
Selecting a Hashing Algorithm

B. J. MCKENZIE, R. HARRIES AND T. BELL

Department of Computer Science, University of Canterbury,

Christchurch, New Zealand

SUMMARY

Hashing is so commonly used in computing that one might expect hash functions

to be well understood, and that choosing a suitable function should not be

difficult. The results of investigations into the performance of some widely used

hashing algorithms are presented and it is shown that some of these algorithms

are far from optimal. Recommendations are made for choosing a hashing

algorithm and measuring its performance.

KEY WORDS hashing symbol tables

INTRODUCTION

Hashing has always had many applications in computing. Moreover a great deal

has been written about the topic. We might, then, reasonably assume that

applications of hashing in widely distributed software will use algorithms that

have been carefully selected and equally carefully tested. The fact that we can find

examples where this appears not to be the case is perhaps more a reflection of the

fact that some aspects of the behaviour of hashing algorithms are somewhat

counter-intuitive, than of negligence on the part of the programmers. The

discoveries reported in this paper arose because a student was adding to the

Amsterdam Compiler Kit [1], a library of compiler tools, and proposed to use the

hashing routine already in the library. A check of the distribution of hash values

produced by the routine provoked a series of further discoveries.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

2

A SUSPECT HASHING ALGORITHM

In the description of the algorithms we shall use the following:

(i) The identifier (or word) being hashed consists of n characters whose ASCII

values are c1 , .. cn. These array elements are stored as 'signed bytes'. That is to

say, the most significant bit is taken as a sign bit. The other variables are stored as

(32 bit) integers. When a 'signed byte' is used in an arithmetic expression or is

stored in an integer, it is extended to 32 bits in length by propagating the sign bit.

Of course with the standard 8-bit representation of ASCII this distinction is

irrelevant since the most significant bit is always zero, nonetheless it will be seen

later that there are circumstances in which the fact that this form of representation

has been used is relevant.

(ii) The function BITS(v, n) returns an integer whose least significant n bits are

the same as the least significant n bits of v, and whose other bits are zero.

(iii) The functions AND(x, y), OR(x, y), and XOR(x, y) perform bitwise logical

'and', 'inclusive or' and 'exclusive or' on their arguments and return the result.

(iv) A hashing algorithm is an implementation of a function whose range is a set

of integers. In what follows the range is taken to be 0 to NÐ1 (for some natural

number N). Such an algorithm will be said to hash to N buckets.

(v) When distinct inputs hash to the same value a 'collision' is said to occur.

When the hash value is used as a key (for example, as an index into a table) some

method needs to be adopted for dealing with collisions. In what follows it is

assumed that the technique known as 'separate chaining' [2] is employed, and

that there is effectively infinite memory available for storing the chains.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

3

The algorithm which led to the present investigation was:

Algorithm ACK:

m1 = 171

mi = BITS(77.mi-1 + 153, 8) for 2 ≤ i ≤ 16

h0 = 0

hi = hi-1 + XOR(ci, mi) for 1 ≤ i ≤ 16

hi = hi-1 for i > 16

H = BITS(hn, 8)

The mask array elements mi in this algorithm are stored as 'signed bytes'. The

process used to generate these pseudo-random numbers is a linear congruential

generator. The routine ACK was used to hash 36 376 identifiers collected from a

large number of programs written in C. As a check that there was not some

curious property of C identifiers which did not hold generally, it was also used to

hash 24�473 words from a Unix dictionary. Figure 1a gives the resulting plots of

the number of identifiers (and words) hashed to each bucket. It had been expected

that this distribution would be more or less flat, and its marked U-shape was

surprising.

EXPLANATIONS

Let us consider first a hashing scheme in which we merely added the ASCII

values of the characters. Suppose all the identifiers were sorted by length and that

we were to hash first all the identifiers of length 1, then all the identifiers of length

2, and so on, plotting the distribution of hash values each time. For identifiers of

length 1 we shall produce a distribution in which for some values of x in the

range 0 ≤ x ≤ 127, y takes the value 1, and everywhere else y is zero. For

identifiers of increasing length we should get distributions which are increasingly

more humped (i.e. have a lower coefficient of variation). The peak of the hump

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

4

for length n will have an x coordinate equal to roughly n times the mean for

length 1. The height of the hump depends in part inversely on the coefficient of

variation for that length, and in part on the relative frequency of identifiers of that

length. The distribution obtained when all of the identifiers are hashed is the sum

of these separate distributions. Some of these distributions are shown in Figure

2.

