
the gravitomagnetic components of the translational gauge
potential [8]. This effect is the gravitational analog of the
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usual electromagnetic Aharonov-Bohm effect, and for this
reason it will be called the gravitational Aharonov-Bohm
effect [9]. It is worthy mentioning that, as the phase dif-
ference depends essentially on the energy, it applies equally
to massive and massless particles. For the sake of comple-
teness, we begin by reviewing, in the next section, the ba-
sic concepts related to teleparallel gravity. The equivalence
principle is recast in its language, and shown to be unneces-
sary. The global approach to gravitation is then presented
and applied to the two mentioned effects.

2 Fundamentals of Teleparallel Gra-
vity

Teleparallel gravity corresponds to a gauge theory of the
translation group. According to this model, to each point of
spacetime there is attached a Minkowski tangent space, on
which the translation (gauge) group acts. We use the Greek
alphabetµ, ν, ρ, · · · = 0, 1, 2, 3 to denote spacetime indices
and the Latin alphabeta, b, c, · · · = 0, 1, 2, 3 to denote anho-
lonomic indices related to the tangent Minkowski spaces,
whose metric is chosen to beηab = diag(+1,−1,−1,−1).
As a gauge theory for translations, the fundamental field of
teleparallel gravity is the translational gauge potentialBa

µ,
a 1-form assuming values in the Lie algebra of the transla-
tion group:

Bµ = Ba
µ Pa, (1)

with Pa = ∂a the generators of infinitesimal translations.
Under a local translation of the tangent space coordinates
δxa = εa(x), the gauge potential transforms according to

B′a
µ = Ba

µ − ∂µεa. (2)

It appears naturally as the nontrivial part of the tetrad field
ha

µ:
ha

µ = ∂µxa + Ba
µ. (3)

Notice that, whereas the tangent space indices are raised and
lowered with the Minkowski metricηab, the spacetime indi-
ces are raised and lowered with the spacetime metric

gµν = ηab ha
µ hb

ν . (4)

The above tetrad gives rise to the so called Weitzenböck
connection

Γρ
µν = ha

ρ∂νha
µ, (5)

which introduces the distant parallelism in the four-
dimensional spacetime manifold. It is a connection which
presents torsion, but no curvature. Its torsion,

T ρ
µν = Γρ

νµ − Γρ
µν , (6)

is related to the translational gauge field strengthF a
µν by

F a
µν ≡ ∂µBa

ν − ∂νBa
µ = ha

ρ T ρ
µν . (7)

The Weitzenb̈ock connection can be decomposed as

Γρ
µν =

◦
Γρ

µν + Kρ
µν , (8)

where
◦
Γρ

µν is the Christoffel connection constructed from
the spacetime metricgµν , and

Kρ
µν =

1
2

(Tµ
ρ
ν + Tν

ρ
µ − T ρ

µν) (9)

is the contortion tensor. It is important to remark that curva-
ture and torsion are considered as properties of a connection,
not of spacetime [10]. Notice, for example, that the Chris-
toffel and the Weitzenb̈ock connections are defined on the
very same spacetime manifold.

The Lagrangian of the teleparallel equivalent of general
relativity is [4]

L ≡ LG + LM =
c4h

16πG
Sρµν Tρµν + LM , (10)

whereh = det(ha
µ), LM is the Lagrangian of a source

field, and

Sρµν = −Sρνµ =
1
2

[Kµνρ − gρν Tσµ
σ + gρµ Tσν

σ]
(11)

is a tensor written in terms of the Weitzenböck connection
only. Performing a variation with respect to the gauge po-
tential, we find the teleparallel version of the gravitational
field equation [11],

∂σ(hSλ
ρσ)− 4πG

c4
(htλ

ρ) =
4πG

c4
(hTλ

ρ), (12)

where

h tλ
ρ =

c4h

4πG
Sµ

ρν Γµ
νλ − δλ

ρ LG (13)

is the energy-momentum pseudotensor of the gravitational
field, andTλ

ρ = Ta
ρ ha

λ is the energy-momentum tensor of
the source field, with

h Ta
ρ = − δLM

δBa
ρ
≡ − δLM

δha
ρ
. (14)

A solution of the gravitational field equation (12) is an ex-
plicit form of the gravitational gauge potentialBa

µ.

