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Abstract

In the literature, the properties of several interestingness

measures have been analyzed and a framework has been

proposed for selecting a right interestingness measure for

extracting association rules. As rare association rules con-

tain useful knowledge, researchers are making efforts to in-

vestigate efficient approaches to extract the same. In this

paper, we make an effort to analyze the properties of inter-

estingness measures for determining the interestingness of

rare association rules. Based on the analysis, we suggest

a set of properties a user should consider while selecting

a measure to find the interestingness of rare associations.

The experiments on real-world datasets show that the mea-

sures that satisfy the suggested properties can determine the

interestingness of rare association rules.

1 Introduction

Association rule mining [1] finds associations between the

sets of items that occur together in a transactional database.

Since the traditional confidence measure may not disclose

truly interesting associations [4, 22], various interesting-

ness measures have been discussed for mining association

rules [16, 19, 21]. Several interestingness measures such

as lift [5] and all-confidence [15] have been proposed in

the literature and are found to be useful for discovering as-

sociation rules.

In [19], several key properties of a measure have been

discussed and it has been shown that each measure satis-

fies a different set of properties making it useful for a given

application domain. The authors have also proposed an ap-

proach to select a desirable measure based on the sample

number of rules.

In this paper, we focus on methods to determine inter-

estingness of rare association rules. We now briefly dis-

cuss about rare association rules. It can be observed that
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real-world datasets are mostly non-uniform in nature con-

taining both frequently and relatively infrequent (or rarely)

occurring entities. A rare association rule refers to an

association rule forming between either frequent and rare

items or only rare items. In literature, it has been reported

that there exists useful knowledge pertaining to rare enti-

ties [14, 20]. For example, in a super-market, costly and/or

durable goods such as Bed and Pillow are relatively in-

frequently purchased than the low cost and/or perishable

goods such as Bread and Jam. However, the association

between the former set of items is more interesting as it

generates relatively more revenue per unit. The rare cases

are more difficult to detect and generalize from because

they contain fewer data. Realizing the importance of rare

knowledge patterns research efforts are going on to inves-

tigate improved approaches to extract rare knowledge pat-

terns such as rare association rules and rare class identifi-

cation [20].

In this paper, we make an effort to analyze the properties

of interestingness measures proposed in [16, 19] sensitive

to rare association rules. Based on the analysis, we sug-

gest a set of properties a measure should satisfy for mining

rare association rules. The experiments on the real-world

datasets show that the measures which satisfy the suggested

properties are able to extract rare association rules.

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss the background and the motivation. In

Section 3, we discuss the various interestingness measures

and the properties examined in this paper. In Section 4 we

analyze the various properties and measures with respect to

mining of rare association rules. Experimental analysis on

real-world datasets has been discussed in Section 5. Finally

we summarize and discuss future work in Section 6.

2 Background and Motivation

In this section, we explain the model of association rules.

Next, we discuss about rare association rules and explain

the motivation.



2.1 Association Rules

Association rules are an important class of regularities that

exist in a database. Since the introduction of association

rules in [1], the problem of mining association rules from

transactional databases has been actively studied in the data

mining community [7, 14, 20]. The basic model of associ-

ation rules is as follows [1]:

Let I = {i1, i2, . . . , in} be a set of items and T be a set of

transactions (dataset). Each transaction t is a set of items

such that t ⊆ I. An itemset (or a pattern) X is a set of items

{i1, i2, ..., ik}, 1≤ k ≤ n, such that X ⊆ I. The itemset

containing k number of items is called a k-itemset. An

implication of the form A ⇒ B, where A ⊂ I, B ⊂ I and

A∩B = /0 is called an association rule iff,

(i) The support of A ⇒ B, denoted as S(A∪B) = f (A∪B)
|T | ,

is not less than the user specified minimum support

threshold, minsup.

(ii) The confidence of A ⇒ B, denoted as C(A ⇒ B) =
S(A∪B)

S(A) , is not less than the user specified minimum

confidence threshold, mincon f .

where, f (X) refers to the frequency of a pattern X and |T |
is the transactional database size.