A considerable part of the explanation of the behaviour of algorithm ACK

depends on the observation that the upper case letters all have ASCII

representations in which the most significant three bits are 010, while the lower

case letters have correspondingly 011. Whenever we apply 'XOR' to a letter and

a mask byte (both regarded as signed bytes), therefore, the resulting integer will

have the same sign as the mask byte, since the most significant bit of the letter is

zero. Also, because most characters in the identifiers (or words) are lower case

letters, the next two bits are usually ones, and so only the five least significant

bits contribute to the spread. If the mask array contains any negative values, some

of the distributions will have their means (and peaks) moved to the left, some

even to the left of the y-axis. Indeed, if the masks are truly random, and the mask

array is sufficiently long, we should expect the peaks to get closer and closer to x

= 0 as the lengths get greater. The distribution for all of the identifiers is therefore

markedly peaked in the vicinity of x = 0. But the final step in the algorithm is to

take the low order 8 bits of the sum. If the result were regarded as a signed byte

the values would lie in the range -127 .. +127 and would be markedly peaked

about x = 0. Since the result is instead regarded (effectively) as an unsigned byte,

the values lie in the range 0 .. 255 with a U-shaped distribution.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

5

SOME OTHER HASHING ALGORITHMS

The results described above made it seem worthwhile to examine the hashing

algorithms employed in some other widely used software. Table A contains a

description of the algorithms examined.

The algorithm ETH produced an anomaly, namely that the number of identifiers

with hash value 1 greatly exceeded the number for any other hash value The bulk

of the identifiers contain three or more characters. On average, in one case in 257

the value of hi prior to dealing with the last character will be such that hi MOD

257 will be zero. Consequently for one word in 257 the hash value will be 1, and

this is independent of the number of buckets. Modification of the algorithm to

read

ETH-new:

h0 = 1; hi = ci.((hi-1 MOD 257) + 1) for 1 ≤ i ≤ n

H = hn MOD 1699

improved the distribution. (See Figure 1b.)

The distribution of the items into buckets by the other algorithms is shown in

Figure 1.

QUANTIFYING THE ALGORITHMS

Selection of a hashing algorithm is presumably done on the basis that that

algorithm is 'better' than others. The question is: what criteria are to be used in

deciding what is 'better'? Two criteria seem plausible: (i) the degree to which the

algorithm uniformly distributes candidate keys over the possible values; (ii) the

speed with which the algorithm executes. For both of these parameters it is

possible either to develop a theoretical measure or to make empirical

measurements, and for both criteria we took the latter course.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

6

The distribution could be subjected to a chi-squared test taking as null hypothesis

H0: the algorithm produces a uniform distribution (and the observed deviations

from a uniform distribution occur by chance). The chi-squared test gives us a

probability that H0 is true. Unfortunately the probabilities determined this way are

so small that they are of doubtful accuracy and are not in any case very easily

assimilated. However if, as is the case here, the number of degrees of freedom,

n, is reasonably large (n > 100), then Q(c2|n) » Q(x1), where x1�=� Ö(2.c2) Ð

Ö(2.n - 1) . The function Q measures the tail of the cumulative distribution

function; that is Q(X)�=�1�Ð�P(X) where P(X) is the cumulative distribution

function for X (see [3].) Consequently we can take x1 as the measure of the

'goodness' of the distribution.

Another approach to measuring the 'goodness' of the distribution relies on the

observation that the cost of using a hash table depends in part on the number of

probes required to locate identifiers in it. The number of probes required to

independently retrieve all the identifiers in a chain of length n is n(n+1)/2. If we

sum this expression over all chains we find the number of probes required to

locate all the identifiers in the table. Suppose there are W identifiers altogether and

that the hashing function has a range from 0 to N-1. Let

SN = Sfi,N(fi,N+ 1)/2

eN = W/N

TN = N eN(eN + 1)/2 = W(W+N)/2N

RN = SN / TN

where the sum runs from 0 to NÐ1, and fi,N is the number of identifiers hashing

to i when the hashing function range is 0 to NÐ1.

Then RN is the ratio of the number of probes actually required to retrieve all of the

identifiers to the number required if the distribution were uniform. Values of RN

were determined for each algorithm and for various values of N by measuring

values of fi,N .

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

7

Execution speeds were also measured. Originally the algorithm ETH was written

in Modula-2. For this investigation it was rewritten in C, since all the others were

already in that language. In these latter cases various coding techniques had been

used to decrease execution time. For example, the BITS function was

implemented in line by means of a logical and with a mask; multiplication by

powers of two was done by shifting; register variables were used where

appropriate. These techniques were applied consistently throughout.

The results of these investigations are contained in Table B.

It is reassuring to notice that rankings by x1 and by RN produce similar results.

These parameters are essentially measuring the degree to which the algorithm

distributes items evenly over the buckets. On the other hand t, which measures

the intrinsic time to hash an item, and is independent of the spread over buckets,

gives a different ranking. Clearly a compromise must be made between the time

taken to calculate the hash function, and the time spent resolving collisions

produced by an inferior function.