When the weak equivalence principle is assumed to be
true, teleparallel gravity turns out to be equivalent to general
relativity. In fact, up to a divergence, the Lagrangian (10) is
found to be equivalent to the Einstein-Hilbert Lagrangian of
general relativity, and the teleparallel field equation (12) is
found to coincide with Einstein’s equation

◦
Rλ

ρ − 1
2

δλ
ρ
◦
R =

8πG

c4
Tλ

ρ, (15)

with
◦
Rλ

ρ and
◦
R respectively the Ricci and the scalar curva-

ture of the Christoffel connection.
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3 Gravitation and the Weak Equiva-
lence Principle

Let us begin by making it clear that, in spite of many contro-
versies related with the equivalence principle [12], it is not
our intention here to question its validity, but simply to ve-
rify whether teleparallel gravity requires it or not to describe
the gravitational interaction. This will be done by suppo-
sing that the gravitational massmg and the inertial massmi

do not coincide, and then by making a comparative study of
the force equation of teleparallel gravity with the geodesic
equation of general relativity.

3.1 Teleparallel Gravity: Force Equation

Let us then consider, in the context of teleparallel gravity,
the motion of a spinless particle in a gravitational fieldBa

µ,
supposing however that the gravitational and the inertial
masses do not coincide. Analogously to the electromagnetic
case [13], the action integral is written in the form

S =
∫ b

a

[−mi c dσ −mg cBa
µ ua dxµ] , (16)

where dσ = (ηabdxadxb)1/2 is the Minkowski tangent-
space invariant interval, andua is the particle four-velocity
seen from the tetrad frame, necessarily anholonomic when
expressed in terms of thespacetimeline elementds. The
first term of the action (16) represents the action of a free
particle, and the second the (minimal) coupling of the parti-
cle with the gravitational field. Variation of the action (16)
yields the equation of motion [5]

(
∂µxa +

mg

mi
Ba

µ

)
dua

ds
=

mg

mi
F a

µρ ua uρ, (17)

where F a
µρ is the gravitational field strength defined in

Eq. (7), and

uµ =
dxµ

ds
≡ hµ

a ua (18)

is the holonomic four-velocity, withds = (gµνdxµdxν)1/2

the Riemannian spacetime invariant interval. Equation (17)
is the force equation governing the motion of the particle, in
which the teleparallel field strengthF a

µρ (that is, the Weit-
zenb̈ock torsion) plays the role of gravitational force. Simi-
larly to the electromagnetic Lorentz force, which depends
on the relatione/mi, with e the electric charge of the parti-
cle, the gravitational force depends explicitly on the relation
mg/mi of the particle.

We see from the above equations that, even in the ab-
sence of the weak equivalence principle, teleparallel gravity
is able to describe the motion of a particle withmg 6= mi.
The crucial point is to observe that, although the equation of
motion depends explicitly on the relationmg/mi of the par-
ticle, neitherBa

µ nor F a
ρµ depends on this relation. This

means essentially that the teleparallel field equation (12) can
be consistently solved for the gravitational potentialBa

µ,
which can then be used to write down the equation of mo-
tion (17), independently of the validity or not of the weak

equivalence principle. The gauge potentialBa
µ, therefore,

may be considered as the most fundamental field represen-
ting gravitation. As we are going to see next, this is not
the case of general relativity, in which to keep the equations
of motion given by geodesics, the gravitational field (me-
tric tensor) must necessarily depend on the relationmg/mi

of the particle, rendering thus the theory inconsistent when
mg 6= mi.

3.2 General Relativity: Geodesics

According to teleparallel gravity, even whenmg 6= mi, the
tetrad is still given by (3), and the spacetime indices are rai-
sed and lowered with the metric (4). Then, by using the
relation (7), as well as the identity

Tλ
µρ uλ uρ = −Kλ

µρ uλ uρ, (19)

the force equation (17) can be rewritten in the form

duµ

ds
− ◦

Γλ
µρ uλ uρ =

(
mg −mi

mg

)
∂µxa dua

ds
, (20)

where use has been made also of the relation (8). Notice
that the violation of the weak equivalence principle produ-
ces a deviation from the geodesic motion, which is proporti-
onal to the difference between the gravitational and inertial
masses. Notice furthermore that, due to the assumed non-
universality of free fall, it is not possible to find a local coor-
dinate system in which the gravitational effects are absent.