Example 1: Consider a supermarket containing items

bread and pillow. An association between these

two items is as follows: pillow ⇒ bread [support =
1%, con f idence = 75%]. This rule says that 1% of all

the customers have bought bread and pillow together,

and 75% of those who bought pillow have also bought

bread.

Generally, association rule mining algorithms work in

two steps. In the first step, all frequent patterns that sat-

isfy minsup constraint are extracted. In the second step, all

association rules that satisfy mincon f constraint are gener-

ated from frequent patterns [1].

2.2 Rare Association Rules

Rare items are the items having low support values. The

frequent patterns consisting of only rare items or both fre-

quent and rare items are called rare frequent patterns.

An association rule forming between either frequent and

rare items or only rare items is a rare association rule. Oth-

erwise, it is a frequent association rule. Rare association

rules can provide useful information to the users.

Rare association rules require the extraction of rare fre-

quent patterns. Mining of rare frequent patterns under sin-

gle minsup and single mincon f constraint encounters a

problem known as the rare item problem which is as fol-

lows. At high minsup, we miss the frequent patterns con-

taining rare items because rare items cannot satisfy high

minsup constraint. To mine the frequent patterns contain-

ing rare items, we should specify a low minsup value.

However, low minsup can cause combinatorial explosion,

producing too many frequent patterns in which some of

them can be uninteresting to the user.

To confront rare item problem, efforts are being made in

the literature to extract rare frequent patterns under “mul-

tiple minsup framework” [14]. In this framework, each

item is associated with a minimum item support (MIS)

value. Each pattern can satisfy a minsup depending upon

the MIS values of the items within it. For this frame-

work, an Apriori-like [2] approach known as Multiple Sup-

port Apriori (MSApriori) has been discussed to mine fre-

quent patterns. The MSApriori algorithm suffers from per-

formance problems of the Apriori algorithm. Hence, an

FP-growth-like algorithm known as Conditional Frequent

Pattern-growth (CFP-growth) has been discussed in [8]. In

[11], a methodology was discussed to specify minimum

item supports depending upon the respective support val-

ues. In [10], Improved CFP-growth algorithm was dis-

cussed to efficiently mine frequent patterns. In [12], the

authors made an effort to efficiently mine frequent patterns

in a dataset where item frequencies vary widely.

2.3 Motivation

After discovering frequent patterns, approaches based on

“multiple minsups framework” use mincon f -based rule

discovery technique proposed in [1] for mining association

rules containing both frequent and rare items. However,

mincon f constraint may not disclose truly interesting asso-

ciation rules [4, 22].

Example 2: Consider the following market-basket

data T from the grocery store, focusing on the pur-

chase of tea and co f f ee. Let f (tea,co f f ee) = 20,

f (tea) = 25, f (co f f ee) = 90 and |T | = 100. Using

this data, we evaluate the association rule {tea} ⇒
{co f f ee} to have support=20% and confidence=80%.

In other words, it can be said that out of all the peo-

ple who drink tea, 80% of them drink coffee. How-

ever, 90% of all the people drink coffee regardless of

the fact that they drink tea or not. Thus, the knowl-

edge that one drinks tea decreases the chances of a

customer drinking coffee from 90% to 80%. Thus the

rule, {tea}⇒ {co f f ee} is slightly misleading.

As a result various interestingness measures, such as lift,

correlation and all-confidence have been proposed for dis-

covering useful association rules. Each measure has its own

selection bias that justifies the rationale for preferring a set

of association rules over another. As a result, selecting a

right interestingness measure for mining association rules

is a tricky problem. To confront this problem, a framework

has been suggested in [19] for selecting a right measure. In

this framework, authors have discussed various properties

of a measure and suggested to choose a measure depend-

ing on the properties interesting to the user. In this paper,

we make an effort to identify a set of properties that a user

should consider for mining rare association rules.



3 About Interestingness Measures

In this section, we explain the various interestingness mea-

sures and discuss the properties of an interestingness mea-

sure.

3.1 Interestingness Measures

Since the traditional confidence measure may not disclose

truly interesting association patterns [4, 22], various inter-

estingness measures have been discussed for mining asso-

ciation rules [16, 19, 21]. These interestingness measures

can be classified into two types: subjective measures and

objective measures.