COMPARISON OF THE ALGORITHMS

An ideal hashing function would produce a value of 1 for the ratio RN. It is easy

to show that in the worst possible case, where every identifier hashes to the same

value, RN » N. In general we find that as N increases so does RN. Consequently

for a fair comparison of the algorithms one should use the same value of N for

each. Consideration must, however, be given to whether the values of N

embodied in the algorithms as given can be changed without significantly altering

the performance of the algorithm in some other way. In some cases the value was

chosen to be a power of two so that the MOD function could be calculated

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

8

rapidly. In other cases the number of buckets was presumably chosen because it

was felt that that value would give a 'better' distribution.

Reflection on these issues leads to curiosity as to the degree to which the

performance of the algorithms is susceptible to changes of N. It was decided to

plot values of RN against N for each algorithm. From this point of view the

algorithms GNU-cpp, GNU-cc1, PCC, CPP, C++ and Icon all have the form

hi = k.hi-1 + ci for 1 £ i £ n

H = hn MOD N

where k is 1 for Icon, 2 for PCC, CPP and C++, 4 for GNU-cpp and 613 for

GNU-cc1. Certain other minor changes were also made to remove inessential

differences:

(i) The function BITS was not used.

(ii) Calculation of H was in all cases done thus:

H = if (hn MOD N < 0) then N + hn MOD N

 otherwise hn MOD N

Figure 3 shows plots of RN against N for k = 2, 4, 13 and 613.

For purposes of comparison we also give plots for ACK and ETH-new. Figure 4

is a combined graph in which in some cases only a selection of the points have

been plotted. In the case of GNU-cpp and PCC only odd values of N are given;

for ETH-new only prime values. The vertical line at N = 1787 on this graph is

referred to in the section Experimental Confirmation.

We should note that plots of x1 against N are basically similar to the plots of RN

(except for small values of N, where the approximation which x1 represents is

invalid), as are those for various other possible measures, such as the maximum

number of identifiers hashing to the same value. Note also that the algorithm

GNU-cc1 sets h0 = n whereas all the other algorithms of that type set h0�=�0.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

9

This difference may be expensive in processing time, since in C implementations

two traverses of the string are required. (In the experiments mentioned above this

extra traverse amounted to 61 microseconds per identifier.) It may well be that in

some applications the first (length finding) traverse has already been made for

another purpose, nevertheless, plots of RN for the two cases showed that, if

anything, the extra complication (setting h0� = n) has made the algorithm worse.

The key to understanding these graphs is to note that in Figure 3d the underlying

structure is a straight line through (0, 1). Superimposed on this is some statistical

noise. In addition there are sharp peaks at k, 2k, 3k etc. Inspection of Figure 3c

confirms this interpretation. There are peaks at k, 2k etc., higher peaks at k2, 2k2

etc. (There are still higher peaks at k3, 2k3 but these had to be elided from the

graph in order to keep the vertical scale reasonable.) Further inspection of Figure

3d suggests, and examination of plots drawn to a different scale confirms, that

there are subsidiary peaks at approximately k/2, 3k/2 etc. This enables us to

interpret Figure 3b. The lowest strand corresponds to odd values of N. The next

strand corresponds to odd multiples of 2 (i.e. k/2, 3k/2 etc). The next to odd

multiples of 4 and so on. Figure 3a has a basic similarity to Figure 3b, but in

addition there are marked 'saw-teeth'. Notice that these saw-teeth have the

property that if a steeply rising edge occurs from x = i to x = j then a similar rising

edge occurs from x = 2i to x = 2j.

Figure 5a is a plot of the number of identifiers hashed to each bucket by this

algorithm for a 'good' value viz. N = 1139; Figures 5b & c are for a 'bad' value

(N = 893) and for double that value (N = 1786). Although the distribution is not

very uniform for N = 1139 it is certainly not as skewed as for N = 893. When N

= 1786 we get basically the same pattern twice, with the second part overlaid by a

certain amount of 'noise'. A rough explanation for this behaviour is not difficult

to provide.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

10

If N is a factor of k.hn-1, then H = cn MOD N , so that in these cases the

behaviour of the algorithm is dependent only on the last character of the identifier.

If N = rk then H = cn or cn + k or ... or cn + (r-1)k.

If the values of hn-1 are uniformly randomly distributed then

fi,rk » fi+k,rk » ... » fi+(r-1)k,rk » fi,k/r (*)

hence

Rrk » kå[fi,k(fi,k + r)]/W(W + rk) and so

Rrk » Rk + k(r - 1) (1 - Rk)/(W + rk) < Rk .

Since the observed values do not agree with this result, we may deduce that the

values of hn-1 are not uniformly distributed. Indeed, for n = 1, this is

obviously so, since then hn-1 = h0 = 0 (in the cases that we are considering); for n

= 2, inspection of the distribution of initial characters shows that they are not

uniformly distributed. A further flaw in the above argument arises from the fact

that k is not necessarily a factor of r * k since integer overflow may have

occurred in computation of the product. This situation arises quite early (n = 5)

for k = 613.

