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Abstract

Let I1, I2, . . . , In be a sequence of independent indicator functions de-
fined on a probability space (Ω, A, P ). We say that index k is a success
time if Ik = 1. The sequence I1, I2, . . . , In is observed sequentially.

The objective of this article is to predict the l-th last success, if any, with
maximum probability at the time of its occurence. We find the optimal
rule and discuss briefly an algorithm to compute it in an efficient way. This
generalizes the result of Bruss (1998) for l = 1, and is equivalent to the
problem of (multiple) stopping with l stops on the last l successes. We
extend then the model to a larger class allowing for an unknown number
N of indicator functions, and present, in particular, a convenient method
for an approximate solution if the success probabilities are small. We also
discuss some applications of the results.
Keywords: ”Sum the odds” algorithm, optimal stopping, multiple stop-
ping, stopping islands, generating functions, modified secretary problems,
unimodality.
AMS subject classification: 60G40

1 Introduction.

Let E1, E2, . . . , En be a sequence of n independent well-defined experiments. The
outcome of each Ek is classified either as a success or a failure. Further, let Ik = 1
if Ek results in a success, and Ik = 0 otherwise, i.e. Ik is the success indicator of
the k-th experiment.

We study the following problem. A decision maker observes sequentially I1,
I2,. . . , In with the objective to predict, with maximum probability, correctly the
occurences of the last l (1 ≤ l ≤ n) successes at their respective occurence times.
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This is clearly equivalent to predict, with maximum probability, the occurence of
the l-th last success and to enumerate simply all following successes. If there are,
from the first announcement onwards, exactly l successes up to step n, then the
decision maker’s game is defined to be a success, otherwise a failure.

This problem has been studied in detail for the case l = 1 by Bruss (1998).
This case stands out for two reasons. Firstly, viewing applications, it is, in many
ways, the most natural problem. If we define for instance Ik as the indicator of
the event that Ek results in a record observation of a certain variable observed in
all experiment, then stopping on (or predicting the) last success means stopping
on the largest observation without recall of preceding observations. This is the
kernel of many problems like investment problems, secretary problems and others.
Secondly, the case l = 1 allows for a quick recursive solution by the so-called ”Sum
the odds” algorithm, which is so simple that it often does not even require paper
and pencil.

In this paper, we first prove that the optimal prediction rule is always of the
following form: for each l, 1 ≤ l ≤ n, there exists a non-random index sl from
which onwards one should announce the first success as being the l-th last one.
After such an announcement, it is understood that the next l − 1 successes are
automatically announced as being the l − 1 last ones (we say that we ”stop”
from sl onwards). We then describe the corresponding solution algorithm to find
sl. Although it becomes more and more computationally involved as l increases,
many asymptotic cases (as e.g. E(Ik) → 0 for all k as n → ∞) are equally nice
for l > 1 as for l = 1.

The last section discusses possible applications of our results.

2 Mathematical Formulation.

Let I1, I2, . . . , In be a sequence of independent indicator functions defined on
a probability space (Ω,A, P ) and let Fk = σ(I1, I2, . . . , Ik) denote the σ-field
generated by I1, I2, . . . , Ik. Further let T be the set of stopping rules τ such
that {τ = k} ∈ Fk. Given pj = E(Ij), j = 1, . . . , n, the problem is to show
that there exists τ ?

l ∈ T maximizing the probability of the event Iτl
= 1 and

Iτl+1 + Iτl+2 + . . . + In = l − 1, and to find its value. Thus we want to find

τ ?
l = arg sup

τ∈T
P

(

n
∑

k=τ

Ik = l
)

and the corresponding value which we denote by V (l, n).
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3 Results.