Subjective measures take into account both the data and

the user. A pattern is said to be subjectively interesting if

it reveals unexpected information about the data or such

knowledge which could lead to profitable results. To define

a subjective measure, access to the user’s domain or back-

ground knowledge about the data is required. Subjective

measures recognize that a pattern of interest to one user

may or may not be of interest to another user [9, 17]. In

[17], the authors have proposed unexpectedness and action-

ability as the two measures of subjective interestingness.

Negative encoding length and temporal description length

have been used as subjective measures in [18] and [6], re-

spectively.

Table 1: A 2x2 Contingency Table for variables A and B.

B B

A f11 f10 f1+

A f01 f00 f0+

f+1 f+0 N

Objective measures are mostly based on the theories in

probability, statistics, or information theory. The objective

measures do not require any prior knowledge about the user

or domain and they measure the interestingness of an as-

sociation rule in terms of the structure and the underlying

data used in the discovery process. An objective measure

is usually computed based on the frequency counts tabu-

lated in a contingency table. A typical contingency table

for a pair of binary variables, A and B, is shown in Table

1. In this table, N represents the total number of trans-

actions in a database, f10 represents the number of trans-

actions containing A but not B, f01 represents the number

of transactions containing B but not A, f11 represents the

number of transactions containing both A and B, f00 repre-

sents the number of transactions that contain neither A nor

B, f1+ represents the number of transactions containing A

and f+1 represents the number of transactions containing B.

In context of association rule mining, the variables A and B

represent patterns. Henceforth, depending upon the context

we use the terms “variable” and “pattern” interchangeably.

An objective measure can be either symmetric or asym-

metric. For a typical 2× 2 contingency table containing

a pair of binary variables, A and B (see, Table 1), a mea-

sure M is said to be symmetric if M(A,B) = M(B,A). Oth-

Table 2: Symmetric Interestingness Measures for the asso-

ciation rule (A ⇒ B)

Measure Formula

Correlation (φ)
N f11− f1+ f+1√

f1+ f+1 f0+ f+0

Odds ratio (α)
f11 f00
f10 f01

Kappa (κ)
N f11+N f00− f1+ f+1− f0+ f+0

N2− f1+ f+1− f0+ f+0

Lift (I)
N f11

f1+ f+1

Cosine (IS)
f11√

f1+ f+1

Piatetsky-Shapiro (PS)
f11
N

− f1+ f+1

N2

Collective strength (S) ( f11+ f00
f1+ f+1+ f0+ f+0

)×
(

N2− f1+ f+1− f0+ f+0

N− f11− f00
)

All-confidence (h) min [
f11
f1+

,
f11
f+1

]

Imbalance Ratio (IR)
| f10− f01|

f11+ f10+ f01

Jaccard (ζ)
f11

f1++ f+1− f11

Table 3: Asymmetric Interestingness Measures for the as-

sociation rule (A ⇒ B)

Measure Formula

Confidence (con f )
f11
f1+

Goodman-Kruskal (λ)
(∑ j maxk f jk−maxk f+k)

N−maxk f+k

Mutual Information (M)
(∑i ∑ j

fi j
N log

N fi j
fi+ f+ j

)

(−∑i
fi+
N log

fi+
N )

J-Measure (J)
f11
N

log
N f11

f1+ f+1
+ f10

N
log

N f10
f1+ f+0

Gini index (G)
f1+
N

×
[

( f11)
2+( f10)

2

( f1+)2

]

− (
f+1

N
)2

+
f0+
N

×
[

( f01)
2+( f00)

2

( f0+)2

]

− (
f+0

N
)2

Laplace (L) ( f11 +1)/( f1++2)
Conviction (V ) ( f1+ f+0)/(N f10)

Certainty factor (F) ( f11
f1+

− f+1

N
)/(1− f+1

N
)

Added Value (AV )
f11
f1+

− f+1

N

erwise, M is asymmetric. In other words, a symmetric

measure does not differentiate between the two association

rules, (A ⇒ B) and (B ⇒ A); whereas, an asymmetric mea-

sure does differentiate between the two association rules,

(A ⇒ B) and (B ⇒ A).