Now, as already said, when the weak equivalence prin-
ciple is assumed to be true, the teleparallel field equation
(12) is equivalent to Einstein’s equation (15). Accordingly,
when mg = mi, the equation of motion (17) reduces to
the geodesic equation of general relativity, as can be seen
from its equivalent form (20). However, in the absence of
the weak equivalence principle, it is not a geodesic equa-
tion. This means that the equation of motion (17) does not
comply with the geometric description of general relativity,
according to which all trajectories must be given by genuine
geodesic equations. In order to comply with the foundations
of general relativity, it is necessary to incorporate the par-
ticle properties into the geometry. This can be achieved by
assuming, instead of the tetrad (3) of teleparallel gravity, the
new tetrad

h̄a
µ = ∂µxa +

mg

mi
Ba

µ, (21)

which takes into account the characteristicmg/mi of the
particle under consideration. This tetrad defines a new spa-
cetime metric tensor

ḡµν = ηab h̄a
µ h̄b

ν , (22)

in terms of which the corresponding spacetime invariant in-
terval is

ds̄2 = ḡµν dxµdxν . (23)

By noticing that in this case the relation between the gravi-
tational field strength and torsion becomes

mg

mi
F a

µρ = h̄a
λ T̄λ

µρ, (24)
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it is an easy task to verify that, for a fixed relationmg/mi,
the equation of motion (17) is equivalent to the true geodesic
equation

dūµ

ds̄
− Γ̄λ

µρ ūλ ūρ = 0, (25)

whereūµ ≡ dxµ/ds̄ = h̄a
µua, andΓ̄ρ

µν is the Christof-
fel connection of the metric̄gµν . However, the price for
imposing a geodesic equation of motion to describe a non-
universal interaction is that the gravitational theory becomes
inconsistent. In fact, the solution of the corresponding Eins-
tein’s field equation

R̄µν − 1
2

ḡµνR̄ =
8πG

c4
T̄µν , (26)

which is not equivalent to any teleparallel field equation,
would in this case depend on the relationmg/mi of the test
particle, which renders the theory inconsistent in the sense
that test particles with different relationsmg/mi would re-
quire connections with different curvatures to keep all equa-
tions of motion given by geodesics. Of course, as a true fi-
eld, the gravitational field cannot depend on any test particle
properties.

4 Global Formulation of Gravitation

The basic conclusion of the previous section is that the fun-
damental field describing gravitation is neither the tetrad
nor the metric, but the translational gauge potentialBa

µ.
Using this fact, and the similarity of teleparallel gravity with
Maxwell’s theory, we are going to introduce now a telepa-
rallel nonintegrable phase factor, in terms of which a global
formulation for gravitation will be developed.

4.1 Nonintegrable Phase Factor

As is well known, in addition to the usualdifferentialforma-
lism, electromagnetism presents also aglobal formulation in
terms of a nonintegrable phase factor [6]. According to this
approach, electromagnetism can be considered as the gauge
invariant effect of a nonintegrable (path-dependent) phase
factor. For a particle with electric chargee traveling from an
initial point P to a final pointQ, the phase factor is given by

Φe(P|Q) = exp

[
ie

~c

∫ Q

P

Aµ dxµ

]
, (27)

whereAµ is the electromagnetic gauge potential. In the clas-
sical (non-quantum) limit, the action of this nonintegrable
phase factor on a particle wave-function yields the same re-
sults as those obtained from the Lorentz force equation

dua

ds
=

e

mic2
F a

b ub. (28)

In this sense, the phase-factor approach can be conside-
red as thequantumgeneralization of theclassicalLorentz
force equation. It is actually more general, as it can be
used both on simply-connected and on multiply-connected

domains. Its use is mandatory, for example, to describe
the Aharonov-Bohm effect, a quantum phenomenon taking
place in a multiply-connected space [14].

Now, in the teleparallel approach to gravitation, the
fundamental field describing gravitation is the translational
gauge potentialBa

µ. Like Aµ, it is an Abelian gauge po-
tential. Thus, in analogy with electromagnetism,Ba

µ can
be used to construct a global formulation for gravitation. To
start with, let us notice that the electromagnetic phase factor
Φe(P|Q) is of the form

Φe(P|Q) = exp
[

i

~
Se

]
, (29)

whereSe is the action integral describing the interaction of
the charged particle with the electromagnetic field. Now, in
teleparallel gravity, the action integral describing the inte-
raction of a particle of massmg with gravitation, according
to Eq. (16), is given by

Sg =
∫ Q

P

mg cBa
µ ua dxµ. (30)

Therefore, the corresponding gravitational nonintegrable
phase factor turns out to be

Φg(P|Q) = exp

[
imgc

~

∫ Q

P

Ba
µ ua dxµ

]
. (31)

Similarly to the electromagnetic phase factor, it represents
thequantummechanical law that replaces theclassicalgra-
vitational Lorentz force equation (17).