Recall that pk = E(Ik), and put qk := 1− pk and rk := pk/qk. Further, let

R0,k := 1

and, for l ≥ 1,

Rl,k :=

n
∑

i1,...,il=k

all 6=

ri1 . . . ril, (1)

where ”all 6=” means that the sum is taken over all different ordered sets
{i1, i2, . . . , il}. We also define

R̃l,k =

n
∑

i1,...,il=k

i1<...<il

ri1 . . . ril

(

= Rl,k/(l!)
)

(2)

and

Qk :=

n
∏

j=k+1

qj. (3)

Form of the optimal strategy.

We now state the first part of the main result. It will show that the optimal
strategy is of the simple form as announced in the Introduction.

Theorem 1 An optimal rule for stopping on the l-th last success exists and is
to stop on the first index (if any) k with Ik = 1 and k ≥ sl for some fixed
1 ≤ sl ≤ n− l + 1.

Proof. Let gj(t) and Gk(t) denote respectively the probability generating
functions of Ij and Sk := Ik+1 + Ik+2 + . . . + In. Independence of the Ij’s yields

gj(t) = qj + pj t ; Gk(t) =
n

∏

j=k+1

(qj + pj t) = Qk

n
∏

j=k+1

(1 + rj t),

where, as before, Qk :=
∏n

j=k+1 qj.
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Let G
(l)
k (t0) denote the derivative of order l of Gk(t) evaluated in t = t0. For

l = 1 we obtain

G′
k(s) = Qk

(

n
∑

j=k+1

rj

n
∏

i=k+1

i6=j

(1 + ris)
)

, k = 0, 1, . . . , n− 1, (4)

and then by induction on l

G
(l)
k (s) = Qk

(

n
∑

j1,...,jl=k+1

all 6=

rj1 . . . rjl

n
∏

i=k+1

i6=j1,...,jl

(1 + ris)
)

, k = 0, 1, . . . , n− l. (5)

From (4) and (5), we get

P (Sk = 1) = G′
k(0) = Qk R1,k+1, k = 0, 1, . . . , n− 1,

and

l! P (Sk = l) = G
(l)
k (0) = Qk Rl,k+1, k = 0, 1, . . . , n− l,

or

P (Sk = l) = Qk R̃l,k+1, k = 0, 1, . . . , n− l.

The crucial step is to prove that P (Sk = l) is unimodal in k. For the rest, the
proof of the corresponding result in Bruss (1998) for l = 1 extends immediately
for general l. We summarize these arguments. If P (Sk = l) is unimodal in k
then the optimal rule must be simple (without stopping island) and of the form:
announce the first success after some, possibly random, waiting time W as being
the l-th last. However, since SW is, by construction, independent of I1, . . . , IW ,
the optimal waiting time W must coincide with the deterministic optimal waiting
time sl − 1.

To prove unimodality, it will be helpful to look again first at the case l = 1.
Let k ≤ n− 1. In order to understand the evolution of G′

k(0) for k’s decreasing
from n− 1 to 0, let us study the transition between G′

k(0) and G′
k−1(0):

G′
k−1(0) = Qk−1 R1,k = Qk qk (R1,k+1 + rk)

= Qk

[

(R1,k+1 − 1) qk + 1
]

4



Hence, with qk < 1 (if qk = 1, we simply have G′
k−1(0) = G′

k(0)), we have
G′

k−1(0) > G′
k(0) = Qk R1,k+1 if and only if (R1,k+1 − 1) qk + 1 > R1,k+1, i.e. if

and only if R1,k+1 < 1.

Similarly we obtain, assuming that qk < 1,

R1,k+1 = 1 ⇔ G′
k−1(0) = G′

k(0)

R1,k+1 > 1 ⇔ G′
k−1(0) < G′

k(0).

Viewing these relations, P (Sk = 1) is clearly unimodal. Working in the same way
for l ≥ 2, we obtain

G
(l)
k−1(0) = Qk qk (Rl,k+1 + l rk Rl−1,k+1)

= Qk

[

(Rl,k+1 − l Rl−1,k+1) qk + l Rl−1,k+1

]

.