List of symmetric and asymmetric measures that are ex-

amined in this paper are given in Tables 2 and 3, respec-

tively.

3.2 Properties of a Measure

For a measure M, Piatetsky-Shapiro [16] has proposed the

following three properties.

Property 1. (P1) M = 0 if A and B are statistically inde-

pendent.

Property 2. (P2) M monotonically increases with P(A,B)
when P(A) and P(B) remain the same.



Table 4: Properties of interestingness measures

Symbol Measure Range P1 P2 P3 O1 O2 O3 O3′ O4

φ Correlation [−1,1] Yes Yes Yes Yes No Yes Yes No

α Odds ratio [0,∞] Yes* Yes Yes Yes Yes Yes* Yes No

κ Kappa [−1,1] Yes Yes Yes Yes No No Yes No

I Lift [0,∞) Yes* Yes Yes Yes No No No No

IS Cosine [0,1] No Yes Yes Yes No No No Yes

PS Piatetsky-Shapiro [−0.25,0.25] Yes Yes Yes Yes No Yes Yes No

S Collective strength [0,∞) No Yes Yes Yes No Yes* Yes No

h All-confidence [0,1] No Yes Yes Yes No No No Yes

IR Imbalance Ratio [0,1] No Yes No Yes No No No Yes

ζ Jaccard [0,1] No Yes Yes Yes No No No Yes

con f Confidence [0,1] No Yes No No No No No Yes

λ Goodman-Kruskal’s [0,1] Yes No No No No No* Yes No

M Mutual Information [0,1] Yes Yes Yes No No No* Yes No

J J-Measure [0,1] Yes No No No No No No No

G Gini index [0,1] Yes No No No No No* Yes No

L Laplace [0,1] No Yes No No No No No No

V Conviction [0.5,∞) No Yes No No No No Yes No

F Certainty Factor [−1,1] Yes Yes Yes No No No Yes No

AV Added Value [−0.5,1] Yes Yes Yes No No No No No

* P1, P2, P3, O1, O2, O3, O3’ and O4 are discussed in Section 3

Yes* : Yes if measure is normalized

No* : Symmetry under row or column permutation

Property 3. (P3) M monotonically decreases with P(A)
(or P(B)) when the rest of the parameters, P(A,B) and

P(B) or (P(A)) remain unchanged.

In [19], the authors have mapped a 2×2 contingency ta-

ble as a 2×2 matrix formulation (M), i.e. M =

[

f11 f10

f01 f00

]

.

The following properties (Properties 4–8) have been pro-

posed by considering a measure as a matrix operator, O

that maps the matrix M to a scalar value, k, i.e. O(M) = k.

Property 4. Symmetry Under Variable Permutation (O1):

A measure O is symmetric under variable permutation,

A ↔ B, if O(MT ) = O(M) for all contingency matrices M.

Otherwise it is called an asymmetric measure.

Property 5. Row/Column Scaling Invariance (O2): Con-

sider two 2× 2 matrices, R and C such that, R = C = [k1

0; 0 k2]. Now a measure O is said to be invariant under

row scaling if O(RM) = O(M), and is said to be invariant

under column scaling if O(MC) = O(M).

Property 6. Antisymmetry Under Row/Column Permu-

tation (O3): For a 2× 2 matrix S = [0 1; 1 0], a normal-

ized measure O (i.e. for all contingency tables, M, −1 ≤
O(M) ≤ 1) is said to be antisymmetric under row permu-

tation if O(SM) = −O(M). Similarly, O is said to be anti-

symmetric under column permutation if O(MS) =−O(M).

Property 7. Inversion Invariance (O3’): For a 2×2 ma-

trix S = [0 1; 1 0], a measure O is said to be invariant under

inversion operation if O(SMS) = O(M).

Property 8. Null Invariance (O4): For a matrix C = [0 0;

0 k], a measure O is said to be null invariant if O(M+C) =
O(M).