4.2 The COW Experiment

As a first application of the gravitational nonintegrable
phase factor (31), we consider the COW experiment [7].
It consists in using a neutron interferometer to observe the
quantum mechanical phase shift of neutrons caused by their
interaction with Earth’s gravitational field, which is usually
assumed to be Newtonian. Furthermore, as the experience
is performed with thermal neutrons, it is possible to use the
small velocity approximation. In this case, the gravitational
phase factor (31) becomes

Φg(P|Q) = exp

[
imgc

2

~

∫ Q

P

B00 dt

]
, (32)

where we have used thatu0 = γ ' 1 for the thermal
neutrons. In the Newtonian approximation, we can set
c2B00 ≡ φ = g z, with φ the (homogeneous) Earth New-
tonian potential [8]. In this expression,g is the gravitational
acceleration, assumed not to change significantly in the re-
gion of the experience, andz is the distance from Earth taken
from some reference point. Consequently, the phase factor
can be rewritten in the form

Φg(P|Q) = exp

[
imgg

~

∫ Q

P

z(t) dt

]
≡ exp iϕ. (33)
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Figure 1. Schematic illustration of the COW neutron interferome-
ter.

Let us now compute the phaseϕ through the two trajec-
tories of Fig. 1. As the phase contribution along the seg-
mentsDE and BC are equal, they cancel out and do not
contribute to the phase. Assuming that the segmentBD is at
z = 0, we obtain for the trajectoryBDE:

ϕBDE =
mgg

~

∫ E

D

z(t) dt. (34)

For the trajectoryBCE, we have

ϕBCE =
mgg

~

∫ C

B

z(t) dt +
mggr

~

∫ E

C

dt. (35)

Therefore, we get

∆ϕ ≡ ϕBCE − ϕBDE =
mggr

~

∫ E

C

dt. (36)

Since the neutron velocity is constant along the segmentCE,
we have ∫ E

C

dt ≡ s

v
=

smiλ

h
, (37)

wheres is the length of the segmentCE, andλ = h/(miv)
is the de Broglie wavelength associated with the neutron.
The gravitationally induced phase difference predicted for
the COW experience is then found to be [8]

∆ϕ = s
2πgrλm2

i

h2

(
mg

mi

)
. (38)

When the gravitational and inertial masses are assumed to
coincide, the phase shift becomes

∆ϕ = s
2πgrλm2

h2
, (39)

which is exactly the result obtained for the COW experiment
[7].

4.3 Gravitational Aharonov-Bohm Effect

As a second application we use the phase factor (31) to study
the gravitational analog of the Aharonov-Bohm effect [9].
The usual (electromagnetic) Aharonov-Bohm effect consists
in a shift, by a constant amount, of the electron interferome-
try wave pattern, in a region where there is no magnetic field,
but there is a nontrivial gauge potentialAi. Analogously, the
gravitational Aharonov-Bohm effect will consist in a simi-
lar shift of the same wave pattern, but produced by the pre-
sence of a gravitational gauge potentialB0i. Phenomenolo-
gically, this kind of effect might be present near a massive
rapidly rotating source, like a neutron star, for example. Of
course, differently from an ideal apparatus, in a real situa-
tion the gravitational field cannot be completely eliminated,
and consequently the gravitational Aharonov-Bohm effect
should be added to the other effects also causing a phase
change.

Gravitational Solenoid

2

x

1 z
d

L

Figure 2. Schematic illustration of the gravitational Aharonov-
Bohm electron interferometer.

Let us consider first the case in which there is no external
field at all. If the electrons are emitted with a characteristic
momentump, then its wavefunction has the de Broglie wa-
velengthλ = h/p. Denoting byL the distance between slit
and screen (see Fig. 2), and byd the distance between the
two holes, when the conditionsL À λ, L À x andL À d
are satisfied, the phase difference at a distancex from the
central point of the screen is given by

δ0ϕ(x) =
2πxd

Lλ
. (40)

This expression defines the wave pattern on the screen.
We consider now the ideal case in which a kind of in-

finite “gravitational solenoid” produces a purely static gra-
vitomagnetic field flux concentrated in its interior. In the
ideal situation, the gravitational field outside the solenoid
vanishes completely, but there is a nontrivial gauge poten-
tial B0i. When we let the electrons to move outside the so-
lenoid, phase factors corresponding to paths lying on one
side of the solenoid will interfere with phase factors corres-
ponding to paths lying on the other side, which will produce
an additional phase shift at the screen. Let us then calculate
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this additional phase shift. The gravitational phase factor
(31) for the physical situation described above is

Φg(P|Q) = exp

[
− imgc

~

∫ Q

P

u0 ~B0 · d~r
]

, (41)

where ~B0 is the vector with componentsB0
i = −B0i.