Again, if qk < 1 (if qk = 1, we still have G
(l)
k−1(0) = G

(l)
k (0)), we have

Al,k := Rl,k+1 − l Rl−1,k+1 < 0 ⇔ G
(l)
k−1(0) > G

(l)
k (0)

Al,k := Rl,k+1 − l Rl−1,k+1 = 0 ⇔ G
(l)
k−1(0) = G

(l)
k (0)

Al,k := Rl,k+1 − l Rl−1,k+1 > 0 ⇔ G
(l)
k−1(0) < G

(l)
k (0).

(6)

Remark. If we define A1,k := R1,k+1−R0,k+1, i.e. A1,k = R1,k+1−1,
we also obtain, if qk < 1,

A1,k < 0 ⇔ G′
k−1(0) > G′

k(0)
A1,k = 0 ⇔ G′

k−1(0) = G′
k(0)

A1,k > 0 ⇔ G′
k−1(0) < G′

k(0).

so that the properties (6) are true for all l ≥ 1.

To prove unimodality of G
(l)
k (0), it suffices, from (6), to show that, if Al,K > 0,

K ≤ n− l, then we have Al,k > 0 for all k ≤ K.
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But, since

Al,k−1 = Al,k + l rk Al−1,k, (7)

it is sufficient to prove that

Al,k > 0 ⇒ Al−1,k ≥ 0 ∀ 2 ≤ k ≤ n− l.

We will in fact prove something slightly stronger, namely

Al,k > 0 ⇒ Al−1,k > 0 ∀ 0 ≤ k ≤ n− l. (8)

We will denote by (Il,k) the implication (8). We will now prove unimodality
by proving all implications (Il,k) by double induction on k and l.

Let us first prove the implications (I2,k) by an induction on k ≤ n− 2.

i) For k = n− 2, A1,k = rn−1 + rn− 1 ≤ 0 implies rn−1rn ≤ rn−1 and so we have
2 rn−1rn − 2 (rn−1 + rn) ≤ 0, i.e. A2,k ≤ 0.

ii) Assume statement (I2,k) is true. If A1,k−1 ≤ 0, we have A1,k ≤ 0. So, using
the induction hypothesis, A2,k ≤ 0 and 2 rk A1,k ≤ 0. By summing up, we
therefore obtain A2,k−1 ≤ 0.

It remains to be shown that the statement (Il,k) holds for l > 2 (k ≤ n − l).
Using an induction on l, assume that the implications (Il−1,k) are true for 0 ≤
k ≤ n − l + 1. We will first prove implications (Il,n−l) for 3 ≤ l ≤ n. Then, we
will show that if the implication (Il,k̃) and the implications (Il−1,k) are true for
all k, then (Il,k̃−1) is true.

i) Note that

Rl,n−l = l! (rn−l+1 . . . rn)

Rl−1,n−l = (l − 1)!
n

∑

i=n−l+1

rn−l+1 . . . r̂i . . . rn

= (l − 1)! (rn−l+1 . . . rn)
( 1

rn−l+1
+ . . . +

1

rn

)

Rl−2,n−l = (l − 2)!

n
∑

i,j=n−l+1,i6=j

rn−l+1 . . . r̂i . . . r̂j . . . rn,
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where r̂i means that the factor ri is replaced by 1. Using (6) and (8), the
implication (Il,n−l) turns into

(rn−l+1 . . . rn) > (rn−l+1 . . . rn)
( 1

rn−l+1
+ . . . +

1

rn

)

which implies

(rn−l+1 . . . rn)
( 1

rn−l+1
+ . . . +

1

rn

)

>

n
∑

i,j=n−l+1,i6=j

rn−l+1 . . . r̂i . . . r̂j . . . rn.

Note that the hypothesis of statement (Il,n−l) ensures rj > 0 for all j ≥ n−l+1.
To prove this implication, it suffices to check that

( 1

rn−l+1

+ . . . +
1

rn

)−1 n
∑

i,j=n−l+1,i6=j

rn−l+1 . . . r̂i . . . r̂j . . . rn

≤ (rn−l+1 . . . rn)
( 1

rn−l+1

+ . . . +
1

rn

)

.