The above properties help the user to choose the inter-

estingness measure depending on his/her requirements, i.e.

they are subjective to user-interest. For example, if a user

is interested in finding rules such that (A ⇒ B) = (B ⇒ A),
then a measure that has Property 4 (O1) should be selected

for discovering association rules.

The list of properties either satisfied or not satisfied by

a particular measure is shown in Table 4. This table also

describes properties of the measures, all-confidence [15]

and imbalance ratio [21] that are not discussed in [19].

4 Interestingness Measures for Mining Rare
Association Rules

In this section, we first report our observation by perform-

ing an analysis on an example set of contingency tables. It

is followed by discussion on the properties of an interest-

ingness measure sensitive to rare association rules. Next,

we discuss the framework to select an interestingness mea-

sures for mining rare association rules.

4.1 Analysis

Consider an example set of twelve contingency tables, E1

to E12, shown in Table 5. (The values described in these

tables are based on the 2× 2 contingency table shown in

Table 1.) The contingency tables E1-E10 are taken from

the work of Tan et al. [19]. It can be observed that the

participating variables in Tables E1-E9 are frequent.



Table 5: Example of Contingency Tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370

E2 8330 2 622 1046

E3 3954 3080 5 2961

E4 2886 1363 1320 4431

E5 1500 2000 500 6000

E6 4000 2000 1000 3000

E7 9481 298 127 94

E8 4000 2000 2000 2000

E9 7450 2483 4 63

E10 61 2483 4 7452

E10′ 61 4 2483 7452

E11 30 1 5 9964

E12 61 20 39 9880

To examine rare associations, we have added three new

contingency tables, E10′, E11 and E12. Table E10 repre-

sents an association between a frequent variable and a rare

variable. E10′ shows the transpose of the table E10. It is

because for an asymmetric measure M, M(A,B) ̸=M(B,A).
E11 and E12 contain less frequently occurring variables.

However, relatively the variables in E12 are more frequent

than those in E11.

We compute the association in each example by using

measures mentioned in Tables 2 and 3. Each example is

then ranked according to its measure in decreasing order of

magnitude, as shown in Table 6. The following observa-

tions can be drawn from this table.

(i) Different measures can lead to substantially different

orderings of contingency tables. For example, E11 is

ranked highest by φ, α, κ, lift and AV measures, while

it is ranked lowest by PS measure.

(ii) Some measures such as IR have given high ranking to

the contingency tables that have high frequency vari-

ables (e.g. E7), while some measures such as correla-

tion (φ) and odds ratio (α) have given high ranking to

the contingency tables containing less frequent vari-

ables (e.g. E11).

(iii) Most important, variance of the rankings given by the

measures is high in contingency tables containing ei-

ther only frequent variables (E7) or only rare vari-

ables (E11). This shows that some measures have

favored contingency tables containing high frequency

variables (i.e., frequent association rules), while some

others have favored contingency tables containing rare

variables (i.e., rare association rules).

4.2 Properties Sensitive to Rare Association Rules

Let M be a given measure that is being considered for min-

ing association rules in a transactional database. Here we

discuss which properties are to be satisfied by M for dis-

covering rare association rules.

Property 1 (i.e., P1) is not mandatory for M to discover

rare association rules. It is because some measures may

take a value other than 0 to represent the case when A, B

are statistically independent (A and B are statistically inde-

pendent means P(A,B) = P(A)×P(B)). For example, lift

takes the value 1 when A, B are statistically independent.

The measure M which satisfies Property 2 (i.e., P2) can

be used to mine rare association rules. It is understandable

that the association between A and B becomes more inter-

esting when P(A,B) increases while keeping both P(A) and

P(B) constant.

The measure M which satisfies Property 3 (i.e., P3) is

significant for mining rare association rules. It can be il-

lustrated as follows. Consider two rare variables A and B.

Now if P(A) is increased keeping P(B) and P(A,B) con-

stant, A no more remains a rare variable. Thus, the associ-

ation between A and B, becomes less interesting.

Properties 4-7 help the user to choose the interesting-

ness measure depending on his/her requirements, i.e. they

are subjective to user-interest. For example, if a user is in-

terested in finding rules such that (A ⇒ B) = (B ⇒ A), then

a measure that has Property 4 (O1) should be selected for

discovering association rules. Thus, the properties O1, O2,

O3 and O3’ are subjective to user interest.