Nonetheless, while the relations (*) above may not hold exactly because of these

other effects, they hold sufficiently to produce the peaks at k, 2k etc. The higher

peaks at k, k2 etc arise from a similar consideration, namely that since

H = (k2.hn-2 + k.cn-1 + cn) MOD N

when N is a multiple of k2 only the last two characters have significant effect.

It will be obvious from its derivation that RN is a function of W. The values of

RN obtained also depend on the actual items being hashed. Consequently it would

be dangerous to attempt any assessment of an algorithm on the basis of absolute

values of RN obtained. It is necessary, as has been done here, to examine the

behaviour of RN for a range of values of N.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

11

EXPERIMENTAL CONFIRMATION

To test the deductions made about the behaviour of these algorithms a further

experiment was conducted. The intention was to employ hashing in a situation in

which one might typically find it used. The situation chosen was an algorithm for

finding all the words which each occur exactly once in a given text. The Greek

term hapax legomenon (plural hapax legomena) is used to denote such a word.

The selected text (Thomas Hardy's novel Far From The Madding Crowd)

contained 136 072 words in all, with 6281 hapax legomena. The hashing

algorithms ACK, ETH-new, GNU-cpp, GNU-cc1, Icon and PCC were used,

modified so that in each case 1787 buckets were used, and, in the case of

GNU-cc1, h0 was set to 0. The choice of 1787 for the number of buckets was

made because it is an odd prime which occurs on a peak of the curve for

algorithm PCC (see Figure 4). The results obtained are given in Table C.

Since in this application the speed of the hashing algorithm depends on both its

intrinsic speed (as given by t in Table B) and also on the time spent in searching

the chains resulting from collisions (whose lengths are a function of RN in Table

B) the ranking in Table C agrees with neither of those two measures alone, but

contains them as weighted components. It does, however, confirm that

GNU-cpp, though very simple, performs very well.

CONCLUSIONS

It seems to be the case that algorithms of the style

h0 = 0; hi = k.hi-1 + ci for 1 £ i £ n

H = hn MOD N

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

12

can perform well, but k and N need to be selected with care. Although it may

seem unlikely that anyone would choose one of the really bad combinations, the

facts presented above indicate that far from optimal choices are made and

persisted with. The experiments have shown that very small variations in N can

produce large variations in the efficiency of the hash table lookup, and that the

popular view, that choice of a prime number will automatically ensure a good

result, is not well founded.

Values of k of the form 2n are desirable in terms of speed, since then the

multiplication can be done by shifting. Inspection of Figures 3 and 4 suggests that

taking k = 4 and N odd has the advantage that the resulting routine will run very

fast and yet a value of RN can be obtained which is very close to that obtainable

from 'better' but slower choices. A suitable value of N may be chosen by

consulting Figure 4.

ACKNOWLEDGEMENTS

The authors wish to thank Warwick Heath, whose diligence unearthed the starting

point of this investigation, Greg Ewing who shared in many of the discussions

which helped shape it, and Professor Kevin Lee who settled a dispute about the

plural of�Ô Apax legomenon.

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

13

REFERENCES

[1] TANENBAUM, A.S., VAN STAVEREN, H. AND STEVENSON, J.W. A practical

toolkit for making portable compilers. Commun. ACM 26, 9(Sept. 1983),

pp�654-660

[2] KNUTH, D.E. The Art Of Computer Programming. Vol.3 Sorting and

Searching ; Addison-Wesley; Reading; 1973; pp�513�ff

[3] ABRAMOWITZ, M. AND STEGUN, I (ed); Handbook of Mathematical

Functions; Dover Publications; New York; 1965; pp�927�&�941

B. J. MCKENZIE, R. HARRIES AND T. BELL SELECTING A HASHING ALGORITHM

14

TABLES and FIGURES

Figure 1 : Distributions of identifiers over hash values for the algorithms.

1(a) ACK; 1(b) ETH-new; 1(c) GNU-cpp; 1(d) GNU-cc1;

1(e) PCC; 1(f) CPP; 1(g) C++; 1(h) Icon.

Figure 2 : Distributions over hash values of identifiers of different lengths.

Figure 3 : Plots of RN against N for different vales of k.

3(a) k = 2; 3(b) k = 4; 3(c) k = 13; 3(d) k = 613.

Figure 4 : Combined version of Figure 3.

Figure 5 : Distribution of identifiers over hash values for critical values of N.

5(a) N = 1139; 5(b) N = 893; 5(c) N = 1786.

Table A : The algorithms investigated and their sources.

Table B : Parameters and metrics of the investigated algorithms.

Table C : Metrics from the confirmatory experiment.