This inequality is true since it is equivalent to

n
∑

i,j=n−l+1,i6=j

rn−l+1 . . . r̂i . . . r̂j . . . rn ≤ (rn−l+1 . . . rn)

(

n
∑

i=n−l+1

rn−l+1 . . . r̂i . . . rn

)2

(

rn−l+1 . . . rn

)2 ,

or again,

n
∑

i,j=n−l+1,i6=j

r2
n−l+1 . . . ri . . . rj . . . r2

n ≤
(

n
∑

i=n−l+1

rn−l+1 . . . r̂i . . . rn

)2

.

This proves implication (Il,n−l).
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ii) Assume now that the implications (Il,k̃) and (Il−1,k) hold for all 0 ≤ k ≤
n− l + 1. We will show that the implication (Il,k̃−1) is then also true.

From the (Il−1,k)’s and (7), we deduce that

Al−1,k̃−1 ≤ 0 ⇒ Al−1,k̃ ≤ 0.

Furthermore, Al−1,k̃ ≤ 0 ⇒ Al,k̃ ≤ 0, since this is the contraposition of impli-
cation (Il,k̃). Using (7), we therefore obtain

Al−1,k̃−1 ≤ 0 ⇒ Al,k̃−1 ≤ 0 ,

which is the contraposition of implication (Il,k̃−1).

This proves unimodality and completes the proof.

2

A formula for sl.

We now state the second part of the main result which is the value of sl. Note that
we have made no distinction so far between the case pj > 0 for all j, respectively
pj = 0 for some j. Indeed this was not necessary for the proof of unimodality in
Theorem 1. However, to give a general formula for sl and the optimal value, we
now define

πk := #{ j ≥ k | rj > 0 },

and prove the following result.

Theorem 2 1. Let pj < 1 for all j = 1, 2, . . . , n. Then, with Rl,k defined in (1),

sl = sup
{

1, sup { 1 ≤ k ≤ n− l + 1 : Rl,k ≥ l Rl−1,k and πk ≥ l }
}

,

and the optimal reward is given by

V (l, n) = Qsl
R̃l,sl

.

2. k?
l := sl − 1 is the largest index maximizing P (Sk = l), provided that the

second sup in the definition of sl is not taken on an empty set.
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Note also that it is not obvious that k?
l should maximize P (Sk?

l
= l) =

G
(l)
k?

l
(0)/(l!). But k?

l satisfies Al,k?
l
≥ 0. If Al,k?

l
> 0, the proof of unimodality

showed that Al,j > 0 for all j < k?
l , so that, from properties (6), k?

l maximizes
clearly P (Sk?

l
= l) in that case. But what could happen if Al,k?

l
= 0 ? Could we

then have Al,j < 0 for some j < k?
l ? As shown in Lemma 1 below, the answer is

no, provided that πk?
l
+1 ≥ l. That’s why we required πsl

≥ l in Theorem 2.

Lemma 1 Let l ≥ 2 and k ≤ n− l. Assume that Al,k = 0 and that Al,j < 0 for
some j < k. Then, we have πk+1 < l − 1.

Lemma 1 will be proved in the Appendix. Using Lemma 1 we now prove
Theorem 2.

Proof. Recall k?
l defined in Theorem 2. We denote by Kl the largest index k

such that P (Sk = l) is maximal.

k?
l ≤ Kl: If Al,k?

l
> 0, we have Al,j > 0 for all j ≤ k?

l . Thus, from properties

(6), G
(l)
j (0) ≤ G

(l)
k?

l
(0) for all j ≤ k?

l . If Al,k?
l

= 0, we have Al,j ≥ 0 for all j ≤ k?
l

(it is trivial for l = 1, and it follows from Lemma 1 for l ≥ 2 since πk?
l
+1 ≥ l).