For mining rare association rules, the null invariance

(O4) property needs to be considered. A measure which

satisfies the null invariance property is not influenced by

the co-absence of the participating variables. A transaction

is said to be a null transaction with respect to an associ-

ation rule A ⇒ B if neither A nor B is contained in that

transaction. In case of a rare association rule, there will

be a large number of null transactions. So to prevent the

pruning of rare association rules, such a measure needs to

be selected which does not take into account the null trans-

actions while calculating the interestingness value.

Based on the above analysis, a measure that satisfies the

properties, P2, P3 and O4 should be considered for mining

rare association rules,

It can be observed from Table 4 that only cosine (IS),

all-confidence (h) and jaccard (ζ) satisfy all the three prop-

erties among the symmetric measures listed in Table 2, and

none of the asymmetric measures listed in Table 3 satisfy

all the three properties. However, among the asymmetric

measures, mutual information (M), certainty factor (F) and

added value (AV ) satisfy two (P2 and P3) out of the three

properties. Therefore, any one of these measures can be

considered for mining rare association rules.

4.3 Selecting a measure

In [19], the authors have shown that by selecting a small

subset of “well-separated” contingency tables (or associ-

ation rules), an appropriate measure to mine association

rules can be found by comparing how well each measure

agrees with the expectation of the users (or domain ex-

perts).

Given a dataset, the steps for selecting an appropriate

interestingness measure to extract association rules are as

follows.
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(i) A random sample of n contingency tables is chosen

from the set of discovered frequent patterns.

(ii) Sample tables are ranked by users based on the per-

ceived interestingness. We call this the user-given

ranking vector Ur.

(iii) For each interestingness measure M, its value is com-

puted for all the contingency tables. We calculate the

ranks of these measure values as follows. The high-

est value receives the first rank; the second highest

value receives the second rank and so on. The result-

ing ranking values are called a ranking vector for a

measure M denoted as RM .

(iv) The similarity between user-given ranking vector (Ur)

and the ranking vectors of each measure (RM) is com-

puted. The measure with the highest similarity value

is selected as the interestingness measure for mining

association rules for that dataset.

The similarity between two measures is equivalent to the

similarity value between the corresponding ranking vec-

tors. A similarity measure such as cosine similarity or

Pearson’s correlation can be used to find the similarity be-

tween two ranking vectors.

The sample set of contingency tables is chosen ran-

domly from the set of discovered frequent patterns. For

mining rare association rules, the contingency tables re-

lated to rare frequent patterns should be included as a part

of sample set. In other words, considering a 2× 2 contin-

gency table for variables A and B, the sample set is chosen

such that it contains the following combinations: (i) both

A and B are frequent variables, (ii) both A and B are rare

variables, (iii) A is a frequent variable while B is a rare

variable, and (iv) A is a rare variable while B is a frequent

variable.

5 Experimental Analysis

In this section, we performed experimental analysis on var-

ious real-world datasets available at Frequent Itemset MIn-

ing (FIMI) Repository (http://fimi.cs.helsinki.fi/data/). We

confine our analysis to the following real-world datasets:

Retail and BMS-WebView-1. Retail dataset [3] is a large

sparse dataset containing 16,470 distinct items in 88,162

transactions. BMS-WebView-1 [13] is also a large sparse

dataset with 497 distinct items in 59,602 transactions.

To mine rare association rules, we used “multiple

minsups framework” [14] to discover the set of frequent

patterns F from a dataset D. In this approach, each item is

associated with a “minimum item support” (MIS) value.

Let S(i) denote the support/frequency of an item i and

MIS(i) denote the minimum item support value for item

i. To specify items’ MIS values, we use the approach given

in [14], which is as follows.

MIS(i) = min(β×S(i),LS) (1)

where β (0 ≤ β ≤ 1) is a parameter that controls how the

MIS values for items should be related to their frequen-

cies (or supports) and LS is the user-specified lowest mini-

mum item support. For both the datasets, Retail and BMS-

WebView-1, we have set β = 0.05 and LS = 0.1%.