Sinceu0 = γ ≡ [1 − (v2/c2)]−1/2, and considering that
the electron velocityv is constant, the phase difference at
the screen will be

δϕ ≡ ϕ2 − ϕ1 =
γmgc

~

∮
~B0 · d~r. (42)

Since the integral
∮

~B0 · d~r =
∮

(~∇× ~B0) · d~σ =
∮

~H · d~σ ≡ Ω (43)

represents the fluxΩ of the gravitomagnetic field~H =
~∇× ~B0 inside the solenoid, the phase shift can be written in
the form

δϕ =
E Ω
~ c

(
mg

mi

)
, (44)

whereE = γmic
2 is the electron kinetic energy. When the

gravitational and inertial masses are assumed to coincide,
the phase shift becomes

δϕ =
E Ω
~ c

. (45)

Expression (45) gives the phase difference produced by
the interaction of the particle’s kinetic energy with a gauge
potential, which gives rise to the gravitational Aharonov-
Bohm effect. As this phase difference depends on the
energy, it applies equally to massive and massless particles.
There is a difference, however: whereas for a massive parti-
cle it is a genuine quantum effect, for massless particles, due
to the their intrinsic wave character, it can be considered as
a classical effect. In fact, forE = ~ω, Eq. (45) becomes

δϕ =
ω Ω
c

, (46)

and we see that, in this case, the phase difference does not
depend on the Planck’s constant. It is important to remark
that, like the electromagnetic case, the phase difference is
independent of the positionx on the screen, and consequen-
tly the whole wave pattern defined by (40) will be shifted by
a constant amount.

5 Final Remarks

In Einstein’s general relativity, a theory fundamentally ba-
sed on the universality of free fall (or on the weak equiva-
lence principle), geometry replaces the concept of gravita-
tional force. This theory has been confirmed by all experi-
mental tests at the classical level [15], but any violation of
the principle would lead to its ruin. We notice in passing
that the non-universality of the electromagnetic interaction

is the reason why there is no geometric description, in the
sense of general relativity, for electromagnetism.

On the other hand, the teleparallel equivalent of general
relativity does not geometrize the interaction, but shows gra-
vitation as a gauge force quite analogous to the Lorentz force
of electrodynamics. It is able to describe the gravitational
interaction in the absence of universality just as Maxwell’s
gauge theory is able to describe the non-universal electro-
magnetic interaction. In spite of the equivalence with gene-
ral relativity [16], it can be considered as a more fundamen-
tal theory as it dispenses with one assumption. Notice in this
connection that the equivalence principle is frequently said
to preclude the definition of a local energy-momentum den-
sity for the gravitational field [17]. Although this is a true
assertion in the context of general relativity, it has already
been shown that a tensorial expression for the gravitational
energy-momentum density is possible in the context of te-
leparallel gravity [11], which shows the consistency of the
results.

Now, at the quantum level, deep conceptual changes
occur with respect to classical gravity, the most important
being the fact that gravitation seems to be no more uni-
versal [18]. In fact, at this level, the phase of the particle
wavefunction acquires a fundamental status, and turns out
to depend on the particle mass (in the COW effect, obtai-
ned in the non-relativistic limit), or on the relativistic ki-
netic energy (in the gravitational Aharonov-Bohm effect).
Although in the specific case of the COW experiment the
phase shift can be made independent of the mass by intro-
ducing a kind of quantum equivalence principle [19], the
basic difficulty remains that different versions of this quan-
tum principle would be necessary for different phenomena.
Since teleparallel gravity is able to describe gravitation inde-
pendently of the validity or not of the equivalence principle
[5], it will not require a quantum version of this principle to
deal with gravitationally induced quantum effects, and can
be considered as providing a much more appropriate and
consistent approach to study such effects.

Relying on the above arguments, we can say that the fun-
damental field describing gravitation is neither the tetrad nor
the metric, but the translational gauge potentialBa

µ. Me-
tric is no more a fundamental, but a derived quantity. This
point can have important consequences for both classical
and quantum gravity. Gravitational waves should be seen
asB waves and not as metric waves. Quantization of the
gravitational field should be carried out onBa

µ and not on
the metric. Another consequence refers to a fundamental
problem of quantum gravity, namely, the conceptual diffi-
culty of reconcilinglocal general relativity withnon-local
quantum mechanics, or of reconciling the local character of
the equivalence principle with the non-local character of the
uncertainty principle [20]. As teleparallel gravity can be
formulated independently of the equivalence principle, the
quantization of the gravitational field may possibly appear
more consistent if considered in the teleparallel picture.
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