Therefore, we have again G
(l)
j (0) ≤ G

(l)
k?

l
(0) for all j ≤ k?

l .

Kl ≤ k?
l : If πk?

l
+2 ≥ l, we have necessarily Al,k?

l
+1 < 0. It follows that

rk?
l
+1 > 0 (because we must have Al,k?

l
≥ 0). From properties (6), we thus have

G
(l)
k?

l
(0) > G

(l)
k?

l
+1(0). Hence Kl ≤ k?

l . If πk?
l
+2 < l, πk?

l
+1 = l and πk?

l
+2 = l − 1.

We conclude respectively that G
(l)
k?

l
(0) > 0 and G

(l)
k?

l
+1(0) = 0. Hence Kl ≤ k?

l . 2

4 The algorithm.

In this short section, we will make some remarks about efficient algorithms to
compute sl . First of all, recalling that sl is the largest k which satisfies Rl,k ≥
l Rl−1,k, one could think that the computation of the sums Rl,k, k ≥ sl, could

be avoided by using the ”Ersatz” sums R
(l)
k =

∑n
i=k(ri)

l, which are easier to
compute. In terms of these sums, the stopping conditions for l = 2 and 3, for
instance, can be rewritten respectively

(R
(1)
k )2 − R

(2)
k ≥ 2 R

(1)
k ,

(R
(1)
k )3 − 3 R

(2)
k R

(1)
k + 2 R

(3)
k ≥ 3

(

(R
(1)
k )2 − R

(2)
k

)

.
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The relation between the sums Rl,k and the power sums R
(l)
k is due to Newton

(see David and Kendall (1966)). It can be shown that, as we would write today
in form of a determinant,

Rl,k =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R
(1)
k 1 0 0 . . . 0

R
(2)
k R

(1)
k 2 0 . . . 0

R
(3)
k R

(2)
k R

(1)
k 3 . . . 0

...
...

...
...

. . .
...

R
(l)
k R

(l−1)
k R

(l−2)
k R

(l−3)
k . . . R

(1)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Although the power sums are more convenient, the associated algorithm will
not be more efficient since we would have to incorporate the computation of these
new stopping conditions. Note that alternatively, we can compute the sums Rl,k

in an efficient way, using the relation Rl,k = Rl,k+1 + l rk Rl−1,k+1. We could still
slightly improve the algorithm by working with the sums without repetitions R̃l,k.
Indeed, the stopping conditions turn then into R̃l,k ≥ R̃l−1,k, while the recursive
relation to compute the sums becomes R̃l,k = R̃l,k+1 + rk R̃l−1,k+1.

5 Asymptotics and trials on Poisson arrivals.

Since

R1,k Rl−1,k = Rl,k + (l − 1)
n

∑

i1,...,il=k

all 6=

(ri1)
2 ri2 . . . ril−1

, (9)

the stopping condition defining sl can be rewritten in the form

R1,k − (l − 1)

∑

(ri1)
2 ri2 . . . ril−1

Rl−1,k
≥ l. (10)

Clearly, this means that R1,k − l O(‖rj‖∞) ≥ l for ‖rj‖∞ → 0, where the
O(‖rj‖∞) is positive and does not depend on l. So if we define

sa
l := sup

{

1, sup { 1 ≤ k ≤ n− l + 1 : R1,k ≥ l }
}

, (11)

the error sa
l −sl tends to 0 when ‖rj‖∞ tends to 0. Furthermore, notice from (10),

that we always have sa
l ≥ sl, and that, for fixed values pk, sa

l − sl increases with l.
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For the following problem, the situation for l > 1 is equally nice as for l = 1.
Let us consider (N(t)) an inhomogeneous Poisson process with intensity rate λ(t).
Let h(t) be the success parameter function for an experiment occuring at time
t, where a success at time t is independent of preceding outcomes. Assume that
φ(t) = λ(t) h(t) has at most finitely many discontinuities on a given horizon [0, T ].
The objective is to stop the process with maximum probability on the l-th last
success.