5.1 Experiment 1: Similarity between various mea-

sures

In this experiment, we analyzed the performance of the

measures which possess the properties sensitive to rare as-

sociation rules against the other measures.

For a given dataset, we extracted the set of frequent pat-

terns. Next, a sample of frequent patterns was selected and

all corresponding contingency tables were generated. We

find the similarity between all pairs of measures by finding

the Pearson’s correlation measure between the correspond-

ing ranking vectors.

By considering only symmetric measures, the similar-

ity matrices computed for Retail and BMS-WebView-1

datasets are shown in Tables 7 and 8, respectively. Since

the similarity matrices are symmetric in nature, only the

lower triangular part of the matrices is presented in the ta-

bles. It can be observed that in both the datasets, the mea-

sures, jaccard (ζ), all-confidence (h) and cosine (IS) are

highly similar to each other (the corresponding similarity

values are underlined in Tables 7 and 8) because all three

measures share the three properties, P2, P3 and O4 (refer

Section 3) sensitive to rare association rules.

By considering only asymmetric measures, the simi-

larity matrices computed for Retail and BMS-WebView-1

datasets are shown in Tables 9 and 10, respectively. It can

be observed that in both the datasets, the measures, cer-

tainty factor (F), added value (AV ) and mutual information

(M) are highly similar (the corresponding similarity values

are underlined in Tables 9 and 10) to each other because all

three measures share two (P2 and P3) properties sensitive

to rare association rules.

Overall the experiments show that the measures satisfy-

ing the properties sensitive to rare association rules exhibit

high similarity. Any one of the measures which are pos-

sessing properties sensitive to rare association rules can be

chosen for extracting rare association rules. The measure

should be selected based on the suitability of other proper-

ties of the measure for the data mining task.

5.2 Experiment 2: Measure Selection for Mining Rare

Association Rules

We have carried out an experiment to select a measure for

extracting rare association rules for a given dataset. After

extracting frequent patterns, we have selected a sample of

15 contingency tables from each of the two datasets, Re-

tail and BMS-WebView-1. A group of users examined the

contingency tables and gave the appropriate ranks. To give

importance to rare association rules, the users gave high

ranks to rare association rules.

Table 11 and Table 12 show the sample contingency ta-

bles chosen from the Retail and BMS-WebView-1 datasets,

respectively. The last column in these tables shows the

rankings provided by the users. It can be observed that the



Table 7: Similarity between different symmetric measures for Retail dataset

φ α κ I IS PS S h IR ζ
φ 1

α 0.95 1

κ 0.718 0.796 1

I 0.957 0.979 0.814 1

IS 0.943 0.875 0.668 0.875 1

PS 0.646 0.521 0.043 0.496 0.639 1

S -0.593 -0.657 -0.811 -0.693 -0.507 0.189 1

h 0.907 0.845 0.685 0.871 0.951 0.532 -0.594 1

IR 0.768 0.671 0.614 0.743 0.779 0.389 -0.557 0.882 1

ζ 0.889 0.827 0.671 0.845 0.958 0.525 -0.572 0.996 0.86 1

Table 8: Similarity between different symmetric measures for BMS-WebView-1 dataset

φ α κ I IS PS S h IR ζ
φ 1

α 0.754 1

κ 0.939 0.596 1

I 0.707 0.964 0.6 1

IS 0.993 0.707 0.95 0.65 1

PS 0.696 0.196 0.675 0.064 0.732 1

S -0.771 -0.8 -0.796 -0.871 -0.732 -0.2 1

h 0.821 0.375 0.921 0.346 0.854 0.693 -0.643 1

IR -0.104 -0.464 0.168 -0.425 -0.057 0.175 -0.014 0.411 1

ζ 0.879 0.479 0.971 0.482 0.9 0.657 -0.739 0.975 0.304 1

Table 9: Similarity between different asymmetric measures for Retail dataset

con f λ M J G L V F AV

con f 1

λ 0.617 1

M 0.657 0.746 1

J -0.033 0.402 0.318 1

G 0.343 0.198 0.493 -0.208 1

L 0.686 0.449 0.471 0.293 -0.232 1

V 0.75 0.777 0.932 0.384 0.411 0.532 1

F 0.768 0.777 0.946 0.249 0.429 0.511 0.975 1

AV 0.768 0.777 0.946 0.249 0.429 0.511 0.975 1 1

Table 10: Similarity between different asymmetric measures for BMS-WebView-1 dataset