We consider an arbitrary partition [0, t1]∪]t1, t2]∪. . .∪ ]tm−1, tm] of [0, T ] (tm =
T ). If pk denotes the probability of at least one success in ]tk−1, tk], then it follows
from our assumption that pk = λ(tk) h(tk) (tk− tk−1) + o(tk− tk−1), with at most
a fixed number of exceptions for k. When the caliber of the partition tends
to 0 we obtain a well-defined limiting success intensity φ at time t, which is
φ(t) = λ(t) h(t). Note that the limiting ”odds-intensity” for successes is here just
the limiting success intensity φ(t) at time t. Further, since the O-term in (10)
vanishes in this case, it suffices to define, similarly as for l = 1,

τl := sup
{

0, sup { 0 ≤ t ≤ T :

∫ T

t

φ(u) du = l }
}

(12)

to obtain the optimal rule which is to announce the first success (if any) after
time τl as being the l-th last success.

6 Some applications.

1. Let us look at the secretary problem, but now with the objective of selecting
the l top records. Let Ik = 1 if the k-th observation is a record (Ik = 0 otherwise).
It is well known that E(Ik) = 1/k and that the Ik are independent random
variables (see Rënyi (1962)). So rk = 1/(k − 1), and sa

l is simply given by
R1,sa

l
= 1/(n−1)+1/(n−2)+. . .+1/(sa

l −1), stopped at l. Here, ”stopped at l” is

shorthand for stopped as soon as this sum reaches or exceeds l. So sa
l /n → (1/e)l

as n → ∞, since
∑

k 1/k diverges and thus 1/sa
l → 0. Since supj≥sa

l
rj → 0, we

have sa
l−sl → 0 as n →∞, as we have seen after equation (11). So the well-known

limiting result sl/n → (1/e)l as n → ∞ appears as a direct consequence of
Theorem 2. We can also see from Theorem 2 that the asymptotic optimal reward
for the top-l-records-objective is given by

V (l, n) →
ll

(l!) el
as n →∞. (13)
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Indeed, if R̃l,k denotes the sum defined in (2), stopping from index sa
l onwards

yields the reward (sa
l − 1)/n) R̃l,sa

l
= ((sa

l − 1)/n) Rl,sa
l
/(l!), where (sa

l − 1)/n →

(1/e)l. So it suffices to show that Rl,sa
l
→ ll as n → ∞. Using the relation (9),

we see that Rl,sa
l
, R1,sa

l
Rl−1,sa

l
, (R1,sa

l
)2Rl−2,sa

l
,. . . , (R1,sa

l
)l have the same limit as

n →∞. Since R1,sa
l

is stopped at l, we get the result.

2. For the case l = 1, several applications were given in Bruss (1998), including
a dice problem, the secretary problem and the group interview problem. Clearly,
this case is in many ways the most natural one because optimal stopping problems
often allow for just one stop.

In the secretary problem with two choices, say, suppose we succeed in stopping
on the last two records (for a detailed study of records see Arnold et al. (1998)).
We then succeed in getting the best of all, because the latter is always the last
record, and we also get the second last record, i.e. together, we get the two
top records. Thus, stopping on the last two records is more demanding than just
stopping on two occasions to get the best. Note that if we want to obtain the best
with two stops, having used one choice already, we have to change to the optimal
l=1-rule (see Gilbert and Mosteller (1966) and Sakaguchi (1978)). However, we
do not have this option if we want to obtain the last two records, and so the
success probability for the latter is essentially smaller. As n → ∞ for instance,
we obtain from (13)

P (Ss2−1 = 2) −→ 2 e−2 ≈ 0.27067, as n →∞,

compared with P (win if either selection is best) −→ e−1 + e−3/2 ≈ 0.59101, as
n →∞ (see also Tamaki (1979 a) and (1979 b)).

Ano (1989) studied optimal selection problems with three choices; for a recursion
solving the (asymptotic) problem for l choices, see Bruss (1988); for a strongly
related problem of choice with assignments, see Rose (1982). Multiple stopping
rules for secretary problem are studied by Praeter (1994). More general multiple
stopping rules are investigated by Stadje (1985).
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Appendix : Proof of Lemma 1.

We will use an induction on l.

a) l = 2: Let j̃ = sup { j < k |A2,j < 0 }. So we have A2,j̃ < 0 and A2,j = 0

for all j = j̃ + 1, . . . , k. Equality (7) implies that A1,j̃+1 < 0, thus A1,j < 0 for

all j = j̃ + 1, . . . , n − 1. By using (I2,j), we therefore obtain A2,j ≤ 0 for all
j = j̃ + 1, . . . , n− 2. From (7), we cannot have A2,k = 0, A2,k+1 ≤ 0, A1,k+1 < 0
and rk+1 > 0 (if k ≤ n− 3). We may therefore assume that rk+1 = 0, and we get
that A2,k+1 = 0. Repeating this argument, we obtain

rj = 0 ∀j = k + 1, . . . , n− 2

A2,j = 0 ∀j = k + 1, . . . , n− 2.
(14)

Hence πk+1 ≤ 2.

Assume now that πk+1 = 2, i.e. rn−1 > 0 and rn > 0. Then from A1,n−1 < 0
(rn < 1) we get rn−1 rn < rn−1, and so A2,n−2 < 0. This contradicts (14). Assume
next that πk+1 = 1, i.e. rn−1 rn = 0 and rn−1 + rn > 0. Then rn−1 rn < rn−1 + rn,
i.e. A2,n−2 < 0, which again contradicts (14).

Thus πk+1 = 0, which proves Lemma 1 for l = 2.

b) l ≥ 3: Let j̃ = sup { j < k |Al,j < 0 }. So we have Al,j̃ < 0 and Al,j = 0 for

all j = j̃ + 1, . . . , k. Equality (7) implies that Al−1,j̃+1 < 0, thus Al−1,j ≤ 0 for

all j = j̃ + 1, . . . , n − l + 1. By using (Il,j), we therefore obtain Al,j ≤ 0 for all
j = j̃ + 1, . . . , n− l.

If Al−1,k+1 = 0, the induction argument yields πk+2 < l−2. Hence πk+1 < l−1.
We may therefore assume that Al−1,k+1 < 0. But from (7), we cannot have
Al,k = 0, Al,k+1 ≤ 0, Al−1,k+1 < 0 and rk+1 > 0 (if k ≤ n− l−1). Hence rk+1 = 0,
and Al,k+1 = 0.

Again, if Al−1,k+2 = 0, the induction argument yields πk+3 < l − 2. Then
πk+1 < l − 1 since rk+1 = 0. We may therefore assume that Al−1,k+2 < 0. Then
we must have rk+2 = 0, and Al,k+2 = 0 (if k ≤ n− l − 2).

By repeating this argument, we either obtain the proof of Lemma 1, or else

rj = 0, Al−1,j < 0, Al,j = 0 (15)

for all j = k + 1, . . . , n− l. Hence πk+1 ≤ l.
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Assume now that πk+1 = l, i.e. rj > 0 for all j ≥ n− l+1. Then Al−1,n−l+1 ≤ 0
yields after straightforward simplifications

(rn−l+1 . . . rn) <

n
∑

i=n−l+1

rn−l+1 . . . r̂i . . . rn,

i.e. Al,n−l < 0. This contradicts (15).

Assume now that πk+1 = l − 1, i.e. there exists a unique j ≥ n − l + 1 such
that rj = 0. Then we have

0 = (rn−l+1 . . . rn) <

n
∑

i=n−l+1

rn−l+1 . . . r̂i . . . rn,

i.e. Al,n−l < 0, which contradicts (15).

Therefore πk+1 < l − 1, and Lemma 1 is proved.

2
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