con f λ M J G L V F AV

con f 1

λ 0.541 1

M 0.961 0.57 1

J 0.668 0.085 0.682 1

G -0.254 -0.399 -0.418 0.096 1

L 0.461 0.541 0.568 0.336 -0.371 1

V 0.986 0.541 0.986 0.696 -0.311 0.554 1

F 0.986 0.541 0.986 0.696 -0.311 0.554 1 1

AV 0.986 0.541 0.986 0.696 -0.311 0.554 1 1 1



Table 11: Sample set of contingency tables taken from Re-

tail dataset

f11 f10 f01 f00 Ur

T1 130 74 71 87887 1

T2 124 127 56 87855 2

T3 106 41 120 87895 3

T4 99 175 201 87687 4

T5 106 90 138 87828 5

T6 5402 3053 36733 42974 6

T7 224 3673 3033 81232 7

T8 1740 19 13856 72547 8

T9 1206 853 40929 45174 9

T10 1416 40719 1520 44507 10

T11 98 50577 88 37399 11

T12 1116 41019 921 45106 12

T13 93 39 50582 37448 13

T14 93 48 50582 37439 14

T15 92 50583 49 37438 15

Table 12: Sample set of contingency tables taken from

BMS-WebView-1 dataset

f11 f10 f01 f00 Ur

T1 118 33 128 59323 1

T2 359 549 821 57873 2

T3 102 114 218 59168 3

T4 1204 2408 2454 53536 4

T5 615 1333 807 56847 5

T6 307 806 601 57888 6

T7 771 2678 1600 54553 7

T8 496 2301 2953 53852 8

T9 60 622 664 58256 9

T10 62 434 528 58578 10

T11 63 8 1425 58106 11

T12 72 2196 50 57284 12

T13 228 3430 2569 53375 13

T14 83 3529 52 55938 14

T15 68 3544 138 55852 15

contingency table T 1 has been given high rank because it

represents an association between two rare variables, and

T 15 has been given a low rank because it is an association

between a highly frequent and a rare variable.

The Pearson’s correlation measure has been used to find

the similarity between the ranking vectors.

For symmetric measures, the similarity values between

ranking vector of each measure (RM) and user given rank-

ing vector (Ur) is given in Tables 13 and 14 for Retail and

BMS-WebView-1 datasets, respectively. It can be observed

that the rankings given by the measures, jaccard (ζ), all-

confidence (h) and cosine (IS) are highly similar to the user-

specified ranking vectors Ur.

Similarly, for asymmetric measure, the similarity val-

ues between ranking vector of each measure (RM) and user

given ranking vector (Ur) is given in Tables 15 and 16 for

Retail and BMS-WebView-1 datasets, respectively. It can

be observed that the ranks given by mutual information

(M) measure are the most similar to the actual rankings ex-

pected by the users. Added value (AV ) and certainty factor

(F) also give ranks similar to the ranks expected by the

users.

From Experiment 2, we can conclude that the measures

satisfying the suggested properties can be used for mining

rare association rules, giving rankings similar to the user-

perceived rankings.

6 Conclusion

In this paper, we have analyzed how various interesting-

ness measures perform in extracting rare association rules.

Through analysis, we found out that the measures which

possess certain properties are appropriate for extracting

rare association rules. By carrying out experiments on real

world datasets, it has been shown that the measures satis-

fying the prescribed properties are able to mine rare asso-

ciation rules.

It can be observed that a single measure may not be

appropriate to mine interesting association rules from all

kinds of frequent patterns (both rare and frequent) for a

given dataset. So as a part of future work, we will make

an effort to investigate the approaches to extract associa-

tion rules by dividing the frequent patterns extracted from

the dataset into multiple groups and applying an appropri-

ate interestingness measure for each group.
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